Introduction to symmetric crypto Some cipher history

D. J. Bernstein 1973, and again in 1974
U.S. National Bureau of
Standards solicits proposals

How HTTPS protects connection:

for a Data Encryption Standard.
e Public-key encryption system

encrypts one secret message:
a random 256-bit session key.

e Public-key signature system
stops NSAITM attacks.

e [Fast authenticated cipher
uses the 256-bit session key
to protect further messages.

Introduction to symmetric crypto

D. J. Bernstein

Some cipher history

How HTTPS protects connection:

e Public-key encryption system
encrypts one secret message:
a random 256-bit session key.

e Public-key signature system
stops NSAITM attacks.

e [Fast authenticated cipher
uses the 256-bit session key
to protect further messages.

1973, and again in 1974

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES
proposal. 64-bit block, 56-bit key.

Introduction to symmetric crypto

D. J. Bernstein

Some cipher history

How HTTPS protects connection:

e Public-key encryption system
encrypts one secret message:
a random 256-bit session key.

e Public-key signature system
stops NSAITM attacks.

e [Fast authenticated cipher
uses the 256-bit session key
to protect further messages.

1973, and again in 1974

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES
proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and
Hellman to discuss criticism.
Claims “somewhere over
$400,000,000" to break a DES
key; “l don’'t think you can tell
any Congressman what's going to
be secure 25 years from now.”

tion to symmetric crypto

rnstein

Some cipher history

TPS protects connection:

-key encryption system
ts one secret message:
om 256-bit session key.

-key signature system
NSAITM attacks.

uthenticated cipher
1e 256-bit session key
tect further messages.

1973, and again in 1974:

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and
Hellman to discuss criticism.
Claims “somewhere over
$400,000,000" to break a DES
key; “l don't think you can tell
any Congressman what's going to
be secure 25 years from now.”

1977: D

1977: D
publish
$20,000
hundred

mmetric crypto

Some cipher history

acts connection:

ption system
ret message:
t session key.

ture system
ttacks.

ted cipher
session key
r messages.

1973, and again in 1974

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and
Hellman to discuss criticism.
Claims “somewhere over
$400,000,000" to break a DES
key; “l don’'t think you can tell
any Congressman what's going to
be secure 25 years from now.”

1977: DES is stan

1977: Diffie and F
publish detailed de
$20,000,000 mach
hundreds of DES |

rypto

Some cipher history

ction:

em

Key.

16

Y
S,

1973, and again in 1974:

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and
Hellman to discuss criticism.
Claims “somewhere over
$400,000,000" to break a DES
key; “l don't think you can tell
any Congressman what's going to
be secure 25 years from now.”

1977: DES is standardized.

1977: Dittie and Hellman
publish detailed design of
$20,000,000 machine to bre
hundreds of DES keys per y

Some cipher history

1973, and again in 1974

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and
Hellman to discuss criticism.
Claims “somewhere over
$400,000,000" to break a DES
key; “l don’'t think you can tell
any Congressman what's going to
be secure 25 years from now.”

1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20,000,000 machine to break
hundreds of DES keys per year.

Some cipher history

1973, and again in 1974

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and
Hellman to discuss criticism.
Claims “somewhere over
$400,000,000" to break a DES
key; “l don’'t think you can tell
any Congressman what's going to
be secure 25 years from now.”

1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20,000,000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation
iInto NSA influence concludes
“NSA convinced IBM that a

reduced key size was sufficient” .

Some cipher history

1973, and again in 1974

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and
Hellman to discuss criticism.
Claims “somewhere over
$400,000,000" to break a DES
key; “l don’'t think you can tell
any Congressman what's going to
be secure 25 years from now.”

1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20,000,000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation

iInto NSA influence concludes
“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Some cipher history

1973, and again in 1974

U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and
Hellman to discuss criticism.
Claims “somewhere over
$400,000,000" to break a DES
key; “l don’'t think you can tell
any Congressman what's going to
be secure 25 years from now.”

1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20,000,000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation
into NSA influence concludes

“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Researchers publish new cipher
proposals and security analysis.

pher history

id again in 1974:

tional Bureau of

Is solicits proposals

ta Encryption Standard.

BS publishes IBM DES

_ 64-bit block, 56-bit key.

SA meets Diffie and

to discuss criticism.
'somewhere over

),000" to break a DES
lon't think you can tell
gressman what's going to
e 25 years from now."

1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20,000,000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation

iInto NSA influence concludes
“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Researchers publish new cipher
proposals and security analysis.

1997: U
of Stanc
(NIST, 1
for prop:
Encrypti
block, 1

Y

' 1974

eau of
proposals

tion Standard.

nes IBM DES

Ditfie and

5 criticism.

e over

break a DES

. you can tell
what's going to

from now.”

ock, 56-bit key.

1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20,000,000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation

iInto NSA influence concludes
“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Researchers publish new cipher
proposals and security analysis.

1997: U.S. Natior
of Standards and
(NIST, formerly N
for proposals for A

Encryption Stand:
block, 128/192 /2"

lard.
)ES

it key.

el
ing to

1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20,000,000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation
into NSA influence concludes

“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Researchers publish new cipher
proposals and security analysis.

1997: U.S. National Institut
of Standards and Technolog
(NIST, formerly NBS) calls
for proposals for Advanced

Encryption Standard. 128-b
block, 128/192/256-bit key.

1977: DES is standardized. 1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1977: Dithe and Hellman
publish detailed design of
$20,000,000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation

iInto NSA influence concludes
“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Researchers publish new cipher
proposals and security analysis.

1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20,000,000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation

iInto NSA influence concludes
“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Researchers publish new cipher
proposals and security analysis.

1997: U.S. National Institute

of Standards and Techno
(NIST, formerly NBS) ca

ogy
s

for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20,000,000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation

iInto NSA influence concludes
“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Researchers publish new cipher
proposals and security analysis.

1997: U.S. National Institute

of Standards and Techno
(NIST, formerly NBS) ca

ogy
s

for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”
for under $250000 to break
hundreds of DES keys per year.

1977: DES is standardized.

1977: Dithe and Hellman
publish detailed design of
$20,000,000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation

iInto NSA influence concludes
“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Researchers publish new cipher
proposals and security analysis.

1997: U.S. National Institute

of Standards and Techno
(NIST, formerly NBS) ca

ogy
s

for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”
for under $250000 to break
hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,
Rijndael, Serpent, Twofish.

ES is standardized.

iffie and Hellman
Jetailed design of

000 machine to break
s of DES keys per year.

ongressional investigation
A influence concludes
onvinced IBM that a

key size was sufficient” .

)88, 1993: Government
s DES standard.

1ers publish new cipher
s and security analysis.

1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”
for under $250000 to break
hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,
Rijndael, Serpent, Twofish.

2000: N
selects F

“Securit
factor in

dardized.

lellman

sign of

ine to break
Keys per year.

al investigation
> concludes
BM that a

/as sufficient’ .

Government
1dard.

h new cipher
Irity analysis.

1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five
AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

2000: NIST, aduvis
selects Rijndael as

“Security was the
factor in the evalu

ent

her
SIS.

1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,
Rijndael, Serpent, Twofish.

2000: NIST, advised by NS,
selects Rijndael as AES.

“Security was the most imp:
factor in the evaluation”—F

1997: U.S. National Institute 2000: NIST, advised by NSA,
of Standards and Technology selects Rijndael as AES.
(NIST, formerly NBS) calls

for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

“Security was the most important
factor in the evaluation”—Really?

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”
for under $250000 to break
hundreds of DES keys per year.

1999: NIST selects five
AES finalists: MARS, RC6,
Rijndael, Serpent, Twofish.

1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five
AES finalists: MARS, RC6,
Rijndael, Serpent, Twofish.

2000: NIST, advised by NSA,
selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five
AES finalists: MARS, RC6,
Rijndael, Serpent, Twofish.

2000: NIST, advised by NSA,
selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.

1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five
AES finalists: MARS, RC6,
Rijndael, Serpent, Twofish.

2000: NIST, advised by NSA,
selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.
2007-2012: SHA-3 competition.

1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five
AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

2000: NIST, advised by NSA,
selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.
2007-2012: SHA-3 competition.
2013-2019: CAESAR competition.

1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five
AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

2000: NIST, advised by NSA,
selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004—-2008: eSTREAM
competition for stream ciphers.
2007-2012: SHA-3 competition.
2013-2019: CAESAR competition.
2019—now: NISTLWC competition.

.S. National Institute
lards and Technology

ormerly NBS) calls

osals for Advanced
on Standard. 128-bit
28/192/256-bit key.

» AES proposals.

FF builds “Deep Crack”
r $250000 to break
s of DES keys per year.

IST selects five
lists: MARS, RC6,
. Serpent, Twofish.

2000: NIST, advised by NSA,
selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. . ..
Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.
2007-2012: SHA-3 competition.

2013-2019: CAESAR competition.
2019—now: NISTLWC competition.

Main op
add rour
apply su
X = x22
to each

linearly |

al Institute
Technology
BS) calls
\dvanced
rd. 128-bit
0-bit key.

posals.

“Deep Crack”
to break
Keys per year.

s five
RS, RC6,
Twofish.

2000: NIST, advised by NSA,
selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.
2007-2012: SHA-3 competition.
2013-2019: CAESAR competition.
2019—now: NISTLWC competition.

Main operations It
add round key to
apply substitution
X X254 In F256

to each byte In blc

linearly mix bits a

2000: NIST, advised by NSA,
selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.
2007-2012: SHA-3 competition.
2013-2019: CAESAR competition.
2019—now: NISTLWC competition.

Main operations in AES:
add round key to block;
apply substitution box
X X254 In F256

to each byte in block;

linearly mix bits across blocl

2000: NIST, advised by NSA, Main operations in AES:
selects Rijndael as AES. add round key to block;
apply substitution box

254 -

“Security was the most important
X — X7 In Fogg

factor in the evaluation”—Really? |
to each byte in block;

"Rijndael appears to offer an linearly mix bits across block.
adequate security margin. ...

Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.
2007-2012: SHA-3 competition.
2013-2019: CAESAR competition.
2019—now: NISTLWC competition.

2000: NIST, advised by NSA,
selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.
2007-2012: SHA-3 competition.
2013-2019: CAESAR competition.
2019—now: NISTLWC competition.

Main operations in AES:
add round key to block;
apply substitution box
X = X254 In F256

to each byte in block;

linearly mix bits across block.

Extensive security analysis.
Even in a post-quantum world,
no serious threats to AES-256
In a strong security model,

“multi-target SPRP security” .

2000: NIST, advised by NSA,
selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.
2007-2012: SHA-3 competition.

2013-2019: CAESAR competition.
2019—now: NISTLWC competition.

Main operations in AES:
add round key to block;
apply substitution box
X = X254 In F256

to each byte in block;

linearly mix bits across block.

Extensive security analysis.
Even in a post-quantum world,
no serious threats to AES-256
In a strong security model,
“multi-target SPRP security” .

So why isn't AES-256 the end
of the symmetric-crypto story?

IST, advised by NSA,
ijndael as AES.

y was the most important
the evaluation”—Really?

| appears to offer an
e security margin. . ..
appears to offer a
urity margin.”

08: eSTREAM

tion for stream ciphers.
12: SHA-3 competition.

19: CAESAR competition.
w: NISTLWC competition.

Main operations in AES:
add round key to block;
apply substitution box

254 i F256

X = X
to each byte in block;

linearly mix bits across block.

Extensive security analysis.
Even in a post-quantum world,
no serious threats to AES-256
In a strong security model,
“multi-target SPRP security” .

So why isn't AES-256 the end
of the symmetric-crypto story?

