Symmetric crypto, part 2

D. J. Bernstein

client

server's

session

key k

i

public key S

Public-key
crypto

server's

ciphertext Cj

Y

Internet

ciphertext Cy

¢

secret key s

> same k

l

SErver

client

i

message nmy |

!

authenticated

Symmetric
crypto

ciphertext Cq

Internet

Y
authenticated

ciphertext Cq

!

SAamMeE message I

l

SErver

Symmetric crypto, part 2

D. J. Bernstein

client

server's

session

key k

i

public key S

Public-key
crypto

server's

ciphertext Cj

Y

Internet

ciphertext Cy

¢

secret key s

> same k

l

SErver

client

i

message my |

!

authenticated

Symmetric
crypto

ciphertext (o

Internet

Y
authenticated

ciphertext C»

!

SAameE message m»

l

SErver

Symmetric crypto, part 2

D. J. Bernstein

client

server's

session

key k

i

public key S

Public-key
crypto

server's

ciphertext Cj

Y

Internet

ciphertext Cy

¢

secret key s

> same k

l

SErver

client

i

message m3 |

!

authenticated

Symmetric
crypto

ciphertext C3

Internet

Y

forged
ciphertext C5 # C3

|

> “forgery!”

l

SErver

ric crypto, part 2

rnstein

t session key k

r's : J/
ciphertext C

ey S P 0

key Internet

to v
ciphertext Cy

r's i

ey s > same Kk

l

SErver

client

l

message ms3

!

Symmetric
crypto

authenticated
ciphertext C3

Y

Internet

Symmet

forged

ciphertext

C3 # G

{

> “forgery!”

l

SErver

Integrit
Attacker

part 2

> session key k

i

~ ciphertext Cy

Internet

Y
ciphertext Cy

¢

—>same k

l

SErver

client

i

message m3 |

!

authenticated

Symmetric
crypto

ciphertext C3

Internet

Y

Symmetric crypto:

forged
ciphertext C5 # C3

Y

> “forgery!”

l

SErver

Integrity:
Attacker can't for;

key k

xt Co

Internet

xt Co

2 k

er

client

l

message ms3

!

authenticated

Symmetric
crypto

ciphertext C3

Internet

Y

Symmetric crypto: main obj

forged
ciphertext C5 # C3

{

> “forgery!”

l

SErver

Integrity:
Attacker can't forge cipherte

. 3

client Symmetric crypto: main objectives
i Integrity:
message ms3 | Attacker can't forge ciphertexts.

!

authenticated

X 7| ciphertext C3
Symmetric Internet
crypto V
forged
ciphertext C5 # C3
{
K > “forgery!”

l

SErver

client

i

message m3 |

!

authenticated

Symmetric
crypto

ciphertext C3

Internet

Y

Symmetric crypto: main objectives

forged
ciphertext C5 # C3

|

> “forgery!”

l

SErver

Integrity:
Attacker can't forge ciphertexts.

Confidentiality: Attacker seeing
ciphertexts can't figure out
message contents. (But can see
message number, length, timing.)

client

i

message m3 |

!

authenticated

Symmetric
crypto

ciphertext C3

Internet

Y

forged
ciphertext C5 # C3

|

> “forgery!”

l

SErver

Symmetric crypto: main objectives

Integrity:
Attacker can't forge ciphertexts.

Confidentiality: Attacker seeing
ciphertexts can't figure out
message contents. (But can see

message number, length, timing.)

Can define further objectives.
Example: If crypto is too slow,
attacker can flood server's CPU.
Real client messages are lost.
This damages availability.

client

l

message ms3

!

authenticated

tric
0

g ciphertext C3
Internet
Y
forged
ciphertext C5 # C3
{
> “forgery!”

l

SErver

Symmetric crypto: main objectives

Integrity:
Attacker can't forge ciphertexts.

Confidentiality: Attacker seeing
ciphertexts can't figure out
message contents. (But can see

message number, length, timing.)

Can define further objectives.
Example: If crypto is too slow,
attacker can flood server's CPU.
Real client messages are lost.
This damages availability.

Easy enc
Assume
Assume
secret 3l
t1 to use
> tO ust
t3 TO use

client

i

message m3 |

!

authenticated
ciphertext C3

Internet

Y

Symmetric crypto: main objectives

forged
iphertext C3 # C3

|

—> “forgery!”

l

SErver

Integrity:
Attacker can't forge ciphertexts.

Confidentiality: Attacker seeing
ciphertexts can't figure out
message contents. (But can see
message number, length, timing.)

Can define further objectives.
Example: If crypto is too slow,
attacker can flood server's CPU.
Real client messages are lost.
This damages availability.

Easy encryption rr
Assume 30-digit n
Assume client, ser
secret 30-digit nur
t1 to use for mess.
tr to use for mess.
t3 to use for mess.

cated
xt C3

nternet

Symmetric crypto: main objectives

Integrity:
Attacker can't forge ciphertexts.

Confidentiality: Attacker seeing
ciphertexts can't figure out
message contents. (But can see
message number, length, timing.)

Can define further objectives.
Example: If crypto is too slow,
attacker can flood server's CPU.
Real client messages are lost.
This damages availability.

Easy encryption mechanism:
Assume 30-digit messages.
Assume client, server know
secret 30-digit numbers
t; to use for message 1;
tr to use for message 2;
t3 to use for message 3; etc

Symmetric crypto: main objectives

Integrity:
Attacker can't forge ciphertexts.

Confidentiality: Attacker seeing
ciphertexts can't figure out
message contents. (But can see
message number, length, timing.)

Can define further objectives.
Example: If crypto is too slow,
attacker can flood server's CPU.
Real client messages are lost.
This damages availability.

Easy encryption mechanism:
Assume 30-digit messages.
Assume client, server know
secret 30-digit numbers
t; to use for message 1;
to to use for message 2;
t3 to use for message 3; etc.

Symmetric crypto: main objectives

Integrity:
Attacker can't forge ciphertexts.

Confidentiality: Attacker seeing
ciphertexts can't figure out
message contents. (But can see
message number, length, timing.)

Can define further objectives.
Example: If crypto is too slow,
attacker can flood server's CPU.
Real client messages are lost.
This damages availability.

Easy encryption mechanism:
Assume 30-digit messages.
Assume client, server know
secret 30-digit numbers

t; to use for message 1;

to to use for message 2;

t3 to use for message 3; etc.

C1 = (my + t1) mod 103;
Cy = (my + t) mod 103;
C3 = (m3 + t3) mod 103°; etc.
This protects confidentiality.

Symmetric crypto: main objectives

Integrity:
Attacker can't forge ciphertexts.

Confidentiality: Attacker seeing
ciphertexts can't figure out
message contents. (But can see
message number, length, timing.)

Can define further objectives.
Example: If crypto is too slow,
attacker can flood server's CPU.
Real client messages are lost.
This damages availability.

3

Easy encryption mechanism:
Assume 30-digit messages.
Assume client, server know
secret 30-digit numbers

t; to use for message 1;

to to use for message 2;

t3 to use for message 3; etc.

C1 = (my + t1) mod 103;

Cy = (my + t) mod 103;

C3 = (m3 + t3) mod 103°; etc.
This protects confidentiality.

AES-GCM, ChaCha20-Poly1305

work this way, scaled up to

groups larger than Z /103,

ric crypto: main objectives

y:
- can't forge ciphertexts.

ntiality: Attacker seeing
xts can't figure out
contents. (But can see
number, length, timing.)

ne further objectives.

: If crypto is too slow,
can flood server's CPU.
nt messages are lost.
nages availability.

3

Easy encryption mechanism:
Assume 30-digit messages.
Assume client, server know
secret 30-digit numbers

t; to use for message 1;

to to use for message 2;

t3 to use for message 3; etc.

C1 = (mq + t1) moc 1030;

Cr = (mp + t2) mod 103;

C3 = (m3 + t3) mod 103°; etc.
This protects confidentiality.

AES-GCM, ChaCha20-Poly1305

work this way, scaled up to
groups larger than Z/103°.

Last tim
compute
using an

Sender ¢
to mess:
Recelver
This pro

~_main objectives

ye ciphertexts.

Attacker seeing
Iigure out

(But can see
length, timing.)

objectives.

) 1S too slow,
server's CPU.
es are |ost.
ilability.

3

Easy encryption mechanism:
Assume 30-digit messages.
Assume client, server know
secret 30-digit numbers

t; to use for message 1;

to to use for message 2;

t3 to use for message 3; etc.

C1 = (my + t1) mod 103;

Cy = (my + t) mod 103;

C3 = (m3 + t3) mod 103°; etc.
This protects confidentiality.

AES-GCM, ChaCha20-Poly1305

work this way, scaled up to

groups larger than Z /103,

Last time: For eac
compute authent
using another secr

Sender attaches a
to message before
Recelver checks al
This protects inte;

ectives

X TS.

eeing

see
ning.)

Vi

W,

PU.

3

Easy encryption mechanism:
Assume 30-digit messages.
Assume client, server know
secret 30-digit numbers

t; to use for message 1;

tr to use for message 2;

t3 to use for message 3; etc.

C1 = (mq + t1) moc 1030;

Cr = (mp + t2) mod 103;

C3 = (m3 + t3) mod 103°; etc.
This protects confidentiality.

AES-GCM, ChaCha20-Poly1305

work this way, scaled up to

groups larger than Z/103°.

Last time: For each messag
compute authenticator
using another secret numbel

Sender attaches authenticat
to message before sending i
Receiver checks authenticat
This protects Integrity.

Easy encryption mechanism: Last time: For each message
Assume 30-digit messages. compute authenticator
Assume client, server know using another secret number.

secret 30-digit numbers
t; to use for message 1;

Sender attaches authenticator
to message before sending it.

t» to use for message 2: . .
2 8 Receiver checks authenticator.

t3 to use for message 3; etc. This protects integrity.
C1 = (mq + t1) moc 1039,
Co = (mp + t») moc 1039,
C3 = (m3 + t3) moc 10°Y; etc.

This protects confidentiality.

AES-GCM, ChaCha20-Poly1305

work this way, scaled up to

groups larger than Z /103,

Easy encryption mechanism: Last time: For each message
Assume 30-digit messages. compute authenticator
Assume client, server know using another secret number.

secret 30-digit numbers
t; to use for message 1;

Sender attaches authenticator
to message before sending it.

t» to use for message 2: . .
2 8 Receiver checks authenticator.

t3 to use for message 3; etc. This protects integrity.
C1 = (mq + t1) moc 1039,
Co = (mp + t») moc 1039,
C3 = (m3 + t3) moc 10°Y; etc.

This protects confidentiality.

Details use multiplications.
AES-GCM, ChaCha20-Poly1305
work this way, again scaled up.

AES-GCM, ChaCha20-Poly1305

work this way, scaled up to

groups larger than Z /103,

Easy encryption mechanism:
Assume 30-digit messages.
Assume client, server know
secret 30-digit numbers

t; to use for message 1;

to to use for message 2;

t3 to use for message 3; etc.

C1 = (my + t1) mod 103;

Cy = (my + t) mod 103;

C3 = (m3 + t3) mod 103°; etc.
This protects confidentiality.

AES-GCM, ChaCha20-Poly1305

work this way, scaled up to

groups larger than Z /103,

Last time: For each message
compute authenticator
using another secret number.

Sender attaches authenticator
to message before sending it.
Receiver checks authenticator.

This protects integrity.

Details use multiplications.
AES-GCM, ChaCha20-Poly1305
work this way, again scaled up.

This would be the whole picture
if client, server started with
enough secret random numbers.

ryption mechanism:
30-digit messages.
client, server know
)-digit numbers

> for message 1;

> for message 2;

> for message 3; etc.

11 + t1) moc 1030;

» + tp) moc 1030

3 + t3) mod 1030; etc.
tects confidentiality.

M, ChaCha20-Poly1305
s way, scaled up to
arger than Z/1030.

Last time: For each message
compute authenticator
using another secret number.

Sender attaches authenticator
to message before sending it.
Recelver checks authenticator.
This protects Integrity.

Details use multiplications.
AES-GCM, ChaCha20-Poly1305
work this way, again scaled up.

This would be the whole picture
if client, server started with
enough secret random numbers.

AES exr
into F (A
simulatil

secrets |

echanism:
1essages.
ver know
nbers

age 1;

age 2;

age 3; etc.

0Q 1030;

0Q 1030;

0C 1030; etc.
identiality.

1220-Poly1305
led up to
Z/10%0.

Last time: For each message
compute authenticator
using another secret number.

Sender attaches authenticator
to message before sending it.
Recelver checks authenticator.
This protects integrity.

Details use multiplications.
AES-GCM, ChaCha20-Poly1305
work this way, again scaled up.

This would be the whole picture
if client, server started with
enough secret random numbers.

AES expands 256-
into F(k,1), F(k,
simulating many i
secrets r, s1, t1, . ..

305

Last time: For each message
compute authenticator
using another secret number.

Sender attaches authenticator
to message before sending it.
Recelver checks authenticator.
This protects Integrity.

Details use multiplications.
AES-GCM, ChaCha20-Poly1305
work this way, again scaled up.

This would be the whole picture
if client, server started with
enough secret random numbers.

AES expands 256-bit secret
into F(k,1), F(k,2), F(k,3)
simulating many independer
secrets r, s, tq,

Last time: For each message
compute authenticator
using another secret number.

Sender attaches authenticator
to message before sending it.
Recelver checks authenticator.
This protects integrity.

Details use multiplications.
AES-GCM, ChaCha20-Poly1305
work this way, again scaled up.

This would be the whole picture
if client, server started with
enough secret random numbers.

AES expands 256-bit secret k
into F(k,1), F(k,2), F(k,3),...
simulating many independent
secrets r, s1, t1,

Last time: For each message
compute authenticator
using another secret number.

Sender attaches authenticator
to message before sending it.
Recelver checks authenticator.
This protects integrity.

Details use multiplications.
AES-GCM, ChaCha20-Poly1305
work this way, again scaled up.

This would be the whole picture
if client, server started with
enough secret random numbers.

AES expands 256-bit secret k
into F(k,1), F(k,2), F(k,3),...
simulating many independent
secrets r, s1, t1,

ChaCha20 also does this,
using a different function F.

Last time: For each message
compute authenticator
using another secret number.

