
1

Is branch prediction

important for performance?

Daniel J. Bernstein

Spectre paper: “Modern

processors use branch prediction

and speculative execution to

maximize performance.”

Wikipedia: “Branch predictors

play a critical role in achieving

high effective performance

in many modern pipelined

microprocessor architectures

such as x86.”

2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”



1

Is branch prediction

important for performance?

Daniel J. Bernstein

Spectre paper: “Modern

processors use branch prediction

and speculative execution to

maximize performance.”

Wikipedia: “Branch predictors

play a critical role in achieving

high effective performance

in many modern pipelined

microprocessor architectures

such as x86.”

2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.



1

Is branch prediction

important for performance?

Daniel J. Bernstein

Spectre paper: “Modern

processors use branch prediction

and speculative execution to

maximize performance.”

Wikipedia: “Branch predictors

play a critical role in achieving

high effective performance

in many modern pipelined

microprocessor architectures

such as x86.”

2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.



1

Is branch prediction

important for performance?

Daniel J. Bernstein

Spectre paper: “Modern

processors use branch prediction

and speculative execution to

maximize performance.”

Wikipedia: “Branch predictors

play a critical role in achieving

high effective performance

in many modern pipelined

microprocessor architectures

such as x86.”

2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 1:

fetch a=b+c

decode

register read

execute

register write



1

Is branch prediction

important for performance?

Daniel J. Bernstein

Spectre paper: “Modern

processors use branch prediction

and speculative execution to

maximize performance.”

Wikipedia: “Branch predictors

play a critical role in achieving

high effective performance

in many modern pipelined

microprocessor architectures

such as x86.”

2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 1:

fetch a=b+c

decode

register read

execute

register write



1

Is branch prediction

important for performance?

Daniel J. Bernstein

Spectre paper: “Modern

processors use branch prediction

and speculative execution to

maximize performance.”

Wikipedia: “Branch predictors

play a critical role in achieving

high effective performance

in many modern pipelined

microprocessor architectures

such as x86.”

2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 1:

fetch a=b+c

decode

register read

execute

register write



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 1:

fetch a=b+c

decode

register read

execute

register write



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 2:

fetch

decode a=b+c

register read

execute

register write



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 3:

fetch

decode

register read a=b+c

execute

register write



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 4:

fetch

decode

register read

execute a=b+c

register write



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 5:

fetch

decode

register read

execute

register write a=b+c

1 instruction finishes in 5 cycles.



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Another program, cycle 1:

fetch a=b+c

decode

register read

execute

register write



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 2:

fetch d=e+f

decode a=b+c

register read

execute

register write

Second instruction is fetched;

first instruction is decoded.

Hardware units operate in parallel.



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 3:

fetch g=h-i

decode d=e+f

register read a=b+c

execute

register write

Third instruction is fetched;

second instruction is decoded;

first instruction does register read.



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 4:

fetch j=k+l

decode g=h-i

register read d=e+f

execute a=b+c

register write



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 5:

fetch m=n-o

decode j=k+l

register read g=h-i

execute d=e+f

register write a=b+c

Program continues this way.

Throughput: 1 instruction/cycle.



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Another program, cycle 1:

fetch a=b+c

decode

register read

execute

register write



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 2:

fetch d=a-e

decode a=b+c

register read

execute

register write



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 3:

fetch ...

decode d=a-e

register read a=b+c

execute

register write



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 4:

fetch ...

decode ...

register read d=a-e

execute a=b+c

register write

Register-read unit is idle,

waiting for a to be ready.



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 5:

fetch ...

decode ...

register read d=a-e

execute

register write a=b+c

Execute unit is idle.

Typical CPUs design pipelines

to eliminate this slowdown:

fast-forward a to next operation.



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Another program, cycle 1:

fetch a=b+c

decode

register read

execute

register write



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 2:

fetch d=e+f

decode a=b+c

register read

execute

register write



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 3:

fetch g=h-i

decode d=e+f

register read a=b+c

execute

register write



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 4:

fetch if(g<0)

decode g=h-i

register read d=e+f

execute a=b+c

register write



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 5:

fetch

decode if(g<0)

register read g=h-i

execute d=e+f

register write a=b+c

Without branch prediction,

fetch unit doesn’t know

which instruction to fetch now!

Waiting for if to write

“instruction pointer” register.



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 6:

fetch

decode

register read if(g<0)

execute g=h-i

register write d=e+f

Fetch is still waiting.