Goog

The latest ney
on the Interne

Speedin
HTTPS

Android
April 24, 20

Posted by Elie

Earlier this
Chrome th:
GCM on de

ed by NSA,
AES.

most important
ation” —Really?

to offer an
margin. . ..
y offer a

.

)

EAM

ream ciphers.

3 competition.
AR competition.
WC competition.

Main operations in AES:
add round key to block;
apply substitution box

254 N F256

X = X
to each byte in block;

linearly mix bits across block.

Extensive security analysis.
Even in a post-quantum world,
no serious threats to AES-256
In a strong security model,
“multi-target SPRP security” .

So why isn't AES-256 the end
of the symmetric-crypto story?

Google Secul

The latest news and insights fro
on the Internet

Speeding up and s
HTTPS connection

Android
April 24, 2014

Posted by Elie Bursztein, Anti-Al

Earlier this year, we deploy
Chrome that operates thre

GCM on devices that don't

ortant
eally?

S,
tion.
etition.
etition.

Main operations in AES:
add round key to block;
apply substitution box

254 i F256

X = X
to each byte in block;

linearly mix bits across block.

Extensive security analysis.
Even in a post-quantum world,
no serious threats to AES-256
In a strong security model,
“multi-target SPRP security” .

So why isn't AES-256 the end
of the symmetric-crypto story?

Google Security Blog

The latest news and insights from Google on secul
on the Internet

Speeding up and strengthenir
HTTPS connections for Chror

Android
April 24,2014

Posted by Elie Bursztein, Anti-Abuse Research Lea

Earlier this year, we deployed a new TLS ci
Chrome that operates three times faster t

GCM on devices that don't have AES hardy

Main operations in AES:
add round key to block;
apply substitution box

X = x20

4 In F256
to each byte in block;

linearly mix bits across block.

Extensive security analysis.
Even in a post-quantum world,
no serious threats to AES-256
In a strong security model,
“multi-target SPRP security” .

So why isn't AES-256 the end
of the symmetric-crypto story?

Google Security Blog

The latest news and insights from Google on security and safety
on the Internet

Speeding up and strengthening
HTTPS connections for Chrome on

Android
April 24, 2014

Posted by Elie Bursztein, Anti-Abuse Research Lead

Earlier this year, we deployed a new TLS cipher suite in
Chrome that operates three times faster than AES-

GCM on devices that don't have AES hardware

erations in AES:

1d key to block;
bstitution box

*in Fose

byte in block;

mix bits across block.

e security analysis.
a post-quantum world,
Is threats to AES-256
ng security model,
arget SPRP security” .

isn't AES-256 the end
/mmetric-crypto story?

Google Security Blog

The latest news and insights from Google on security and safety
on the Internet

Speeding up and strengthening
HTTPS connections for Chrome on

Android
April 24,2014

Posted by Elie Bursztein, Anti-Abuse Research Lead

Earlier this year, we deployed a new TLS cipher suite in
Chrome that operates three times faster than AES-

GCM on devices that don't have AES hardware

acceleratio
wearable d
computers.
latency anc

amount of

To make th
Ben Laurie
- ChaCha Z
for authent
2013. ltwa
implementi
order to suj
Associated
AEAD enab
happen cor
optimize th
CBC. More:

also promg

The benefit

' AES:
block:
1 box

ck:
~ross block.

analysis.
antum world,
to AES-256
y model,
P security”.

256 the end
“rypto story?

Google Security Blog

The latest news and insights from Google on security and safety
on the Internet

Speeding up and strengthening
HTTPS connections for Chrome on

Android
April 24, 2014

Posted by Elie Bursztein, Anti-Abuse Research Lead

Earlier this year, we deployed a new TLS cipher suite in
Chrome that operates three times faster than AES-

GCM on devices that don't have AES hardware

acceleration, including mo:
wearable devices such as |
computers. This improves
latency and saving battery

amount of time spent encr

To make this happen, Adat
Ben Laurie and | began img
- ChaCha 20 for symmetri
for authentication - in Ope
2013. It was a complex eff
implementing a new abstr:
order to support the Authe
Associated Data (AEAD) el
AEAD enables encryption ¢
happen concurrently, maki
optimize than older, comm
CBC. Moreover, recent atte

also prompted us to make

The benefits of this new ci

(Google Security Blog

The latest news and insights from Google on security and safety
on the Internet

Speeding up and strengthening
HTTPS connections for Chrome on

Android
April 24,2014

Posted by Elie Bursztein, Anti-Abuse Research Lead

Earlier this year, we deployed a new TLS cipher suite in
Chrome that operates three times faster than AES-

GCM on devices that don't have AES hardware

acceleration, including most Android phor
wearable devices such as Google Glass ar
computers. This improves user experience
latency and saving battery life by cutting ¢

amount of time spent encrypting and decr

To make this happen, Adam Langley, Wan
Ben Laurie and | began implementing new
- ChaCha 20 for symmetric encryption an
for authentication - in OpenSSL and NSS |
2013. It was a complex effort that require
implementing a new abstraction layer in C
order to support the Authenticated Encryg
Associated Data (AEAD) encryption mode
AEAD enables encryption and authenticati
happen concurrently, making it easier to u
optimize than older, commonly-used mod
CBC. Moreover, recent attacks against RC

also prompted us to make this change.

The benefits of this new cipher suite incluc

Google Security Blog

The latest news and insights from Google on security and safety
on the Internet

Speeding up and strengthening
HTTPS connections for Chrome on

Android
April 24, 2014

Posted by Elie Bursztein, Anti-Abuse Research Lead

Earlier this year, we deployed a new TLS cipher suite in
Chrome that operates three times faster than AES-

GCM on devices that don't have AES hardware

acceleration, including most Android phones,
wearable devices such as Google Glass and older
computers. This improves user experience, reducing
latency and saving battery life by cutting down the

amount of time spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang,
Ben Laurie and | began implementing new algorithms
- ChaCha 20 for symmetric encryption and Poly1305
for authentication --in OpenSSL and NSS in March
2013. It was a complex effort that required
implementing a new abstraction layer in OpenSSL in
order to support the Authenticated Encryption with
Associated Data (AEAD) encryption mode properly.
AEAD enables encryption and authentication to
happen concurrently, making it easier to use and
optimize than older, commonly-used modes such as
CBC. Moreover, recent attacks against RC4 and CBC

also prompted us to make this change.

The benefits of this new cipher suite include:

le Security Blog

vs and insights from Google on security and safety
1

g up and strengthening
connections for Chrome on

> Bursztein, Anti-Abuse Research Lead

year, we deployed a new TLS cipher suite in
1t operates three times faster than AES-

vices that don't have AES hardware

acceleration, including most Android phones,
wearable devices such as Google Glass and older
computers. This improves user experience, reducing
latency and saving battery life by cutting down the

amount of time spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang,
Ben Laurie and | began implementing new algorithms
- ChaCha 20 for symmetric encryption and Poly1305
for authentication - in OpenSSL and NSS in March
2013. It was a complex effort that required
implementing a new abstraction layer in OpenSSL in
order to support the Authenticated Encryption with
Associated Data (AEAD) encryption mode properly.
AEAD enables encryption and authentication to
happen concurrently, making it easier to use and
optimize than older, commonly-used modes such as
CBC. Moreover, recent attacks against RC4 and CBC

also prompted us to make this change.

The benefits of this new cipher suite include:

Date:

Messagse
[Downloz

From: Er
Hi all,

(Please
it to be

It was c
encrypti
storage
"Androic
these de
have to
Cryptog!

As we e
challenc
the very
suitable
Speck, 1
has a lz

Therefor
encrypti

ChaCha =
nanear he

ity Blog

m Google on security and safety

‘rengthening
s for Chrome on

yuse Research Lead

ed a new TLS cipher suite in
e times faster than AES-

have AES hardware

acceleration, including most Android phones,
wearable devices such as Google Glass and older
computers. This improves user experience, reducing
latency and saving battery life by cutting down the

amount of time spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang,
Ben Laurie and | began implementing new algorithms
- ChaCha 20 for symmetric encryption and Poly1305
for authentication --in OpenSSL and NSS in March
2013. It was a complex effort that required
implementing a new abstraction layer in OpenSSL in
order to support the Authenticated Encryption with
Associated Data (AEAD) encryption mode properly.
AEAD enables encryption and authentication to
happen concurrently, making it easier to use and
optimize than older, commonly-used modes such as
CBC. Moreover, recent attacks against RC4 and CBC

also prompted us to make this change.

The benefits of this new cipher suite include:

Date: 201
Message-ID: 201
[Download message

From: Eric Biggers
Hi all,

(Please note that
it to be merged qu

It was officially
encryption [1]. W
storage encryption
"Android Go" devic
these devices stil
have to use older
Cryptography Exten

As we explained in
challenging proble
the very strict pe
suitable for pract
Speck, in this day
has a large politi

Therefore, we (wel
encryption mode, H

ChaCha stream ciph
naner here* httns-

ity and safety

g
ne on

pher suite in
han AES-

Nare

acceleration, including most Android phones,
wearable devices such as Google Glass and older
computers. This improves user experience, reducing
latency and saving battery life by cutting down the

amount of time spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang,
Ben Laurie and | began implementing new algorithms
- ChaCha 20 for symmetric encryption and Poly1305
for authentication - in OpenSSL and NSS in March
2013. It was a complex effort that required
implementing a new abstraction layer in OpenSSL in
order to support the Authenticated Encryption with
Associated Data (AEAD) encryption mode properly.
AEAD enables encryption and authentication to
happen concurrently, making it easier to use and
optimize than older, commonly-used modes such as
CBC. Moreover, recent attacks against RC4 and CBC

also prompted us to make this change.

The benefits of this new cipher suite include:

Date: 2018-08-06 2
Message-ID: 20180806223:
[Download message RAW]

From: Eric Biggers <ebiggers
Hi all,

(Please note that this patch
it to be merged quite yetl)

It was officially decided to
encryption [1]. We've been
storage encryption to entry-
"Android Go" devices sold in
these devices still ship wit
have to use older CPUs like
Cryptography Extensions, mak

As we explained in detail ea
challenging problem due to t
the very strict performance
suitable for practical use 1i
Speck, in this day and age t
has a large political elemen

Therefore, we (well, Paul Cr
encryption mode, HPolyC. 1In

ChaCha stream cipher for dis
nanar here* httnes://anrint _i

acceleration, including most Android phones,
wearable devices such as Google Glass and older
computers. This improves user experience, reducing
latency and saving battery life by cutting down the

amount of time spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang,
Ben Laurie and | began implementing new algorithms
- ChaCha 20 for symmetric encryption and Poly1305
for authentication --in OpenSSL and NSS in March
2013. It was a complex effort that required
implementing a new abstraction layer in OpenSSL in
order to support the Authenticated Encryption with
Associated Data (AEAD) encryption mode properly.
AEAD enables encryption and authentication to
happen concurrently, making it easier to use and
optimize than older, commonly-used modes such as
CBC. Moreover, recent attacks against RC4 and CBC

also prompted us to make this change.