Sender attaches authenticator
to message before sending it.
Recelver checks authenticator.
This protects integrity.

Details use multiplications.
AES-GCM, ChaCha20-Poly1305
work this way, again scaled up.

This would be the whole picture
if client, server started with
enough secret random numbers.

AES expands 256-bit secret k
into F(k,1), F(k,2), F(k,3),...
simulating many independent
secrets r, s1, t1,

ChaCha20 also does this,
using a different function F.

Definition of PRG

(“pseudorandom generator”):
Attacker can't distinguish
F(k,1), F(k,2), F(k,3),...
from string of independent
uniform random blocks.

Last time: For each message
compute authenticator
using another secret number.

Sender attaches authenticator
to message before sending it.
Recelver checks authenticator.
This protects integrity.

Details use multiplications.
AES-GCM, ChaCha20-Poly1305
work this way, again scaled up.

This would be the whole picture
if client, server started with
enough secret random numbers.

AES expands 256-bit secret k
into F(k,1), F(k,2), F(k,3),...
simulating many independent
secrets r, s1, t1,

ChaCha20 also does this,
using a different function F.

Definition of PRG

(“pseudorandom generator”):
Attacker can't distinguish
F(k,1), F(k,2), F(k,3),...
from string of independent
uniform random blocks.

Warning: “pseudorandom”
has many other meanings.

e: For each message
 authenticator
other secret number.

ttaches authenticator
1ge before sending it.
checks authenticator.
tects Iintegrity.

1se multiplications.
M, ChaCha20-Poly1305
s way, again scaled up.

uld be the whole picture
server started with
secret random numbers.

AES expands 256-bit secret k

into F(k,1), F(k,2), F(k,3),. ..

simulating many independent
secrets r, sq, t1,

ChaCha20 also does this,
using a different function F.

Definition of PRG

(“pseudorandom generator”):
Attacker can't distinguish
F(k,1), F(k,2), F(k,3),...
from string of independent
uniform random blocks.

Warning: “pseudorandom”
has many other meanings.

PRF (“
Attacker
F(k, 1),
indepenc
blocks, §
that reti
Server is

h message
cator
et number.

uthenticator
sending It.
ithenticator.
Irity.

lications.
1220-Poly1305
in scaled up.

whole picture
arted with
Jom numbers.

AES expands 256-bit secret k

into F(k, 1), F(k,2), F(k,3),...

simulating many independent
secrets r, s1, t1,

ChaCha20 also does this,
using a different function F.

Definition of PRG

(“pseudorandom generator”):
Attacker can't distinguish
F(k,1), F(k,2), F(k,3),...
from string of independent
uniform random blocks.

Warning: “pseudorandom”
has many other meanings.

PRF (“pseudoran
Attacker can't dis
F(k,1), F(k,2), F
independent unifol
blocks, given acce
that returns F(k,
Server is called an

€)

or

or.

305
Ip.

ture

)ElS.

AES expands 256-bit secret k

into F(k,1), F(k,2), F(k,3), ...

simulating many independent
secrets r, sq, t1,

ChaCha20 also does this,
using a different function F.

Definition of PRG

(“pseudorandom generator”):
Attacker can't distinguish
F(k,1), F(k,2), F(k,3),...
from string of independent
uniform random blocks.

Warning: “pseudorandom”
has many other meanings.

PRF (“pseudorandom funct
Attacker can't distinguish

F(k,1), F(k,2), F(k,3),...
independent uniform randon
blocks, given access to a ser
that returns F(k, i) given i.
Server is called an oracle.

AES expands 256-bit secret k
into F(k,1), F(k,2), F(k,3),...
simulating many independent
secrets r, s1, t1,

ChaCha20 also does this,
using a different function F.

Definition of PRG

(“pseudorandom generator”):
Attacker can't distinguish
F(k,1), F(k,2), F(k,3),...
from string of independent
uniform random blocks.

Warning: “pseudorandom”
has many other meanings.

PRF (“pseudorandom function”):
Attacker can't distinguish
F(k,1), F(k,2), F(k,3),... from
independent uniform random
blocks, given access to a server
that returns F(k, i) given i.
Server is called an oracle.

AES expands 256-bit secret k

into F(k, 1), F(k,2), F(k,3),...

simulating many independent
secrets r, s1, t1,

ChaCha20 also does this,
using a different function F.

Definition of PRG

(“pseudorandom generator”):
Attacker can't distinguish
F(k,1), F(k,2), F(k,3),...
from string of independent
uniform random blocks.

Warning: “pseudorandom”
has many other meanings.

PRF (“pseudorandom function”):
Attacker can't distinguish
F(k,1), F(k,2), F(k,3),... from
independent uniform random
blocks, given access to a server
that returns F(k, i) given i.
Server is called an oracle.

PRP (“... permutation”):
Attacker can't distinguish

F(k,1), F(k,2), F(k,3),...

from independent uniform random
distinct blocks, given oracle.

AES expands 256-bit secret k

into F(k, 1), F(k,2), F(k,3),...

simulating many independent
secrets r, s1, t1,

ChaCha20 also does this,
using a different function F.

Definition of PRG

(“pseudorandom generator”):
Attacker can't distinguish
F(k,1), F(k,2), F(k,3),...
from string of independent
uniform random blocks.

Warning: “pseudorandom”
has many other meanings.

PRF (“pseudorandom function”):
Attacker can't distinguish
F(k,1), F(k,2), F(k,3),... from
independent uniform random
blocks, given access to a server
that returns F(k, i) given i.
Server is called an oracle.

PRP (“... permutation”):
Attacker can't distinguish

F(k,1), F(k,2), F(k,3),...

from independent uniform random
distinct blocks, given oracle.

If block size is big then
PRP = PRF = PRG.

ands 2560-bit secret k

1), F(k,2), F(k,3),...

1g many independent
51, 11,

20 also does this,
different function F.

n of PRG

random generator”):
- can't distinguish
F(k,2), F(k,3),...
ing of independent
random blocks.

. “pseudorandom”
y other meanings.

PRF (“pseudorandom function”):
Attacker can't distinguish
F(k,1), F(k,2), F(k,3),... from
independent uniform random
blocks, given access to a server
that returns F(k, i) given i.
Server is called an oracle.

PRP (“... permutation”):
Attacker can't distinguish

F(k, 1), F(k,2), F(k,3),...

from independent uniform random
distinct blocks, given oracle.

If block size is big then
PRP = PRF = PRG.

Small bl
PRF prc

applicati

bit secret k

), F(k,3), ...

ndependent

es this,
inction F.

enerator”):
inguish
(k,3),...
pendent
locks.

random’

eanings.

PRF (“pseudorandom function”):
Attacker can't distinguish
F(k,1), F(k,2), F(k,3),... from
independent uniform random
blocks, given access to a server
that returns F(k, i) given i.
Server is called an oracle.

PRP (“... permutation”):
Attacker can't distinguish

F(k,1), F(k,2), F(k,3),...

from independent uniform random
distinct blocks, given oracle.

If block size is big then
PRP = PRF = PRG.

Small block sizes :
PRF property fails
application securit

1t

PRF (“pseudorandom function”):
Attacker can't distinguish
F(k,1), F(k,2), F(k,3),... from
independent uniform random
blocks, given access to a server
that returns F(k, i) given i.
Server is called an oracle.

PRP (“... permutation”):
Attacker can't distinguish

F(k,1), F(k,2), F(k,3),...

from independent uniform random
distinct blocks, given oracle.

If block size is big then
PRP = PRF = PRG.

Small block sizes are danger
PRF property fails, and ofte
application security fails.

PRF (“pseudorandom function”):
Attacker can't distinguish
F(k,1), F(k,2), F(k,3),... from
independent uniform random
blocks, given access to a server
that returns F(k, i) given i.
Server is called an oracle.

PRP (“... permutation”):
Attacker can't distinguish

F(k,1), F(k,2), F(k,3),...

from independent uniform random
distinct blocks, given oracle.

If block size is big then
PRP = PRF = PRG.

Small block sizes are dangerous.
PRF property fails, and often
application security fails.

PRF (“pseudorandom function”): Small block sizes are dangerous.
Attacker can't distinguish PRF property fails, and often
F(k,1), F(k,2), F(k,3),... from application security fails.

independent uniform random e.g. 2016 Bhargavan—Leurent

sweet32.info: Triple-DES
broken in TLS. Same attack
also breaks small block sizes
PRP (“... permutation”): in NSA’s Simon, Speck.
Attacker can't distinguish

F(k,1), F(k,2), F(k,3),...

from independent uniform random

blocks, given access to a server
that returns F(k, i) given i.
Server is called an oracle.

distinct blocks, given oracle.

If block size is big then
PRP = PRF = PRG.

PRF (“pseudorandom function”): Small block sizes are dangerous.
Attacker can't distinguish PRF property fails, and often
F(k,1), F(k,2), F(k,3),... from application security fails.

independent uniform random e.g. 2016 Bhargavan—Leurent

sweet32.info: Triple-DES
broken in TLS. Same attack
also breaks small block sizes
PRP (“... permutation”): in NSA’s Simon, Speck.
Attacker can't distinguish

F(k,1), F(k,2), F(k,3),...

from independent uniform random

blocks, given access to a server
that returns F(k, i) given i.
Server is called an oracle.

AES block size: 128 bits.

PRF attack chance ~ g% /21

if AES is used for g blocks.
Is this safte? How big is g7

distinct blocks, given oracle.

If block size is big then
PRP = PRF = PRG.

PRF (“pseudorandom function”):
Attacker can't distinguish
F(k,1), F(k,2), F(k,3),... from
independent uniform random
blocks, given access to a server
that returns F(k, i) given i.
Server is called an oracle.

PRP (“... permutation”):
Attacker can't distinguish

F(k,1), F(k,2), F(k,3),...

from independent uniform random
distinct blocks, given oracle.

If block size is big then
PRP = PRF = PRG.

Small block sizes are dangerous.
PRF property fails, and often
application security fails.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES
broken in TLS. Same attack

also breaks small block sizes
in NSA’s Simon, Speck.

AES block size: 128 bits.

PRF attack chance ~ g°/2'%°

if AES is used for g blocks.
Is this safte? How big is g7

ChaCha20 block size: 512 bits.

bseudorandom function”):
~can't distinguish
F(k,2), F(k,3),...from
lent uniform random
rlven access to a server
irns F(k, i) given |.

, called an oracle.

. permutation”):
- can't distinguish
F(k,2), F(k,3),...
ependent uniform random
blocks, given oracle.

size Is big then
PRF = PRG.

Small block sizes are dangerous.

PRF property fails, and often
application security fails.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES
broken in TLS. Same attack

also breaks small block sizes
in NSA’s Simon, Speck.

AES block size: 128 bits.

PRF attack chance ~ ¢°/2!%°

if AES is used for g blocks.
Is this sate? How big is g7

ChaCha20 block size: 512 bits.

Can pro
Integrity
ChaCha:
AES anc

dom function”):

inguish
(k,3),... from
'm random

SS to a server

') given |.
oracle.
tation”):
inguish
(k,3),...
uniform random

ven oracle.

then
RG.

Small block sizes are dangerous.

PRF property fails, and often
application security fails.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES
broken in TLS. Same attack
also breaks small block sizes

in NSA’s Simon, Speck.

AES block size: 128 bits.

PRF attack chance ~ g% /21

if AES is used for g blocks.
Is this sate? How big is g7

ChaCha20 block size: 512 bits.

Can prove confide
integrity of AES-G
ChaCha20-Poly13!
AES and ChaChaz

jion"”):
from

Ver

indom

Small block sizes are dangerous.

PRF property fails, and often
application security fails.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES
broken in TLS. Same attack
also breaks small block sizes

in NSA’s Simon, Speck.

AES block size: 128 bits.

PRF attack chance ~ ¢°/2!%°

if AES is used for g blocks.
Is this sate? How big is g7

ChaCha20 block size: 512 bits.

Can prove confidentiality an
integrity of AES-GCM and

ChaCha20-Poly1305 assumi
AES and ChaCha20 are PRI

Small block sizes are dangerous.
PRF property fails, and often
application security fails.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES
broken in TLS. Same attack
also breaks small block sizes

in NSA’s Simon, Speck.

AES block size: 128 bits.

PRF attack chance ~ g% /21

if AES is used for g blocks.
Is this safte? How big is g7

ChaCha20 block size: 512 bits.

Can prove confidentiality and
integrity of AES-GCM and
ChaCha20-Poly1305 assuming
AES and ChaCha20 are PRFs.

Small block sizes are dangerous.

PRF property fails, and often
application security fails.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES
broken in TLS. Same attack
also breaks small block sizes

in NSA’s Simon, Speck.

AES block size: 128 bits.

PRF attack chance ~ g% /21

if AES is used for g blocks.
Is this safte? How big is g7

ChaCha20 block size: 512 bits.

Can prove confidentiality and
integrity of AES-GCM and
ChaCha20-Poly1305 assuming
AES and ChaCha20 are PRFs.

Generalization: Prove security
of M(F) assuming cipher F is a
PRF. M is a mode of use of F.

Small block sizes are dangerous.

PRF property fails, and often
application security fails.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES
broken in TLS. Same attack

also breaks small block sizes
in NSA’s Simon, Speck.

AES block size: 128 bits.

PRF attack chance ~ g°/2'%°

if AES is used for g blocks.
Is this safte? How big is g7

ChaCha20 block size: 512 bits.

Can prove confidentiality and

integrity of AES-GCM and
ChaCha20-Poly1305 assuming
AES and ChaCha20 are PRFs.

Generalization: Prove security
of M(F) assuming cipher F is a
PRF. M is a mode of use of F.

Good modes: CTR (“counter
mode”), CBC, OFB, many more.

Bad modes: ECB, many more.

Small block sizes are dangerous.

PRF property fails, and often
application security fails.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES
broken in TLS. Same attack

also breaks small block sizes
in NSA’s Simon, Speck.

AES block size: 128 bits.

PRF attack chance ~ g°/2'%°

if AES is used for g blocks.
Is this safte? How big is g7

ChaCha20 block size: 512 bits.

Can prove confidentiality and
integrity of AES-GCM and

ChaCha20-Poly1305 assuming
AES and ChaCha20 are PRFs.

