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Challenges in evaluating costs

of known lattice attacks

D. J. Bernstein

Textbook algorithm design:

1. Write down algorithm A.

2. Prove algorithm costs C.

3. Repeat, trying to minimize C.

Usual situation for hard problems:

No proof of min C for known A.

Even worse for lattice attacks:

Claims of min C for known A are

piles of poorly justified guesses.
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sntrup761 evaluations from

“NTRU Prime: round 2” Table 2:

Ignoring hybrid attacks:
368 185 enum, free memory cost
368 185 enum, real memory cost
153 139 sieving, free memory cost
208 208 sieving, real memory cost

Including hybrid attacks:
230 169 enum, free memory cost
277 169 enum, real memory cost
153 139 sieving, free memory cost
208 180 sieving, real memory cost

Security levels:
. . . pre-quantum

. . . post-quantum
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Comments inside published script

that computed these numbers:
# XXX UNDER: many underestimates and potential underestimates
# XXX OVER: many overestimates and potential overestimates
# XXX UNDER/OVER: misuse of asymptotics
# XXX UNDER/OVER: misuse of asymptotics
# XXX UNDER/OVER: misuse of asymptotics
# XXX UNDER/OVER: misuse of asymptotics
# XXX UNDER/OVER: misuse of asymptotics
# XXX UNDER: assumes instant QRAM
# XXX UNDER: ’free’ options ignore cost of RAM
# XXX UNDER: experiments suggest delta is actually larger
# XXX OVER: but maybe delta crosses below this for large b
# XXX UNDER: incorrectly treats ntru prime as ntru classic
# XXX OVER: assumes rotating t to \Z is optimal
# XXX OVER: considers only equivalence by rotations
# XXX OVER: assumes independence across equivalence class
# XXX OVER: limited force search
# XXX OVER: limited m search
# XXX OVER: limited scale search
# XXX OVER/UNDER: assumes average g weight
# XXX OVER: limited block-size search
# XXX OVER: experiments say smaller sizes often work
# XXX OVER: assumes dual attack is non-competitive
# XXX OVER: limited scale search
# XXX OVER: assumes that forcing does not help with hybrid
# XXX OVER: limited m search in hybrid context
# XXX OVER: assumes even split is optimal
# XXX OVER: limited blocksize search
# XXX UNDER/OVER: takes average weights
# XXX UNDER/OVER: ignores anti-correlation with searched weight
# XXX UNDER/OVER: need more experimental evidence
# XXX OVER: limited imax search
# XXX UNDER: ignores cost of inner loop
# XXX OVER: limited imax search
# XXX UNDER: ignores cost of inner loop
# XXX OVER: limited imax search
# XXX UNDER: ignores cost of inner loop
# XXX UNDER: ignores collision probability
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2019 Son “A note on parameter

choices of Round5”, illustrating

one change inside part of one of

the 35 issues listed in script:

“: : : there is one significant

optimization of Albrecht’s dual

attack, which was not reflected

to Round5 parameter choices.

By taking this into consideration,

some parameter choices of

Round5 cannot enjoy the

claimed security level.”

Goal: pre-quantum 128, 192, 256.

2019 Son says: 123, 183, 243.
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The main attack problems

Define R = Z[x ]=(x761 − x − 1);

“small” = all coeffs in {−1; 0; 1};
w = 286; q = 4591.

Attacker wants to find

small weight-w secret s ∈ R.
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The main attack problems

Define R = Z[x ]=(x761 − x − 1);

“small” = all coeffs in {−1; 0; 1};
w = 286; q = 4591.

Attacker wants to find

small weight-w secret s ∈ R.

Problem 1: Public A ∈ R=q with

As + e = 0. Small secret e ∈ R.

Problem 2: Public A ∈ R=q and

As + e. Small secret e ∈ R.

Problem 3: Public A1; A2 ∈ R=q.

Public A1s + e1; A2s + e2.

Small secrets e1; e2 ∈ R.
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Rewrite each problem as finding

short nonzero solution to system

of homogeneous R=q equations.

Problem 1: Find (s; e) ∈ R2

with As + e = 0, given A ∈ R=q.
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Rewrite each problem as finding

short nonzero solution to system

of homogeneous R=q equations.

Problem 1: Find (s; e) ∈ R2

with As + e = 0, given A ∈ R=q.

Problem 2: Find (s; t; e) ∈ R3

with As + e = bt,

given A; b ∈ R=q.

Problem 3: Find

(s; t1; t2; e1; e2) ∈ R5 with

A1s + e1 = b1t1, A2s + e2 = b2t2,

given A1; b1; A2; b2 ∈ R=q.
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Recognize each solution space

as a full-rank lattice:

Problem 1: Find (s; e) in image

of the map (s; r) 7→ (s; qr − As)
from R2 to R2.
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Recognize each solution space

as a full-rank lattice:

Problem 1: Find (s; e) in image

of the map (s; r) 7→ (s; qr − As)
from R2 to R2.

Problem 2: Find (s; t; e)

in image of the map (s; t; r) 7→
(s; t; bt + qr − As).