The benefits of this new cipher suite include:

Date: 2018-08-06 22:32:51
Message-ID: 20180806223300.11389
[Download message RAW]

From: Eric Biggers <ebiggers@google.co
Hi all,

(Please note that this patchset is a t
it to be merged quite yetl)

It was officially decided to *not* all
encryption [1]. We've been working to
storage encryption to entry-level Andr
"Android Go" devices sold in developin:
these devices still ship with no encry,
have to use older CPUs like ARM Cortex
Cryptography Extensions, making AES-XT

As we explained in detail earlier, e.g
challenging problem due to the lack of
the very strict performance requiremen
suitable for practical use in dm-crypt
Speck, in this day and age the choice |
has a large political element, restric

Therefore, we (well, Paul Crowley did
encryption mode, HPolyC. In essence, |

ChaCha stream cipher for disk encrypti
nanar here* httne://anrint _{dacr_orn/20

n, including most Android phones,

ovices such as Google Glass and older

- This improves user experience, reducing
| saving battery life by cutting down the

time spent encrypting and decrypting data.

is happen, Adam Langley, Wan-Teh Chang,
and | began implementing new algorithms
0 for symmetric encryption and Poly1305
ication - in OpenSSL and NSS in March

s a complex effort that required

ng a new abstraction layer in OpenSSL in
pport the Authenticated Encryption with
Data (AEAD) encryption mode properly.
les encryption and authentication to
icurrently, making it easier to use and

an older, commonly-used modes such as
yver, recent attacks against RC4 and CBC

ted us to make this change.

s of this new cipher suite include:

Date: 2018-08-06 22:32:51
Message-ID: 20180806223300.113891-1-ebigg
[Download message RAW]

From: Eric Biggers <ebiggers@google.com>
Hi all,

(Please note that this patchset is a true RFC, 1.
it to be merged quite yetl)

It was officially decided to *not* allow Android
encryption [1]. We've been working to find an a.
storage encryption to entry-level Android device:
"Android Go" devices sold in developing countrie:
these devices still ship with no encryption, sind
have to use older CPUs like ARM Cortex-A7; and tl
Cryptography Extensions, making AES-XTS much too

As we explained in detail earlier, e.g. in [2], 1
challenging problem due to the lack of encryptiol
the very strict performance requirements, while :
suitable for practical use in dm-crypt and fscryj
Speck, in this day and age the choice of cryptog
has a large political element, restricting the o]

Therefore, we (well, Paul Crowley did the real wi
encryption mode, HPolyC. 1In essence, HPolyC maki

ChaCha stream cipher for disk encryption. HPolyt
nanar hara® httns://anrint _dacr _ ora/2018/720 _ndf

st Android phones,
500¢le Glass and older
user experience, reducing

life by cutting down the

ypting and decrypting data.

n Langley, Wan-Teh Chang,

lementing new algorithms
c encryption and Poly1305
nSSL and NSS in March
ort that required

iction layer in OpenSSL in
nticated Encryption with
ncryption mode properly.
ind authentication to

ng it easier to use and
only-used modes such as
cks against RC4 and CBC

this change.

bher suite include:

Date: 2018-08-06 22:32:51
Message-ID: 20180806223300.113891-1-ebiggers () ke
[Download message RAW]

From: Eric Biggers <ebiggers@google.com>
Hi all,

(Please note that this patchset is a true RFC, i.e. we're r
it to be merged quite yetl)

It was officially decided to *not* allow Android devices ftc
encryption [1]. We've been working to find an alternative
storage encryption to entry-level Android devices like the
"Android Go" devices sold in developing countries. Unforti
these devices still ship with no encryption, since for cost
have to use older CPUs like ARM Cortex-A7; and these CPUs 1]
Cryptography Extensions, making AES-XTS much too slow.

As we explained in detail earlier, e.g. in [2], this is a v
challenging problem due to the lack of encryption algorithn
the very strict performance requirements, while still beinct
suitable for practical use in dm-crypt and fscrypt. And ac
Speck, in this day and age the choice of cryptographic prin
has a large political element, restricting the options ever

Therefore, we (well, Paul Crowley did the real work) desigr
encryption mode, HPolyC. In essence, HPolyC makes it secur

ChaCha stream cipher for disk encryption. HPolyC is specif
nanar harea: httns://anrint _dacr_ orn/2018//720 _ndf ("HPnalvC:

es,
d older
0, reducing

lown the

ypting data.

-Teh Chang,

algorithms
d Poly1305
n March

]
penSSL in
tion with
properly.
onto

se and

as such as

4 and CBC

le:

Date: 2018-08-06 22:32:51
Message-ID: 20180806223300.113891-1-ebiggers () kernel ! o
[Download message RAW]

From: Eric Biggers <ebiggers@google.com>
Hi all,

(Please note that this patchset is a true RFC, i.e. we're not ready f
it to be merged quite yetl)

It was officially decided to *not* allow Android devices to use Speck
encryption [1]. We've been working to find an alternative way to bri
storage encryption to entry-level Android devices like the inexpensiy
"Android Go" devices sold in developing countries. Unfortunately, of
these devices still ship with no encryption, since for cost reasons t
have to use older CPUs like ARM Cortex-A7; and these CPUs lack the AR
Cryptography Extensions, making AES-XTS much too slow.

As we explained in detail earlier, e.g. in [2], this is a very
challenging problem due to the lack of encryption algorithms that mee
the very strict performance requirements, while still being secure an
suitable for practical use in dm-crypt and fscrypt. And as we saw wi
Speck, in this day and age the choice of cryptographic primitives als
has a large political element, restricting the options even further.

Therefore, we (well, Paul Crowley did the real work) designed a new
encryption mode, HPolyC. 1In essence, HPolyC makes it secure to use t

ChaCha stream cipher for disk encryption. HPolyC is specified by our
nanar hara: httns://anrint _dacr _ora/2018/720 _ndf ("HPnlvC:

Date: 2018-08-06 22:32:51 N 10
Message-ID: 20180806223300.113891-1-ebiggers () kernel ! org
[Download message RAW]

From: Eric Biggers <ebiggers@google.com>

Hi all,

(Please note that this patchset is a true RFC, i.e. we're not ready for
it to be merged quite yetl)

It was officially decided to *not* allow Android devices to use Speck
encryption [1]. We've been working to find an alternative way to bring
storage encryption to entry-level Android devices like the inexpensive
"Android Go" devices sold in developing countries. Unfortunately, often
these devices still ship with no encryption, since for cost reasons they
have to use older CPUs like ARM Cortex-A7; and these CPUs lack the ARMvS8
Cryptography Extensions, making AES-XTS much too slow.

As we explained in detail earlier, e.g. in [2], this is a very
challenging problem due to the lack of encryption algorithms that meet
the very strict performance requirements, while still being secure and
suitable for practical use in dm-crypt and fscrypt. And as we saw with
Speck, in this day and age the choice of cryptographic primitives also
has a large political element, restricting the options even further.

Therefore, we (well, Paul Crowley did the real work) designed a new
encryption mode, HPolyC. In essence, HPolyC makes it secure to use the

ChaCha stream cipher for disk encryption. HPolyC is specified by our
nanar harea: httns://anrint _dacr_ orn/2018//720 _ndf ("HPnalvC:

2018-08-06 22:32:51
2-ID: 20180806223300.113891-1-ebiggers () kernel ! org
\d message RAW]

'ic Biggers <ebiggers@google.com>

note that this patchset is a true RFC, i.e. we're not ready for
 merged quite yetl)

fficially decided to *not* allow Android devices to use Speck
lon [1]. We've been working to find an alternative way to bring
encryption to entry-level Android devices like the inexpensive

| Go" devices sold in developing countries. Unfortunately, often
vices still ship with no encryption, since for cost reasons they
use older CPUs like ARM Cortex-A7; and these CPUs lack the ARMvS8
‘aphy Extensions, making AES-XTS much too slow.

‘plained in detail earlier, e.g. in [2], this is a very

Jing problem due to the lack of encryption algorithms that meet
r strict performance requirements, while still being secure and
» for practical use in dm-crypt and fscrypt. And as we saw with
n this day and age the choice of cryptographic primitives also
rge political element, restricting the options even further.

‘e, we (well, Paul Crowley did the real work) designed a new
.on mode, HPolyC. 1In essence, HPolyC makes it secure to use the

tream cipher for disk encryption. HPolyC is specified by our
ra* httns://enrint _diacr _ora/2018/720 _ndf ("HPnlv(:

10

Goog

The latest ney
on the Interne

Introduc

the Nex
February 7/,

Posted by Pa

Privacy Team

Storage en

8-08-06 22:32:51
80806223300.113891-1-ebiggers () kernel ! org
RAW]

- <ebiggers@google.com>

this patchset is a true RFC, i.e. we're not ready for
ite yetl!)

decided to *not* allow Android devices to use Speck
e've been working to find an alternative way to bring
- to entry-level Android devices like the inexpensive
es sold in developing countries. Unfortunately, often
1l ship with no encryption, since for cost reasons they
CPUs like ARM Cortex-A7; and these CPUs lack the ARMvS
sions, making AES-XTS much too slow.

- detail earlier, e.g. in [2], this is a very

m due to the lack of encryption algorithms that meet
rformance requirements, while still being secure and
ical use in dm-crypt and fscrypt. And as we saw with
~and age the choice of cryptographic primitives also
cal element, restricting the options even further.

1l, Paul Crowley did the real work) designed a new
PolyC. In essence, HPolyC makes it secure to use the

er for disk encryption. HPolyC is specified by our
ffanrint _dacr _orn/20188/7260 _ndf ("HPnlv(C:

10

Google Secul

The latest news and insights fro
on the Internet

Introducing Adianti

the Next Billion Usc¢
February 7, 2019

Posted by Paul Crowley and Eric

Privacy Team

Storage encryption protect

2:32:51
}00.113891-1-ebiggers () kernel ! org

@google.com>

set is a true RFC, i.e. we're not ready for

not allow Android devices to use Speck
working to find an alternative way to bring
level Android devices like the inexpensive

developing countries. Unfortunately, often
h no encryption, since for cost reasons they
ARM Cortex-A7; and these CPUs lack the ARMvS8
ing AES-XTS much too slow.

rlier, e.g. in [2], this is a very

he lack of encryption algorithms that meet
requirements, while still being secure and
n dm-crypt and fscrypt. And as we saw with
he choice of cryptographic primitives also
t, restricting the options even further.

owley did the real work) designed a new
essence, HPolyC makes it secure to use the

kK encryption. HPolyC is specified by our
arcr _orn/?2018/720 _ndf ("HPnlvC:

10

Google Security Blog

The latest news and insights from Google on secul
on the Internet

Introducing Adiantum: Encryp

the Next Billion Users
February 7, 2019

Posted by Paul Crowley and Eric Biggers, Android ¢

Privacy Team

Storage encryption protects your data if y«

1-1-ebiggers () kernel ! org

mn=>

rue RFC, i.e. we're not ready for

oW Android devices to use Speck
find an alternative way to bring
0id devices like the inexpensive

g countries. Unfortunately, often
ption, since for cost reasons they
-A7; and these CPUs lack the ARMvS8
S much too slow.

in [2], this is a very
encryption algorithms that meet
ts, while still being secure and
and fscrypt. And as we saw with
of cryptographic primitives also
ting the options even further.

the real work) designed a new
HPolyC makes it secure to use the

on. HPolyC is specified by our
18/720 _ndf ("HPnalv(::

10

Google Security Blog

The latest news and insights from Google on security and safety
on the Internet

Introducing Adiantum: Encryption for

the Next Billion Users
February 7, 2019

Posted by Paul Crowley and Eric Biggers, Android Security &

Privacy Team

Storage encryption protects your data if your phone

11

ers () kernel ! org

.e. we're not ready for

devices to use Speck
lternative way to bring
5 1like the inexpensive
5. Unfortunately, often
e for cost reasons they
1ese CPUs lack the ARMvS8
slow.

his is a very

1 algorithms that meet
5till being secure and
>t. And as we saw with
aphic primitives also
ytions even further.

ork) designed a new
a5 it secure to use the

> 1s specified by our
("HPalwvC:

10

11

(Google Security Blog

The latest news and insights from Google on security and safety
on the Internet

Introducing Adiantum: Encryption for

the Next Billion Users
February 7, 2019

Posted by Paul Crowley and Eric Biggers, Android Security &

Privacy Team

Storage encryption protects your data if your phone

HesysLeir |

Where AES
encryption
operation, \
Android su
encryption
However, w
is no widely

performanc

To solve th
encryption
us to use tt
preserving
proposals f
HCTR and |
encryption
about 10.6
AES-256-X

arnel ! org

10t ready for

) use Speck
way to bring
inexpensive
Inately, often
. reasons they
.ack the ARMvS

ery
1S that meet
] secure and
; we saw with
iitives also
1 further.

ied a new
‘e to use the
‘ied by our

10

11

Google Security Blog

The latest news and insights from Google on security and safety
on the Internet

Introducing Adiantum: Encryption for

the Next Billion Users
February 7, 2019

Posted by Paul Crowley and Eric Biggers, Android Security &

Privacy Team

Storage encryption protects your data if your phone

HiesystLerm aesigri.