Generalization: Prove security
of M(F) assuming cipher F is a
PRF. M is a mode of use of F.

Good modes: CTR (“counter
mode”), CBC, OFB, many more.

Bad modes: ECB, many more.

Mode that claimed proof
but was recently broken: OCB2.
Have to check proofs carefully!

ock sizes are dangerous.

perty fails, and often
on security fails.

0 Bhargavan—Leurent
. info: Triple-DES
n TLS. Same attack
ks small block sizes
s Simon, Speck.

ck size: 128 bits.

ack chance ~ ¢°/2'%?

5 used for g blocks.
fe? How big is g7

20 block size: 512 bits.

Can prove confidentiality and

integrity of AES-GCM and
ChaCha20-Poly1305 assuming
AES and ChaCha20 are PRFs.

Generalization: Prove security
of M(F) assuming cipher F is a
PRF. M is a mode of use of F.

Good modes: CTR (“counter

mode”), CBC, OFB, many more.

Bad modes: ECB, many more.

Mode that claimed proof
but was recently broken: OCB2.
Have to check proofs carefully!

How do
ChaCha:

are dangerous.

, and often
y fails.

an—Leurent
riple-DES
ime attack
block sizes
ypeck.

28 bits.
o~ q2/2129
g blocks.

big is g7
1ze: 512 bits.

Can prove confidentiality and

integrity of AES-GCM and
ChaCha20-Poly1305 assuming
AES and ChaCha20 are PRFs.

Generalization: Prove security
of M(F) assuming cipher F is a
PRF. M is a mode of use of F.

Good modes: CTR (“counter

mode”), CBC, OFB, many more.

Bad modes: ECB, many more.

Mode that claimed proof
but was recently broken: OCB2.
Have to check proofs carefully!

How do we know -
ChaCha20 are PR

OUusS.

1t

Its.

Can prove confidentiality and
integrity of AES-GCM and
ChaCha20-Poly1305 assuming
AES and ChaCha20 are PRFs.

Generalization: Prove security
of M(F) assuming cipher F is a
PRF. M is a mode of use of F.

Good modes: CTR (“counter

mode”), CBC, OFB, many more.

Bad modes: ECB, many more.

Mode that claimed proof
but was recently broken: OCB2.
Have to check proofs carefully!

How do we know that AES
ChaCha20 are PRFs? We d

Can prove confidentiality and

integrity of AES-GCM and
ChaCha20-Poly1305 assuming
AES and ChaCha20 are PRFs.

Generalization: Prove security
of M(F) assuming cipher F is a
PRF. M is a mode of use of F.

Good modes: CTR (“counter
mode”), CBC, OFB, many more.

Bad modes: ECB, many more.

Mode that claimed proof
but was recently broken: OCB2.
Have to check proofs carefully!

How do we know that AES and
ChaCha20 are PRFs? We don'’t.

10

Can prove confidentiality and

integrity of AES-GCM and
ChaCha20-Poly1305 assuming
AES and ChaCha20 are PRFs.

Generalization: Prove security
of M(F) assuming cipher F is a
PRF. M is a mode of use of F.

Good modes: CTR (“counter
mode”), CBC, OFB, many more.

Bad modes: ECB, many more.

Mode that claimed proof
but was recently broken: OCB2.
Have to check proofs carefully!

10
How do we know that AES and

ChaCha20 are PRFs? We don'’t.

We conjecture security

after enough failed attack efforts.
“All of these attacks fail and we
don't have better attack ideas.”

Can prove confidentiality and
integrity of AES-GCM and

ChaCha20-Poly1305 assuming
AES and ChaCha20 are PRFs.

Generalization: Prove security
of M(F) assuming cipher F is a
PRF. M is a mode of use of F.

Good modes: CTR (“counter

mode”), CBC, OFB, many more.

Bad modes: ECB, many more.

Mode that claimed proof
but was recently broken: OCB2.
Have to check proofs carefully!

10

How do we know that AES and
ChaCha20 are PRFs? We don'’t.

We conjecture security

after enough failed

attack efforts.

“All of these attacks fail and we

don't have better attack ideas.”

Remaining slides today:

e Simple example of block cipher.

Seems to be a good cipher,

except block size

e Variants of this b
that look similar

Is too small.

ock cipher

DUt

can be quickly broken.

ve confidentiality and
of AES-GCM and

20-Poly1305 assuming
] ChaCha20 are PRFs.

zation: Prove security
| assuming cipher F is a
is a mode of use of F.

odes: CTR (“counter

CBC, OFB, many more.

des: ECB, many more.

at claimed proof
recently broken: OCB2.
check proofs carefully!

How do we know that AES and

ChaCha20 are PRFs? We don’t.

We conjecture security

after enough failed

attack efforts.

“All of these attacks fail and we

don't have better attack ideas.”

Remaining slides today:

e Simple example of block cipher.

Seems to be a good cipher,

except block size

e Variants of this b
that look similar

Is too small.

ock cipher

DUt

can be quickly broken.

10

1994 WiI
a tiny er

vold en

{

uint3.

uint3.

for (.

b[0] :

ntiality and
CM and

)b assuming
0 are PRFs.

ove security
- cipher F Is a
e of use of F.

R (“counter

B, many more.

many more.

1 proof
roken: OCB2.
ofs carefully!

10
How do we know that AES and

ChaCha20 are PRFs? We don'’t.

We conjecture security

after enough failed attack efforts.
“All of these attacks fail and we
don't have better attack ideas.”

Remaining slides today:

e Simple example of block cipher.
Seems to be a good cipher,
except block size is too small.

e Variants of this block cipher

that look similar but
can be quickly broken.

1994 Wheeler—Ne¢
a tiny encryption :

void encrypt(uin

{
uint32 x = b[O0
ulnt32 r, c =

for (r = 0;r <

c += 0x9e377
x += y+tc ~ (
" (
y += xtc = (
" (
by
b[0] = x; b[1]

How do we know that AES and
ChaCha20 are PRFs? We don’t.

We conjecture security
after enough failed attack ef

‘orts.

“All of these attacks fail and

WE

don't have better attack ideas.”

Remaining slides today:

e Simple example of block cipher.

Seems to be a good cipher,

except block size is too small.

e Variants of this block cipher

that look similar but
can be quickly broken.

10

1994 Wheeler-Needham “T
a tiny encryption algorithm”

void encrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 0;
for (r = 0;r < 32;r +=
c += 0x9e3779b9;
x += y+tc ~ (y<<4)+k[C
= (y>>b)+k[1
y += x+c T (x<<4)+k[2
© (x>>5)+k[3

b[0] = x; bl[1] = y;

How do we know that AES and
ChaCha20 are PRFs? We don'’t.

We conjecture security

after enough failed

attack efforts.

“All of these attacks fail and we

don't have better attack ideas.”

Remaining slides today:

e Simple example of block cipher.

Seems to be a good cipher,

except block size

e Variants of this b
that look similar

Is too small.

ock cipher

DUt

can be quickly broken.

10

1994 Wheeler-Needham “TEA,
a tiny encryption algorithm’:

11

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32

for (r

x = b[0], y = b[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;

ytc © (y<<4)+k[O.
© (y>>b)+k[1];

x+c ~ (x<<4)+k[2]
~ (x>>B)+k

x; bl1l] = y;

3] ;

we know that AES and
20 are PRFs? We don’t.

jecture security

bugh failed attack efforts.

hese attacks fail and we
ve better attack ideas.”

ng slides today:

> example of block cipher.

to be a good cipher,
block size is too small.

ts of this block cipher

yok similar but
 quickly broken.

10

11
1994 Wheeler-Needham “TEA,

a tiny encryption algorithm™:

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;
x += y+c ~ (y<<4)+k[O0]
~ (y>>5)+kl[1];
y += x+c T (x<<4)+k[2.
© (x>>5)+k([3];

b[0] = x; bl[1] = y;

uint32:
represen
integer |

+: addit
c += d:
T XOr: ¢
each bit

Lower pi
SO spacil

<<4: mi
(0,0, 0, (

>>5: diy
(bs, be. -

10 11

that AES and 1994 Wheeler—Needham “TEA, uint32: 32 bits (
Fs? We don't. a tiny encryption algorithm": representing the
curity void encrypt(uint32 *b,uint32 *k) integer bo +2b; A
| attack efforts. { +: addition mod 2
ks fail and we uint32 x = b[0], y = b[1];

_ c += d: same as c
attack ideas.” uint32 r, ¢ = O;

for (r = 0:r < 32:r += 1) { ~. xor: @: additiol

oday: .

c += 0x9e3779b9: each bit separatel
of block cipher. x += y+c ~ (y<<4)+k [0 Lower precedence
ood cipher, ~ (y>>5)+k[1]; SO spacing is not r
> Is too small. y *= xtc 7 (x<<)+k[2. <<4: multiplicatio
block cipher T (x>>5)+k[3]; (0,0,0,0, by, by, ..
- but }

b[0] = x; b[1] = y; >>5: division by 3

roken.
’) (bs, bg, . .., b1, 0,

10 11
and 1994 Wheeler-Needham “TEA, uint32: 32 bits (bg, by, . ..

on't. a tiny encryption algorithm™: representing the “unsigned”

integer by + 2by + - - + 231
void encrypt(uint32 *b,uint32 *k) ger bo + 201 + - F

forts. { +: addition mod 23°.
1 wWe int32 = blO], = bll];

2 o . 01,y = c +=d: sameasc =c + d.
as. uint32 r, ¢ = 0;

c += 0x9e3779b9: each bit separately mod 2.
ipher. x += y+c = (y<<4)+k[0] Lower precedence than + iIn
r ~ (y>>5)+k[1]; so spacing Is not misleading
1all. = ~ 2 e .

y *= xtc 7 (x<<4)+k[2, <<4: multiplication by 16, 1i.
er (x>>5)+k (3] ; (0,0,0,0, by, b1, . .., bo7).

Iy

b[0] = x; bl1] = y; >>5: division by 32, I.e.,
} (b5,b6,...,b31,0,0,0,0,0).

11 12
1994 Wheeler-Needham “TEA uint32: 32 bits (bg, by, ..., b31)

a tiny encryption algorithm": representing the “unsigned”

integer bg + 2by + - - - + 231 b3y,
void encrypt(uint32 *b,uint32 *k) & 0 T <b1 -+ T 31

{ +: addition mod 232.

int32 = bl0], = b[1l];
- . o1,y 1] c +=d: same as c =c + d.

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) { ~: Xor; @; addition of
c += 0x9e3779b9: each bit separately mod 2.
x += y+c " (y<<4)+k [0 Lower precedence than + in C,
~ (y>>5)+k[1]; so spacing Is not misleading.

y += x+c 7 (x<<4)+k[2. <<4: multiplication by 16, i.e.,

" (x>>5)+kl(3]; (0,0,0,0, by, by, . . ., bo7).

b[0] = x; bl[1] = y; >>5: division by 32, I.e.,
} (b5,b6,...,b31,0,0,0,0,0).

11
neeler-Needham “TEA,

cryption algorithm™:

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = bl[1];
2 r, ¢c = 0;

r = 0;r < 32;r += 1) {
0x9e3779b9;

ytc ~ (y<<4)+k[O]

~ (y>>b)+k[1];
= x+c ~ (x<<4)+k|[2.

~ (x>>b)+k[3];
= x; bl1l] = y;

uint32: 32 bits (bg, by, ..., b31)
representing the “unsigned”
integer by + 2b1 + - - - + 231 b37.

+: addition mod 232,
c +=d: same as c = c + d.

~. xor: @: addition of

each bit separately mod 2.
Lower precedence than + in C,
so spacing is not misleading.

<<4: multiplication by 16, I1.e.,
(0,0,0,0, by, by, ..., by7).

>>5: division by 32, I.e.,
(b5, bg,...,b31,0,0,0,0, O).

12

Functior

TEA iIs :
with a 1

11
xdham “TEA,

lgorithm™ ;

t32 *b,uint32 *k)

1, y = blll;
O;

32;r += 1) {
9b9;
y<<4)+k[0_
y>>5)+k[1];
x<<4)+k[2]
x>>5)+k [3];

=y;

uint32: 32 bits (bg, by, ..., b31)
representing the “unsigned”
integer by + 2b1 + - - - + 231b31.

+: addition mod 232,
c +=d: same as c =c + d.

~: xor: @: addition of

each bit separately mod 2.
Lower precedence than + in C,
so spacing Is not misleading.

<<4: multiplication by 16, I.e.,
(0,0,0,0, by, by, ..., bo7).

>>5: division by 32, I.e.,
(b5, bg, ..., b31,0,0,0,0, O).

12

Functionality

TEA is a 64-bit b
with a 128-bit ke

11
EA,

nt32 *xk)

uint32: 32 bits (bg, by, ..., b31)
representing the “unsigned”
integer by + 2b1 + - - - + 231 b37.

+: addition mod 232,
c +=d: same as c = c + d.

~: xor: @: addition of

each bit separately mod 2.
Lower precedence than + in C,
so spacing Is not misleading.

<<4: multiplication by 16, I1.e.,
(0,0,0,0, by, by, ..., byy).

>>5: division by 32, I.e.,
(b5, bg, ..., b31,0,0,0,0, O).

12

Functionality

TEA is a 64-bit block ciph
with a 128-bit key.

uint32: 32 bits (bg, by, ..., b31)
representing the “unsigned”
integer by + 2b1 + - - - + 231b31.

+: addition mod 232,
c +=d: same as c =c + d.

~: xor: @: addition of

each bit separately mod 2.
Lower precedence than + in C,
so spacing is not misleading.

<<4: multiplication by 16, I.e.,
(0,0,0,0, by, by, ..., by7).

>>5: division by 32, I.e.,
(b5, bg, ..., b31,0,0,0,0, O).

12

Functionality

TEA is a 64-bit block cipher
with a 128-bit key.

13

uint32: 32 bits (bg, by, ..., b31)
representing the “unsigned”
integer by + 2b1 + - - - + 231b31.

+: addition mod 232,
c +=d: same as c =c + d.

~: xor: @: addition of

each bit separately mod 2.
Lower precedence than + in C,
so spacing is not misleading.

<<4: multiplication by 16, I.e.,
(0,0,0,0, by, b1, ..., by7).

>>5: division by 32, I.e.,
(b5, bg, ..., b31,0,0,0,0, O).