Typical CPUs: longer pipelines;

longer delays than this picture.

(Assume no hyperthreading.)



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 5, speculative execution:

fetch g=-g

decode if(g<0)

register read g=h-i

execute d=e+f

register write a=b+c

Branch predictor guesses

which instruction to fetch.

More work to undo everything

if guess turns out to be wrong,

but usually guess is correct.



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Better program, cycle 1:

fetch <0? g=h-i

decode

register read

execute

register write



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 2:

fetch a=b+c

decode <0? g=h-i

register read

execute

register write



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 3:

fetch d=e+f

decode a=b+c

register read <0? g=h-i

execute

register write



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 4:

fetch j=k+l

decode d=e+f

register read a=b+c

execute <0? g=h-i

register write



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 5:

fetch if(?)

decode j=k+l

register read d=e+f

execute a=b+c

register write <0? g=h-i

Fast-forward flag to fetch unit.

Branch prediction has zero benefit

if programs compute branch

conditions P cycles in advance,

where P is pipeline length.



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 5:

fetch if(?)

decode j=k+l

register read d=e+f

execute a=b+c

register write <0? g=h-i

Fast-forward flag to fetch unit.

Branch prediction has zero benefit

if programs compute branch

conditions P cycles in advance,

where P is pipeline length.

4

CPUs today spend almost all time

applying simple computations

to large volumes of data.

Massively parallelizable.

Why shouldn’t programs compute

branch conditions in advance?



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 5:

fetch if(?)

decode j=k+l

register read d=e+f

execute a=b+c

register write <0? g=h-i

Fast-forward flag to fetch unit.

Branch prediction has zero benefit

if programs compute branch

conditions P cycles in advance,

where P is pipeline length.

4

CPUs today spend almost all time

applying simple computations

to large volumes of data.

Massively parallelizable.

Why shouldn’t programs compute

branch conditions in advance?



2

The article cited by Wikipedia

says: “Branch predictor (BP) is

an essential component in modern

processors since high BP accuracy

can improve performance and

reduce energy by decreasing

the number of instructions

executed on wrong-path.”

— Omitting branch prediction

reduces energy even more.

Eliminates all wrong-path

instructions. Also eliminates

cost of prediction+speculation.

The real question is latency.

3

The CPU pipeline

Cycle 5:

fetch if(?)

decode j=k+l

register read d=e+f

execute a=b+c

register write <0? g=h-i

Fast-forward flag to fetch unit.

Branch prediction has zero benefit

if programs compute branch

conditions P cycles in advance,

where P is pipeline length.

4

CPUs today spend almost all time

applying simple computations

to large volumes of data.

Massively parallelizable.

Why shouldn’t programs compute

branch conditions in advance?



3

The CPU pipeline

Cycle 5:

fetch if(?)

decode j=k+l

register read d=e+f

execute a=b+c

register write <0? g=h-i

Fast-forward flag to fetch unit.

Branch prediction has zero benefit

if programs compute branch

conditions P cycles in advance,

where P is pipeline length.

4

CPUs today spend almost all time

applying simple computations

to large volumes of data.

Massively parallelizable.

Why shouldn’t programs compute

branch conditions in advance?



3

The CPU pipeline

Cycle 5:

fetch if(?)

decode j=k+l

register read d=e+f

execute a=b+c

register write <0? g=h-i

Fast-forward flag to fetch unit.

Branch prediction has zero benefit

if programs compute branch

conditions P cycles in advance,

where P is pipeline length.

4

CPUs today spend almost all time

applying simple computations

to large volumes of data.

Massively parallelizable.

Why shouldn’t programs compute

branch conditions in advance?

Most cases are handled by

simple instruction scheduling.



3

The CPU pipeline

Cycle 5:

fetch if(?)

decode j=k+l

register read d=e+f

execute a=b+c

register write <0? g=h-i

Fast-forward flag to fetch unit.

Branch prediction has zero benefit

if programs compute branch

conditions P cycles in advance,

where P is pipeline length.

4

CPUs today spend almost all time

applying simple computations

to large volumes of data.

Massively parallelizable.

Why shouldn’t programs compute

branch conditions in advance?

Most cases are handled by

simple instruction scheduling.

Insn-set extensions for more cases:

“branch-relevant” priority bit;

multiple flags; loop counter.

(Count down early in pipeline.)

Inner loops I’ve studied don’t

need more complicated patterns.