Where AES is used, the cor
encryption is to use the XT
operation, which are lengtt
Android supports AES-128
encryption and AES-256-X
However, when AES perfor
is no widely accepted alter

performance on lower-end

To solve this problem, we |
encryption mode called Ad
us to use the ChaCha stres
preserving mode, by adapt
proposals for length-prese
HCTR and HCH. On ARM C
encryption and decryption
about 10.6 cycles per byte,
AES-256-XTS.

or

ng
e
ten
hey
Mv8

d
th

he

10

11

(Google Security Blog

The latest news and insights from Google on security and safety
on the Internet

Introducing Adiantum: Encryption for

the Next Billion Users
February 7, 2019

Posted by Paul Crowley and Eric Biggers, Android Security &

Privacy Team

Storage encryption protects your data if your phone

HiesystLeimn aesigri.

Where AES is used, the conventional solut
encryption is to use the XTS or CBC-ESSIV
operation, which are length-preserving. Cu
Android supports AES-128-CBC-ESSIV for
encryption and AES-256-XTS for file-basec
However, when AES performance is insuff
is no widely accepted alternative that has

performance on lower-end ARM processo

To solve this problem, we have designed &
encryption mode called Adiantum. Adiantt
us to use the ChaCha stream cipherin a le
preserving mode, by adapting ideas from ,
proposals for length-preserving encryptior
HCTR and HCH. On ARM Cortex-A7, Adian
encryption and decryption on 4096-byte s¢
about 10.6 cycles per byte, around 5x fast

AES-256-XTS.

Google Security Blog

The latest news and insights from Google on security and safety
on the Internet

Introducing Adiantum: Encryption for

the Next Billion Users
February 7, 2019

Posted by Paul Crowley and Eric Biggers, Android Security &

Privacy Team

Storage encryption protects your data if your phone

11

12

HiesystLerm aesigri.

Where AES is used, the conventional solution for disk
encryption is to use the XTS or CBC-ESSIV modes of
operation, which are length-preserving. Currently
Android supports AES-128-CBC-ESSIV for full-disk
encryption and AES-256-XTS for file-based encryption.
However, when AES performance is insufficient there
is no widely accepted alternative that has sufficient

performance on lower-end ARM processors.

To solve this problem, we have designed a new
encryption mode called Adiantum. Adiantum allows
us to use the ChaCha stream cipher in a length-
preserving mode, by adapting ideas from AES-based
proposals for length-preserving encryption such as
HCTR and HCH. On ARM Cortex-A7, Adiantum
encryption and decryption on 4096-byte sectors is
about 10.6 cycles per byte, around 5x faster than

AES-256-XTS.

le Security Blog

vs and insights from Google on security and safety
1

ing Adiantum: Encryption for

t Billion Users
2019

iUl Crowley and Eric Biggers, Android Security &

>ryption protects your data if your phone

11

12

HiesystLeimn aesigri.

Where AES is used, the conventional solution for disk
encryption is to use the XTS or CBC-ESSIV modes of
operation, which are length-preserving. Currently
Android supports AES-128-CBC-ESSIV for full-disk
encryption and AES-256-XTS for file-based encryption.
However, when AES performance is insufficient there
is no widely accepted alternative that has sufficient

performance on lower-end ARM processors.

To solve this problem, we have designed a new
encryption mode called Adiantum. Adiantum allows
us to use the ChaCha stream cipher in a length-
preserving mode, by adapting ideas from AES-based
proposals for length-preserving encryption such as
HCTR and HCH. On ARM Cortex-A7, Adiantum
encryption and decryption on 4096-byte sectors is
about 10.6 cycles per byte, around 5x faster than

AES-256-XTS.

AES per
in both

by small
heavy S-

ity Blog

m Google on security and safety

um: Encryption for
IS

- Biggers, Android Security &

s your data if your phone

11

HiesystLerm aesigri.

Where AES is used, the conventional solution for disk
encryption is to use the XTS or CBC-ESSIV modes of
operation, which are length-preserving. Currently
Android supports AES-128-CBC-ESSIV for full-disk
encryption and AES-256-XTS for file-based encryption.
However, when AES performance is insufficient there
is no widely accepted alternative that has sufficient

performance on lower-end ARM processors.

To solve this problem, we have designed a new
encryption mode called Adiantum. Adiantum allows
us to use the ChaCha stream cipher in a length-
preserving mode, by adapting ideas from AES-based
proposals for length-preserving encryption such as
HCTR and HCH. On ARM Cortex-A7, Adiantum
encryption and decryption on 4096-byte sectors is
about 10.6 cycles per byte, around 5x faster than

AES-256-XTS.

12

AES performance
iIn both hardware

by small 128-bit b
heavy S-box desig

ity and safety

tion for

Security &

our phone

11

12

HiesystLeimn aesigri.

Where AES is used, the conventional solution for disk
encryption is to use the XTS or CBC-ESSIV modes of
operation, which are length-preserving. Currently
Android supports AES-128-CBC-ESSIV for full-disk
encryption and AES-256-XTS for file-based encryption.
However, when AES performance is insufficient there
is no widely accepted alternative that has sufficient

performance on lower-end ARM processors.

To solve this problem, we have designed a new
encryption mode called Adiantum. Adiantum allows
us to use the ChaCha stream cipher in a length-
preserving mode, by adapting ideas from AES-based
proposals for length-preserving encryption such as
HCTR and HCH. On ARM Cortex-A7, Adiantum
encryption and decryption on 4096-byte sectors is
about 10.6 cycles per byte, around 5x faster than

AES-256-XTS.

AES performance seems |im
in both hardware and softws

by small 128-bit block size,
heavy S-box design strategy

HiesystLerm aesigri.

Where AES is used, the conventional solution for disk
encryption is to use the XTS or CBC-ESSIV modes of
operation, which are length-preserving. Currently
Android supports AES-128-CBC-ESSIV for full-disk
encryption and AES-256-XTS for file-based encryption.
However, when AES performance is insufficient there
is no widely accepted alternative that has sufficient

performance on lower-end ARM processors.

To solve this problem, we have designed a new
encryption mode called Adiantum. Adiantum allows
us to use the ChaCha stream cipher in a length-
preserving mode, by adapting ideas from AES-based
proposals for length-preserving encryption such as
HCTR and HCH. On ARM Cortex-A7, Adiantum
encryption and decryption on 4096-byte sectors is
about 10.6 cycles per byte, around 5x faster than

AES-256-XTS.

12

13
AES performance seems limited

In both hardware and software
by small 128-bit block size,

heavy S-box design strategy.

HiesystLerm aesigri.

Where AES is used, the conventional solution for disk
encryption is to use the XTS or CBC-ESSIV modes of
operation, which are length-preserving. Currently

Android supports AES-128-CBC-ESSIV for full-disk

encryption and AES-256-XTS for file-based encryption.

However, when AES performance is insufficient there
is no widely accepted alternative that has sufficient

performance on lower-end ARM processors.

To solve this problem, we have designed a new
encryption mode called Adiantum. Adiantum allows
us to use the ChaCha stream cipher in a length-
preserving mode, by adapting ideas from AES-based
proposals for length-preserving encryption such as
HCTR and HCH. On ARM Cortex-A7, Adiantum
encryption and decryption on 4096-byte sectors is
about 10.6 cycles per byte, around 5x faster than

AES-256-XTS.

12

AES performance seems limited
in both hardware and software

by small 128-bit block size,
heavy S-box design strategy.

AES software ecosystem is
complicated and dangerous.

Fast software implementations
of AES S-box often leak
secrets through timing.

13

HiesystLerm aesigri.

Where AES is used, the conventional solution for disk
encryption is to use the XTS or CBC-ESSIV modes of
operation, which are length-preserving. Currently

Android supports AES-128-CBC-ESSIV for full-disk

encryption and AES-256-XTS for file-based encryption.

However, when AES performance is insufficient there
is no widely accepted alternative that has sufficient

performance on lower-end ARM processors.

To solve this problem, we have designed a new
encryption mode called Adiantum. Adiantum allows
us to use the ChaCha stream cipher in a length-
preserving mode, by adapting ideas from AES-based
proposals for length-preserving encryption such as
HCTR and HCH. On ARM Cortex-A7, Adiantum
encryption and decryption on 4096-byte sectors is
about 10.6 cycles per byte, around 5x faster than

AES-256-XTS.

12

AES performance seems limited
in both hardware and software

by small 128-bit block size,
heavy S-box design strategy.

AES software ecosystem is
complicated and dangerous.

Fast software implementations
of AES S-box often leak
secrets through timing.

Picture is worse for high-security
authenticated ciphers. 128-bit
block size limits “PRF" security.
Workarounds are hard to audit.

13

desIgr.

is used, the conventional solution for disk
is to use the XTS or CBC-ESSIV modes of
vhich are length-preserving. Currently

oports AES-128-CBC-ESSIV for full-disk

and AES-256-XTS for file-based encryption.

hen AES performance is insufficient there
/ accepted alternative that has sufficient

e on lower-end ARM processors.

s problem, we have designed a new
mode called Adiantum. Adiantum allows
1e ChaCha stream cipher in a length-
mode, by adapting ideas from AES-based
or length-preserving encryption such as
HCH. On ARM Cortex-A7, Adiantum

and decryption on 4096-byte sectors is

cycles per byte, around 5x faster than

[S.

12

AES performance

seems limited

in both hardware and software
by small 128-bit block size,
heavy S-box design strategy.

AES software ecosystem is

complicated and ¢

Fast software imp

angerous.
ementations

of AES S-box often leak
secrets through timing.

Picture is worse for high-security

authenticated ciphers. 128-bit

block size limits “PRF" security.

Workarounds are hard to audit.

13

ChaCha

with mu

wentional solution for disk
S or CBC-ESSIV modes of
1-preserving. Currently

-CBC-ESSIV for full-disk

[S for file-based encryption.

mance is insufficient there
native that has sufficient

ARM processors.

1ave designed a new
lantum. Adiantum allows
M cipher in a length-

ing ideas from AES-based
rving encryption such as
ortex-A7, Adiantum

on 4096-byte sectors is

around 5x faster than

12

AES performance

seems limited

in both hardware and software
by small 128-bit block size,
heavy S-box design strategy.

AES software ecosystem is

complicated and ¢

Fast software imp

angerous.
ementations

of AES S-box often leak
secrets through timing.

Picture is worse for high-security

authenticated ciphers. 128-bit

block size limits “PRF" security.

Workarounds are hard to audit.

13

ChaCha creates sa
with much less wc

ion for disk
"modes of

rrently

full-disk

| encryption.

icient there
sufficient

[S.

 New

Im allows
ngth-
AES-based
1 such as
tum
ctors is

er than

12

AES performance

seems limited

in both hardware and software

by small 128-bit b

lock size,

heavy S-box design strategy.

AES software ecosystem is

complicated and ¢

Fast software imp

angerous.
ementations

of AES S-box often leak
secrets through timing.

Picture is worse for high-security

authenticated ciphers. 128-bit

block size limits “PRF" security.

Workarounds are hard to audit.

