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Example: If crypto is too slow,
attacker can flood server's CPU.
Real client messages are lost.
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Answer: Each stej

void decrypt(uin

{
uint32 x = b[0
uint32 r,

for (r = 0;r <

y —= x+c = (
~(
x —= y+tc = (
" (
c —= 0x9e377
+
b[0] = x; b[1]
Iy
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Wait, how can we decrypt?
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void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c ~ (y<<4)+k[O_
© (y>>5)+k[1];

y += x+c T (x<<4)+k[2.
~ (x>>5)+k [3] ;

}
b[0] = x; bl1] = y;

Answer: Each step Is invert

void decrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 32 * 0x9e

for (r = 0;r < 32;r +=

y —= xtc T (x<<4)+k[2
T (x>>5)+k [ 3
x —= y+c T (y<<4)+k [0
= (y>>b)+k[1
c —= 0x9e3779b9;
Iy
b[0] = x; bl1] = y;



Wait, how can we decrypt? : Answer: Each step is invertible. :
void encrypt(uint32 *b,uint32 *k) void decrypt(uint32 *b,uint32 *k)
{ {
uint32 x = b[0], y = b[1]; uint32 x = b[0], v = b[1];
uint32 r, ¢ = 0; uint32 r, ¢ = 32 *x 0x9e3779b9;
for (r = 0;r < 32;r += 1) { for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9; y -= x+c 7 (x<<4)+k[2]
x += y+c ~ (y<<4)+k[O. © (x>>5)+k[3];
~ (y>>b)+k[1]; x —= y+c ~ (y<<4)+k[O.
y += xtc = (x<<4)+k[2. ~ (y>>b)+k[1];
~ (x>>5)+k[3]; c —-= 0x9e3779b9;
F F
b[0] = x; bl1l] = y; b[0] = x; bl1] = y;
¥ ¥
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)W can we decrypt?

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];
c = 0;

r = 0;r < 32;r += 1) {
0x9e3779b9;

~ (y<<4)+k [
= (y>>B)+k[
~ (x<<4)+k [
~ (x>>5)+k [3.

2 T,

y+c

"
P
.|.
@]
W 1[\)| |H| |o|

x; bl1l] = y;

15

Answer: Each step is invertible.

void decrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

ulnt32 r, ¢ = 32 *x 0x9e3779b9;
for (r = 0;r < 32;r += 1) {
y —= xtc ~ (x<<4)+k[2.
~ (x>>5)+k[3];
x —= y+c T (y<<4)+k[O_
~ (y>>5)+k[1];
c —= 0x9e3779b9;
¥
b[0] = x; bl1l] = y;

Generali

(used in
1973 Fe

x += fu

y += fu

x += fu

y += fu

Decrypti

y —= fu
x —= fu
y —= fu

x —= fuw
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decrypt?

t32 *xb,uint32 *k)

1, v = bll];
O;

32;r += 1) {
9b9;
y<<4)+k[0_
y>>5)+k[1];
x<<4)+k[2]
x>>5)+k [3] ;

=y;

15
Answer: Each step is invertible.

void decrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 32 *x 0x9e3779b9;
for (r = 0;r < 32;r += 1) {

y —= xtc T (x<<4)+k[2.
~ (x>>5)+k([3];
x —= y+c T (y<<4)+k[O.
- (y>>5)+k[1];
c —= 0x9e3779b9;
+
b[0] = x; b[1] = y;

Generalization, Fe
(used in, e.g., “Lu
1973 Feistel-Copp

x += functionl(y
y += function2(x
x += function3(y

y += function4d(x

Decryption, Invert

y —= functiond(x
x —= function3(y
y —= function2(x

x —= functionl(y
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nt32 *k)
1];

1) {
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Answer: Each step is invertible.

void decrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];
ulnt32 r, ¢ = 32 *x 0x9e3779b9;
for (r = 0;r < 32;r += 1) {

y —= xtc ~ (x<<4)+k[2.

© (x>>5)+k[3];
x —= y+c T (y<<4)+k[O_
© (y>>5)+k[1];
c —= 0x9e3779b9;
I
b[0] = x; bl1] = y;

Generalization, Feistel netw
(used in, e.g., “Lucifer” fror
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += functiond(x,k);

Decryption, inverting each s

y —-= function4(x,k);
x —-= function3(y,k) ;
y —= function2(x,k);
x —-= functionl(y,k);
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Answer: Each step is invertible.

void decrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 32 *x 0x9e3779b9;

for (r = 0;r < 32;r += 1) {
y —= xtc = (x<<4)+k[2.
© (x>>5)+k[3];
x —= y+c ~ (y<<4)+k[O.
- (y>>5)+k[1];
c —= 0x9e3779b9;
Iy
b[0] = x; b[1] = y;

Generalization, Feistel network
(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += function4(x,k);

Decryption, inverting each step:

y —-= functiond(x,k);
x -= function3(y,k) ;
y —= function2(x,k);
x -= functionl(y,k);

16
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Each step is invertible.

