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Earlier this year, we deployed a new TLS cipher suite in
Chrome that operates three times faster than AES-

GCM on devices that don't have AES hardware

acceleration, including most Android phones,
wearable devices such as Google Glass and older
computers. This improves user experience, reducing
latency and saving battery life by cutting down the

amount of time spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang,
Ben Laurie and | began implementing new algorithms
- ChaCha 20 for symmetric encryption and Poly1305
for authentication --in OpenSSL and NSS in March
2013. It was a complex effort that required
implementing a new abstraction layer in OpenSSL in
order to support the Authenticated Encryption with
Associated Data (AEAD) encryption mode properly.
AEAD enables encryption and authentication to
happen concurrently, making it easier to use and
optimize than older, commonly-used modes such as
CBC. Moreover, recent attacks against RC4 and CBC

also prompted us to make this change.

The benefits of this new cipher suite include:
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Where AES is used, the conventional solution for disk
encryption is to use the XTS or CBC-ESSIV modes of
operation, which are length-preserving. Currently
Android supports AES-128-CBC-ESSIV for full-disk
encryption and AES-256-XTS for file-based encryption.
However, when AES performance is insufficient there
is no widely accepted alternative that has sufficient

performance on lower-end ARM processors.

To solve this problem, we have designed a new
encryption mode called Adiantum. Adiantum allows
us to use the ChaCha stream cipher in a length-
preserving mode, by adapting ideas from AES-based
proposals for length-preserving encryption such as
HCTR and HCH. On ARM Cortex-A7, Adiantum
encryption and decryption on 4096-byte sectors is
about 10.6 cycles per byte, around 5x faster than

AES-256-XTS.
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Where AES is used, the conventional solution for disk
encryption is to use the XTS or CBC-ESSIV modes of
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< 8|L/16]| choices of r.
Probability < 8 [L/16] /21%°.

D ftorgeries are all rejected
with probability
>1—8D[L/16] /210

e.g. 2°4 forgeries, L = 1536:
Prlall rejected] > 0.9999999998.
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Scaled up for serious security:

Poly1305 uses 128-bit r's,

with 22 bits cleared for speed.

Adds s, mod 2128,

Assuming < [-byte messages:

Each forgery succeeds for
< 8|L/16]| choices of r.
Probability < 8 [L/16] /21%°.

D ftorgeries are all rejected
with probability
>1—8D[L/16] /210

e.g. 2°4 forgeries, L = 1536:

Prlall rejected] > 0.9999999998.

24

Authenticator is still secure
for variable-length messages,
if different messages are
different polynomials mod p.

Split string into 16-byte chunks,
maybe with smaller final chunk;

append 1 to each chunk;

view as little-endian integers
in {1,2,3,...,21991,

Multiply first chunk by r,

add next chunk, multiply by r,

etc., last chunk, multiply by r,

mod 2130 — 5 add s, mod 2128
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