12

Functionality

TEA is a 64-bit block cipher
with a 128-bit key.

Input: 128-bit key (namely
k[0],k[1],k[2],k[3]);

64-bit plaintext (b[0],b[1]).

Output: 64-bit ciphertext
(final b[0] ,b[1]).

13

uint32: 32 bits (bg, by, ..., b31)
representing the “unsigned”
integer by + 2b1 + - - - + 231b31.

+: addition mod 232,
c +=d: same as c =c + d.

~: xor: @: addition of

each bit separately mod 2.
Lower precedence than + in C,
so spacing is not misleading.

<<4: multiplication by 16, I.e.,
(0,0,0,0, by, by, ..., by7).

>>5: division by 32, I.e.,
(b5, bg, ..., b31,0,0,0,0, O).

12

Functionality

TEA is a 64-bit block cipher
with a 128-bit key.

Input: 128-bit key (namely
k[0],k[1],k[2],k[3]);

64-bit plaintext (b[0],b[1]).

Output: 64-bit ciphertext
(final b[0] ,b[1]).

Can efficiently encrypt:
(key, plaintext) — ciphertext.

Can efficiently decrypt:
(key, ciphertext) — plaintext.

13

32 bits (bg, by, - . ., b31)
ting the “unsigned”
o + 2b1 + - + 23Lbay.

ion mod 232.

same as ¢c = ¢ + d.

D: addition of
separately mod 2.
ecedence than + in C,
g Is not misleading.

iltiplication by 16, I1.e.,
), by, by, ..., by7).

Ision by 32, I.e.,
..,b31,0,0,0,0,0).

12

Functionality

TEA is a 64-bit block cipher
with a 128-bit key.

Input: 128-bit key (namely
k[0],k[1],k[2],k[3]);

64-bit plaintext (b[0],b[1]).

Output: 64-bit ciphertext
(final b[0] ,b[1]).

Can efficiently encrypt:

(key, plaintext) +— ciphertext.

Can efficiently decrypt:
(key, ciphertext) — plaintext.

13

Wait, hc

vold en

{

uint3.

uint3.

for (:

b[0] :

unsigned”
e 231b31_

32

= c + d.

1 of

/ mod 2.
than + in C,
nisleading.

n by 16, I.e.,
., br7).

2. 1.e.,
0,0,0,0).

Functionality

TEA is a 64-bit block cipher
with a 128-bit key.

Input: 128-bit key (namely
k[0],k[1],k[2],k[3]);

64-bit plaintext (b[0],b[1]).

Output: 64-bit ciphertext
(final b[0],b[1]).

Can efficiently encrypt:
(key, plaintext) — ciphertext.

Can efficiently decrypt:
(key, ciphertext) — plaintext.

13

Wait, how can we

void encrypt(uin

{
uint32

uint32
for (r
C +=

X +=

= 0;r <
0x9e377

 b31)

12

Functionality

TEA is a 64-bit block cipher
with a 128-bit key.

Input: 128-bit key (namely
k[0],k[1],k[2],k[3]);

64-bit plaintext (b[0],b[1]).

Output: 64-bit ciphertext
(final b[0] ,b[1]).

Can efficiently encrypt:

(key, plaintext) +— ciphertext.

Can efficiently decrypt:
(key, ciphertext) — plaintext.

13

Wait, how can we decrypt?

void encrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 0;
for (r = 0;r < 32;r +=
c += 0x9e377919;

x += y+c T (y<<4)+k[C
= (y>>b)+k[1
y += x+c T (x<<4)+k[2
T (x>>5)+k[3

b[0] = x; bl1] = y;

Functionality

TEA is a 64-bit block cipher
with a 128-bit key.

Input: 128-bit key (namely
k[0],k[1],k[2],k[3]);

64-bit plaintext (b[0],b[1]).

Output: 64-bit ciphertext
(final b[0],b[1]).

Can efficiently encrypt:
(key, plaintext) — ciphertext.

Can efficiently decrypt:
(key, ciphertext) — plaintext.

13

Wait, how can we decrypt?

14

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32
for (r

c +=

r, c = 0;
= 0;r < 32;r += 1) {
0x9e3779b9;
y+tc ~ (y<<4)+k|[O.

~ (y>>5)+k
x+c ~ (x<<4)+k[2.

© (x>>5)+k[3];
x; bl1l] = y;

1]

ality

y 604-bit block cipher
28-bit key.

28-bit key (namely
11 ,k[2] ,k[3]);

laintext (b[0] ,b[1]).

064-bit ciphertext
0],b[1]).

“lently encrypt:
intext) — ciphertext.

“lently decrypt:
hertext) — plaintext.

13

14

Wait, how can we decrypt?

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c © (y<<4)+k[O_
© (y>>5)+k[1];

y += x+c T (x<<4)+k[2.
~ (x>>5)+k [3] ;

b[0] = x; bl1] = y;

Answer:

vold de

{

uint3.

uint3.

for (:
y—:

b[0] :

lock cipher
y.

(namely

k[3]);

b[0],b[1]).

Yhertext

“rypt:
ciphertext.

rypt:
» plaintext.

13

Wait, how can we decrypt?

14

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, C O;
= 0;r < 32;r += 1) {
0x9e3779b9;
y+tc ~ (y<<4)+k[O.

~ (y>>b)+k[1];
x+c = (x<<4)+k[2]

© (x>>5)+k[3];
x; bl1l] = y;

Answer: Each stej

void decrypt(uin

{
uint32 x = b[0
uint32 r,

for (r = 0;r <

y —= x+c = (
~(
x —= y+tc = (
" (
c —= 0x9e377
+
b[0] = x; b[1]
Iy

er

13

Wait, how can we decrypt?

14

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c ~ (y<<4)+k[O_
© (y>>5)+k[1];

y += x+c T (x<<4)+k[2.
~ (x>>5)+k [3] ;

}
b[0] = x; bl1] = y;

Answer: Each step Is invert

void decrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 32 * 0x9e

for (r = 0;r < 32;r +=

y —= xtc T (x<<4)+k[2
T (x>>5)+k [3
x —= y+c T (y<<4)+k [0
= (y>>b)+k[1
c —= 0x9e3779b9;
Iy
b[0] = x; bl1] = y;

Wait, how can we decrypt? : Answer: Each step is invertible. :
void encrypt(uint32 *b,uint32 *k) void decrypt(uint32 *b,uint32 *k)
{ {
uint32 x = b[0], y = b[1]; uint32 x = b[0], v = b[1];
uint32 r, ¢ = 0; uint32 r, ¢ = 32 *x 0x9e3779b9;
for (r = 0;r < 32;r += 1) { for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9; y -= x+c 7 (x<<4)+k[2]
x += y+c ~ (y<<4)+k[O. © (x>>5)+k[3];
~ (y>>b)+k[1]; x —= y+c ~ (y<<4)+k[O.
y += xtc = (x<<4)+k[2. ~ (y>>b)+k[1];
~ (x>>5)+k[3]; c —-= 0x9e3779b9;
F F
b[0] = x; bl1l] = y; b[0] = x; bl1] = y;
¥ ¥

14
)W can we decrypt?

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];
c = 0;

r = 0;r < 32;r += 1) {
0x9e3779b9;

~ (y<<4)+k [
= (y>>B)+k[
~ (x<<4)+k [
~ (x>>5)+k [3.

2 T,

y+c

"
P
.|.
@]
W 1[\)| |H| |o|

x; bl1l] = y;

15

Answer: Each step is invertible.

void decrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

ulnt32 r, ¢ = 32 *x 0x9e3779b9;
for (r = 0;r < 32;r += 1) {
y —= xtc ~ (x<<4)+k[2.
~ (x>>5)+k[3];
x —= y+c T (y<<4)+k[O_
~ (y>>5)+k[1];
c —= 0x9e3779b9;
¥
b[0] = x; bl1l] = y;

Generali

(used in
1973 Fe

x += fu

y += fu

x += fu

y += fu

Decrypti

y —= fu
x —= fu
y —= fu

x —= fuw

14
decrypt?

t32 *xb,uint32 *k)

1, v = bll];
O;

32;r += 1) {
9b9;
y<<4)+k[0_
y>>5)+k[1];
x<<4)+k[2]
x>>5)+k [3] ;

=y;

15
Answer: Each step is invertible.

void decrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 32 *x 0x9e3779b9;
for (r = 0;r < 32;r += 1) {

y —= xtc T (x<<4)+k[2.
~ (x>>5)+k([3];
x —= y+c T (y<<4)+k[O.
- (y>>5)+k[1];
c —= 0x9e3779b9;
+
b[0] = x; b[1] = y;

Generalization, Fe
(used in, e.g., “Lu
1973 Feistel-Copp

x += functionl(y
y += function2(x
x += function3(y

y += function4d(x

Decryption, Invert

y —= functiond(x
x —= function3(y
y —= function2(x

x —= functionl(y

14
nt32 *k)
1];

1) {

15

Answer: Each step is invertible.

void decrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];
ulnt32 r, ¢ = 32 *x 0x9e3779b9;
for (r = 0;r < 32;r += 1) {

y —= xtc ~ (x<<4)+k[2.

© (x>>5)+k[3];
x —= y+c T (y<<4)+k[O_
© (y>>5)+k[1];
c —= 0x9e3779b9;
I
b[0] = x; bl1] = y;

Generalization, Feistel netw
(used in, e.g., “Lucifer” fror
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += functiond(x,k);

Decryption, inverting each s

y —-= function4(x,k);
x —-= function3(y,k) ;
y —= function2(x,k);
x —-= functionl(y,k);

15

Answer: Each step is invertible.

void decrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 32 *x 0x9e3779b9;

for (r = 0;r < 32;r += 1) {
y —= xtc = (x<<4)+k[2.
© (x>>5)+k[3];
x —= y+c ~ (y<<4)+k[O.
- (y>>5)+k[1];
c —= 0x9e3779b9;
Iy
b[0] = x; b[1] = y;

Generalization, Feistel network
(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += function4(x,k);

Decryption, inverting each step:

y —-= functiond(x,k);
x -= function3(y,k) ;
y —= function2(x,k);
x -= functionl(y,k);

16

15
Each step is invertible.

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];

2 r, ¢ = 32 *x 0x9e3779b9;

r = O;r < 32;r += 1) {

x+c ~ (x<<4)+k[2.
~ (x>>5)+k[3];

ytc © (y<<4)+k[0.
- (y>>5)+k[1];

0x9e3779b9;

x; bl1l] = y;

Generalization, Feistel network
(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += functiond(x,k);

Decryption, inverting each step:

y —-= function4(x,k);
x —-= function3(y,k) ;
y —= function2(x,k);
x —-= functionl(y,k);

16

b[0] :

15
) 1S Invertible.

t32 *xb,uint32 *k)

1, v = bll];

32 * 0x9e3779b9;
32;r += 1) {
x<<4)+k [2]
x>>5)+k [3];
y<<4)+k[O0_
y>>5)+k[1];
9b9;

Generalization, Feistel network
(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += function4(x,k);

Decryption, inverting each step:

y —= functiond(x,k);
x -= function3(y,k) ;
y —= function2(x,k);
x —-= functionl(y,k);

16

TEA again for cor

void encrypt(uin

{
uint32 x = b[O0
ulnt32 r, c =

for (r = 0;r <

c += 0x9e377
x += y+tc ~ (
" (
y += xtc = (
~(

F
b[0] = x; b[1]

15
ble.

nt32 *xk)

1];
377909 ;
1) {

Generalization, Feistel network
(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += functiond(x,k);

Decryption, inverting each step:

y —-= function4(x,k);
x —-= function3(y,k) ;
y —= function2(x,k);
x -= functionl(y,k);

16

TEA again for comparison

void encrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 0;
for (r = 0;r < 32;r +=
c += 0x9e377919;

x += y+c T (y<<4)+k[C
= (y>>b)+k[1
y += x+c T (x<<4)+k[2
T (x>>5)+k[3

}
b[0] = x; bl1] = y;

Generalization, Feistel network
(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += function4(x,k);

Decryption, inverting each step:

y —-= functiond(x,k);
x -= function3(y,k) ;
y —= function2(x,k);
x -= functionl(y,k);

16

TEA again for comparison

17

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32
for (r
C +=

X +=

y +=

b[0]

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;

y+tc ~ (y<<4)+k|[O.
~ (y>>5)+k

x+c © (x<<4)+k[2]
© (x>>5)+k[3];

x; bl1l] = y;

1]

zation, Feistel network
ce.g., "Lucifer’ from
stel-Coppersmith):

nctionl (y,k) ;
nction2(x,k);
nction3(y,k) ;
nctiond (x,k) ;

on, Inverting each step:

nctiond (x,k);
nction3(y,k) ;
nction2(x,k);

nctionl (y,k) ;

16

17

TEA again for comparison

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c © (y<<4)+k[O_
© (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
¥
b[0] = x; bl1] = y;

XORTE.,

vold en:
{

uint3.

uint3.

for (:

c +:

”
-

X

b[0] :

istel network
cifer’ from
»ersnﬂth):

16

TEA again for comparison

17

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32

for (r

x = b[0], y = b[1];

r, C

= 0;r < 32;r += 1) {

0x9e3779b9;

y+tc ~ (y<<4)+k[O.
~ (y>>b)+k[1];

x+c ~ (x<<4)+k[2]
~ (x>>6)+k[3];

x; bl1l] = y;

=O;

XORTEA: a bad ¢

void encrypt(uin

{

uint32 x =

uint32 r,
for (r
C +=

X "= ycC

"~

"~

b [0

= 0;r <
0x9e377

(

~—\ I\ N

jork

tep:

16

TEA again for comparison

17

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;

y+c ~ (y<<4)+k[
= (y>>5)+k[

x+c ~ (x<<4)+k|[

~ (x>>5)+k[3

w I[\)I IHI Iol

x; bl1l] = y;

XORTEA: a bad cipher

void encrypt(uint32 *b,ui

{

uint32
uint32
for (r

c +=

”

X -_—

<
Il

b[0]

x = b[0], y = bl

r, c = 0;

= 0;r < 32;r +=

0x9e3779b9;

vy c ~ (y<<4) k[
= (y>>5) k[

x"c ~ (x<<4)°k[

~ (x>>5) k[

CHY N = O

x; bl1l] = y;

TEA again for comparison

17

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;
x += y+c ~ (y<<4)+k
= (y>>5)+k

}
b[0] = x; b[1] = y;

0.
(11
y += x+c T (x<<4)+k[2.