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];

2 r, ¢ = 32 *x 0x9e3779b9;

r = O;r < 32;r += 1) {

x+c ~ (x<<4)+k[2.
~ (x>>5)+k[3];

ytc © (y<<4)+k[0.
- (y>>5)+k[1];

0x9e3779b9;

x; bl1l] = y;

Generalization, Feistel network
(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += functiond(x,k);

Decryption, inverting each step:

y —-= function4(x,k);
x —-= function3(y,k) ;
y —= function2(x,k);
x —-= functionl(y,k);

16

b[0] :
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) 1S Invertible.

t32 *xb,uint32 *k)

1, v = bll];

32 * 0x9e3779b9;
32;r += 1) {
x<<4)+k [2]
x>>5)+k [3];
y<<4)+k[O0_
y>>5)+k[1];
9b9;

Generalization, Feistel network
(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += function4(x,k);

Decryption, inverting each step:

y —= functiond(x,k);
x -= function3(y,k) ;
y —= function2(x,k);
x —-= functionl(y,k);

16

TEA again for cor

void encrypt(uin

{
uint32 x = b[O0
ulnt32 r, c =

for (r = 0;r <

c += 0x9e377
x += y+tc ~ (
" (
y += xtc = (
~(

F
b[0] = x; b[1]
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ble.

nt32 *xk)

1];
377909 ;
1) {

Generalization, Feistel network
(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += functiond(x,k);

Decryption, inverting each step:

y —-= function4(x,k);
x —-= function3(y,k) ;
y —= function2(x,k);
x -= functionl(y,k);

16

TEA again for comparison

void encrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 0;
for (r = 0;r < 32;r +=
c += 0x9e377919;

x += y+c T (y<<4)+k[C
= (y>>b)+k[1
y += x+c T (x<<4)+k[2
T (x>>5)+k[3

}
b[0] = x; bl1] = y;



Generalization, Feistel network
(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += function4(x,k);

Decryption, inverting each step:

y —-= functiond(x,k);
x -= function3(y,k) ;
y —= function2(x,k);
x -= functionl(y,k);

16

TEA again for comparison

17

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32
for (r
C +=

X +=

y +=

b[0]

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;

y+tc ~ (y<<4)+k|[O.
~ (y>>5)+k

x+c © (x<<4)+k[2]
© (x>>5)+k[3];

x; bl1l] = y;

1]




zation, Feistel network
ce.g., "Lucifer’ from
stel-Coppersmith):

nctionl (y,k) ;
nction2(x,k);
nction3(y,k) ;
nctiond (x,k) ;

on, Inverting each step:

nctiond (x,k);
nction3(y,k) ;
nction2(x,k);

nctionl (y,k) ;

16

17

TEA again for comparison

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c © (y<<4)+k[O_
© (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
¥
b[0] = x; bl1] = y;

XORTE.,

vold en:
{

uint3.

uint3.

for (:

c +:

”
-

X

b[0] :



istel network
cifer’ from
»ersnﬂth):
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TEA again for comparison

17

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32

for (r

x = b[0], y = b[1];

r, C

= 0;r < 32;r += 1) {

0x9e3779b9;

y+tc ~ (y<<4)+k[O.
~ (y>>b)+k[1];

x+c ~ (x<<4)+k[2]
~ (x>>6)+k[3];

x; bl1l] = y;

=O;

XORTEA: a bad ¢

void encrypt(uin

{

uint32 x =

uint32 r,
for (r
C +=

X "= ycC

"~

"~

b [0

= 0;r <
0x9e377

(

~—\ I\ N
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TEA again for comparison

17

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;

y+c ~ (y<<4)+k[
= (y>>5)+k[

x+c ~ (x<<4)+k|[

~ (x>>5)+k[3

w I[\)I IHI Iol

x; bl1l] = y;

XORTEA: a bad cipher

void encrypt(uint32 *b,ui

{

uint32
uint32
for (r

c +=

”

X -_—

<
Il

b[0]

x = b[0], y = bl

r, c = 0;

= 0;r < 32;r +=

0x9e3779b9;

vy c ~ (y<<4) k[
= (y>>5) k[

x"c ~ (x<<4)°k[

~ (x>>5) k[

CHY N = O

x; bl1l] = y;
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void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;
x += y+c ~ (y<<4)+k
= (y>>5)+k

}
b[0] = x; b[1] = y;

0.
(11
y += x+c T (x<<4)+k[2.

~ (x>>5)+k[3];

XORTEA: a bad cipher

18

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x "=y~ c ~ (y<<4)~k[0]
= (y>>5)°k
y "= x"c T (x<<4) " k[2.
= (x>>5) "k [3];
F
b[0] = x; b[1] = y;

1]
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crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];

2 r, ¢c = 0;

r = 0;r < 32;r += 1) {

0x9e3779b9;

I
P
+
@]

x; bl1l] = y;

y+c ~ (y<<4)+k[
= (y>>B)+k[
~ (x<<4)+k [
= (x>>5)+k[3];

w I[\)I IHI Iol

XORTEA: a bad cipher

18

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

X "= y°cC

<
Il

}
b[0] = x; bl1] = y;

~ (y<<4) k[
= (y>>5) k[
"= x"c T (x<<4) k[

~ (x>>5)"k[3]:

w I[\)I IHI Iol

“"Hardw:

XOr CIrcL
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t32 *xb,uint32 *k)

1, vy = bl1l];

0;

32;r += 1) {

9b9;
y<<4)+k
y>>5)+k

=y;

0]
1] ;
x<<4)+k[2]
x>>5)+k [3] ;

18

XORTEA: a bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x "=y~ c ~ (y<<4)~k[0]
~ (y>>5)"k[1];
y "= x"c T (x<<4)k[2.
~ (x>>5)°k[3];

}
b[0] = x; b[1] = y;

"Hardware-friendli
Xor circuit Is cheaj
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XORTEA: a bad cipher “"Hardware-friendlier” cipher

xor circult 1s cheaper than a

nt32 *k) | void encrypt(uint32 *b,uint32 *k)

{
1]; uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
1) { for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x "= y~c ~ (y<<4)~k[0]
1; ~ (y>>5)"k[1];
i y "= x"c T (x<<4) " k[2.
1 : ~ (x>>5) "k [3];

}
b[0] = x; bl1] = y;




XORTEA: a bad cipher

18

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779Db9;

x "=y~ c © (y<<4)~k[0O]
= (y>>5)°k

y "= x"c T (x<<4) " k[2.
~ (x>>5)°k[3];

}
b[0] = x; b[1] = y;

1]

"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

19



XORTEA: a bad cipher

18

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779Db9;

x "=y~ c © (y<<4)~k[0O]
= (y>>5)°k

y "= x"c T (x<<4) " k[2.
~ (x>>5)°k[3];

}
b[0] = x; b[1] = y;

1]

"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

But output bits are linear
functions of input bits!

