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Symmetric crypto: main objectives

Integrity:

Attacker can’t forge ciphertexts.

Confidentiality: Attacker seeing

ciphertexts can’t figure out

message contents. (But can see

message number, length, timing.)

Can define further objectives.

Example: If crypto is too slow,

attacker can flood server’s CPU.

Real client messages are lost.

This damages availability.
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Easy encryption mechanism:

Assume 30-digit messages.

Assume client, server know

secret 30-digit numbers

t1 to use for message 1;

t2 to use for message 2;

t3 to use for message 3; etc.

C1 = (m1 + t1) mod 1030;

C2 = (m2 + t2) mod 1030;

C3 = (m3 + t3) mod 1030; etc.

This protects confidentiality.

AES-GCM, ChaCha20-Poly1305

work this way, scaled up to

groups larger than Z=1030.
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Last time: For each message

compute authenticator

using another secret number.

Sender attaches authenticator

to message before sending it.

Receiver checks authenticator.

This protects integrity.

Details use multiplications.

AES-GCM, ChaCha20-Poly1305

work this way, again scaled up.

This would be the whole picture

if client, server started with

enough secret random numbers.
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AES expands 256-bit secret k

into F (k; 1); F (k; 2); F (k; 3); : : :

simulating many independent

secrets r; s1; t1; : : :.

ChaCha20 also does this,

using a different function F .

Definition of PRG

(“pseudorandom generator”):

Attacker can’t distinguish

F (k; 1); F (k; 2); F (k; 3); : : :

from string of independent

uniform random blocks.

Warning: “pseudorandom”

has many other meanings.
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PRF (“pseudorandom function”):
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F (k; 1); F (k; 2); F (k; 3); : : : from

independent uniform random

blocks, given access to a server

that returns F (k; i) given i .

Server is called an oracle.
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PRF (“pseudorandom function”):

Attacker can’t distinguish

F (k; 1); F (k; 2); F (k; 3); : : : from

independent uniform random

blocks, given access to a server

that returns F (k; i) given i .

Server is called an oracle.

PRP (“: : : permutation”):

Attacker can’t distinguish

F (k; 1); F (k; 2); F (k; 3); : : :

from independent uniform random

distinct blocks, given oracle.

If block size is big then

PRP ⇒ PRF ⇒ PRG.
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Small block sizes are dangerous.

PRF property fails, and often

application security fails.

e.g. 2016 Bhargavan–Leurent

sweet32.info: Triple-DES

broken in TLS. Same attack

also breaks small block sizes

in NSA’s Simon, Speck.

AES block size: 128 bits.

PRF attack chance ≈ q2=2129

if AES is used for q blocks.

Is this safe? How big is q?

ChaCha20 block size: 512 bits.

https://sweet32.info
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Can prove confidentiality and

integrity of AES-GCM and

ChaCha20-Poly1305 assuming

AES and ChaCha20 are PRFs.

Generalization: Prove security

of M(F ) assuming cipher F is a

PRF. M is a mode of use of F .

Good modes: CTR (“counter

mode”), CBC, OFB, many more.

Bad modes: ECB, many more.

Mode that claimed proof

but was recently broken: OCB2.

Have to check proofs carefully!
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How do we know that AES and

ChaCha20 are PRFs? We don’t.

We conjecture security

after enough failed attack efforts.

“All of these attacks fail and we

don’t have better attack ideas.”

Remaining slides today:

• Simple example of block cipher.

Seems to be a good cipher,

except block size is too small.

• Variants of this block cipher

that look similar but

can be quickly broken.
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1994 Wheeler–Needham “TEA,

a tiny encryption algorithm”:

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x += y+c ^ (y<<4)+k[0]

^ (y>>5)+k[1];

y += x+c ^ (x<<4)+k[2]

^ (x>>5)+k[3];

}

b[0] = x; b[1] = y;

}



12

uint32: 32 bits (b0; b1; : : : ; b31)

representing the “unsigned”

integer b0 + 2b1 + · · ·+ 231b31.

+: addition mod 232.

c += d: same as c = c + d.

^: xor; ⊕; addition of

each bit separately mod 2.

Lower precedence than + in C,

so spacing is not misleading.

<<4: multiplication by 16, i.e.,

(0; 0; 0; 0; b0; b1; : : : ; b27).

>>5: division by 32, i.e.,

(b5; b6; : : : ; b31; 0; 0; 0; 0; 0).
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Functionality

TEA is a 64-bit block cipher

with a 128-bit key.

Input: 128-bit key (namely

k[0],k[1],k[2],k[3]);

64-bit plaintext (b[0],b[1]).