3

The CPU pipeline

Cycle 5:

fetch if(?)

decode j=k+l

register read d=e+f

execute a=b+c

register write <0? g=h-i

Fast-forward flag to fetch unit.

Branch prediction has zero benefit

if programs compute branch

conditions P cycles in advance,

where P is pipeline length.

4

CPUs today spend almost all time

applying simple computations

to large volumes of data.

Massively parallelizable.

Why shouldn’t programs compute

branch conditions in advance?

Most cases are handled by

simple instruction scheduling.

Insn-set extensions for more cases:

“branch-relevant” priority bit;

multiple flags; loop counter.

(Count down early in pipeline.)

Inner loops I’ve studied don’t

need more complicated patterns.

5

How did the community convince

itself that branch prediction is

important for performance?



3

The CPU pipeline

Cycle 5:

fetch if(?)

decode j=k+l

register read d=e+f

execute a=b+c

register write <0? g=h-i

Fast-forward flag to fetch unit.

Branch prediction has zero benefit

if programs compute branch

conditions P cycles in advance,

where P is pipeline length.

4

CPUs today spend almost all time

applying simple computations

to large volumes of data.

Massively parallelizable.

Why shouldn’t programs compute

branch conditions in advance?

Most cases are handled by

simple instruction scheduling.

Insn-set extensions for more cases:

“branch-relevant” priority bit;

multiple flags; loop counter.

(Count down early in pipeline.)

Inner loops I’ve studied don’t

need more complicated patterns.

5

How did the community convince

itself that branch prediction is

important for performance?



3

The CPU pipeline

Cycle 5:

fetch if(?)

decode j=k+l

register read d=e+f

execute a=b+c

register write <0? g=h-i

Fast-forward flag to fetch unit.

Branch prediction has zero benefit

if programs compute branch

conditions P cycles in advance,

where P is pipeline length.

4

CPUs today spend almost all time

applying simple computations

to large volumes of data.

Massively parallelizable.

Why shouldn’t programs compute

branch conditions in advance?

Most cases are handled by

simple instruction scheduling.

Insn-set extensions for more cases:

“branch-relevant” priority bit;

multiple flags; loop counter.

(Count down early in pipeline.)

Inner loops I’ve studied don’t

need more complicated patterns.

5

How did the community convince

itself that branch prediction is

important for performance?



4

CPUs today spend almost all time

applying simple computations

to large volumes of data.

Massively parallelizable.

Why shouldn’t programs compute

branch conditions in advance?

Most cases are handled by

simple instruction scheduling.

Insn-set extensions for more cases:

“branch-relevant” priority bit;

multiple flags; loop counter.

(Count down early in pipeline.)

Inner loops I’ve studied don’t

need more complicated patterns.

5

How did the community convince

itself that branch prediction is

important for performance?



4

CPUs today spend almost all time

applying simple computations

to large volumes of data.

Massively parallelizable.

Why shouldn’t programs compute

branch conditions in advance?

Most cases are handled by

simple instruction scheduling.

Insn-set extensions for more cases:

“branch-relevant” priority bit;

multiple flags; loop counter.

(Count down early in pipeline.)

Inner loops I’ve studied don’t

need more complicated patterns.

5

How did the community convince

itself that branch prediction is

important for performance?

1980s insn sets, CPU costs →
1990s compilers, applications,

data volumes, compiled code →
1990s/2000s hype (e.g., “Since

programs typically encounter

branches every 4–6 instructions,

inaccurate branch prediction

causes a severe performance

degradation in highly superscalar

or deeply pipelined designs”) →
2000s/2010s beliefs.



4

CPUs today spend almost all time

applying simple computations

to large volumes of data.

Massively parallelizable.

Why shouldn’t programs compute

branch conditions in advance?

Most cases are handled by

simple instruction scheduling.

Insn-set extensions for more cases:

“branch-relevant” priority bit;

multiple flags; loop counter.

(Count down early in pipeline.)

Inner loops I’ve studied don’t

need more complicated patterns.

5

How did the community convince

itself that branch prediction is

important for performance?

1980s insn sets, CPU costs →
1990s compilers, applications,

data volumes, compiled code →
1990s/2000s hype (e.g., “Since

programs typically encounter

branches every 4–6 instructions,

inaccurate branch prediction

causes a severe performance

degradation in highly superscalar

or deeply pipelined designs”) →
2000s/2010s beliefs.