19



XORTEA: a bad cipher

18

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

"

X s

<
Il

b[0]

x = b[0], y = bl[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;

y c ~ (y<<4)~k[O:
~ (y>>5)"k[1];

x"c ~ (x<<4) k[2.
=~ (x>>5)"k[3];

x; bl1l] = y;

"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P ki ®ks P kig® k11 D k1o @
k20 @ ko1 D k3o @ k32 @ k33 D k35 ©
kg2 @ ka3 D kag @ ks @ k53 D kep D
Koa D ko7 D keg D k76 D kg5 D kog &
koo D koo D k101D k108D k117D k126D
b1®b3Db10Db12D b1 D b30D b3 D
b33 P b3 P b37 B b3g D bao @ baz B
bas ® ba7 ® bsy @ bs3z D bs7 D be.

19
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A: a bad cipher

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];
2 r, ¢c = 0;

r = O;r < 32;r += 1) {
= 0x9e377909;

= y~c = (y<<4) "k[O0]
~ (y>>5)"k[1];
= x"¢c = (x<<4) " "k[2]
~ (x>>5)"k[3];
= x; bl1l] = y;

"Hardware-friendlier” cipher, since
xor circult 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P k1 D ks P k1o D k11 D k1o P
koo D ko1 @ k30 D k32 D k33 @ k35 D
kap @ ka3 @ kaa @ ks @ k53 D kgp @
koa D ko7 D koo @ k76 D kgs © koa @
ko6 D koo D k101D k108D k117D k126D
b1 ®b3® b10D b12B b1 D b3 D b3 D
b33 P b3 P b37 B b3g D bao @ baz D
bas © ba7 ® bsy @ bs3 @ bs7 D be.

19

There is

WIth COE€

such tha
XORTE
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t32 *xb,uint32 *k)

1, vy = bl1l];

0;

32;r += 1) {

9b9;
y<<4) "k
y>>5) "k

=y;

0]
1];
x<<4) "k [2]
x>>5) "k [3];

"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P ki ®ks P kig® k11 D k1o D
k20 @ ko1 D k3o @ k32 @ k33 D k35 D
kg2 @ ka3 D kag @ ks @ k53 D kep D
koa D ko7 D keg D k76 D kg5 D kog &
koo D koo D k101D k108D k117D k126D
b1®b3Db10Db12D b1 D b30D b3 D
b33 P b3 P b37 B b3g D bao @ baz B
basg ® ba7 ® bsy @ bs3z @ bs7 D be.

19

There 1s a matrix
with coefficients it

such that, for all (
XORTEAL(b) = (
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"Hardware-friendlier” cipher, since
xor circult 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P k1 D ks P k1o D k11 D k1o P
koo D ko1 @ k30 D k32 D k33 @ k35 D
kap @ ka3 @ Kaa @ ks @ k53 D ke @
Koa D ko7 D koo @ k76 D kgs © koa @
ko6 D koo D k101D k108D k117D k126D
b1 ®b3® b10D b12B b1 D b3oD b3 D
b33 P b3 P b37 B b3g D bao D baz D
bas © ba7 ® bsy @ bs3 D bs7 D be.

19

There i1s a matrix M

with coefficients in F»
such that, for all (k, b),
XORTEA,(b) = (1, k, b)M.




"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P ki ®ks P kig® k11 D k1o @
k20 @ ko1 D k3o @ k32 @ k33 D k35 D
kg2 @ ka3 D kag @ ks @ k53 D kep D
koa D ko7 D keg D kv6 D kg5 D kog &
koo D koo D k101D k108D k117D k126D
b1®b3Db10Db12D b1 D b30D b3 D
b33 P b3 P b37 B b3g D bao @ baz B
bas ® ba7 ® bsy @ bs3z D bs7 D be.

19
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There 1s a matrix M

with coefficients in F»
such that, for all (k, b),
XORTEAL(b) = (1, k, b)M.




"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P ki ®ks P kig® k11 D k1o @
k20 @ ko1 D k3o @ k32 @ k33 D k35 D
kg2 @ ka3 D kag @ ks @ k53 D kep D
koa D ko7 D keg D kv6 D kg5 D kog &
koo D koo D k101D k108D k117D k126D
b1®b3Db10Db12D b1 D b30D b3 D
b33 P b3 P b37 B b3g D bao @ baz B
bas ® ba7 ® bsy @ bs3z D bs7 D be.

19

20
There 1s a matrix M

with coefficients in F»
such that, for all (k, b),
XORTEAL(b) = (1, k, b)M.

XORTEA,(b1) ® XORTEA,(by)
= (0,0, by & b)) M.
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"Hardware-friendlier” cipher, since There I1s a matrix M

xor circuit 1s cheaper than add. with coefficients in F»
such that, for all (k, b),
XORTEAL(b) = (1, k, b)M.

But output bits are linear
functions of input bits!
XORTEA,(b1) ® XORTEA,(by)

e.g. First output bit Is
= (0,0, by & b)) M.