Output: 64-bit ciphertext

(final b[0],b[1]).

Can efficiently encrypt:

(key; plaintext) 7→ ciphertext.

Can efficiently decrypt:

(key; ciphertext) 7→ plaintext.
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Wait, how can we decrypt?

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x += y+c ^ (y<<4)+k[0]

^ (y>>5)+k[1];

y += x+c ^ (x<<4)+k[2]

^ (x>>5)+k[3];

}

b[0] = x; b[1] = y;

}
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Answer: Each step is invertible.

void decrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 32 * 0x9e3779b9;

for (r = 0;r < 32;r += 1) {

y -= x+c ^ (x<<4)+k[2]

^ (x>>5)+k[3];

x -= y+c ^ (y<<4)+k[0]

^ (y>>5)+k[1];

c -= 0x9e3779b9;

}

b[0] = x; b[1] = y;

}
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Generalization, Feistel network

(used in, e.g., “Lucifer” from

1973 Feistel–Coppersmith):

x += function1(y,k);

y += function2(x,k);

x += function3(y,k);

y += function4(x,k);

...

Decryption, inverting each step:

...

y -= function4(x,k);

x -= function3(y,k);

y -= function2(x,k);

x -= function1(y,k);
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TEA again for comparison

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x += y+c ^ (y<<4)+k[0]

^ (y>>5)+k[1];

y += x+c ^ (x<<4)+k[2]

^ (x>>5)+k[3];

}

b[0] = x; b[1] = y;

}
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XORTEA: a bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x ^= y^c ^ (y<<4)^k[0]

^ (y>>5)^k[1];

y ^= x^c ^ (x<<4)^k[2]

^ (x>>5)^k[3];

}

b[0] = x; b[1] = y;

}
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xor circuit is cheaper than add.
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“Hardware-friendlier” cipher, since

xor circuit is cheaper than add.

But output bits are linear

functions of input bits!

e.g. First output bit is

1⊕k0⊕k1⊕k3⊕k10⊕k11⊕k12⊕
k20⊕ k21⊕ k30⊕ k32⊕ k33⊕ k35⊕
k42⊕ k43⊕ k44⊕ k52⊕ k53⊕ k62⊕
k64⊕ k67⊕ k69⊕ k76⊕ k85⊕ k94⊕
k96⊕k99⊕k101⊕k108⊕k117⊕k126⊕
b1⊕b3⊕b10⊕b12⊕b21⊕b30⊕b32⊕
b33⊕b35⊕b37⊕b39⊕b42⊕b43⊕
b44 ⊕ b47 ⊕ b52 ⊕ b53 ⊕ b57 ⊕ b62.
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There is a matrix M

with coefficients in F2

such that, for all (k; b),

XORTEAk (b) = (1; k; b)M.

XORTEAk (b1)⊕ XORTEAk (b2)

= (0; 0; b1 ⊕ b2)M.

Very fast attack:

if b4 = b1 ⊕ b2 ⊕ b3 then

XORTEAk (b1)⊕XORTEAk (b2) =

XORTEAk (b3)⊕ XORTEAk (b4).

This breaks PRP (and PRF):

uniform random permutation

(or function) F almost never has

F (b1)⊕ F (b2) = F (b3)⊕ F (b4).
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TEA again for comparison

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x += y+c ^ (y<<4)+k[0]

^ (y>>5)+k[1];

y += x+c ^ (x<<4)+k[2]

^ (x>>5)+k[3];

}

b[0] = x; b[1] = y;

}
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LEFTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x += y+c ^ (y<<4)+k[0]

^ (y<<5)+k[1];

y += x+c ^ (x<<4)+k[2]

^ (x<<5)+k[3];

}

b[0] = x; b[1] = y;

}
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First output bit is

1⊕ k0 ⊕ k32 ⊕ k64 ⊕ k96 ⊕ b32.
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Addition is not F2-linear,

but addition mod 2 is F2-linear.

First output bit is

1⊕ k0 ⊕ k32 ⊕ k64 ⊕ k96 ⊕ b32.

Higher output bits

are increasingly nonlinear

but they never affect first bit.

How TEA avoids this problem:

>>5 diffuses nonlinear changes

from high bits to low bits.

(Diffusion from low bits to high

bits: <<4; carries in addition.)
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TEA again for comparison

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x += y+c ^ (y<<4)+k[0]

^ (y>>5)+k[1];

y += x+c ^ (x<<4)+k[2]

^ (x>>5)+k[3];

}

b[0] = x; b[1] = y;

}
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TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 0;

for (r = 0;r < 4;r += 1) {

c += 0x9e3779b9;

x += y+c ^ (y<<4)+k[0]

^ (y>>5)+k[1];

y += x+c ^ (x<<4)+k[2]

^ (x>>5)+k[3];

}

b[0] = x; b[1] = y;

}
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Fast attack:

TEA4k (x + 231; y) and

TEA4k (x; y) have same first bit.