~ (x>>5)+k[3];

XORTEA: a bad cipher

18

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x "=y~ c ~ (y<<4)~k[0]
= (y>>5)°k
y "= x"c T (x<<4) " k[2.
= (x>>5) "k [3];
F
b[0] = x; b[1] = y;

1]

in_for comparison

17

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];

2 r, ¢c = 0;

r = 0;r < 32;r += 1) {

0x9e3779b9;

I
P
+
@]

x; bl1l] = y;

y+c ~ (y<<4)+k[
= (y>>B)+k[
~ (x<<4)+k [
= (x>>5)+k[3];

w I[\)I IHI Iol

XORTEA: a bad cipher

18

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

X "= y°cC

<
Il

}
b[0] = x; bl1] = y;

~ (y<<4) k[
= (y>>5) k[
"= x"c T (x<<4) k[

~ (x>>5)"k[3]:

w I[\)I IHI Iol

“"Hardw:

XOr CIrcL

nparison

17

t32 *xb,uint32 *k)

1, vy = bl1l];

0;

32;r += 1) {

9b9;
y<<4)+k
y>>5)+k

=y;

0]
1] ;
x<<4)+k[2]
x>>5)+k [3] ;

18

XORTEA: a bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x "=y~ c ~ (y<<4)~k[0]
~ (y>>5)"k[1];
y "= x"c T (x<<4)k[2.
~ (x>>5)°k[3];

}
b[0] = x; b[1] = y;

"Hardware-friendli
Xor circuit Is cheaj

17 18
XORTEA: a bad cipher “"Hardware-friendlier” cipher

xor circult 1s cheaper than a

nt32 *k) | void encrypt(uint32 *b,uint32 *k)

{
1]; uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
1) { for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x "= y~c ~ (y<<4)~k[0]
1; ~ (y>>5)"k[1];
i y "= x"c T (x<<4) " k[2.
1 : ~ (x>>5) "k [3];

}
b[0] = x; bl1] = y;

XORTEA: a bad cipher

18

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779Db9;

x "=y~ c © (y<<4)~k[0O]
= (y>>5)°k

y "= x"c T (x<<4) " k[2.
~ (x>>5)°k[3];

}
b[0] = x; b[1] = y;

1]

"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

19

XORTEA: a bad cipher

18

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779Db9;

x "=y~ c © (y<<4)~k[0O]
= (y>>5)°k

y "= x"c T (x<<4) " k[2.
~ (x>>5)°k[3];

}
b[0] = x; b[1] = y;

1]

"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

But output bits are linear
functions of input bits!

19

XORTEA: a bad cipher

18

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

"

X s

<
Il

b[0]

x = b[0], y = bl[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;

y c ~ (y<<4)~k[O:
~ (y>>5)"k[1];

x"c ~ (x<<4) k[2.
=~ (x>>5)"k[3];

x; bl1l] = y;

"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P ki ®ks P kig® k11 D k1o @
k20 @ ko1 D k3o @ k32 @ k33 D k35 ©
kg2 @ ka3 D kag @ ks @ k53 D kep D
Koa D ko7 D keg D k76 D kg5 D kog &
koo D koo D k101D k108D k117D k126D
b1®b3Db10Db12D b1 D b30D b3 D
b33 P b3 P b37 B b3g D bao @ baz B
bas ® ba7 ® bsy @ bs3z D bs7 D be.

19

18
A: a bad cipher

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];
2 r, ¢c = 0;

r = O;r < 32;r += 1) {
= 0x9e377909;

= y~c = (y<<4) "k[O0]
~ (y>>5)"k[1];
= x"¢c = (x<<4) " "k[2]
~ (x>>5)"k[3];
= x; bl1l] = y;

"Hardware-friendlier” cipher, since
xor circult 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P k1 D ks P k1o D k11 D k1o P
koo D ko1 @ k30 D k32 D k33 @ k35 D
kap @ ka3 @ kaa @ ks @ k53 D kgp @
koa D ko7 D koo @ k76 D kgs © koa @
ko6 D koo D k101D k108D k117D k126D
b1 ®b3® b10D b12B b1 D b3 D b3 D
b33 P b3 P b37 B b3g D bao @ baz D
bas © ba7 ® bsy @ bs3 @ bs7 D be.

19

There is

WIth COE€

such tha
XORTE

ipher

t32 *xb,uint32 *k)

1, vy = bl1l];

0;

32;r += 1) {

9b9;
y<<4) "k
y>>5) "k

=y;

0]
1];
x<<4) "k [2]
x>>5) "k [3];

"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P ki ®ks P kig® k11 D k1o D
k20 @ ko1 D k3o @ k32 @ k33 D k35 D
kg2 @ ka3 D kag @ ks @ k53 D kep D
koa D ko7 D keg D k76 D kg5 D kog &
koo D koo D k101D k108D k117D k126D
b1®b3Db10Db12D b1 D b30D b3 D
b33 P b3 P b37 B b3g D bao @ baz B
basg ® ba7 ® bsy @ bs3z @ bs7 D be.

19

There 1s a matrix
with coefficients it

such that, for all (
XORTEAL(b) = (

18

"Hardware-friendlier” cipher, since
xor circult 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P k1 D ks P k1o D k11 D k1o P
koo D ko1 @ k30 D k32 D k33 @ k35 D
kap @ ka3 @ Kaa @ ks @ k53 D ke @
Koa D ko7 D koo @ k76 D kgs © koa @
ko6 D koo D k101D k108D k117D k126D
b1 ®b3® b10D b12B b1 D b3oD b3 D
b33 P b3 P b37 B b3g D bao D baz D
bas © ba7 ® bsy @ bs3 D bs7 D be.

19

There i1s a matrix M

with coefficients in F»
such that, for all (k, b),
XORTEA,(b) = (1, k, b)M.

"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P ki ®ks P kig® k11 D k1o @
k20 @ ko1 D k3o @ k32 @ k33 D k35 D
kg2 @ ka3 D kag @ ks @ k53 D kep D
koa D ko7 D keg D kv6 D kg5 D kog &
koo D koo D k101D k108D k117D k126D
b1®b3Db10Db12D b1 D b30D b3 D
b33 P b3 P b37 B b3g D bao @ baz B
bas ® ba7 ® bsy @ bs3z D bs7 D be.

19

20
There 1s a matrix M

with coefficients in F»
such that, for all (k, b),
XORTEAL(b) = (1, k, b)M.

"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P ki ®ks P kig® k11 D k1o @
k20 @ ko1 D k3o @ k32 @ k33 D k35 D
kg2 @ ka3 D kag @ ks @ k53 D kep D
koa D ko7 D keg D kv6 D kg5 D kog &
koo D koo D k101D k108D k117D k126D
b1®b3Db10Db12D b1 D b30D b3 D
b33 P b3 P b37 B b3g D bao @ baz B
bas ® ba7 ® bsy @ bs3z D bs7 D be.

19

20
There 1s a matrix M

with coefficients in F»
such that, for all (k, b),
XORTEAL(b) = (1, k, b)M.

XORTEA,(b1) ® XORTEA,(by)
= (0,0, by & b)) M.

19
"Hardware-friendlier” cipher, since There I1s a matrix M

xor circuit 1s cheaper than add. with coefficients in F»
such that, for all (k, b),
XORTEAL(b) = (1, k, b)M.

But output bits are linear
functions of input bits!
XORTEA,(b1) ® XORTEA,(by)

e.g. First output bit Is
= (0,0, by & b)) M.

1D ko P ki ®ks P kig® k11 D k1o @
koo D ko1 D k3o D k3o B k33 D kas P Very fast attack:

kap D ka3 D kag @ ksp ® k53 D ke @ it by = b1 @ by ® b3 then

kea ® ko7 ® koo @ k76 @ kgs ® koa ® | XORTEA(b1) BXORTEA(b2) =
koD koo @ k101 Pk10sDk117®k126® = XORTEA,(b3) @ XORTEA(bs).
b1®b3Db10Db12D b1 D b30D b3 D
b33 P b3 P b37 B b3g D bao @ baz B
baa © by7 ® bsp @ bs3 @ bs7 D beo.

"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P ki ®ks P kig® k11 D k1o @
k20 @ ko1 D k3o @ k32 @ k33 D k35 D
kg2 @ ka3 D kag @ ks @ k53 D kep D
koa D ko7 D keg D kv6 D kg5 D kog &
koo D koo D k101D k108D k117D k126D
b1®b3Db10Db12D b1 D b30D b3 D
b33 P b3 P b37 B b3g D bao @ baz B
bas ® ba7 ® bsy @ bs3z D bs7 D be.

19

There i1s a matrix M

with coefficients in F»
such that, for all (k, b),
XORTEAL(b) = (1, k, b)M.

XORTEA,(b1) ® XORTEA,(by)
= (0,0, by & b)) M.

Very fast attack:

if bg = b1 @ by & b3 then
XORTEA(b1) ®XORTEA(by) =
XORTEA,(b3) & XORTEA(bs).

This breaks PRP (and PRF):
uniform random permutation

(or function) F almost never has
F(b1) ® F(b2) = F(b3) ® F(ba).

20

ire-friendlier’” cipher, since
1t Is cheaper than add.

out bits are linear
s of input bits!

t output bit Is

K1 ® k3D kig® k11 D k1o @
1 D k30 D k32 D k33 D k35 @
3 D kaa D ks @ k53 D ke ©
7 D ko9 D k76 D ks D kog ©
D k101D k108D k117D k126D
b10Db12Dbr1 D b30D b3>P
s P b37 P b3g D bay D baz B
7 D D52 @ bs3 D bs7 @ bg).

19

There i1s a matrix M
with coefficients in F»

such that, for all (k, b),
XORTEAK(b) = (1, k, b)M.

XORTEA,(b1) ® XORTEA|(bo)
= (0,0, by & by) M.

Very fast attack:

if by = by & by P b3 then
XORTEA(b1) ®XORTEA(by) =
XORTEA(b3) & XORTEA(bs).

This breaks PRP (and PRF):
uniform random permutation

(or function) F almost never has
F(b1) ® F(b2) = F(b3) ® F(ba).

20

b[0] :

er’ cipher, since
ber than add.

e linear
bits!

It IS

k10 D k11 D k12 @
(30 D k33 D k3 P
52 D k53 @ kg2 @
76 D kg5 D kgg ©
08D k117D k126D
b1 D b3o® b32D
139 D bao B baz B
bs3 @D bs7 @ bgo.

19

There 1s a matrix M

with coefficients in F»

such that, for all (k, b),
XORTEA,(b) = (1, k, b)M.

XORTEA,(b1) ® XORTEA|(by)
= (0,0, by & b)) M.

Very fast attack:

if bg = b1 @ by & b3 then
XORTEA(b1) ®XORTEA(by) =
XORTEA|(b3) & XORTEA(bs).

This breaks PRP (and PRF):

uniform random permutation
(or function) F almost never has

F(b1) ® F(by) = F(b3) ® F(bs).

20

TEA again for cor

void encrypt(uin

{
uint32

uint32

for (r

= 0;r <
0x9e377

since

dd.

19

There 1s a matrix M
with coefficients in F»

such that, for all (k, b),
XORTEAK(b) = (1, k, b)M.

XORTEA,(b1) ® XORTEA|(bo)
= (0,0, by & by)M.

Very fast attack:

if by = by & by P b3 then
XORTEA(b1) ®XORTEA(by) =
XORTEA(b3) & XORTEA(bs).

This breaks PRP (and PRF):

uniform random permutation
(or function) F almost never has

F(b1) ® F(b2) = F(b3) @ F(ba).

20

TEA again for comparison

void encrypt(uint32 *b,ui

{

uint32
uint32

for (r

x = b[0], vy = bl

r, c = 0;

= 0;r < 32;r +=

0x9e3779b9;

y+c © (y<<4)+k[C
= (y>>b)+k[1

x+c ~ (x<<4)+k[2
T (x>>B) +k[3

x; bl1l] = y;

There i1s a matrix M

with coefficients in F»
such that, for all (k, b),
XORTEA,(b) = (1, k, b)M.

XORTEA,(b1) ® XORTEA|(by)
= (0,0, by & b)) M.

Very fast attack:

if bg = b1 @ by & b3 then
XORTEA(b1) ®XORTEA(by) =
XORTEA|(b3) & XORTEA(bs).

This breaks PRP (and PRF):
uniform random permutation

(or function) F almost never has
F(b1) ® F(b2) = F(b3) ® F(ba).

20

TEA again for comparison

21

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32

for (r

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;
y+c ~ (y<<4)+k
= (y>>5)+k

x; bl1l] = y;

0.
1]1;
x+c © (x<<4)+k|[2.

© (x>>5)+k([3];

a matrix M
fficients in F»

t, for all (k, b),

A (b) = (1, k, b)M.

A(b1) ® XORTEA,(bo)
b1 @ by) M.

t attack:

)1 D by @ b3 then

A (b1)BXORTEAL(by) =
A (b3) @ XORTEA,(by).

aks PRP (and PRF):

random permutation
tion) F almost never has

F(bo) = F(b3) @ F(bs).

20

TEA again for comparison

21

void encrypt(uint32 *b,uint32 *k)

{
uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x += y+c © (y<<4)+k[O_
- (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
¥
b[0] = x; bl1] = y;

LEFTEA

vold en

{

uint3.

uint3.

for (:

b[0] :

M

' F»>

k., b),

1, k, b)M.

XORTEA (by)
.

b3 then
(ORTEA.(by) =
XORTEA(bs).

and PRF):
ermutation
most never has

F(b3) @ F(bg).

20

21
TEA again for comparison

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;
x += y+c T (y<<4)+k[O.

- (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];
F
b[0] = x; b[1] = y;

LEFTEA: another

void encrypt(uin

{
uint32 x = b[O0
ulnt32 r, c =

for (r = 0;r <

c += 0x9e377
x += y+tc ~ (
" (
y += xtc = (
~(
F

:(b2)

(b2)

:(b4)'

r has

(ba).