1D ko P ki ®ks P kig® k11 D k1o @
koo D ko1 D k3o D k3o B k33 D kas P Very fast attack:

kap D ka3 D kag @ ksp ® k53 D ke @ it by = b1 @ by ® b3 then

kea ® ko7 ® koo @ k76 @ kgs ® koa ® | XORTEA(b1) BXORTEA(b2) =
koD koo @ k101 Pk10sDk117®k126® = XORTEA,(b3) @ XORTEA(bs).
b1®b3Db10Db12D b1 D b30D b3 D
b33 P b3 P b37 B b3g D bao @ baz B
baa © by7 ® bsp @ bs3 @ bs7 D beo.




"Hardware-friendlier” cipher, since
xor circuit 1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D ko P ki ®ks P kig® k11 D k1o @
k20 @ ko1 D k3o @ k32 @ k33 D k35 D
kg2 @ ka3 D kag @ ks @ k53 D kep D
koa D ko7 D keg D kv6 D kg5 D kog &
koo D koo D k101D k108D k117D k126D
b1®b3Db10Db12D b1 D b30D b3 D
b33 P b3 P b37 B b3g D bao @ baz B
bas ® ba7 ® bsy @ bs3z D bs7 D be.

19

There i1s a matrix M

with coefficients in F»
such that, for all (k, b),
XORTEAL(b) = (1, k, b)M.

XORTEA,(b1) ® XORTEA,(by)
= (0,0, by & b)) M.

Very fast attack:

if bg = b1 @ by & b3 then
XORTEA(b1) ®XORTEA(by) =
XORTEA,(b3) & XORTEA(bs).

This breaks PRP (and PRF):
uniform random permutation

(or function) F almost never has
F(b1) ® F(b2) = F(b3) ® F(ba).

20
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K1 ® k3D kig® k11 D k1o @
1 D k30 D k32 D k33 D k35 @
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19

There i1s a matrix M
with coefficients in F»

such that, for all (k, b),
XORTEAK(b) = (1, k, b)M.

XORTEA,(b1) ® XORTEA|(bo)
= (0,0, by & by) M.

Very fast attack:

if by = by & by P b3 then
XORTEA(b1) ®XORTEA(by) =
XORTEA(b3) & XORTEA(bs).

This breaks PRP (and PRF):
uniform random permutation

(or function) F almost never has
F(b1) ® F(b2) = F(b3) ® F(ba).
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There 1s a matrix M

with coefficients in F»

such that, for all (k, b),
XORTEA,(b) = (1, k, b)M.

XORTEA,(b1) ® XORTEA|(by)
= (0,0, by & b)) M.

Very fast attack:

if bg = b1 @ by & b3 then
XORTEA(b1) ®XORTEA(by) =
XORTEA|(b3) & XORTEA(bs).

This breaks PRP (and PRF):

uniform random permutation
(or function) F almost never has

F(b1) ® F(by) = F(b3) ® F(bs).
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TEA again for cor

void encrypt(uin

{
uint32

uint32

for (r

= 0;r <
0x9e377
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There 1s a matrix M
with coefficients in F»

such that, for all (k, b),
XORTEAK(b) = (1, k, b)M.

XORTEA,(b1) ® XORTEA|(bo)
= (0,0, by & by)M.

Very fast attack:

if by = by & by P b3 then
XORTEA(b1) ®XORTEA(by) =
XORTEA(b3) & XORTEA(bs).

This breaks PRP (and PRF):

uniform random permutation
(or function) F almost never has

F(b1) ® F(b2) = F(b3) @ F(ba).
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TEA again for comparison

void encrypt(uint32 *b,ui

{

uint32
uint32

for (r

x = b[0], vy = bl

r, c = 0;

= 0;r < 32;r +=

0x9e3779b9;

y+c © (y<<4)+k[C
= (y>>b)+k[1

x+c ~ (x<<4)+k[2
T (x>>B) +k[3

x; bl1l] = y;



There i1s a matrix M

with coefficients in F»
such that, for all (k, b),
XORTEA,(b) = (1, k, b)M.

XORTEA,(b1) ® XORTEA|(by)
= (0,0, by & b)) M.

Very fast attack:

if bg = b1 @ by & b3 then
XORTEA(b1) ®XORTEA(by) =
XORTEA|(b3) & XORTEA(bs).

This breaks PRP (and PRF):
uniform random permutation

(or function) F almost never has
F(b1) ® F(b2) = F(b3) ® F(ba).
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TEA again for comparison
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void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32

for (r

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;
y+c ~ (y<<4)+k
= (y>>5)+k

x; bl1l] = y;

0.
1]1;
x+c © (x<<4)+k|[2.

© (x>>5)+k([3];
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A(b1) ® XORTEA,(bo)
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t attack:
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F(bo) = F(b3) @ F(bs).
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void encrypt(uint32 *b,uint32 *k)

{
uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x += y+c © (y<<4)+k[O_
- (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
¥
b[0] = x; bl1] = y;

LEFTEA

vold en

{

uint3.

uint3.

for (:

b[0] :
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TEA again for comparison

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;
x += y+c T (y<<4)+k[O.

- (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];
F
b[0] = x; b[1] = y;

LEFTEA: another

void encrypt(uin

{
uint32 x = b[O0
ulnt32 r, c =

for (r = 0;r <

c += 0x9e377
x += y+tc ~ (
" (
y += xtc = (
~(
F
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TEA again for comparison

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c ~ (y<<4)+k[O_
© (y>>5)+k[1];

y += x+c T (x<<4)+k[2.
~ (x>>5)+k [3] ;

b[0] = x; bl1] = y;

LEFTEA: another bad ciphe

void encrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 0;
for (r = 0;r < 32;r +=
c += 0x9e377919;

x += y+c T (y<<4)+k[C
~ (y<<b)+k[1
y += x+c T (x<<4)+k[2
T (x<<5)+k[3

b[0] = x; bl1] = y;



TEA again for comparison
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void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;
y+c ~ (y<<4)+k
= (y>>5)+k

x; bl1l] = y;

0]
1];
x+c T (x<<4)+k[2.