Problem 3: Find

(s; t1; t2; e1; e2) in image

of the map (s; t1; t2; r1; r2) 7→
(s; t1; t2; b1t1 + qr1 − A1s;

b2t2 + qr2 − A2s).
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Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.
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Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.

Nonsense from 2017 Kirchner–

Fouque: “there exist many short

vectors” in Problem 1 lattices

but not in Problem 2/3 lattices.

⇒ Nonsense in NISTIR 8240:

Problem 1 “produces a lattice

that has somewhat more

structure : : : due to having

shorter than expected vectors”.
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2001 May–Silverman, for Problem

1: Force a few coefficients of

s to be 0. This reduces lattice

rank, speeding up various attacks,

despite lower success chance.
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2001 May–Silverman, for Problem

1: Force a few coefficients of

s to be 0. This reduces lattice

rank, speeding up various attacks,

despite lower success chance.

(Always a speedup? Seems to be

a slowdown if q is very large.)

Same speedup for Problem 2:

Force many coefficients of (s; t)

to be 0. Bai–Galbraith special

case: Force t = 1, and force

a few coefficients of s to be 0.

(Also slowdown if q is very large?)
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Uniform random small weight-w

secret s has length
√

286 ≈ 17.
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Standard attack on Problem 1

Lattice has rank 2 · 761 = 1522.

Uniform random small weight-w

secret s has length
√

286 ≈ 17.

Uniform random small secret

e has length usually close top
1522=3 ≈ 23. (What if it’s

smaller? What if it’s larger?)

Attack parameter: k = 13.

Force k positions in s to be 0:

restrict to sublattice of rank 1509.

Pr[s is in sublattice] ≈ 0:2%.
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Attacker is just as happy to find

another solution such as (xs; xe).
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aren’t; also, total Pr depends on
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Attacker is just as happy to find

another solution such as (xs; xe).

Standard analysis for, e.g.,

Z[x ]=(x761 − 1): Each (x j s; x je)

has chance ≈0:2% of being in

sublattice. These 761 chances

are independent. (No, they

aren’t; also, total Pr depends on

attacker’s choice of positions.)

Ignore bigger solutions (¸s; ¸e).

(How hard are these to find?)

Pretend this analysis applies to

Z[x ]=(x761 − x − 1). (It doesn’t.)
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Write equation e = qr − As
as 761 equations on coefficients.



12

Write equation e = qr − As
as 761 equations on coefficients.

Attack parameter: m = 600.

Ignore 761 − m = 161 equations:

i.e., project e onto 600 positions.

Projected sublattice rank d =

1509− 161 = 1348; det q600.
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Write equation e = qr − As
as 761 equations on coefficients.

Attack parameter: m = 600.

Ignore 761 − m = 161 equations:

i.e., project e onto 600 positions.

Projected sublattice rank d =

1509− 161 = 1348; det q600.

Attack parameter: – = 1:331876.

Rescaling: Assign weight – to

positions in s. Increases length of

s to –
√

286 ≈ 23; increases det to

–748q600. (Is this – optimal?)
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Use BKZ-˛ algorithm to reduce
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alternatives to BKZ?)
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Attack parameter: ˛ = 525.

Use BKZ-˛ algorithm to reduce

lattice basis. (What about

alternatives to BKZ?)

Standard analysis of BKZ-˛:

“Normally” finds nonzero vector

of length ‹d (detL)1=d where

‹ = (˛(ı˛)1=˛=(2ıe))1=(2(˛−1)).

(This ‹ formula is an asymptotic

claim without claimed error

bounds. Does not match

experiments for specific d .)
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Standard analysis, continued:

“Geometric-series assumption”

holds. (What about deviations

identified in 2018 experiments?)
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Standard analysis, continued:

“Geometric-series assumption”

holds. (What about deviations

identified in 2018 experiments?)

BKZ-˛ finds unique (mod ±)

shortest nonzero vector ⇔
length ≤ ‹2˛−d (detL)1=d

p
d=˛.

(What about deviations identified

in 2017 experiments?)

Hence the attack finds (s; e),

assuming forcing worked. If it

didn’t, retry. (Are these tries

independent? Should they use

new parameters? Grover?)
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How long does BKZ-˛ take?

Standard answer: 20:265˛ =

2139:125 quantum operations.
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How long does BKZ-˛ take?

Standard answer: 20:265˛ =

2139:125 quantum operations.

(Plugging o(1) = 0 into the

2(0:265+o(1))˛ asymptotic does

not match experiments. What’s

the actual performance? And

what exactly is an “operation”?)

Surprising fact: A reported 400×
experimental speedup from a

variant of this algorithm had zero

effect on claimed security levels.

Large parts of the speedup do not

match underestimates in claims.
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2019 Bernstein–Chuengsatiansup–

Lange–van Vredendaal “NTRU

Prime: round 2” Section 6:

broader and more detailed survey

of (1) how known lattice attacks

work, including hybrid attacks,

and (2) open questions regarding

the performance of these attacks.

New lattice-analysis papers:

2019 Son (dual); 2019 Son–

Cheon (hybrid); 2019 Albrecht–

Curtis–Wunderer (hybrid);

2019 Albrecht–Gheorghiu–

Postlethwaite–Schanck (sieving).