Trace x; y differences

through steps in computation.

r = 0: multiples of 231; 226.

r = 1: multiples of 221; 216.

r = 2: multiples of 211; 26.

r = 3: multiples of 21; 20.

Uniform random function F :

F (x + 231; y) and F (x; y) have

same first bit with probability 1=2.

PRF advantage 1=2.

Two pairs (x; y): advantage 3=4.
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trace probabilities of differences;

probabilities of linear equations;

probabilities of higher-order

differences C(x + ‹ + ›)−
C(x + ‹)− C(x + ›) + C(x); etc.

Use algebra+statistics to exploit

non-randomness in probabilities.
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More sophisticated attacks:

trace probabilities of differences;

probabilities of linear equations;

probabilities of higher-order

differences C(x + ‹ + ›)−
C(x + ‹)− C(x + ›) + C(x); etc.

Use algebra+statistics to exploit

non-randomness in probabilities.

Attacks get beyond r = 4

but rapidly lose effectiveness.

Very far from full TEA.

Hard question in cipher design:

How many “rounds” are

really needed for security?
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TEA again for comparison

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x += y+c ^ (y<<4)+k[0]

^ (y>>5)+k[1];

y += x+c ^ (x<<4)+k[2]

^ (x>>5)+k[3];

}

b[0] = x; b[1] = y;

}
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REPTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 0x9e3779b9;

for (r = 0;r < 1000;r += 1) {

x += y+c ^ (y<<4)+k[0]

^ (y>>5)+k[1];

y += x+c ^ (x<<4)+k[2]

^ (x>>5)+k[3];

}

b[0] = x; b[1] = y;

}



30

REPTEAk (b) = I1000
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where Ik does x+=...;y+=....
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REPTEAk (b) = I1000
k (b)

where Ik does x+=...;y+=....

Try list of 232 inputs b.

Collect outputs REPTEAk (b).

Good chance that some b in list

also has a = Ik (b) in list. Then

REPTEAk (a)=Ik (REPTEAk (b)).

For each (b; a) from list:

Try solving equations a = Ik (b),

REPTEAk (a)=Ik (REPTEAk (b))

to figure out k . (More equations:

try re-encrypting these outputs.)

This is a slide attack.

TEA avoids this by varying c.
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What about original TEA?

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x += y+c ^ (y<<4)+k[0]

^ (y>>5)+k[1];

y += x+c ^ (x<<4)+k[2]

^ (x>>5)+k[3];

}

b[0] = x; b[1] = y;

}
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Related keys: e.g.,

TEAk ′(b) = TEAk (b)

where (k ′[0]; k ′[1]; k ′[2]; k ′[3]) =

(k[0] + 231; k[1] + 231; k[2]; k[3]).



32

Related keys: e.g.,

TEAk ′(b) = TEAk (b)

where (k ′[0]; k ′[1]; k ′[2]; k ′[3]) =

(k[0] + 231; k[1] + 231; k[2]; k[3]).

Is this an attack?



32

Related keys: e.g.,

TEAk ′(b) = TEAk (b)
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where (k ′[0]; k ′[1]; k ′[2]; k ′[3]) =

(k[0] + 231; k[1] + 231; k[2]; k[3]).

Is this an attack?

PRP attack goal: distinguish

TEAk , for one secret key k , from

uniform random permutation.

Brute-force attack:

Guess key g , see if TEAg
matches TEAk on some outputs.

Related keys ⇒ g succeeds with

chance 2−126. Still very small.
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1997 Kelsey–Schneier–Wagner:

Fancier relationship between k; k ′

has chance 2−11 of producing

a particular output equation.

No evidence in literature that

this helps brute-force attack,

or otherwise affects PRP security.

No challenge to security analysis

of modes using TEA.

But advertised as

“related-key cryptanalysis”

and claimed to justify

recommendations for designers

regarding key scheduling.
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Some ways to learn more

about cipher attacks,

hash-function attacks, etc.:

Take upcoming course

“Selected areas in cryptology”.

Includes symmetric attacks.

Read attack papers,

especially from FSE conference.

Try to break ciphers yourself:

e.g., find attacks on FEAL.

Reasonable starting point:

2000 Schneier “Self-study course

in block-cipher cryptanalysis”.