© (x>>5)+k[3];

LEFTEA: another bad cipher
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void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

C +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;
y+c ~ (y<<4)+k
~ (y<<b)+k

x; bl1l] = y;

0]
1];
x+c T (x<<4)+k[2.

" (x<<56)+k[3];




21
in_for comparison

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];
2 r, ¢c = 0;

r = 0;r < 32;r += 1) {
0x9e3779b9;

= y+c ~ (y<<4)+k[O0]
- (y>>5)+k[1];
= x+c = (x<<4)+k[2]
~ (x>>5)+k[3];
= x; bl1l] = y;

22

LEFTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x += y+c © (y<<4)+k[O_
~ (y<<5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x<<5)+k[3];
¥
b[0] = x; bl1] = y;

Addition
but addi

First out
1® kg @



nparison

21

t32 *xb,uint32 *k)

1, vy = bl1l];

0;

32;r += 1) {

9b9;
y<<4)+k
y>>5)+k

=y;

0]
1] ;
x<<4)+k[2]
x>>5)+k [3] ;
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LEFTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c T (y<<4)+k[O.
© (y<<B)+kl[1];

y += x+c T (x<<4)+k[2.
~ (x<<b)+k[3];

b[0] = x; b[1] = y;

Addition is not F»
but addition mod

First output bit is
1 ® ko @ k3p © ke
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LEFTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c ~ (y<<4)+k[O_
" (y<<5)+k[1];

y += xtc ~ (x<<4)+k[2.
T (x<<5)+k[3];

b[0] = x; bl1] = y;

Addition 1s not F»s-linear,
but addition mod 2 is F»-lin

First output bit is
1 & ko @ k3o @ kea D kos D -



LEFTEA: another bad cipher

22

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

x = b[0], y = bl[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;

ytc ~ (y<<4)+k|[O.
© (y<<b5)+k[1];

x+c T (x<<4)+k[2.
~ (x<<b)+k[3];

x; bl1l] = y;

Addition i1s not F»-linear,
but addition mod 2 is F»-linear.

First output bit is
1 ® ko @ k3o @ kea © kog @ b3

23



LEFTEA: another bad cipher

22

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, C O;
= 0;r < 32;r += 1) {
0x9e3779b9;
ytc ~ (y<<4)+k|[O.

© (y<<b)+k[1];
x+c = (x<<4)+k[2]

© (x<<5)+k[3];
x; bl1l] = y;

Addition 1s not F»s-linear,

but addition mod 2 is F»-linear.

First output bit is

1 ® ko @ k3o @ kea © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

23



LEFTEA: another bad cipher

22

void encrypt(uint32 *b,uint32 *k)

{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x += y+c T (y<<4)+k[O.
- (y<<B)+k[1];

y += x+c T (x<<4)+k[2.
~ (x<<b)+k[3];

b[0] = x; b[1] = y;

Addition 1s not F»s-linear,

but addition mod 2 is F»-linear.

First output bit is

1 ® ko @ k3o @ kea © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.

23



LEFTEA: another bad cipher

22

void encrypt(uint32 *b,uint32 *k)

{
uint32 x = b[0], y = b[1];
c = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x += y+c T (y<<4)+k[O.
- (y<<5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x<<b)+k[3];

uint32 r,

b[0] = x; b[1] = y;

Addition 1s not F»s-linear,

but addition mod 2 is F»-linear.

First output bit is
1 ® ko @ k3o @ kea © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.

(Diffusion from low bits to high
bits: <<4; carries in addition.)

23



22
\: another bad cipher

crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];
2 r, ¢c = 0;

r = O;r < 32;r += 1) {
0x9e3779b9;

= y+c ~ (y<<4)+k[O0]
~ (y<<5)+k[1];
= x+c = (x<<4)+k[2]
~ (x<<5)+k[3];
= x; bl1l] = y;

Addition is not F»-linear,

but addition mod 2 is F»-linear.

First output bit is
1 ® ko @ k3o @ kga © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.

(Diffusion from low bits to high
bits: <<4; carries in addition.)

23

b[0] :
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bad cipher Addition is not F»-linear, TEA again for cor
, but addition mod 2 is F»-linear. , .
t32 *b,uint32 *k) void encrypt(uin
First output bit Is {
1, v = bl[1]; 1D ko ® k3o B kega P kog D b3o. uint32 x = b[0
0; _ : int32 r, =
Higher output bits I T ©
32;r += 1) { . . . for (r = 0;r <
are increasingly nonlinear
9b9; . : c += 0x9e377
o but they never affect first bit.
y<<4)+k [0 x += y+c = (
y<<5)+k[1]; How TEA avoids this problem: ~
w<<4) +k [2] >>5 diffuses nonlinear changes y += x+c " (
x<<5)+k [3] ; from high bits to low bits. ~

(Diffusion from low bits to high

=Y bits: <<4; carries in addition.) Lol = x; bl




22

| =<
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Addition 1s not F»-linear,

but addition mod 2 is F»-linear.

First output bit is
1 ® ko @ k3o © kgsa © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.

(Diffusion from low bits to high
bits: <<4; carries in addition.)

23

TEA again for comparison

void encrypt(uint32 *b,ui

{
uint32

uint32
for (r

c +=

x = b[0], vy = bl

r, c = 0;

= 0;r < 32;r +=

0x9e3779b9;

y+c © (y<<4)+k[C
= (y>>b)+k[1

x+c ~ (x<<4)+k[2
T (x>>B) +k[3

x; bl1l] = y;



Addition 1s not F»s-linear,

but addition mod 2 is F»-linear.

First output bit is
1 ® ko @ k3o @ kesa © kog @ b3

Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.