6

The fundamental question:

Can a well-designed insn set

with well-designed software

remove the speed incentive

for branch prediction?



4

CPUs today spend almost all time

applying simple computations

to large volumes of data.

Massively parallelizable.

Why shouldn’t programs compute

branch conditions in advance?

Most cases are handled by

simple instruction scheduling.

Insn-set extensions for more cases:

“branch-relevant” priority bit;

multiple flags; loop counter.

(Count down early in pipeline.)

Inner loops I’ve studied don’t

need more complicated patterns.

5

How did the community convince

itself that branch prediction is

important for performance?

1980s insn sets, CPU costs →
1990s compilers, applications,

data volumes, compiled code →
1990s/2000s hype (e.g., “Since

programs typically encounter

branches every 4–6 instructions,

inaccurate branch prediction

causes a severe performance

degradation in highly superscalar

or deeply pipelined designs”) →
2000s/2010s beliefs.

6

The fundamental question:

Can a well-designed insn set

with well-designed software

remove the speed incentive

for branch prediction?



4

CPUs today spend almost all time

applying simple computations

to large volumes of data.

Massively parallelizable.

Why shouldn’t programs compute

branch conditions in advance?

Most cases are handled by

simple instruction scheduling.

Insn-set extensions for more cases:

“branch-relevant” priority bit;

multiple flags; loop counter.

(Count down early in pipeline.)

Inner loops I’ve studied don’t

need more complicated patterns.

5

How did the community convince

itself that branch prediction is

important for performance?

1980s insn sets, CPU costs →
1990s compilers, applications,

data volumes, compiled code →
1990s/2000s hype (e.g., “Since

programs typically encounter

branches every 4–6 instructions,

inaccurate branch prediction

causes a severe performance

degradation in highly superscalar

or deeply pipelined designs”) →
2000s/2010s beliefs.

6

The fundamental question:

Can a well-designed insn set

with well-designed software

remove the speed incentive

for branch prediction?



5

How did the community convince

itself that branch prediction is

important for performance?

1980s insn sets, CPU costs →
1990s compilers, applications,

data volumes, compiled code →
1990s/2000s hype (e.g., “Since

programs typically encounter

branches every 4–6 instructions,

inaccurate branch prediction

causes a severe performance

degradation in highly superscalar

or deeply pipelined designs”) →
2000s/2010s beliefs.

6

The fundamental question:

Can a well-designed insn set

with well-designed software

remove the speed incentive

for branch prediction?



5

How did the community convince

itself that branch prediction is

important for performance?

1980s insn sets, CPU costs →
1990s compilers, applications,

data volumes, compiled code →
1990s/2000s hype (e.g., “Since

programs typically encounter

branches every 4–6 instructions,

inaccurate branch prediction

causes a severe performance

degradation in highly superscalar

or deeply pipelined designs”) →
2000s/2010s beliefs.

6

The fundamental question:

Can a well-designed insn set

with well-designed software

remove the speed incentive

for branch prediction?

“We need to look at

current insn sets.”



5

How did the community convince

itself that branch prediction is

important for performance?

1980s insn sets, CPU costs →
1990s compilers, applications,

data volumes, compiled code →
1990s/2000s hype (e.g., “Since

programs typically encounter

branches every 4–6 instructions,

inaccurate branch prediction

causes a severe performance

degradation in highly superscalar

or deeply pipelined designs”) →
2000s/2010s beliefs.

6

The fundamental question:

Can a well-designed insn set

with well-designed software

remove the speed incentive

for branch prediction?

“We need to look at

current insn sets.” — Yes,

interesting short-term question.

Not my question in this talk.



5

How did the community convince

itself that branch prediction is

important for performance?

1980s insn sets, CPU costs →
1990s compilers, applications,

data volumes, compiled code →
1990s/2000s hype (e.g., “Since

programs typically encounter

branches every 4–6 instructions,

inaccurate branch prediction

causes a severe performance

degradation in highly superscalar

or deeply pipelined designs”) →
2000s/2010s beliefs.

6

The fundamental question:

Can a well-designed insn set

with well-designed software

remove the speed incentive

for branch prediction?

“We need to look at

current insn sets.” — Yes,

interesting short-term question.

Not my question in this talk.

“We need to look at

badly written software.”



5

How did the community convince

itself that branch prediction is

important for performance?

