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Comparing proofs of security

for lattice-based encryption

Daniel J. Bernstein

Primary objective of this paper:

Make a complete plan

for thorough security reviews

of 36 target KEMs.

Much harder: Do the reviews!

Complete plan is framework

to evaluate which pieces are done,

and to coordinate further efforts.

KEMs vary in what’s needed.
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The target KEMs (all proposed

for wide deployment, IND-CCA2):

frodo 640, 976, 1344.

kyber 512, 768, 1024.

lac 128, 192, 256.

newhope 512, 1024.

ntru hps2048509, hps2048677,

hps4096821, hrss701.

ntrulpr 653, 761, 857.

round5n1 1, 3, 5.

round5nd 1.0d, 3.0d, 5.0d,

1.5d, 3.5d, 5.5d.

saber light, main, fire.

sntrup 653, 761, 857.

threebears baby, mama, papa.
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2017 Hofheinz–Hövelmanns–Kiltz

proofs do not rule out ROM IND-

CCA2 attacks with probability Q‹,

even if the PKEs are secure.

Q: number of hash calls.

‹: failure probability.



13

Pseudorandom multipliers (“ROM2”)

Product NTRU: convert core PKE

into PKE that builds multiplier G

pseudorandomly from public seed.

saber, round5n1, round5nd

claim that this provably preserves

security assuming PRG/PRF.

I dispute this. Need non-ROM

cryptanalysis for all these PKEs.

Proofs cover only ROM attacks.

Must modify theorem statements.

frodo seed “reduction”: Useless.

Still need non-ROM cryptanalysis.

14

More hashing (“ROM”)

Want the target KEMs

to provide IND-CCA2 security.

The proofs don’t give this,

even assuming security

of the underlying PKEs.

The proofs are limited to

ROM IND-CCA2 attacks.

Issue for Product NTRU

and for Quotient NTRU.

For all target KEMs, need non-

ROM IND-CCA2 cryptanalysis.

15

Decryption failures (“fail”/“conj”)

2017 Hofheinz–Hövelmanns–Kiltz
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2017 Hofheinz–Hövelmanns–Kiltz

proofs do not rule out ROM IND-

CCA2 attacks with probability Q‹,

even if the PKEs are secure.

Q: number of hash calls.

‹: failure probability.

‹ = 0 proven for 10 KEMs:

ntru, ntrulpr, sntrup. (Also,

simpler ROM IND-CCA2 proof.)

frodo640, kyber512 prove

‹ ≤ 2−128 with security goal 2128.

frodo976 proves ‹ ≤ 2−192.

16

The other 23 KEMs:

Security goal 2k

without proof that ‹ ≤ 2−k .

So need CCA cryptanalysis.

Main issues in these 23 KEMs:

• 14 KEMs do not claim

that ‹ is small enough.

• 15 KEMs conjecture ‹ ≤ · · ·
without claiming proof.



15

Decryption failures (“fail”/“conj”)

2017 Hofheinz–Hövelmanns–Kiltz
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claim –′ of U-user security.

–′ vs. –: looseness factor U.
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As far as I can tell,

none of the target KEMs

claim higher U-user security.