(Diffusion from low bits to high
bits: <<4; carries in addition.)

23

TEA again for comparison
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void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

C +=

X +=

y +=

b[0]

x = b[0], y = b[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;

y+tc ~ (y<<4)+k|[O.
~ (y>>5)+k

x+c ~ (x<<4)+k[2.
© (x>>5)+k[3];

x; bll]l = y;

1]
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TEA again for comparison

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c © (y<<4)+k[O_
© (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
¥
b[0] = x; bl1] = y;

b[0] :
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TEA again for comparison

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;
x += y+c T (y<<4)+k[O.
- (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];

b[0] = x; b[1] = y;

TEA4: another be

void encrypt(uin

{
uint32

uint32

for (r

x = b[O0
r, ¢ =
= 0;r <
0x9e377
ytc © (

"~

”~

(
x+c ~ (
(

x; bl[1l]
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TEA again for comparison

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c ~ (y<<4)+k[O_
© (y>>5)+k[1];

y += x+c T (x<<4)+k[2.
~ (x>>5)+k [3] ;

}
b[0] = x; bl1] = y;

TEA4: another bad cipher

void encrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 0;
for (r = O;r < 4;r += 1
c += 0x9e3779b9;

x += y+c T (y<<4)+k[C
= (y>>b)+k[1
y += x+c T (x<<4)+k[2
T (x>>5)+k[3

}
b[0] = x; bl1] = y;



TEA again for comparison
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void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;
y+c ~ (y<<4)+k
= (y>>5)+k

x; bl1l] = y;

0.
1]1;
x+c ~ (x<<4)+k|[2.

~ (x>>5)+k[3];

TEA4: another bad cipher

25

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32
for (r
C +=

X +=

y +=

b[0]

r, c = 0;
= O;r < 4;r += 1) {
0x9e3779b9;
y+tc ~ (y<<4)+k|[O.

~ (y>>5)+k[1];
x+c © (x<<4)+k[2]

~ (x>>b)+k[3];
x; bl1l] = y;
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crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];
2 r, ¢c = 0;

r = O;r < 32;r += 1) {
0x9e3779b9;

= y+c ~ (y<<4)+k[O0]
- (y>>5)+k[1];
= x+c = (x<<4)+k[2]
~ (x>>5)+k[3];
= x; bl1l] = y;
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TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 4;r += 1) {
c += 0x9e3779b9;
x += y+c © (y<<4)+k[O_
© (y>>b5)+k[1];
y += xtc ~ (x<<4)+k[2.
© (x>>5)+k[3];
I
b[0] = x; bl1] = y;

Fast att.
TEA4,(
TEA4,(
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t32 *xb,uint32 *k)

1, vy = bl1];

0;

32;r += 1) {

9b9;
y<<4)+k
y>>5)+k

=y;

0]
1] ;
x<<4)+k[2]
x>>5)+k [3] ;
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TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, C O;
= O;r < 4;r += 1) {
0x9e3779b9;
y+tc ~ (y<<4)+k[O.

~ (y>>5)+k[1];
x+c ~ (x<<4)+k[2]

~ (x>>b)+k[3];
x; bl1l] = y;

Fast attack:
TEA4,(x+ 23y
TEA4,(x, y) have
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TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = O;r < 4;r += 1) {
c += 0x9e3779D9;

x += y+c ~ (y<<4)+k[O_
- (y>>5)+k[1];

y += xtc T (x<<4)+k[2.
© (x>>5)+k[3];

b[0] = x; bl1] = y;

Fast attack:
TEA4,(x + 231, y) and
TEA4,(x, y) have same firsi



TEA4: another bad cipher

25

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 4;r += 1) {
c += 0x9e3779b9;
x += y+c T (y<<4)+k[O.
~ (y>>5)+kl[1];
y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];

b[0] = x; b[1] = y;

Fast attack:
TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.
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void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, c = 0;

= O;r < 4;r += 1) {

0x9e3779b9;
y+c ~ (y<<4)+k
= (y>>5)+k

x; bl1l] = y;

0]
1];
x+c T (x<<4)+k[2.

© (x>>5)+k[3];

26
Fast attack:

TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.
. 231 226_
- 221 216_

r = 0: multiples o
r = 1: multiples o

r = 2: multiples of 211, 20

r = 3: multiples of 21,29
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TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 4;r += 1) {
c += 0x9e377919;
x += y+c T (y<<4)+k[O.
= (y>>b)+k[1];
y += x+c 7 (x<<4)+k[2]
© (x>>5)+k[3];

b[0] = x; b[1] = y;
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Fast attack:

TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.
. 231 226_
- 221 216_

r = 0: multiples o

r = 1: multiples o
r = 2: multiples of 211, 20

r = 3: multiples of 21,29

Uniform random function F:
F(x + 231, y) and F(x, y) have
same first bit with probability 1/2.
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TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.
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- 221 216_

r = 0: multiples o

r = 1: multiples o
r = 2: multiples of 211, 20

r = 3: multiples of 21,29

Uniform random function F:

F(x + 231, y) and F(x, y) have
same first bit with probability 1/2.

PRF advantage 1/2.
Two pairs (x, y): advantage 3/4.
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crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];
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Fast attack:
TEA4,(x + 231, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences
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r = 1. multiples of
r = 2: multiples of 211, 20
r = 3: multiples of 21,29

Uniform random function F:
F(x + 23! y) and F(x, y) have
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PRF advantage 1/2.
Two pairs (x, y): advantage 3/4.
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TEA4,(x + 2%, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.
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r = 0: multiples o

r = 1: multiples o
r = 2: multiples of 211, 20

r = 3: multiples of 21,20

Uniform random function F:
F(x + 231, y) and F(x, y) have
same first bit with probability 1/2.