13

ChaCha creates safe system:
with much less work than A

AES performance seems limited
in both hardware and software
by small 128-bit block size,

heavy S-box design strategy.

AES software ecosystem is
complicated and dangerous.

Fast software implementations
of AES S-box often leak
secrets through timing.

Picture is worse for high-security
authenticated ciphers. 128-bit
block size limits “PRF" security.
Workarounds are hard to audit.

13

ChaCha creates safe systems
with much less work than AES.

14

AES performance seems limited
in both hardware and software

by small 128-bit block size,
heavy S-box design strategy.

AES software ecosystem is
complicated and dangerous.

Fast software implementations
of AES S-box often leak
secrets through timing.

Picture is worse for high-security
authenticated ciphers. 128-bit
block size limits “PRF" security.
Workarounds are hard to audit.

13

ChaCha creates safe systems
with much less work than AES.

More examples of how symmetric
primitives have been improving

speed, simplicity, security:
PRESENT is better than DES.

Skinny is better than
Simon and Speck.

Keccak, BLAKE2, Ascon
are better than MD5, SHA-O,
SHA-1, SHA-256, SHA-512.

14

formance seems |limited
hardware and software

128-bit block size,
-box design strategy.

tware ecosystem Is
ited and dangerous.

f'ware implementations
S-box often leak
hrough timing.

s worse for high-security
cated ciphers. 128-bit
e limits "PRF" security.
unds are hard to audit.

13

ChaCha creates safe systems
with much less work than AES.

More examples of how symmetric

primitives
speed, sim

nave been improving

olicity, security:

PRESENT is better than DES.

Skinny is better than
Simon and Speck.

Keccak, BLAKE2, Ascon
are better than MD5, SHA-O,
SHA-1, SHA-256, SHA-512.

14

Authent

Standarce

Assume
uniform
r < {0,
rp & {O,

Iy & {O,
S1 € {0,

s100 € {

seems limited
and software
lock size,

n strategy.

ystem IS
angerous.
ementations
n leak

ning.

r high-security
ers. 128-bit
PRF" security.
1ard to audit.

13

ChaCha creates safe systems
with much less work than AES.

More examples of how symmetric
primitives have been improving

speed, simplicity, security:
PRESENT is better than DES.

Skinny is better than
Simon and Speck.

Keccak, BLAKE2, Ascon
are better than MD5, SHA-O,
SHA-1, SHA-256, SHA-512.

14

Authentication de

Standardize a prin

Assume sender kn

uniform random s
rneq{0,1,...,99¢
rned0,1,..., 99¢

I’5€{O,1,...,999
s1 €40,1,...,99¢

S100 € {0, 1,... 9

Ited
re

nsS

urity
It
Irity.
dit.

13

ChaCha creates safe systems
with much less work than AES.

More examples of how symmetric
primitives have been improving

speed, simplicity, security:
PRESENT is better than DES.

Skinny is better than
Simon and Speck.

Keccak, BLAKE2, Ascon
are better than MD5, SHA-O,
SHA-1, SHA-256, SHA-512.

14

Authentication details

Standardize a prime p = 10(

Assume sender knows indep

uniform random secrets
rneq{0,1,..., 9999991},
rned0,1,..., 9999991},

rs € £0,1,...,999999},
s1 €{0,1,...,999999},

s100 € §0,1,...,9999991.

ChaCha creates safe systems
with much less work than AES.

More examples of how symmetric
primitives have been improving

speed, simplicity, security:
PRESENT is better than DES.

Skinny is better than
Simon and Speck.

Keccak, BLAKE2, Ascon
are better than MD5, SHA-O,
SHA-1, SHA-256, SHA-512.

14

15
Authentication details

Standardize a prime p = 1000003.

Assume sender knows independent

uniform random secrets
neq{0,1,..., 9999991},
rned0,1,..., 9999991},

rs € £0,1,...,999999},
s1 €{0,1,...,999999},

s100 € §0,1,...,9999991.

creates safe systems
ch less work than AES.

amples of how symmetric
s have been improving

mplicity, security:
[T is better than DES.

s better than
nd Speck.

BLAKE2, Ascon
or than MD5, SHA-O,
SHA-256, SHA-512.

14

Authentication details

Standardize a prime p = 1000003.

Assume sender knows independent

uniform random secrets
rneq{0,1,..., 9999991},
rned0,1,..., 9999991},

rs € {0,1,...,999999},
s1 €40,1,...,9999991,

s100 € §0,1,...,9999991.

15

Assume
secrets ¢

14 15
fe systems Authentication detalls Assume recelver k

rk than AES. Standardize a prime p = 1000003. SECrets 1,12, - - -, !

how symmetric .
Y Assume sender knows independent

en Improvin .
P & uniform random secrets

ecunty: rn e {0,1,...,999999},
r than DES. rne{0,1,..., 999999},
1an :
s € {0,1,...,999999},
s €{0,1,...,999999},
Ascon |
D5, SHA-0,

SHA-512. si00 €40,1,..., 999999}

14 15

S Authentication detalls Assume receiver knows the
= Standardize a prime p = 1000003. Secrets r, rz, - - -, EIRGEE '
.netrlc Assume sender knows independent
ne uniform random secrets

rneq{0,1,..., 9999991},
-S. rned0,1,..., 9999991},

s €40,1,..., 9999991},

st €40,1,..., 9999991},
:)1

s100 € §0,1,...,9999991.

15
Authentication details Assume receiver knows the same

Standardize a prime p = 1000003. secrets r, 2, .. ., 5,81, .-, 5100-

Assume sender knows independent

uniform random secrets
neq{0,1,..., 9999991},
rned0,1,..., 9999991},

rs € {0,1,...,999999},
s1 €{0,1,...,999999},

s100 € §0,1,...,9999991.

Authentication details

Standardize a prime p = 1000003.

Assume sender knows independent

uniform random secrets
neq{0,1,..., 9999991},
rned0,1,..., 9999991},

rs € {0,1,...,999999},
s1 €{0,1,...,999999},

s100 € §0,1,...,9999991.

15

16
Assume receiver knows the same

secrets r1, rn, ..., I5, S1, - .., 5100 -

Later: Sender wants to send
100 messages mq, .. ., m1o0,
each m, having 5 components

mn,11 mn,21 mn,31 mn,4: mn,5

with m,, ; € {0,1,...,999999}.

Authentication details

Standardize a prime p = 1000003.

Assume sender knows independent

uniform random secrets
rn€40,1,...,999999},
rned0,1,..., 9999991},

rs € {0,1,...,999999},
s1 €{0,1,...,999999},

s100 € §0,1,...,9999991.

15

Assume receiver knows the same

secrets r1, rn, ..., I5, S1, - .., 5100 -

Later: Sender wants to send
100 messages mq, .. ., m1o0,
each m, having 5 components

mn,11 mn,21 mn,31 mn,4: mn,5

with m,, ; € {0,1,...,999999}.

Sender transmits 30-digit

Mnp1,Mnp2,Mnp3,Mnp4, Mnps

together with an authenticator

(mp1r + -+ mpsrs mod p)
+ s, mod 1000000

and the message number n.

16

ication details

lize a prime p = 1000003.

sender knows independent

random secrets

1,...,999999},
1,...,999999},
1,...,999999},
1,...,999999},
0,1,...,999999}.

15

Assume receiver knows the same
secrets i, n, ..., r5, S1, . - -, 5100 -

Later: Sender wants to send
100 messages mq, .. ., m1o0,
each m, having 5 components

mn,11 mn,21 mn,31 mn,41 mn,5

with m,, ; € {0,1,...,9999991}.

Sender transmits 30-digit

Mp 1, Mp 2, Mp3, Mp4, Mp5

together with an authenticator

(mpir + -+ musrs mod p)
+ s, mod 1000000

and the message number n.

16

e.g. rn =
r3 = 97¢
5 — 33¢
myg = 0

Fails

1e p = 1000003.

ows Independent
crets
009},
099},

999},
0991,

99999}

15

Assume receiver knows the same

secrets r1, r, ..., I5, S1, ..., 5100 -

Later: Sender wants to send
100 messages mq, .. ., m1o0,
each m, having 5 components

mn,11 mn,21 mn,31 mn,4: mn,5

with m,, ; € {0,1,...,999999}.

Sender transmits 30-digit

Mp 1, Mp 2, Mp3, Mp4, Mp5

together with an authenticator

(mp1r + -+ mpsrs mod p)
+ s, mod 1000000

and the message number n.

16

e.g. n = 314159,

r3 = 979323, ry =
ry, = 338327, S10 =
m1o = 000006 000007 00

)0003.

endent

15

Assume receiver knows the same
secrets i, n, ..., r5, S1, . - -, $100-

Later: Sender wants to send
100 messages mq, .. ., m1o0,
each m, having 5 components

mn,11 mn,21 mn,31 mn,41 mn,5
with m,, ; € {0,1,...,999999}.

Sender transmits 30-digit

Mp 1, Mp 2, Mp3, Mp4, Mp5

together with an authenticator

(mpir + -+ musrs mod p)
+ s, mod 1000000

and the message number n.

16

e.g. n = 314159, rp = 2653
r3 = 979323, r, = 346264,

ry, = 338327, s;g = 950288,
m1o = 000006 000007 000000 000000 000

Assume receiver knows the same

secrets r1, r, ..., I5, S1, - .., 5100 -

Later: Sender wants to send
100 messages mq, .. ., m1o0,
each m, having 5 components

mn,11 mn,21 mn,31 mn,4: mn,5
with m,, j € {0, 1,...,999999}.

Sender transmits 30-digit

Mp 1, Mp 2, Mp3, Mp4, Mp5

together with an authenticator

(mp1r + -+ mpsrs mod p)
+ s, mod 1000000

and the message number n.

16

e.g. n = 314159, rn = 265358,
r3 = 979323, rp = 846264,

rs = 338327, s10 = 950288,
m1o = 000006 000007 000000 000000 000000:

17

Assume receiver knows the same

secrets r1, r, ..., I5, S1, - .., 5100 -

Later: Sender wants to send
100 messages mq, .. ., m1o0,
each m, having 5 components

mn,11 mn,21 mn,31 mn,4: mn,5

with m,, ; € {0,1,...,999999}.

Sender transmits 30-digit

Mp 1, Mp 2, Mp3, Mp4, Mp5

together with an authenticator

(mp1r + -+ mpsrs mod p)
+ s, mod 1000000

and the message number n.

16

17
e.g. n = 314159, rn = 265358,

r3 = 979323, n = 846264,
rs = 338327, s10 = 950288,
m1o = 000006 000007 000000 000000 000000:

Sender computes authenticator
(6r1 + 7rp mod p)

+ s190 mod 1000000 =
(6 - 314159 + 7 - 265358

mod 1000003)

+ 950288 mod 1000000 =
742451 + 950288 mod 1000000 =
692739.

Assume receiver knows the same

secrets r1, r, ..., I5, S1, - .., 5100 -

Later: Sender wants to send
100 messages mq, .. ., m1o0,
each m, having 5 components

mn,11 mn,21 mn,31 mn,4: mn,5

with m,, ; € {0,1,...,999999}.

Sender transmits 30-digit

Mp 1, Mp 2, Mp3, Mp4, Mp5

together with an authenticator

(mp1r + -+ mpsrs mod p)
+ s, mod 1000000

and the message number n.

16

17
e.g. n = 314159, rn = 265358,

r3 = 979323, n = 846264,
rs = 338327, s10 = 950288,
m1o = 000006 000007 000000 000000 000000:

Sender computes authenticator
(6r1 + 7rp mod p)

+ s190 mod 1000000 =
(6 - 314159 + 7 - 265358

mod 1000003)

+ 950288 mod 1000000 =
742451 + 950288 mod 1000000 =
692739.

