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Primary objective of this paper:
Make a complete plan

for thorough security reviews
of 36 target KEMs.

Much harder: Do the reviews!
Complete plan is framework

to evaluate which pieces are done,
and to coordinate further efforts.
KEMs vary in what's needed.

The target KEMs (all proposed
for wide deployment, IND-CCA?2):

frodo 640, 976, 1344.
kyber 512, 768, 1024.
lac 123, 192, 256.
newhope 512, 1024.

ntru hps2048509, hps2048677,
hps4096821, hrss701.

ntrulpr 653, 761, 857.
roundb5nil 1, 3, 5.
roundb5nd 1.0d, 3.0d, 5.0d,

1.5d, 3.5d, 5.5d.
saber light, main, fire.
sntrup 653, 761, 857.
threebears  baby, mama, papa.
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What “security proofs” prove How thorough is exploration

. . of space of optimizations?
Is not actually security.

How thorough is the study of

Even with correct proofs, claimed barriers to speedups
there are still risks of attacks. that work for similar pro hlems?
We all rely on cryptanalysis Do the cryptanalytic targets

for analyzing remaining risks. match the proof risks? etc.
Revised plan: Long history of failures: e.g.,

1. Verity the “security proofs”. NSA overstated DES attack cost;
2. Verity the cryptanalysis L(1/2) optimality conjecture

of the risks left by the proofs. for factorization was wrong;

TLS Triple-DES-CBC was broken
without Triple-DES attack; etc.

Again clean up; check by hand;
track failure categories.
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