PRF advantage 1/2.
Two pairs (x, y): advantage 3/4.
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More sophisticated attacks:
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orobabilities of higher-order
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Fast attack:
TEA4,(x + 2%, y) and
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F(x + 231, y) and F(x, y) have
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orobabilities of higher-order
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Attacks get beyond r =4

but rapidly lose effectiveness.
Very far from full TEA.
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More sophisticated attacks:
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orobabilities of linear equations;

orobabilities of higher-order
differences C(x 4+ 0 + €) —

C(x+6) — C(x+¢€) + C(x); etc.

Use algebra+-statistics to exploit

non-randomness in probabilities.
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but rapidly lose effectiveness.
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TEA again for comparison

void encrypt(uint32 *b,ui
{
uint32 x = b[0], y = bl
uint32 r, ¢ = 0;
for (r = 0;r < 32;r +=
c += 0x9e377919;

x += y+c T (y<<4)+k[C
= (y>>b)+k[1
y += xtc ~ (x<<4)+k[2
T (x>>5)+k[3

b[0] = x; bl1] = y;
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differences C(x 4+ 0 + €) —

C(x+6) — C(x+¢€)+ C(x); etc.

Use algebra+-statistics to exploit

non-randomness in probabilities.

Attacks get beyond r =4

but rapidly lose effectiveness.
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Hard question in cipher design:
How many “rounds” are
really needed for security?
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void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

C +=

X +=
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}
b[0] =

x = b[0], y = b[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;
y+c ~ (y<<4)+k
= (y>>5)+k

x; bl1l] = y;
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T (x>>5)+k[3];
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TEA again for comparison

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c © (y<<4)+k[O_
© (y>>5)+k[1];

y += x+c T (x<<4)+k[2.
~ (x>>5)+k [3] ;

b[0] = x; bl1] = y;
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TEA again for comparison

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, ¢ = 0;

for (r = 0;r < 32;r += 1) {
c += 0x9e377919;
x += y+c T (y<<4)+k[O.
- (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>b)+k[3];
Iy
b[0] = x; b[1] = y;

REPTEA: another

void encrypt(uin

{
uint32

uint32 r, c =

for (r = 0;r <
x += y+c ~ (
~
y += xtc = (
~

+
b[0] = x; b[1]
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TEA again for comparison

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

}
b[0] =

x = b[0], y = b[1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;

y+c ~ (y<<4)+k[
= (y>>5)+k[

x+c ~ (x<<4)+k|[

~ (x>>5)+k[3

w I[\)I IHI Iol

x; bl1l] = y;

REPTEA: another bad ciphe

void encrypt(uint32 *b,ui

{

uint32
uint32

for (r

X +=

y +=

Iy
b[0] =

x = b[0], y = bl
r, ¢ = 0x9e3779t
= 0;r < 1000;r +
y+c © (y<<4)+k[C

~ (y>>b)+k[1
x+c ~ (x<<4)+k[2

T (x>>5)+k[3
x; b[1l] = y;



TEA again for comparison : REPTEA: another bad cipher :
void encrypt(uint32 *b,uint32 *k) void encrypt(uint32 *b,uint32 *k)
{ {
uint32 x = b[0], y = b[1]; uint32 x = b[0], v = b[1];
uint32 r, ¢ = 0; uint32 r, ¢ = 0x9e3779b9;
for (r = 0;r < 32;r += 1) { for (r = O0;r < 1000;r += 1) {
c += 0x9e3779b9; x += y+c ~ (y<<4)+k[O:
x += y+c T (y<<4)+k[O. ~ (y>>5)+k[1];
= (y>>b)+k[1]; y += x+c T (x<<4)+k[2.
y += x+c T (x<<4)+k[2. ~ (x>>5)+k[3];
© (x>>5)+k[3]; ¥
} b[0] = x; bl1l] = y;
b[0] = x; bl1l] = y; ¥
Iy
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crypt (uint32 *b,uint32 *k)

2 x = b[0], y = b[1];

2 r, ¢c = 0;
r = 0;r < 32;r += 1) {
= 0x9e3779b9;
= y+c ~ (y<<4)+k[
= (y>>B)+k[
= x+c ~ (x<<4)+k[
=~ (x>>5)+k[3];

x; bl1l] = y;
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REPTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0x9e3779b9;
for (r = 0;r < 1000;r += 1) {
x += y+c T (y<<4)+k[O_

~ (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];
¥
b[0] = x; bl[1l] = y;

REP TE/
where I,
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t32 *xb,uint32 *k)

1, vy = bl1l];

0;

32;r += 1) {

9b9;
y<<4)+k
y>>5)+k

=y;

0]
1] ;
x<<4)+k[2]
x>>5)+k [3] ;

REPTEA: another bad cipher

29

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

r, ¢ = 0x9e3779b9;

for (r = O;r < 1000;r += 1) {
0]
1];
2.
T (x>>5)+k[3];

uint32

X +=

y +=

¥
b[0] =

y+c ° (y<<4)+k
~ (y>>b5)+k

x+c = (x<<4)+k

x; bl[l] = vy;

REPTEA.(b) = Il:
where I, does x+=
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REPTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32
for (r

X +=

y +=

Iy
b[0] =

r, c =

0x9e3779b9;

= 0;r < 1000;r += 1) {

y+tc = (y<<4)+k|[O.
~ (y>>5)+k[1];
x+c ~ (x<<4)+k[2]
~ (x>>5)+k[3];
x; b[1l] = y;

REPTEA(b) = I,°%°(b)
where I, does x+=...;y+=
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void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32

for (r

X +=

y +=

¥
b[0] =

x = bl0], y = b[1];
r, ¢ = 0x9e3779b9;
= 0;r < 1000;r += 1) {

y+tc ~ (y<<4)+k|[O.
~ (y>>5)+k[1];
x+c ~ (x<<4)+k[2]
~ (x>>5)+k[3];
x; bl[l] = vy;

REPTEA(b) = I;°%(b)
where I) does x+=...;y+=....