Sender transmits
10 000006 000007 000000 000000 000000 692739.

receiver knows the same

having 5 components

1 2, Mp3,Mnp4, Mps

;€40,1,...,999999}.

ransmits 30-digit
7,21 mn,31 mn,41 mn,5
“with an authenticator

+ -+ mp5rs mod p)
mod 1000000

message number n.

16

17
e.g. n = 314159, rn = 265358,

r3 = 979323, rp = 846264,
rs = 338327, s10 = 950288,
m1o = 000006 000007 000000 000000 000000:

Sender computes authenticator
(6r1 + 7rp mod p)

+ s190 mod 1000000 =
(6 - 314159 4 7 - 265358

mod 1000003)

+ 950288 mod 1000000 =
742451 4+ 950288 mod 1000000 =
6927309.

Sender transmits
10 000006 000007 000000 000000 000000 692739.

A MAC

Instead «

r, m, ..
choose |

nows the same

1ts to send

c ey ml()(),
components

717,4-1 mn,5

...,999999}.
30-digit

1n,4, Mp 5
wuthenticator

7,55 mod p)
000

\wumber n.

16

e.g. n = 314159, rn = 265358,
r3 = 979323, rp = 846264,

rs = 338327, s10 = 950288,
m1o = 000006 000007 000000 000000 000000:

Sender computes authenticator
(6r1 + 7rp mod p)

+ s190 mod 1000000 =
(6 - 314159 4+ 7 - 265358

mod 1000003)

+ 950288 mod 1000000 =
742451 + 950288 mod 1000000 =
692739.

Sender transmits
10 000006 000007 000000 000000 000000 692739.

17

A MAC using fewe

Instead of choosin

nh, rN,..., r5, 51, ..
choose r, s1, s, ...

16 17

same e.g. n = 314159, rp = 265358, A MAC using fewer secrets
>100 3= 919323, ry = 840264, Instead of choosing indepen
rs = 338327, s10 = 950288,
| n, rN,..., 5, 81, ..., 5100
m1yo = 000006 000007 000000 000000 000000:
choose r, s1, 5, ..., 5100
1ts Sender computes authenticator
(6r1 + 7rp mod p)
9}. + s10 mod 1000000 =

(6 - 314159 + 7 - 265358

mod 1000003)

+ 950288 mod 1000000 =
742451 + 950288 mod 1000000 =
692739.

Sender transmits
10 000006 000007 000000 000000 000000 692739.

17
e.g. nn = 314159, rpn = 265358, A MAC using fewer secrets

r3 = 979323, n = 846264,
rs = 338327, s10 = 950288,
m1o = 000006 000007 000000 000000 000000:

Instead of choosing independent

Sender computes authenticator
(6r1 + 7rp mod p)

+ s190 mod 1000000 =
(6 - 314159 4+ 7 - 265358

mod 1000003)

+ 950288 mod 1000000 =
742451 + 950288 mod 1000000 =
692739.

Sender transmits
10 000006 000007 000000 000000 000000 692739.

e.g. n = 314159, rn = 265358,
r3 = 979323, rp = 846264,

rs = 338327, s10 = 950288,
m1o = 000006 000007 000000 000000 000000:

Sender computes authenticator
(6r1 + 7rp mod p)

+ s190 mod 1000000 =
(6 - 314159 4+ 7 - 265358

mod 1000003)

+ 950288 mod 1000000 =
742451 + 950288 mod 1000000 =
692739.

Sender transmits
10 000006 000007 000000 000000 000000 692739.

17

18
A MAC using fewer secrets

Instead of choosing independent

Sender transmits 30-digit

Mp1,Mnp2,Mnp3,Mnp4, Mnps

together with an authenticator

(mp1r+---+ mps5r’ mod p)
+ s, mod 1000000

and the message number n.

i.e.: take r; = r' in previous
(mp1r + -+ mpsrs mod p)
+ s, mod 1000000.

- 314159, rn = 265358,
1323, rp = 846264,
3327, s10 = 950288,
0006 000007 000000 000000 000000:

omputes authenticator

r» mod p)

mod 1000000 =

59 4+ 7265358

1000003)

)288 mod 1000000 =

+ 950288 mod 1000000 =

ransmits
)007 000000 000000 000000 692739.

17

18
A MAC using fewer secrets

Instead of choosing independent

Sender transmits 30-digit
Mp1,Mp2,Mnp3, Mnp4, Mps
together with an authenticator
(mp1r -+ mpsr
+ s, mod 1000000
and the message number n.

mod p)

i.e.: take r; = r' in previous
(mpir +---+ musrs mod p)
+ s, mod 1000000.

e.g. r=
m1o = (|

rn = 265353,
346264,

= 050288,
)000 000000 000000:

yuthenticator

)000 =
65358

1000000 =
mod 1000000 =

000 000000 692739.

17

A MAC using fewer secrets

Instead of choosing independent

Sender transmits 30-digit

Mp1,Mnp2,Mp3,Mnp4, Mnps

together with an authenticator

(mp1r+---+ mps5r’ mod p)
+ s, mod 1000000

and the message number n.

i.e.: take r; = r' in previous
(mpir + -+ mpsrs mod p)
+ s, mod 1000000.

18

e.g. r = 314159, s
m1o = 000006 000007 00

53,

000:

tor

000 =

39.

17

A MAC using fewer secrets

Instead of choosing independent

Sender transmits 30-digit
Mp1,Mp2,Mnp3, Mnp4, M5
together with an authenticator
(mp1r -+ mpsr
+ s, mod 1000000
and the message number n.

mod p)

i.e.: take r; = r' in previous
(mpir + -+ musrs mod p)
+ s, mod 1000000.

18

e.g. r = 314159, s190 = 2653
m1o = (00006 000007 000000 000000 000

A MAC using fewer secrets

Instead of choosing independent

Sender transmits 30-digit

Mp1,Mnp2,Mnp3,Mnp4, Mnps

together with an authenticator

(mp1r+---+ mps5r’ mod p)
+ s, mod 1000000

and the message number n.

i.e.: take r; = r' in previous
(mpir + -+ mpsrs mod p)
+ s, mod 1000000.

18

e.g. r = 314159, s;9 = 265358,
m1o = (00006 000007 000000 000000 000000:

19

A MAC using fewer secrets

Instead of choosing independent

Sender transmits 30-digit

Mp1,Mnp2,Mnp3,Mnp4, Mnps

together with an authenticator

(mp1r+---+ mps5r’ mod p)
+ s, mod 1000000

and the message number n.

i.e.: take r; = r' in previous
(mpir + -+ mpsrs mod p)
+ s, mod 1000000.

18

e.g. r = 314159, s;9 = 265358,
m1o = (00006 000007 000000 000000 000000:

Sender computes authenticator
(6r + 7r> mod p)

+ s190 mod 1000000 =
(6 - 314159 + 7 - 3141597

mod 1000003)

+ 265358 mod 1000000 =
053311 + 265358 mod 1000000 =
2186609.

19

A MAC using fewer secrets

Instead of choosing independent

Sender transmits 30-digit

Mp1,Mnp2,Mnp3,Mnp4, Mnps

together with an authenticator

(mp1r+---+ mps5r’ mod p)
+ s, mod 1000000

and the message number n.

i.e.: take r; = r' in previous
(mpir + -+ mpsrs mod p)
+ s, mod 1000000.

18

e.g. r = 314159, s;9 = 265358,
m1o = (00006 000007 000000 000000 000000:

Sender computes authenticator
(6r + 7r> mod p)

+ s190 mod 1000000 =
(6 - 314159 + 7 - 3141597

mod 1000003)

+ 265358 mod 1000000 =
053311 + 265358 mod 1000000 =
2186609.

Sender transmits
authenticated message

10000006 000007 000000 000000 000000 218669,

19

using fewer secrets

of choosing independent

ransmits 30-digit

7,21 mn,31 mn,41 mn,5

“with an authenticator

5

-+ 4+ mu5r’> mod p)

mod 1000000
message number n.

W= ' in previous
+ -+ mp5rs mod p)
mod 1000000.

18

e.g. r = 314159, s19 = 265358,
m1o = 000006 000007 000000 000000 000000:

Sender computes authenticator
(6r 4+ 7r> mod p)

+ s190 mod 1000000 =
(6 - 314159 + 7 - 3141597

mod 1000003)

+ 265358 mod 1000000 =
053311 + 265358 mod 1000000 =
2186609.

Sender transmits
authenticated message

10000006 000007 000000 000000 000000 218669.

19

Security

Attackerl
Find ',
m' # m,
(m'(r) n

Here m’

2r secrets

g independent

-+ 2100,

30-digit

n4, Mp5
uthenticator
5r° mod p)
000

\wumber n.

1 previous

7,55 mod p)
000.

18

e.g. r = 314159, s;9 = 265358,
m1o = (00006 000007 000000 000000 000000:

Sender computes authenticator
(6r + 7r> mod p)

+ s190 mod 1000000 =
(6 - 314159 + 7 - 3141597

mod 1000003)

+ 265358 mod 1000000 =
053311 + 265358 mod 1000000 =
2186609.

Sender transmits
authenticated message

10000006 000007 000000 000000 000000 218669.

19

Security analysis

Attacker’'s goal:
Find n’, m’, & sucl
m' # m, but a’ =
(m'(r) mod p) + s
Here m'(x) = % .

/

dent

Lor

18

e.g. r = 314159, s19 = 265358,
m1o = 000006 000007 000000 000000 000000:

Sender computes authenticator
(6r 4+ 7r> mod p)

+ s190 mod 1000000 =
(6 - 314159 + 7 - 3141597

mod 1000003)

+ 265358 mod 1000000 =
053311 + 265358 mod 1000000 =
2186609.

Sender transmits
authenticated message

10000006 000007 000000 000000 000000 218669.

19

Security analysis

Attacker’s goal;

Find ', m’, 3’ such that

m' #+ m but a' =

(m'(r) mod p) + s, mod 10
Here m'(x) = 3_. m'[i]x’".

e.g. r = 314159, s19 = 265358,
m1o = (00006 000007 000000 000000 000000:

Sender computes authenticator
(6r + 7r> mod p)

+ s190 mod 1000000 =
(6 - 314159 + 7 - 3141597

mod 1000003)

+ 265358 mod 1000000 =
053311 + 265358 mod 1000000 =
2186609.

Sender transmits
authenticated message

10000006 000007 000000 000000 000000 218669,

19

Security analysis

Attacker’s goal:

Find n’. m’, 3’ such that

m' %+ m_ but a’ =

(m'(r) mod p) + s,» mod 1000000.
Here m'(x) = 3_. m'[i]x’.

20

e.g. r = 314159, s19 = 265358,
m1o = (00006 000007 000000 000000 000000:

Sender computes authenticator
(6r + 7r> mod p)

+ s190 mod 1000000 =
(6 - 314159 + 7 - 3141597

mod 1000003)

+ 265358 mod 1000000 =
053311 + 265358 mod 1000000 =
2186609.

Sender transmits
authenticated message

10000006 000007 000000 000000 000000 218669,

19

Security analysis

Attacker’s goal:
Find n’. m’, 3’ such that
m' %+ m_ but a’ =

(m'(r) mod p) + s,» mod 1000000.

Here m'(x) = 3_. m'[i]x’.

Obvious attack:
Choose any m' # m;.

Choose uniform random a’.
Success chance 1/1000000.

20

e.g. r = 314159, s19 = 265358,
m1o = (00006 000007 000000 000000 000000:

Sender computes authenticator
(6r + 7r> mod p)

+ s190 mod 1000000 =
(6 - 314159 + 7 - 3141597

mod 1000003)

+ 265358 mod 1000000 =
053311 + 265358 mod 1000000 =
2186609.