20

21
TEA again for comparison

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c ~ (y<<4)+k[O_
© (y>>5)+k[1];

y += x+c T (x<<4)+k[2.
~ (x>>5)+k [3] ;

b[0] = x; bl1] = y;

LEFTEA: another bad ciphe

void encrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 0;
for (r = 0;r < 32;r +=
c += 0x9e377919;

x += y+c T (y<<4)+k[C
~ (y<<b)+k[1
y += x+c T (x<<4)+k[2
T (x<<5)+k[3

b[0] = x; bl1] = y;

TEA again for comparison

21

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;
y+c ~ (y<<4)+k
= (y>>5)+k

x; bl1l] = y;

0]
1];
x+c T (x<<4)+k[2.

© (x>>5)+k[3];

LEFTEA: another bad cipher

22

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

C +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;
y+c ~ (y<<4)+k
~ (y<<b)+k

x; bl1l] = y;

0]
1];
x+c T (x<<4)+k[2.

" (x<<56)+k[3];

21
in_for comparison

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];
2 r, ¢c = 0;

r = 0;r < 32;r += 1) {
0x9e3779b9;

= y+c ~ (y<<4)+k[O0]
- (y>>5)+k[1];
= x+c = (x<<4)+k[2]
~ (x>>5)+k[3];
= x; bl1l] = y;

22

LEFTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x += y+c © (y<<4)+k[O_
~ (y<<5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x<<5)+k[3];
¥
b[0] = x; bl1] = y;

Addition
but addi

First out
1® kg @

nparison

21

t32 *xb,uint32 *k)

1, vy = bl1l];

0;

32;r += 1) {

9b9;
y<<4)+k
y>>5)+k

=y;

0]
1] ;
x<<4)+k[2]
x>>5)+k [3] ;

22

LEFTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c T (y<<4)+k[O.
© (y<<B)+kl[1];

y += x+c T (x<<4)+k[2.
~ (x<<b)+k[3];

b[0] = x; b[1] = y;

Addition is not F»
but addition mod

First output bit is
1 ® ko @ k3p © ke

21

nt32 *xk)

22

LEFTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c ~ (y<<4)+k[O_
" (y<<5)+k[1];

y += xtc ~ (x<<4)+k[2.
T (x<<5)+k[3];

b[0] = x; bl1] = y;

Addition 1s not F»s-linear,
but addition mod 2 is F»-lin

First output bit is
1 & ko @ k3o @ kea D kos D -

LEFTEA: another bad cipher

22

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

x = b[0], y = bl[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;

ytc ~ (y<<4)+k|[O.
© (y<<b5)+k[1];

x+c T (x<<4)+k[2.
~ (x<<b)+k[3];

x; bl1l] = y;

Addition i1s not F»-linear,
but addition mod 2 is F»-linear.

First output bit is
1 ® ko @ k3o @ kea © kog @ b3

23

LEFTEA: another bad cipher

22

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, C O;
= 0;r < 32;r += 1) {
0x9e3779b9;
ytc ~ (y<<4)+k|[O.

© (y<<b)+k[1];
x+c = (x<<4)+k[2]

© (x<<5)+k[3];
x; bl1l] = y;

Addition 1s not F»s-linear,

but addition mod 2 is F»-linear.

First output bit is

1 ® ko @ k3o @ kea © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

23

LEFTEA: another bad cipher

22

void encrypt(uint32 *b,uint32 *k)

{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x += y+c T (y<<4)+k[O.
- (y<<B)+k[1];

y += x+c T (x<<4)+k[2.
~ (x<<b)+k[3];

b[0] = x; b[1] = y;

Addition 1s not F»s-linear,

but addition mod 2 is F»-linear.

First output bit is

1 ® ko @ k3o @ kea © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.

23

LEFTEA: another bad cipher

22

void encrypt(uint32 *b,uint32 *k)

{
uint32 x = b[0], y = b[1];
c = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x += y+c T (y<<4)+k[O.
- (y<<5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x<<b)+k[3];

uint32 r,

b[0] = x; b[1] = y;

Addition 1s not F»s-linear,

but addition mod 2 is F»-linear.

First output bit is
1 ® ko @ k3o @ kea © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.

(Diffusion from low bits to high
bits: <<4; carries in addition.)

23

22
\: another bad cipher

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];
2 r, ¢c = 0;

r = O;r < 32;r += 1) {
0x9e3779b9;

= y+c ~ (y<<4)+k[O0]
~ (y<<5)+k[1];
= x+c = (x<<4)+k[2]
~ (x<<5)+k[3];
= x; bl1l] = y;

Addition is not F»-linear,

but addition mod 2 is F»-linear.

First output bit is
1 ® ko @ k3o @ kga © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.

(Diffusion from low bits to high
bits: <<4; carries in addition.)

23

b[0] :

22 23

bad cipher Addition is not F»-linear, TEA again for cor
, but addition mod 2 is F»-linear. , .
t32 *b,uint32 *k) void encrypt(uin
First output bit Is {
1, v = bl[1]; 1D ko ® k3o B kega P kog D b3o. uint32 x = b[0
0; _ : int32 r, =
Higher output bits I T ©
32;r += 1) { . . . for (r = 0;r <
are increasingly nonlinear
9b9; . : c += 0x9e377
o but they never affect first bit.
y<<4)+k [0 x += y+c = (
y<<5)+k[1]; How TEA avoids this problem: ~
w<<4) +k [2] >>5 diffuses nonlinear changes y += x+c " (
x<<5)+k [3] ; from high bits to low bits. ~

(Diffusion from low bits to high

=Y bits: <<4; carries in addition.) Lol = x; bl

22

| =<

nt32 *xk)

Addition 1s not F»-linear,

but addition mod 2 is F»-linear.

First output bit is
1 ® ko @ k3o © kgsa © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.

(Diffusion from low bits to high
bits: <<4; carries in addition.)

23

TEA again for comparison

void encrypt(uint32 *b,ui

{
uint32

uint32
for (r

c +=

x = b[0], vy = bl

r, c = 0;

= 0;r < 32;r +=

0x9e3779b9;

y+c © (y<<4)+k[C
= (y>>b)+k[1

x+c ~ (x<<4)+k[2
T (x>>B) +k[3

x; bl1l] = y;

Addition 1s not F»s-linear,

but addition mod 2 is F»-linear.

First output bit is
1 ® ko @ k3o @ kesa © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.

(Diffusion from low bits to high
bits: <<4; carries in addition.)

23

TEA again for comparison

24

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

C +=

X +=

y +=

b[0]

x = b[0], y = b[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;

y+tc ~ (y<<4)+k|[O.
~ (y>>5)+k

x+c ~ (x<<4)+k[2.
© (x>>5)+k[3];

x; bll]l = y;

1]

Is not F»r-linear,

tion mod 2 i1s Fo-linear.

put bit Is
) k32 @ Kea D kog D b3p.

utput bits
asingly nonlinear
' never affect first bit.

A avoids this problem:
uses nonlinear changes
h bits to low bits.

n from low bits to high
4: carries in addition.)

23

24
TEA again for comparison

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c © (y<<4)+k[O_
© (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
¥
b[0] = x; bl1] = y;

b[0] :

-linear,

2 1s Fo-linear.

L @ ko D b3

nlinear
act first bit.

his problem:
near changes
ow bits.

N bits to high
n addition.)

23

24
TEA again for comparison

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;
x += y+c T (y<<4)+k[O.
- (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];

b[0] = x; b[1] = y;

TEA4: another be

void encrypt(uin

{
uint32

uint32

for (r

x = b[O0
r, ¢ =
= 0;r <
0x9e377
ytc © (

"~

”~

(
x+c ~ (
(

x; bl[1l]

ear.

ges

11gh

23

24
TEA again for comparison

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c ~ (y<<4)+k[O_
© (y>>5)+k[1];

y += x+c T (x<<4)+k[2.
~ (x>>5)+k [3] ;

}
b[0] = x; bl1] = y;

TEA4: another bad cipher

void encrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 0;
for (r = O;r < 4;r += 1
c += 0x9e3779b9;

x += y+c T (y<<4)+k[C
= (y>>b)+k[1
y += x+c T (x<<4)+k[2
T (x>>5)+k[3

}
b[0] = x; bl1] = y;

TEA again for comparison

24

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;
y+c ~ (y<<4)+k
= (y>>5)+k

x; bl1l] = y;

0.
1]1;
x+c ~ (x<<4)+k|[2.

~ (x>>5)+k[3];

TEA4: another bad cipher

25

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32
for (r
C +=

X +=

y +=

b[0]

r, c = 0;
= O;r < 4;r += 1) {
0x9e3779b9;
y+tc ~ (y<<4)+k|[O.

~ (y>>5)+k[1];
x+c © (x<<4)+k[2]

~ (x>>b)+k[3];
x; bl1l] = y;

24
in_for comparison

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];
2 r, ¢c = 0;

r = O;r < 32;r += 1) {
0x9e3779b9;

= y+c ~ (y<<4)+k[O0]
- (y>>5)+k[1];
= x+c = (x<<4)+k[2]
~ (x>>5)+k[3];
= x; bl1l] = y;

25

TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 4;r += 1) {
c += 0x9e3779b9;
x += y+c © (y<<4)+k[O_
© (y>>b5)+k[1];
y += xtc ~ (x<<4)+k[2.
© (x>>5)+k[3];
I
b[0] = x; bl1] = y;

Fast att.
TEA4,(
TEA4,(

nparison

24

t32 *xb,uint32 *k)

1, vy = bl1];

0;

32;r += 1) {

9b9;
y<<4)+k
y>>5)+k

=y;

0]
1] ;
x<<4)+k[2]
x>>5)+k [3] ;

25

TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, C O;
= O;r < 4;r += 1) {
0x9e3779b9;
y+tc ~ (y<<4)+k[O.

~ (y>>5)+k[1];
x+c ~ (x<<4)+k[2]

~ (x>>b)+k[3];
x; bl1l] = y;

Fast attack:
TEA4,(x+ 23y
TEA4,(x, y) have

24

nt32 *xk)

25

TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = O;r < 4;r += 1) {
c += 0x9e3779D9;

x += y+c ~ (y<<4)+k[O_
- (y>>5)+k[1];

y += xtc T (x<<4)+k[2.
© (x>>5)+k[3];

b[0] = x; bl1] = y;

Fast attack:
TEA4,(x + 231, y) and
TEA4,(x, y) have same firsi

TEA4: another bad cipher

25

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 4;r += 1) {
c += 0x9e3779b9;
x += y+c T (y<<4)+k[O.
~ (y>>5)+kl[1];
y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];

b[0] = x; b[1] = y;

Fast attack:
TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.

26

TEA4: another bad cipher

25

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, c = 0;

= O;r < 4;r += 1) {

0x9e3779b9;
y+c ~ (y<<4)+k
= (y>>5)+k

x; bl1l] = y;

0]
1];
x+c T (x<<4)+k[2.

© (x>>5)+k[3];

26
Fast attack:

TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.
. 231 226_
- 221 216_

r = 0: multiples o
r = 1: multiples o

r = 2: multiples of 211, 20

r = 3: multiples of 21,29

25

TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 4;r += 1) {
c += 0x9e377919;
x += y+c T (y<<4)+k[O.
= (y>>b)+k[1];
y += x+c 7 (x<<4)+k[2]
© (x>>5)+k[3];

b[0] = x; b[1] = y;

26
Fast attack:

TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.
. 231 226_
- 221 216_

r = 0: multiples o

r = 1: multiples o
r = 2: multiples of 211, 20

r = 3: multiples of 21,29

Uniform random function F:
F(x + 231, y) and F(x, y) have
same first bit with probability 1/2.

25

TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 4;r += 1) {
c += 0x9e3779Db9;

x += y+c T (y<<4)+k[O.
~ (y>>5)+kl[1];

y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];

b[0] = x; b[1] = y;

26
Fast attack:

TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.
. 231 226_
- 221 216_

r = 0: multiples o

r = 1: multiples o
r = 2: multiples of 211, 20

r = 3: multiples of 21,29

Uniform random function F:

F(x + 231, y) and F(x, y) have
same first bit with probability 1/2.

PRF advantage 1/2.
Two pairs (x, y): advantage 3/4.

another bad cipher

25

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];

2 r, ¢c = 0;
r = O;r < 4;r += 1) {
= 0x9e3779b9;
= y+c ~ (y<<4)+k[
= (y>>B)+k[
= x+c ~ (x<<4)+k[
~ (x>>B)+k ([
= x; bl1l] = y;

le I[\)I IHI Iol

Fast attack:
TEA4,(x + 231, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.
r = 0: multiples of 231, 220
r = 1: multiples of 221 210,
r = 2: multiples of 211, 20

r = 3: multiples of 21,29

Uniform random function F:
F(x + 231, y) and F(x, y) have
same first bit with probability 1/2.

PRF advantage 1/2.
Two pairs (x, y): advantage 3/4.

26

More so
trace pr
brobabil

probabil
differenc
C(x+4
Use alge

NON-ranc

d cipher

25

t32 *xb,uint32 *k)

1, vy = bl1];

O;

4:r +=
9b9;
y<<4)+k
y>>5)+k

=y;

0]
1]1;
x<<4)+k[2]
x>>5)+k [3] ;

1) A

Fast attack:
TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.
. 231 226_
- 221 216_

r = 0: multiples o
r = 1: multiples o

r = 2: multiples of 211, 20

r = 3: multiples of 21,29

Uniform random function F:
F(x + 231, y) and F(x, y) have
same first bit with probability 1/2.

PRF advantage 1/2.
Two pairs (x, y): advantage 3/4.

26

More sophisticatec

trace probabilities

orobabilities of lin
orobabilities of hig

differences C(x +

C(x+94)— C(x

Use alge

ora-+stati:

Non-randa

omness Ir

25

nt32 *xk)

Fast attack:
TEA4,(x + 231, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.

r = 0: multiples of 231 220,
221 216_

r = 1. multiples of
r = 2: multiples of 211, 20
r = 3: multiples of 21,29

Uniform random function F:
F(x + 23! y) and F(x, y) have
same first bit with probability 1/2.

PRF advantage 1/2.
Two pairs (x, y): advantage 3/4.