30
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void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];
r, ¢ = 0x9e3779b9;
for (r = O;r < 1000;r += 1) {

uint32

X +=

y +=

¥
b[0] =

y+tc ~ (y<<4)+k|[O.
~ (y>>5)+k[1];
x+c ~ (x<<4)+k[2]
~ (x>>5)+k[3];
x; bl[l] = vy;

REPTEA(b) = I;°%(b)

where I) does x+=...;y+=....

Try list of 232 inputs b.

Collect outputs REPTEA,(b).

30
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REPTEA: another bad cipher REPTEA(b) = I;°%(b)
. . , where I, does x+=...;y+=....
void encrypt(uint32 *b,uint32 *k)
{ Try list of 232 inputs b.
uint32 x = b[0], y = b[1]; Collect outputs REPTEA,(b).
uint32 r, ¢ = 0x9e3779b9; Good chance that some b in list
for (r = 0;r < 1000;r += 1) { also has a = I, (b) in list. Then
x += y+c T (y<<4)+k[O. REPTEAk(a):Ik(REPTEAk(b)).
© (y>>5)+k[1];
y += x+c T (x<<4)+k[2.
~ (x>>5)+k[3];

}
b[0] = x; b[1] = v;
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REPTEA: another bad cipher REPTEA(b) = I;°%(b)
. . , where I, does x+=...;y+=....
void encrypt(uint32 *b,uint32 *k)
{ Try list of 232 inputs b.
uint32 x = b[0], y = b[1]; Collect outputs REPTEA,(b).
uint32 r, ¢ = 0x9e3779b9; Good chance that some b in list
for (r = 0;r < 1000;r += 1) { also has a = I, (b) in list. Then
x += y+c T (y<<4)+k[O. REPTEAk(a):Ik(REPTEAk(b)).
A (y>>5)+k:1: ; For each (b, a) from list:
y *+= xre 7 (x<<d)+k '2: Try solving equations a = I (b),
~ (x>>5)+k[3];

REPTEA,(a)=I,(REPTEA(b))

’ to figure out k. (More equations:

b[0] = x; b[1] = y; try re-encrypting these outputs.)
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REPTEA: another bad cipher REPTEA(b) = I;°%(b)
. . , where I, does x+=...;y+=....
void encrypt(uint32 *b,uint32 *k)
{ Try list of 232 inputs b.
uint32 x = b[0], y = b[1]; Collect outputs REPTEA,(b).
uint32 r, ¢ = 0x9e3779b9; Good chance that some b in list
for (r = 0;r < 1000;r += 1) { also has a = I, (b) in list. Then
x += y+c T (y<<4)+k[O. REPTEAk(a):Ik(REPTEAk(b)).
A (y>>5)+k:1: ; For each (b, a) from list:
y *+= xre 7 (x<<d)+k '2: Try solving equations a = I (b),
- (>0)kis); REPTEA(a)=I(REPTEA (b))
’ to figure out k. (More equations:
b[0] = x; b[l] = y; .
) try re-encrypting these outputs.)

This 1s a slide attack.
TEA avoids this by varying c.
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\: another bad cipher

crypt (uint32 *b,uint32 *k)

2 x = b[0], v = b[1];
2 r, ¢ = 0x9e3779b9;
r = 0;r < 1000;r += 1) {

= y+c ~ (y<<4)+k[O0]
~ (y>>5)+k[1];
= x+c = (x<<4)+k[2]
~ (x>>b)+k[3];
= x; bl[1] = y;

REPTEA(b) = I;°°(b)
where I, does x+=...;y+=....

Try list of 232 inputs b.
Collect outputs REPTEA,(b).

Good chance that some b in list

also has a = Ix(b) in list. Then

REPTEA,(a)=I,(REPTEA,(b)).

For each (b, a) from list:
Try solving equations a = I (b),
REPTEA(a)=Ix(REPTEAL(b))

to figure out k. (More equations:

try re-encrypting these outputs.)

This 1s a slide attack.
TEA avoids this by varying c.
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_bad cipher REPTEA(b) = I;°%(b) What about origin
, where I, does x+=...;y+=.... , .
t32 *b,uint32 *k) void encrypt(uin
Try list of 232 inputs b. {
1, vy = b[1]; Collect outputs REPTEA,(b). uint32 x = b[0
0x9e3779b9; Good chance that some b in list uint32 r, ¢ =
1000;r += 1) { also has a = Ix(b) in list. Then for (r = O;r <
y<<4)+k[0: REPTEA,(a)=I(REPTEAL(b)). c += 0x9e377
y>>5)+k:1: ; For each (b, a) from list: %+ yre 7
K<<A)HK '2: Try solving equations a = I, (b), -
x>>58)+k(3]; REPTEA, (a)=I,(REPTEA(b)) y = oxre "
to figure out k. (More equations: . (
- Y

try re-encrypting these outputs.)

This is a slide attack. }
TEA avoids this by varying c.
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REPTEA(b) = I;°%°(b)
where I, does x+=...;y+=....

Try list of 232 inputs b.
Collect outputs REPTEA,(b).

Good chance that some b in list

also has a = Ix(b) in list. Then

REPTEA,(a)=I,(REPTEA,(b)).

For each (b, a) from list:
Try solving equations a = I (b),
REPTEA(a)=Ix(REPTEAL(b))

to figure out k. (More equations:

try re-encrypting these outputs.)

This 1s a slide attack.
TEA avoids this by varying c.
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