Sender transmits
authenticated message

10000006 000007 000000 000000 000000 218669,

19

20
Security analysis

Attacker’s goal:

Find n’. m’, 3’ such that

m' %+ m_ but a’ =

(m'(r) mod p) + s,» mod 1000000.
Here m'(x) = 3_. m'[i]x’.

Obvious attack:
Choose any m' # m;.

Choose uniform random a’.
Success chance 1/1000000.

Can repeat attack.
Each forgery has chance

1/1000000 of being accepted.

314159, sig = 265353,
0006 000007 000000 000000 000000

omputes authenticator

2 mod p)

mod 1000000 =

590 + 7 - 3141592
1000003)

358 mod 1000000 =

+ 265358 mod 1000000 =

ransmits

cated message
J007 000000 000000 000000 218669.

19 20
Security analysis

Attacker’s goal;

Find ', m’, 3’ such that

m' # m but a' =

(m'(r) mod p) + s,» mod 1000000.
Here m'(x) =Y. m'[i]x’".

Obvious attack:
Choose any m' # my.

Choose uniform random a’.
Success chance 1/1000000.

Can repeat attack.
Each forgery has chance

1/1000000 of being accepted.

More su
Choose
the poly
has 5 di
x €40,
modulo

10 = 265353,
)000 000000 000000:

yuthenticator

)000 =
141592

1000000 =
mod 1000000 =

sage
000 000000 218669.

19

20
Security analysis

Attacker’s goal:

Find n’. m’, 3’ such that

m' % m but &’ =

(m'(r) mod p) + s,» mod 1000000.
Here m'(x) = _. m'[i]x’.

Obvious attack:
Choose any m' # m;.

Choose uniform random a’.
Success chance 1/1000000.

Can repeat attack.
Each forgery has chance

1/1000000 of being accepted.

More subtle attacl
Choose m' # mj «
the polynomial m’
has 5 distinct root
xe{0,1,..., 999!
modulo p. Choose

53,
000:

tor

000 =

09.

19

Security analysis

C
C

m
(m'(r) mod p) + s,» mod 1000000.
Here m'(x) =Y. m'[i]x’.

Attacker’s goal:
Find ', m’, 3’ such that

"% m, but @ =

Obvious attack:

hoose any m' # my.

hoose uniform random 2a’.

Success chance 1/1000000.

Can repeat attack.
Each forgery has chance

1/1000000 of being accepted.

20

More subtle attack:

Choose m' # mj so that
the polynomial m'(x) — my(
has 5 distinct roots

x € {0,1,...,999999}
modulo p. Choose 3’ = a.

Security analysis

Attacker’s goal:

Find n’. m’, 3’ such that

m' %+ m but a’ =

(m'(r) mod p) + s, mod 1000000.
Here m'(x) = 3_. m'[i]x’.

Obvious attack:
Choose any m’' # mj.

Choose uniform random a’.
Success chance 1/1000000.

Can repeat attack.
Each forgery has chance

1/1000000 of being accepted.

20

More subtle attack:

Choose m' # mj so that

the polynomial m’(x) — my(x)
has 5 distinct roots

x €{0,1,...,999999}
modulo p. Choose a’ = a.

21

Security analysis

Attacker’s goal:
Find n’. m’, 3’ such that

m' % m, but 3’ =

(m'(r) mod p) + s, mod 1000000.

Here m'(x) = 3_. m'[i]x’.

Obvious attack:
Choose any m’' # mj.

Choose uniform random a’.
Success chance 1/1000000.

Can repeat attack.
Each forgery has chance

1/1000000 of being accepted.

20

More subtle attack:

Choose m' # mj so that

the polynomial m’(x) — my(x)
has 5 distinct roots

x €{0,1,...,999999}
modulo p. Choose a’ = a.

e.g. m = (100,0,0,0,0),

m' = (125,1,0,0, 1):

m'(x) — m1(x) = x> + x* + 25x
which has five roots mod p:

0,299012, 334447, 631403, 7135144.

21

Security analysis

Attacker’s goal:
Find n’. m’, 3’ such that

m' % m, but 3’ =

(m'(r) mod p) + s, mod 1000000.

Here m'(x) = 3_. m'[i]x’.

Obvious attack:
Choose any m’' # mj.

Choose uniform random a’.
Success chance 1/1000000.

Can repeat attack.
Each forgery has chance

1/1000000 of being accepted.

20

21
More subtle attack:

Choose m' # mj so that

the polynomial m’(x) — my(x)
has 5 distinct roots

x €{0,1,...,999999}
modulo p. Choose a’ = a.

e.g. m = (100,0,0,0,0),

m' = (125,1,0,0, 1):

m'(x) — m1(x) = x> + x* + 25x
which has five roots mod p:
0,299012,334447,631403, 735144.

Success chance 5/1000000.

‘analysis

s goal:
m’ a’ such that
! but 8’ =

1od p) + s,» mod 1000000.

(x) =3, m'[i]x'.
attack:

any m' # my.
uniform random a’.
chance 1/1000000.

cat attack.
gery has chance
00 of being accepted.

20

More subtle attack:

Choose m' # mj so that

the polynomial m’(x) — my(x)
has 5 distinct roots

x € {0,1,...,999999}
modulo p. Choose a’ = a.

e.g. m = (100,0,0,0,0),

m’ = (125,1,0,0, 1):

m'(x) — m1(x) = x> + x* + 25x
which has five roots mod p:

0,299012, 334447, 631403, 735144.

Success chance 5/1000000.

21

Actually
can be ¢

1 that

' mod 1000000.

m'[i]x".

my .
ndom a’.
1000000.

hance
g accepted.

20

More subtle attack:

Choose m' # mj so that

the polynomial m’(x) — my(x)
has 5 distinct roots

x € {0,1,...,999999}
modulo p. Choose a’ = a.

e.g. m = (100,0,0,0,0),

m' = (125,1,0,0, 1):

m'(x) — m1(x) = x> + x* + 25x
which has five roots mod p:

0,299012, 334447, 631403, 735144.

Success chance 5/1000000.

21

Actually, success ¢
can be above 5/1(

00000.

More subtle attack:

Choose m' # my so that

the polynomial m’(x) — m(x)
has 5 distinct roots

x € {0,1,...,999999}
modulo p. Choose a’ = a.

e.g. m = (100,0,0,0,0),

m' = (125,1,0,0, 1):

m'(x) — m1(x) = x> + x* + 25x
which has five roots mod p:

0,299012, 334447, 631403, 735144.

Success chance 5/1000000.

21

Actually, success chance
can be above 5/1000000.

More subtle attack:

Choose m' # mj so that

the polynomial m’(x) — my(x)
has 5 distinct roots

x €{0,1,...,999999}
modulo p. Choose a’ = a.

e.g. m = (100,0,0,0,0),

m' = (125,1,0,0, 1):

m'(x) — m1(x) = x> + x* + 25x
which has five roots mod p:
0,299012,334447,631403, 735144.

Success chance 5/1000000.

21

Actually, success chance
can be above 5/1000000.

22

More subtle attack:

Choose m' # mj so that

the polynomial m’(x) — my(x)
has 5 distinct roots

x €{0,1,...,999999}
modulo p. Choose a’ = a.

e.g. m = (100,0,0,0,0),

m' = (125,1,0,0, 1):

m'(x) — m1(x) = x> + x* + 25x
which has five roots mod p:
0,299012,334447,631403, 735144.

Success chance 5/1000000.

21

22
Actually, success chance

can be above 5/1000000.

Example: If m1(334885) mod p
€ {1000000, 1000001, 1000002}
then a forgery (1, m', a1) with
m'(x) = mi(x) + x> + x° + 25x
also succeeds for r = 33488b;
success chance 6/1000000.
Reason: 334885 is a root of
m’(x) — m1(x) + 1000000.

More subtle attack:

Choose m' # mj so that

the polynomial m’(x) — my(x)
has 5 distinct roots

x €{0,1,...,999999}
modulo p. Choose a’ = a.

e.g. m = (100,0,0,0,0),

m' = (125,1,0,0, 1):

m'(x) — m1(x) = x> + x* + 25x
which has five roots mod p:

0,299012, 334447, 631403, 7135144.

Success chance 5/1000000.

21

22
Actually, success chance

can be above 5/1000000.

Example: If m1(334885) mod p
€ {1000000, 1000001, 1000002}
then a forgery (1, m', a1) with
m'(x) = mi(x) + x> + x° + 25x
also succeeds for r = 33488b;
success chance 6/1000000.
Reason: 334885 is a root of
m’(x) — m1(x) + 1000000.

Can have as many as 15 roots
of (m'(x) — m1(x)) -

(m'(x) — m1(x) + 1000000) -
(m'(x) — m1(x) — 1000000).

btle attack:

m' # my so that
nomial m'(x) — my(x)
stinct roots

[, ...,999999}
p. Choose a' = a.

= (100, 0,0,0,0),
25,1,0,0,1):

m1(x) = x> + x? + 25x
s five roots mod p:

2,334447,631403, r135144.

chance 5/1000000.

21

Actually, success chance
can be above 5/1000000.

Example: If m1(334885) mod p
€ {1000000, 1000001, 1000002}
then a forgery (1, m’, a1) with
m'(x) = mi(x) + x° + x° + 25x
also succeeds for r = 334885b;
success chance 6/1000000.
Reason: 334885 is a root of
m’(x) — m1(x) + 1000000.

Can have as many as 15 roots
of (m'(x) — m1(x)) -

(m'(x) — m1(x) + 1000000) -
(m'(x) — m1(x) — 1000000).

22

Do bett

<:
0 that

(x) — mi(x)

S

099 }

3 = a.
0,0,0),

1):

x° + x2 + 25x
ts mod p:

631403, 735144.

1000000.

21

22
Actually, success chance

can be above 5/1000000.

Example: If m1(334885) mod p
€ {1000000, 1000001, 1000002}
then a forgery (1, m', a1) with
m'(x) = mi(x) + x> + x° + 25x
also succeeds for r = 33488b;
success chance 6/1000000.
Reason: 334885 is a root of
m’(x) — m1(x) + 1000000.

Can have as many as 15 roots
of (m'(x) — my1(x)) -

(m'(x) — m1(x) + 1000000) -
(m'(x) — m1(x) — 1000000).

Do better by varyi

25x

35144.

21

22
Actually, success chance

can be above 5/1000000.

Example: If m1(334885) mod p
€ {1000000, 1000001, 1000002}
then a forgery (1, m’, a1) with
m'(x) = mi(x) + x° + x° + 25x
also succeeds for r = 334885b;
success chance 6/1000000.
Reason: 334885 is a root of
m’(x) — m1(x) + 1000000.

Can have as many as 15 roots
of (m'(x) — m1(x)) -

(m'(x) — m1(x) + 1000000) -
(m'(x) — m1(x) — 1000000).

Do better by varying a'?

Actually, success chance
can be above 5/1000000.

Example: If m1(334885) mod p
€ {1000000, 1000001, 1000002}
then a forgery (1, m', a1) with
m'(x) = mi(x) + x° + x° + 25x
also succeeds for r = 33488b;
success chance 6/1000000.
Reason: 334885 is a root of
m’(x) — m1(x) + 1000000.

Can have as many as 15 roots
of (m'(x) — my1(x)) -

(m'(x) — m1(x) + 1000000) -
(m'(x) — m1(x) — 1000000).

22

Do better by varying a'?

23

Actually, success chance
can be above 5/1000000.

Example: If m1(334885) mod p
€ {1000000, 1000001, 1000002}
then a forgery (1, m', a1) with
m'(x) = mi(x) + x° + x° + 25x
also succeeds for r = 33488b;
success chance 6/1000000.
Reason: 334885 is a root of
m’(x) — m1(x) + 1000000.

Can have as many as 15 roots
of (m'(x) — my1(x)) -

(m'(x) — m1(x) + 1000000) -
(m'(x) — m1(x) — 1000000).