26

More sophisticated attacks:

trace probabilities of differer

orobabilities of linear equati
orobabilities of higher-order

differences C(x + 9 + €) —
C(x+0)—C(x+¢€)+ C(x)

Use alge

ora-+statistics to ex

Nnon-randa

omness In probabili

Fast attack:
TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.
. 231 226_
- 221 216_

r = 0: multiples o

r = 1: multiples o
r = 2: multiples of 211, 20

r = 3: multiples of 21,20

Uniform random function F:
F(x + 231, y) and F(x, y) have
same first bit with probability 1/2.

PRF advantage 1/2.
Two pairs (x, y): advantage 3/4.

26

More sophisticated attacks:

trace probabilities of differences;

orobabilities of linear equations;
orobabilities of higher-order

differences C(x + 0 + €) —

C(x+6) — C(x+¢€) + C(x); etc.

Use alge

ora+-statistics to exploit

Nnon-randa

omness In probabilities.

27

Fast attack:
TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.
. 231 226_
- 221 216_

r = 0: multiples o

r = 1: multiples o
r = 2: multiples of 211, 20

r = 3: multiples of 21,20

Uniform random function F:
F(x + 231, y) and F(x, y) have
same first bit with probability 1/2.

PRF advantage 1/2.
Two pairs (x, y): advantage 3/4.

26

More sophisticated attacks:
trace probabilities of differences;
orobabilities of linear equations;

orobabilities of higher-order
differences C(x 4+ 0 + €) —

C(x+6) — C(x+¢€) + C(x); etc.

Use algebra+-statistics to exploit

non-randomness in probabilities.

Attacks get beyond r =4

but rapidly lose effectiveness.
Very far from full TEA.

27

Fast attack:
TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through ste

r=0: mu
r=1: mu
r—=2: mu
r =3: mu

tip

tip
tip
tip

€S O]
€S O
€S O

0s In computation.

] 231 226_
- 221 216_
:211 26_

€S O

- ol 20

Uniform random function F:
F(x + 231, y) and F(x, y) have

same first bit with probability 1/2.

PRF advantage 1/2.
Two pairs (x, y): advantage 3/4.

26

More sophisticated attacks:

trace probabilities of differences;

orobabilities of linear equations;
orobabilities of higher-order

differences C(x + 0 + €) —

C(x+6) — C(x+¢€) + C(x); etc.

Use alge

ora+-statistics to exploit

Nnon-randa

omness In probabilities.

Attacks get beyond r =4
but rapidly lose effectiveness.

Very far

from full TEA.

Hard question in cipher design:

How many “rounds” are

really needed for security?

27

ack:
x + 231 y) and
X, y) have same first bit.

y differences

steps In computation.
nultiples of 231 220
nultiples of 221 210,
nultiples of 211, 26

nultiples of 21,29,

random function F:
3L y) and F(x, y) have

st bit with probability 1/2.

/antage 1/2.
rs (x, y): advantage 3/4.

26

More sophisticated attacks:

trace probabilities of differences;

orobabilities of linear equations;
orobabilities of higher-order

differences C(x + 0 + €) —

C(x+6)— C(x+¢€)+ C(x); etc.

Use alge

ora+-statistics to exploit

Nnon-randa

omness In probabilities.

Attacks get beyond r =4
but rapidly lose effectiveness.

Very far

from full TEA.

Hard question in cipher design:

How many “rounds” are

really needed for security?

27

b[0] :

) and
same first bit.

Cces

omputation.
f 231 226_

£ 221 216_
r:211 26_
£ 21 20_

unction F;
F(x, y) have

probability 1/2.

2.
advantage 3/4.

26

More sophisticated attacks:
trace probabilities of differences;
orobabilities of linear equations;

orobabilities of higher-order
differences C(x 4+ 0 + €) —

C(x+6) — C(x+¢€) + C(x); etc.

Use algebra+-statistics to exploit

non-randomness In probabilities.

Attacks get beyond r =4

but rapidly lose effectiveness.
Very far from full TEA.

Hard question in cipher design:
How many “rounds” are
really needed for security?

21

TEA again for cor

void encrypt(uin

{
uint32 x = b[O0
ulnt32 r, c =

for (r = 0;r <

c += 0x9e377
x += y+tc ~ (
~(
y += xtc = (
" (
+

- bit.

aVE

y 1/2.

' 3/4.

26

More sophisticated attacks:
trace probabilities of differences;
orobabilities of linear equations;

orobabilities of higher-order
differences C(x 4+ 0 + €) —

C(x+6) — C(x+¢€) + C(x); etc.

Use algebra+-statistics to exploit

non-randomness in probabilities.

Attacks get beyond r =4

but rapidly lose effectiveness.
Very far from full TEA.

Hard question in cipher design:
How many “rounds” are
really needed for security?

27

TEA again for comparison

void encrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 0;
for (r = 0;r < 32;r +=
c += 0x9e377919;

x += y+c T (y<<4)+k[C
= (y>>b)+k[1
y += xtc ~ (x<<4)+k[2
T (x>>5)+k[3

b[0] = x; bl1] = y;

More sophisticated attacks:
trace probabilities of differences;
orobabilities of linear equations;

orobabilities of higher-order
differences C(x 4+ 0 + €) —

C(x+6) — C(x+¢€)+ C(x); etc.

Use algebra+-statistics to exploit

non-randomness in probabilities.

Attacks get beyond r =4

but rapidly lose effectiveness.
Very far from full TEA.

Hard question in cipher design:
How many “rounds” are
really needed for security?

21

TEA again for comparison

23

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

C +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;
y+c ~ (y<<4)+k
= (y>>5)+k

x; bl1l] = y;

0]
1];
x+c T (x<<4)+k[2.

T (x>>5)+k[3];

phisticated attacks:
obabilities of differences;
ties of linear equations;
ties of higher-order

es C(x+ 6 +¢€) —

) — C(x + €) + C(x); etc.

- .

ora+-statistics to exploit

lomness in probabilities.

get beyond r =4
dly lose effectiveness.
from full TEA.

estion Iin cipher design:
ny “rounds’ are
eded for security?

27

28
TEA again for comparison

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c © (y<<4)+k[O_
© (y>>5)+k[1];

y += x+c T (x<<4)+k[2.
~ (x>>5)+k [3] ;

b[0] = x; bl1] = y;

REPTE/

vold en

{

uint3.

uint3.
for (.

X +

y +

b[0] -

] attacks:

of differences;
car equations;
her-order

0 +€) —

e) + C(x); etc.

stics to exploit
1 probabilities.

dr=4
fectiveness.
TEA.

ipher design:
s’ are
ecurity?

21

23

TEA again for comparison

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x += y+c T (y<<4)+k[O.
- (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];
Iy
b[0] = x; b[1] = y;

REPTEA: another

void encrypt(uin

{
uint32

uint32 r, c =

for (r = 0;r <
x += y+c ~ (
~
y += xtc = (
~

+
b[0] = x; b[1]

1CES,
ons,

- etcC.

ploit
ties.

on:

27

28

TEA again for comparison

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;

y+c ~ (y<<4)+k[
= (y>>5)+k[

x+c ~ (x<<4)+k|[

~ (x>>5)+k[3

w I[\)I IHI Iol

x; bl1l] = y;

REPTEA: another bad ciphe

void encrypt(uint32 *b,ui

{

uint32
uint32

for (r

X +=

y +=

Iy
b[0] =

x = b[0], y = bl
r, ¢ = 0x9e3779t
= 0;r < 1000;r +
y+c © (y<<4)+k[C

~ (y>>b)+k[1
x+c ~ (x<<4)+k[2

T (x>>5)+k[3
x; b[1l] = y;

TEA again for comparison : REPTEA: another bad cipher :
void encrypt(uint32 *b,uint32 *k) void encrypt(uint32 *b,uint32 *k)
{ {
uint32 x = b[0], y = b[1]; uint32 x = b[0], v = b[1];
uint32 r, ¢ = 0; uint32 r, ¢ = 0x9e3779b9;
for (r = 0;r < 32;r += 1) { for (r = O0;r < 1000;r += 1) {
c += 0x9e3779b9; x += y+c ~ (y<<4)+k[O:
x += y+c T (y<<4)+k[O. ~ (y>>5)+k[1];
= (y>>b)+k[1]; y += x+c T (x<<4)+k[2.
y += x+c T (x<<4)+k[2. ~ (x>>5)+k[3];
© (x>>5)+k[3]; ¥
} b[0] = x; bl1l] = y;
b[0] = x; bl1l] = y; ¥
Iy

in_for comparison

28

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];

2 r, ¢c = 0;
r = 0;r < 32;r += 1) {
= 0x9e3779b9;
= y+c ~ (y<<4)+k[
= (y>>B)+k[
= x+c ~ (x<<4)+k[
=~ (x>>5)+k[3];

x; bl1l] = y;

w I[\)I IHI Iol

29
REPTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0x9e3779b9;
for (r = 0;r < 1000;r += 1) {
x += y+c T (y<<4)+k[O_

~ (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
¥
b[0] = x; bl[1l] = y;

REP TE/
where I,

nparison

23

t32 *xb,uint32 *k)

1, vy = bl1l];

0;

32;r += 1) {

9b9;
y<<4)+k
y>>5)+k

=y;

0]
1] ;
x<<4)+k[2]
x>>5)+k [3] ;

REPTEA: another bad cipher

29

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

r, ¢ = 0x9e3779b9;

for (r = O;r < 1000;r += 1) {
0]
1];
2.
T (x>>5)+k[3];

uint32

X +=

y +=

¥
b[0] =

y+c ° (y<<4)+k
~ (y>>b5)+k

x+c = (x<<4)+k

x; bl[l] = vy;

REPTEA.(b) = Il:
where I, does x+=

28

nt32 *xk)

29

REPTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32
for (r

X +=

y +=

Iy
b[0] =

r, c =

0x9e3779b9;

= 0;r < 1000;r += 1) {

y+tc = (y<<4)+k|[O.
~ (y>>5)+k[1];
x+c ~ (x<<4)+k[2]
~ (x>>5)+k[3];
x; b[1l] = y;

REPTEA(b) = I,°%°(b)
where I, does x+=...;y+=

REPTEA: another bad cipher

29

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32

for (r

X +=

y +=

¥
b[0] =

x = bl0], y = b[1];
r, ¢ = 0x9e3779b9;
= 0;r < 1000;r += 1) {

y+tc ~ (y<<4)+k|[O.
~ (y>>5)+k[1];
x+c ~ (x<<4)+k[2]
~ (x>>5)+k[3];
x; bl[l] = vy;

REPTEA(b) = I;°%(b)
where I) does x+=...;y+=....

30

REPTEA: another bad cipher

29

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];
r, ¢ = 0x9e3779b9;
for (r = O;r < 1000;r += 1) {

uint32

X +=

y +=

¥
b[0] =

y+tc ~ (y<<4)+k|[O.
~ (y>>5)+k[1];
x+c ~ (x<<4)+k[2]
~ (x>>5)+k[3];
x; bl[l] = vy;

REPTEA(b) = I;°%(b)

where I) does x+=...;y+=....

Try list of 232 inputs b.

Collect outputs REPTEA,(b).

30

29 30

REPTEA: another bad cipher REPTEA(b) = I;°%(b)
. . , where I, does x+=...;y+=....
void encrypt(uint32 *b,uint32 *k)
{ Try list of 232 inputs b.
uint32 x = b[0], y = b[1]; Collect outputs REPTEA,(b).
uint32 r, ¢ = 0x9e3779b9; Good chance that some b in list
for (r = 0;r < 1000;r += 1) { also has a = I, (b) in list. Then
x += y+c T (y<<4)+k[O. REPTEAk(a):Ik(REPTEAk(b)).
© (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];

}
b[0] = x; b[1] = v;

29

REPTEA: another bad cipher REPTEA(b) = I;°%(b)
. . , where I, does x+=...;y+=....
void encrypt(uint32 *b,uint32 *k)
{ Try list of 232 inputs b.
uint32 x = b[0], y = b[1]; Collect outputs REPTEA,(b).
uint32 r, ¢ = 0x9e3779b9; Good chance that some b in list
for (r = 0;r < 1000;r += 1) { also has a = I, (b) in list. Then
x += y+c T (y<<4)+k[O. REPTEAk(a):Ik(REPTEAk(b)).
A (y>>5)+k:1: ; For each (b, a) from list:
y *+= xre 7 (x<<d)+k '2: Try solving equations a = I (b),
~ (x>>5)+k[3];

REPTEA,(a)=I,(REPTEA(b))

’ to figure out k. (More equations:

b[0] = x; b[1] = y; try re-encrypting these outputs.)

29

REPTEA: another bad cipher REPTEA(b) = I;°%(b)
. . , where I, does x+=...;y+=....
void encrypt(uint32 *b,uint32 *k)
{ Try list of 232 inputs b.
uint32 x = b[0], y = b[1]; Collect outputs REPTEA,(b).
uint32 r, ¢ = 0x9e3779b9; Good chance that some b in list
for (r = 0;r < 1000;r += 1) { also has a = I, (b) in list. Then
x += y+c T (y<<4)+k[O. REPTEAk(a):Ik(REPTEAk(b)).
A (y>>5)+k:1: ; For each (b, a) from list:
y *+= xre 7 (x<<d)+k '2: Try solving equations a = I (b),
- (>0)kis); REPTEA(a)=I(REPTEA (b))
’ to figure out k. (More equations:
b[0] = x; b[l] = y; .
) try re-encrypting these outputs.)

This 1s a slide attack.
TEA avoids this by varying c.

29
\: another bad cipher

crypt (uint32 *b,uint32 *k)

2 x = b[0], v = b[1];
2 r, ¢ = 0x9e3779b9;
r = 0;r < 1000;r += 1) {

= y+c ~ (y<<4)+k[O0]
~ (y>>5)+k[1];
= x+c = (x<<4)+k[2]
~ (x>>b)+k[3];
= x; bl[1] = y;

REPTEA(b) = I;°°(b)
where I, does x+=...;y+=....

Try list of 232 inputs b.
Collect outputs REPTEA,(b).

Good chance that some b in list

also has a = Ix(b) in list. Then

REPTEA,(a)=I,(REPTEA,(b)).

For each (b, a) from list:
Try solving equations a = I (b),
REPTEA(a)=Ix(REPTEAL(b))

to figure out k. (More equations:

try re-encrypting these outputs.)