1980s insn sets, CPU costs →
1990s compilers, applications,

data volumes, compiled code →
1990s/2000s hype (e.g., “Since

programs typically encounter

branches every 4–6 instructions,

inaccurate branch prediction

causes a severe performance

degradation in highly superscalar

or deeply pipelined designs”) →
2000s/2010s beliefs.

6

The fundamental question:

Can a well-designed insn set

with well-designed software

remove the speed incentive

for branch prediction?

“We need to look at

current insn sets.” — Yes,

interesting short-term question.

Not my question in this talk.

“We need to look at

badly written software.” — No.

Obsolete view of performance.

Need well-designed software

for good speed already today.



5

How did the community convince

itself that branch prediction is

important for performance?

1980s insn sets, CPU costs →
1990s compilers, applications,

data volumes, compiled code →
1990s/2000s hype (e.g., “Since

programs typically encounter

branches every 4–6 instructions,

inaccurate branch prediction

causes a severe performance

degradation in highly superscalar

or deeply pipelined designs”) →
2000s/2010s beliefs.

6

The fundamental question:

Can a well-designed insn set

with well-designed software

remove the speed incentive

for branch prediction?

“We need to look at

current insn sets.” — Yes,

interesting short-term question.

Not my question in this talk.

“We need to look at

badly written software.” — No.

Obsolete view of performance.

Need well-designed software

for good speed already today.

7

“Fundamentally, you cannot

compute branches in advance

for these important computations.

Look at, e.g., int32[n] heapsort.

Inspect data, branch, repeat.”



5

How did the community convince

itself that branch prediction is

important for performance?

1980s insn sets, CPU costs →
1990s compilers, applications,

data volumes, compiled code →
1990s/2000s hype (e.g., “Since

programs typically encounter

branches every 4–6 instructions,

inaccurate branch prediction

causes a severe performance

degradation in highly superscalar

or deeply pipelined designs”) →
2000s/2010s beliefs.

6

The fundamental question:

Can a well-designed insn set

with well-designed software

remove the speed incentive

for branch prediction?

“We need to look at

current insn sets.” — Yes,

interesting short-term question.

Not my question in this talk.

“We need to look at

badly written software.” — No.

Obsolete view of performance.

Need well-designed software

for good speed already today.

7

“Fundamentally, you cannot

compute branches in advance

for these important computations.

Look at, e.g., int32[n] heapsort.

Inspect data, branch, repeat.”



5

How did the community convince

itself that branch prediction is

important for performance?

1980s insn sets, CPU costs →
1990s compilers, applications,

data volumes, compiled code →
1990s/2000s hype (e.g., “Since

programs typically encounter

branches every 4–6 instructions,

inaccurate branch prediction

causes a severe performance

degradation in highly superscalar

or deeply pipelined designs”) →
2000s/2010s beliefs.

6

The fundamental question:

Can a well-designed insn set

with well-designed software

remove the speed incentive

for branch prediction?

“We need to look at

current insn sets.” — Yes,

interesting short-term question.

Not my question in this talk.

“We need to look at

badly written software.” — No.

Obsolete view of performance.

Need well-designed software

for good speed already today.

7

“Fundamentally, you cannot

compute branches in advance

for these important computations.

Look at, e.g., int32[n] heapsort.

Inspect data, branch, repeat.”



6

The fundamental question:

Can a well-designed insn set

with well-designed software

remove the speed incentive

for branch prediction?

“We need to look at

current insn sets.” — Yes,

interesting short-term question.

Not my question in this talk.

“We need to look at

badly written software.” — No.

Obsolete view of performance.

Need well-designed software

for good speed already today.

7

“Fundamentally, you cannot

compute branches in advance

for these important computations.

Look at, e.g., int32[n] heapsort.

Inspect data, branch, repeat.”



6

The fundamental question:

Can a well-designed insn set

with well-designed software

remove the speed incentive

for branch prediction?

“We need to look at

current insn sets.” — Yes,

interesting short-term question.

Not my question in this talk.

“We need to look at

badly written software.” — No.

Obsolete view of performance.

Need well-designed software

for good speed already today.

7

“Fundamentally, you cannot

compute branches in advance

for these important computations.

Look at, e.g., int32[n] heapsort.

Inspect data, branch, repeat.”

— The current speed records for

int32[n] sorting on Intel CPUs

are held by sorting networks!

Data-independent branches

defined purely by n. Performance,

parallelizability, predictability

have clear connections.

sorting.cr.yp.to:

software + verification tools.