22

23
Do better by varying a'?

No. Easy to prove: Every choice
of (n', m', a") with m" #£ m,,

has chance < 15/1000000

of being accepted by receiver.

Actually, success chance
can be above 5/1000000.

Example: If m1(334885) mod p
€ {1000000, 1000001, 1000002}
then a forgery (1, m', a1) with
m'(x) = mi(x) + x° + x° + 25x
also succeeds for r = 33488b;
success chance 6/1000000.
Reason: 334885 is a root of
m’(x) — m1(x) + 1000000.

Can have as many as 15 roots
of (m'(x) — my1(x)) -

(m'(x) — m1(x) + 1000000) -
(m'(x) — m1(x) — 1000000).

22

Do better by varying a'?

No. Easy to prove: Every choice
of (n', m', a") with m" #£ m,,

has chance < 15/1000000

of being accepted by receiver.

Underlying fact: < 15 roots

of (m'(x) — my(x)—a +a1)-

(m'(x) — mi(x) — a’ + a; + 10°) -
(m'(x) — mi(x) — a' + a1 — 10°).

23

Actually, success chance
can be above 5/1000000.

Example: If m1(334885) mod p
€ {1000000, 1000001, 1000002}
then a forgery (1, m', a1) with
m'(x) = mi(x) + x° + x° + 25x
also succeeds for r = 33488b;
success chance 6/1000000.
Reason: 334885 is a root of
m’(x) — m1(x) + 1000000.

Can have as many as 15 roots
of (m'(x) — my1(x)) -

(m'(x) — m1(x) + 1000000) -
(m'(x) — m1(x) — 1000000).

22

Do better by varying a'?

No. Easy to prove: Every choice
of (n', m', a") with m" #£ m,,

has chance < 15/1000000

of being accepted by receiver.

Underlying fact: < 15 roots

of (m'(x) — my(x)—a +a1)-

(m'(x) — mi(x) — a’ + a; + 10°) -
(m'(x) — mi(x) — a' + a1 — 10°).

Warning: very easy to break

the oversimplified authenticator

(mp[1] + - - - + mp[5]r* mod p)
+ s, mod 1000000:

solve m'(x) — mi(x) = &' — a1.

23

success chance
bove 5/1000000.

: If m(334885) mod p
000, 1000001, 1000002 }
orgery (1, m', a1) with
m1(x) + x> + x° + 25x
ceeds for r = 334885;
chance 6,/1000000.
334885 is a root of
m1(x) + 1000000.

e as many as 15 roots
) — mi(x))-

- mp(x) + 1000000) -
- m1(x) — 1000000).

22

Do better by varying a'?

No. Easy to prove: Every choice
of (n', m',a") with m" £ m,y

has chance < 15/1000000

of being accepted by receiver.

Underlying fact: < 15 roots

of (m'(x) — mi(x)—a +a1)-

(m'(x) — mi(x) — a’ + a; + 10°) -
(m'(x) — m1(x) — a' + a1 — 10°).

Warning: very easy to break

the oversimplified authenticator

(ma[1] + - - - + mp[5]r* mod p)
+ s, mod 1000000:

solve m'(x) — mi(x) = & — a1.

23

Scaled u

Poly130!
with 22
Adds s,

hance
)00000.

34885) mod p
)01, 1000002}
m’, a1) with
x° + x? + 25x
- = 33488b;
1000000.

, a root of

1000000.

~as 15 roots

) -
1000000) -
1000000).

22

Do better by varying a'?

No. Easy to prove: Every choice
of (n', m', a") with m" #£ m,,

has chance < 15/1000000

of being accepted by receiver.

Underlying fact: < 15 roots

of (m'(x) — my(x)—a +a1)-

(m'(x) — mi(x) —a’ + a; + 10°) -
(m'(x) — m1(x) — a' + a; — 10°).

Warning: very easy to break

the oversimplified authenticator

(mp[1] + - - - + mp[5]r* mod p)
+ s, mod 1000000:

solve m'(x) — mi(x) = &' — a1.

23

Scaled up for seric

Poly1305 uses 12¢
with 22 bits cleare
Adds s, mod 2128

)tS

22

Do better by varying a'?

No. Easy to prove: Every choice
of (n', m',a") with m" £ m,,

has chance < 15/1000000

of being accepted by receiver.

Underlying fact: < 15 roots

of (m'(x) —my(x)—a +a1)-

(m'(x) — mi(x) —a' + a; + 10°) -
(m'(x) — m1(x) — a' + a1 — 10°).

Warning: very easy to break

the oversimplified authenticator

(ma[1] + - - - + mp[5]r* mod p)
+ s, mod 1000000:

solve m'(x) — mi(x) = & — a1.

23

Scaled up for serious securit

Poly1305 uses 128-bit r'’s,
with 22 bits cleared for spee
Adds s, mod 2128,

Do better by varying a'?

No. Easy to prove: Every choice
of (n', m', a") with m" #£ m,,

has chance < 15/1000000

of being accepted by receiver.

Underlying fact: < 15 roots

of (m'(x) — my(x)—a +a1)-

(m'(x) — mi(x) — a’ + a; + 10°) -
(m'(x) — m1(x) — a' + a; — 10°).

Warning: very easy to break

the oversimplified authenticator

(mn[1] + - - - + mp[5]r* mod p)
+ s, mod 1000000:

solve m'(x) — mi(x) = &' — a1.

23

Scaled up for serious security:

Poly1305 uses 128-bit r's,
with 22 bits cleared for speed.
Adds s, mod 2128,

24

Do better by varying a'?

No. Easy to prove: Every choice
of (n', m', a") with m" #£ m,,

has chance < 15/1000000

of being accepted by receiver.

Underlying fact: < 15 roots
of (m'(x) — my(x)—a +a1)-

(m'(x) — mi(x) — a’ + a; + 10°) -
(m'(x) — m1(x) — a' + a; — 10°).

Warning: very easy to break

the oversimplified authenticator

(mn[1] + - - - + mp[5]r* mod p)
+ s, mod 1000000:

solve m'(x) — mi(x) = &' — a1.

23

24
Scaled up for serious security:

Poly1305 uses 128-bit r's,
with 22 bits cleared for speed.
Adds s, mod 2128,

Assuming < [-byte messages:
Each forgery succeeds for

< 8|L/16]| choices of r.
Probability < 8 [L/16] /21%°.

Do better by varying a'?

No. Easy to prove: Every choice
of (n', m', a") with m" #£ m,,

has chance < 15/1000000

of being accepted by receiver.

Underlying fact: < 15 roots

of (m'(x) — my(x)—a +a1)-

(m'(x) — mi(x) — a’ + a; + 10°) -
(m'(x) — m1(x) — a' + a; — 10°).

Warning: very easy to break

the oversimplified authenticator

(mn[1] + - - - + mp[5]r* mod p)
+ s, mod 1000000:

solve m'(x) — mi(x) = &' — a1.

23

24
Scaled up for serious security:

Poly1305 uses 128-bit r's,
with 22 bits cleared for speed.
Adds s, mod 2128,

Assuming < [-byte messages:
Each forgery succeeds for

< 8|L/16]| choices of r.
Probability < 8 [L/16] /21%°.

D torgeries are all rejected
with probability
>1—8D[L/16] /210

Do better by varying a'?

No. Easy to prove: Every choice
of (n', m', a") with m" #£ m,,

has chance < 15/1000000

of being accepted by receiver.

Underlying fact: < 15 roots

of (m'(x) — my(x)—a +a1)-

(m'(x) — mi(x) — a’ + a; + 10°) -
(m'(x) — m1(x) — a' + a; — 10°).

Warning: very easy to break

the oversimplified authenticator

(mn[1] + - - - + mp[5]r* mod p)
+ s, mod 1000000:

solve m'(x) — mi(x) = &' — a1.

23

Scaled up for serious security:

Poly1305 uses 128-bit r's,
with 22 bits cleared for speed.
Adds s, mod 2128,

Assuming < [-byte messages:
Each forgery succeeds for

< 8|L/16]| choices of r.
Probability < 8 [L/16] /21%°.

D torgeries are all rejected
with probability
>1—8D[L/16] /210

e.g. 2°4 forgeries, L = 1536:

Prlall rejected] > 0.9999999998.

24

r by varying a'?

y to prove: Every choice
', a’") with m' £ m,y

1ice < 15/1000000
accepted by recelver.

ng fact: < 15 roots
)—mi(x)—a +a1)-

- my(x) —a + a; +10°) -
- ml(x) — a’ T— d] — 106).

. very easy to break
simplified authenticator
— -+ m,[5]r* mod p)
mod 1000000:

(x) — mi(x) = a — a1.

23

Scaled up for serious security:

Poly1305 uses 128-bit r'’s,
with 22 bits cleared for speed.
Adds s, mod 2128,

Assuming < [-byte messages:
Each forgery succeeds for

< 8|L/16]| choices of r.
Probability < 8 [L/16] /219,

D torgeries are all rejected
with probability
>1—8D[L/16] /2100

e.g. 2°4 forgeries, L = 1536:

Prlall rejected] > 0.9999999998.

24

Authent

for varia

If differe
different

ng a'7?

. Every choice
m' % m
1000000

by recelver.

_ 15 roots
/ 31) _

y to break
authenticator
[5]r* mod p)
000:

x)=a — a.

23

Scaled up for serious security:

Poly1305 uses 128-bit r's,

with 22 bits cleared for speed.
Adds s, mod 2128,

Assuming < [-byte messages:
Each forgery succeeds for

< 8|L/16]| choices of r.
Probability < 8 [L/16] /21%°.

D ftorgeries are all rejected
with probability
>1—8D[L/16] /210

e.g. 2°4 forgeries, L = 1536:

Prlall rejected] > 0.9999999998.

24

Authenticator Is s
for variable-length
if different messag
different polynomi

1oice

23

Scaled up for serious security:

Poly1305 uses 128-bit r'’s,
with 22 bits cleared for speed.
Adds s, mod 2128,

Assuming < [-byte messages:
Each forgery succeeds for

< 8|L/16]| choices of r.
Probability < 8 [L/16] /21%°.

D torgeries are all rejected
with probability
>1—8D[L/16] /2100

e.g. 2°% forgeries, L = 1536:
Prlall rejected] > 0.9999999998.

24

Authenticator is still secure
for variable-length messages
if different messages are

different polynomials mod p

Scaled up for serious security:

Poly1305 uses 128-bit r's,

with 22 bits cleared for speed.
Adds s, mod 2128,

Assuming < [-byte messages:
Each forgery succeeds for

< 8|L/16]| choices of r.
Probability < 8 [L/16] /21%°.

D ftorgeries are all rejected
with probability
>1—8D[L/16] /210

e.g. 2°4 forgeries, L = 1536:
Prlall rejected] > 0.9999999998.

24

Authenticator is still secure
for variable-length messages,
if different messages are
different polynomials mod p.

25

Scaled up for serious security:

Poly1305 uses 128-bit r's,

with 22 bits cleared for speed.

Adds s, mod 2128,

Assuming < [-byte messages:

Each forgery succeeds for
< 8|L/16]| choices of r.
Probability < 8 [L/16] /21%°.

D ftorgeries are all rejected
with probability
>1—8D[L/16] /210

e.g. 2°4 forgeries, L = 1536:

Prlall rejected] > 0.9999999998.

24

Authenticator is still secure
for variable-length messages,
if different messages are
different polynomials mod p.

Split string into 16-byte chunks,
maybe with smaller final chunk;

append 1 to each chunk;

view as little-endian integers
in {1,2,3,...,21991,

Multiply first chunk by r,

add next chunk, multiply by r,

etc., last chunk, multiply by r,

mod 2130 — 5 add s, mod 2128

25