This 1s a slide attack.
TEA avoids this by varying c.

30

What ak

vold en

{

uint3.

uint3.

for (:

b[0] :

29 30

_bad cipher REPTEA(b) = I;°%(b) What about origin
, where I, does x+=...;y+=.... , .
t32 *b,uint32 *k) void encrypt(uin
Try list of 232 inputs b. {
1, vy = b[1]; Collect outputs REPTEA,(b). uint32 x = b[0
0x9e3779b9; Good chance that some b in list uint32 r, ¢ =
1000;r += 1) { also has a = Ix(b) in list. Then for (r = O;r <
y<<4)+k[0: REPTEA,(a)=I(REPTEAL(b)). c += 0x9e377
y>>5)+k:1: ; For each (b, a) from list: %+ yre 7
K<<A)HK '2: Try solving equations a = I, (b), -
x>>58)+k(3]; REPTEA, (a)=I,(REPTEA(b)) y = oxre "
to figure out k. (More equations: . (
- Y

try re-encrypting these outputs.)

This is a slide attack. }
TEA avoids this by varying c.

29

REPTEA(b) = I;°%°(b)
where I, does x+=...;y+=....

Try list of 232 inputs b.
Collect outputs REPTEA,(b).

Good chance that some b in list

also has a = Ix(b) in list. Then

REPTEA,(a)=I,(REPTEA,(b)).

For each (b, a) from list:
Try solving equations a = I (b),
REPTEA(a)=Ix(REPTEAL(b))

to figure out k. (More equations:

try re-encrypting these outputs.)

This 1s a slide attack.
TEA avoids this by varying c.

30

What about original TEA?

void encrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 0;
for (r = 0;r < 32;r +=
c += 0x9e377919;

x += y+c T (y<<4)+k[C
= (y>>b)+k[1
y += x+c T (x<<4)+k[2
T (x>>5)+k|[3

b[0] = x; bl1] = y;

REPTEA(b) = I;°%(b)
where I, does x+=...;y+=....

Try list of 232 inputs b.

Collect outputs REPTEA,(b).
Good chance that some b in list

also has a = Ix(b) in list. Then

REPTEA,(a)=I,(REPTEA,(b)).

For each (b, a) from list:
Try solving equations a = I (b),
REPTEA(a)=Ix(REPTEAL(b))

to figure out k. (More equations:

try re-encrypting these outputs.)

This 1s a slide attack.
TEA avoids this by varying c.

30

What about original TEA?

31

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32
for (r
C +=

X +=

r, c = 0;
= 0;r < 32;r += 1) {
0x9e3779b9;
y+tc ~ (y<<4)+k|[O.

~ (y>>5)+k
x+c T (x<<4)+k[2]

© (x>>5)+k[3];
x; bll]l = y;

1]

\(b) = [0%()
- does x+=...;y+=....

5f 232 inputs b.
utputs REPTEA(b).

ance that some b in list
a = I,(b) in list. Then

\«(3)=I,(REPTEA,(b)).

(b, a) from list:
ng equations a = I;(b),
\«(a)=I(REPTEA/(b))

out k. (More equations:

crypting these outputs.)

 slide attack.

oids this by varying c.

30

What about original TEA?

31

void encrypt(uint32 *b,uint32 *k)

{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c © (y<<4)+k[O_
© (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
¥
b[0] = x; bl1] = y;

Related

TEA /(¢
where (/
(k[O] +

%OOO(b)

LY=L

its b.
“PTEAL(b).
some b In list
in list. Then

REPTEA,(b)).

m |ist:
ons a = I (b),
REPTEA,(b))

Vlore equations:

hese outputs.)

ack.
y varying c.

30

What about original TEA?

31

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

x = bl0], y = b[1];
r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;

y+tc ~ (y<<4)+k[O.
~ (y>>b)+kl[1];

x+c ~ (x<<4)+k[2]
~ (x>>b)+k[3];

x; bl1l] = y;

Related keys: e.g.
TEA,/(b) = TEA,
where (k'[0], K'[1],
(k[0] + 231, k[1] +

30

31
What about original TEA?

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c ~ (y<<4)+k[O_
© (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
¥
b[0] = x; bl1] = y;
Iy

Related keys: e.g
TEA,/(b) = TEA
where (k'[0], k'[1]

k(b)
K'[2], K[
- 231 k2],

(k[0] + 231, k[1] -

What about original TEA?

31

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c T (y<<4)+k[O.
~ (y>>5)+kl[1];

y += x+c T (x<<4)+k[2.
~ (x>>5)+k [3] ;

b[0] = x; b[1] = y;

Related keys: e.g
TEA,/(b) = TEA
where (k'[0], K'[1

k(b)
CK'[2], K]
- 231 k2

(k[0] + 231, k[1] -

32

What about original TEA?

31

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c T (y<<4)+k[O.
~ (y>>5)+kl[1];

y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];

b[0] = x; b[1] = y;

Related keys: e.g
TEA,/(b) = TEA
where (k'[0], K'[1

k(D)

(k[0] + 231, k[1] -

Is this an attack?

CK'[2], K

- 231 k2

32

What about original TEA?

31

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x += y+c T (y<<4)+k[O.
- (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
Iy
b[0] = x; b[1] = y;

Related keys: e.g.,
TEAk/(b) — TEAk(b)
where (k'[0], k'[1], K'[2], K'[3]) =

(k[0] 4+ 231, k[1] + 231, k[2], k[3]).

Is this an attack?

PRP attack goal: distinguish
TEA,, for one secret key k, from
uniform random permutation.

32

What about original TEA?

31

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x += y+c T (y<<4)+k[O.
- (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
Iy
b[0] = x; b[1] = y;

Related keys: e.g.,
TEAk/(b) — TEAk(b)
where (k'[0], k'[1], K'[2], K'[3]) =

(k[0] 4+ 231, k[1] + 231, k[2], k[3]).

Is this an attack?

PRP attack goal: distinguish
TEA,, for one secret key k, from
uniform random permutation.

Brute-force attack:
Guess key g, see if TEA,
matches TEA, on some outputs.

32

What about original TEA?

31

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x += y+c T (y<<4)+k[O.
- (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
Iy
b[0] = x; b[1] = y;

Related keys: e.g.,
TEAk/(b) — TEAk(b)
where (k'[0], k'[1], K'[2], K'[3]) =

(k[0] 4+ 231, k[1] + 231, k[2], k[3]).

Is this an attack?

PRP attack goal: distinguish
TEA,, for one secret key k, from
uniform random permutation.

Brute-force attack:
Guess key g, see if TEA,
matches TEA, on some outputs.

Related keys = g succeeds with
chance 27120 Still very small.

32

31 32

yout original TEA? Related keys: e.g., 1997 Ke
crypt (uint32 *b,uint32 *k) TEAkI(b2 - TEAk(b) _ Fancier
where (k'[0], K'[1], K'[2], K'[3]) = has char
31 031 ' .
) x = b[0], ¥ = bI1]: (k[O] 4+ 2°+, k[1] 4+ 2°%, k[2], k[3]). a partict
2 r, ¢ = 0; Is this an attack?
P = 0w < 3% 4= 1) A PRP attack goal: distinguish
- 0x9e3779b9; TEA,, for one secret key k, from
= y+c ~ (y<<4)+k[O: . .
uniform random permutation.
© (y>>5)+k[1];
= x+c ~ (x<<4)+k[2] Brute-force attack:
~ (x>>5)+k[3] ; Guess key g, see if TEA,
matches TEA, on some outputs.
= x; bl1l] = y;

Related keys = g succeeds with
chance 27120 Still very small.

al TEA?

31

t32 *xb,uint32 *k)

1, vy = bl1];

0;

32;r += 1) {

9b9;
y<<4)+k

y>>5)+k

=y;

0]
1] ;
x<<4)+k[2]
x>>5)+k [3] ;

Related keys: e.g.,
TEAk/(b) — TEAk(b)
where (k'[0], k'[1], K'[2], K'[3]) =

(k[0] 4+ 231, k[1] + 231, k[2], k[3]).

Is this an attack?

PRP attack goal: distinguish
TEA,, for one secret key k, from
uniform random permutation.

Brute-force attack:
Guess key g, see if TEA,
matches TEA, on some outputs.

Related keys = g succeeds with
chance 27120 Still very small.

32

1997 Kelsey—Schn
Fancier relationshi
has chance 271 ¢
a particular outpu

31

Related keys: e.g.,

TEA,(b) = TEA
where (k'[0], k'[1]

k(b)
K'[2], K

(k[0] 4+ 231, k[1] -

Is this an attack?

3]) =

- 231 k2

PRP attack goal: distinguish
TEA,, for one secret key k, from

uniform random permutation.

Brute-force attack:

Guess key g, see

if TEA,

matches TEA, on some outputs.

Related keys = g succeeds with

chance 27120 Still very small.

 k[3]).

32

1997 Kelsey—Schneier—Wagr
Fancier relationship between
has chance 27! of producir
a particular output equation

Related keys: e.g.,

TEA,/(b) = TEA
where (k'[0], K'[1

k(D)
K'[2], K

(k[0] + 231, k[1] -

Is this an attack?

3]) =

- 231 k2

PRP attack goal: distinguish
TEA,, for one secret key k, from

uniform random permutation.

Brute-force attack:

Guess key g, see

if TEA,

matches TEA, on some outputs.

Related keys = g succeeds with

chance 27120 Still very small.

 k[3]).

32

33
1997 Kelsey—Schneier—\Wagner:

Fancier relationship between k, k'’
has chance 27! of producing
a particular output equation.

Related keys: e.g.,

TEA,/(b) = TEA
where (k'[0], K'[1

k(D)
K'[2], K

(k[0] + 231, k[1] -

Is this an attack?

3]) =

- 231 k2

PRP attack goal: distinguish
TEA,, for one secret key k, from

uniform random permutation.

Brute-force attack:

Guess key g, see

if TEA,

matches TEA, on some outputs.

Related keys = g succeeds with

chance 27120 Still very small.

 k[3]).

32

33
1997 Kelsey—Schneier—\Wagner:

Fancier relationship between k, k'’

2—11

has chance of producing

a particular output equation.

No evidence in literature that
this helps brute-force attack,
or otherwise affects PRP security.

No challenge to security analysis
of modes using TEA.

Related keys: e.g.,

TEA,/(b) = TEA
where (k'[0], K'[1

k(D)
K'[2], K

(k[0] + 231, k[1] -

Is this an attack?

3]) =

- 231 k2

PRP attack goal: distinguish
TEA,, for one secret key k, from

uniform random permutation.

Brute-force attack:

Guess key g, see

if TEA,

matches TEA, on some outputs.

Related keys = g succeeds with

chance 27120 Still very small.

 k[3]).

32

33
1997 Kelsey—Schneier—\Wagner:

Fancier relationship between k, k'’
has chance 27! of producing
a particular output equation.

No evidence in literature that
this helps brute-force attack,
or otherwise affects PRP security.

No challenge to security analysis
of modes using TEA.

But advertised as
“related-key cryptanalysis”

and claimed to justify
recommendations for designers
regarding key scheduling.

keys: e.g.,
)) — TEAk(b)
'[0], K'[1], K'[2], K'[3]) =

3L k(1] 4 231, k[2], k[3]).

n attack?

ack goal: distinguish
or one secret key k, from
random permutation.

rce attack:
y g, see if TEA,
TEA, on some outputs.

keys = g succeeds with
—126 - Siill very small.

32

1997 Kelsey—Schneier—\Wagner:
Fancier relationship between k, k'

2—11

has chance of producing

a particular output equation.

No evidence in literature that
this helps brute-force attack,
or otherwise affects PRP security.

No challenge to security analysis
of modes using TEA.

But advertised as
“related-key cryptanalysis”

and claimed to justify
recommendations for designers
regarding key scheduling.

33

Some w;

about ci
hash-fur

Take up
“Selecte
Includes

Read at
especia

Try to b
e.g., finc
Reasona
2000 Sc
in block

(b)
K'[2], K'3]) =
231 k2], k[3)).

distinguish
ret key k, from
ermutation.

f TEA,
some outputs.

succeeds with
| very small.

32

1997 Kelsey—Schneier—\Wagner:
Fancier relationship between k, k'
has chance 27! of producing

a particular output equation.

No evidence in literature that
this helps brute-force attack,
or otherwise affects PRP security.

No challenge to security analysis
of modes using TEA.

But advertised as
“related-key cryptanalysis”

and claimed to justify
recommendations for designers
regarding key scheduling.

33

Some ways to lear
about cipher attac
hash-function atta

Take upcoming ca
“Selected areas in
Includes symmetri

Read attack paper
especially from FS

Try to break ciphe
e.g., find attacks ¢

Reasonable startin
2000 Schneier “Se
in block-cipher cry

k[3]).

from

puts.

with
11,

32

1997 Kelsey—Schneier—\Wagner:
Fancier relationship between k, k'
has chance 27! of producing

a particular output equation.

No evidence in literature that
this helps brute-force attack,
or otherwise affects PRP security.

No challenge to security analysis
of modes using TEA.

But advertised as
“related-key cryptanalysis”

and claimed to justify
recommendations for designers
regarding key scheduling.

33

Some ways to learn more

about cipher attacks,

hash-function attacks, etc.:

Take upcoming course

“Selected areas in cryptolog

Includes symmetric attacks.

Read attack papers,

especially from FSE confere

Try to break ciphers yoursel
e.g., find attacks on FEAL.
Reasonable starting point:

2000 Schneier “Self-study c

in block-cipher cryptana

VSIS

1997 Kelsey—Schneier—\Wagner:
Fancier relationship between k, k'
has chance 27! of producing

a particular output equation.

No evidence in literature that
this helps brute-force attack,
or otherwise affects PRP security.

No challenge to security analysis
of modes using TEA.

But advertised as
“related-key cryptanalysis”

and claimed to justify
recommendations for designers
regarding key scheduling.

33

34

Some ways to learn more

about cipher attacks,

hash-function attacks, etc.:

Take upcoming course

“Selected areas in cryptology”.

Includes symmetric attacks.

Read attack papers,

especia
Try to

ly from FSE conference.

oreak ciphers yourself:

e.g., find attacks on FEAL.
Reasonable starting point:

2000 Schneier “Self-study course

in block-cipher cryptanalysis’.

