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fetch
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Fetch is still waiting.

Typical CPUs: longer pipelines;

longer delays than this picture.

(Assume no hyperthreading.)
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More work to undo everything

if guess turns out to be wrong,

but usually guess is correct.
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“Fundamentally, you cannot

compute branches in advance

for these important computations.

Look at, e.g., int32[n] heapsort.

Inspect data, branch, repeat.”

— The current speed records for

int32[n] sorting on Intel CPUs

are held by sorting networks!

Data-independent branches

defined purely by n. Performance,

parallelizability, predictability

have clear connections.

sorting.cr.yp.to:

software + verification tools.


