
1

Comparing proofs of security

for lattice-based encryption

Daniel J. Bernstein

Primary objective of this paper:

Make a complete plan

for thorough security reviews

of 36 target KEMs.

Much harder: Do the reviews!

Complete plan is framework

to evaluate which pieces are done,

and to coordinate further efforts.

KEMs vary in what’s needed.

2

The target KEMs (all proposed

for wide deployment, IND-CCA2):

frodo 640, 976, 1344.

kyber 512, 768, 1024.

lac 128, 192, 256.

newhope 512, 1024.

ntru hps2048509, hps2048677,

hps4096821, hrss701.

ntrulpr 653, 761, 857.

round5n1 1, 3, 5.

round5nd 1.0d, 3.0d, 5.0d,

1.5d, 3.5d, 5.5d.

saber light, main, fire.

sntrup 653, 761, 857.

threebears baby, mama, papa.



1

Comparing proofs of security

for lattice-based encryption

Daniel J. Bernstein

Primary objective of this paper:

Make a complete plan

for thorough security reviews

of 36 target KEMs.

Much harder: Do the reviews!

Complete plan is framework

to evaluate which pieces are done,

and to coordinate further efforts.

KEMs vary in what’s needed.

2

The target KEMs (all proposed

for wide deployment, IND-CCA2):

frodo 640, 976, 1344.

kyber 512, 768, 1024.

lac 128, 192, 256.

newhope 512, 1024.

ntru hps2048509, hps2048677,

hps4096821, hrss701.

ntrulpr 653, 761, 857.

round5n1 1, 3, 5.

round5nd 1.0d, 3.0d, 5.0d,

1.5d, 3.5d, 5.5d.

saber light, main, fire.

sntrup 653, 761, 857.

threebears baby, mama, papa.

3

One categorization of the KEMs:

frodo Product NTRU.

kyber Product NTRU.

lac Product NTRU.

newhope Product NTRU.

ntru Quotient NTRU.

ntrulpr Product NTRU.

round5n1 Product NTRU.

round5nd Product NTRU.

saber Product NTRU.

sntrup Quotient NTRU.

threebears Product NTRU.



1

Comparing proofs of security

for lattice-based encryption

Daniel J. Bernstein

Primary objective of this paper:

Make a complete plan

for thorough security reviews

of 36 target KEMs.

Much harder: Do the reviews!

Complete plan is framework

to evaluate which pieces are done,

and to coordinate further efforts.

KEMs vary in what’s needed.

2

The target KEMs (all proposed

for wide deployment, IND-CCA2):

frodo 640, 976, 1344.

kyber 512, 768, 1024.

lac 128, 192, 256.

newhope 512, 1024.

ntru hps2048509, hps2048677,

hps4096821, hrss701.

ntrulpr 653, 761, 857.

round5n1 1, 3, 5.

round5nd 1.0d, 3.0d, 5.0d,

1.5d, 3.5d, 5.5d.

saber light, main, fire.

sntrup 653, 761, 857.

threebears baby, mama, papa.

3

One categorization of the KEMs:

frodo Product NTRU.

kyber Product NTRU.

lac Product NTRU.

newhope Product NTRU.

ntru Quotient NTRU.

ntrulpr Product NTRU.

round5n1 Product NTRU.

round5nd Product NTRU.

saber Product NTRU.

sntrup Quotient NTRU.

threebears Product NTRU.



1

Comparing proofs of security

for lattice-based encryption

Daniel J. Bernstein

Primary objective of this paper:

Make a complete plan

for thorough security reviews

of 36 target KEMs.

Much harder: Do the reviews!

Complete plan is framework

to evaluate which pieces are done,

and to coordinate further efforts.

KEMs vary in what’s needed.

2

The target KEMs (all proposed

for wide deployment, IND-CCA2):

frodo 640, 976, 1344.

kyber 512, 768, 1024.

lac 128, 192, 256.

newhope 512, 1024.

ntru hps2048509, hps2048677,

hps4096821, hrss701.

ntrulpr 653, 761, 857.

round5n1 1, 3, 5.

round5nd 1.0d, 3.0d, 5.0d,

1.5d, 3.5d, 5.5d.

saber light, main, fire.

sntrup 653, 761, 857.

threebears baby, mama, papa.

3

One categorization of the KEMs:

frodo Product NTRU.

kyber Product NTRU.

lac Product NTRU.

newhope Product NTRU.

ntru Quotient NTRU.

ntrulpr Product NTRU.

round5n1 Product NTRU.

round5nd Product NTRU.

saber Product NTRU.

sntrup Quotient NTRU.

threebears Product NTRU.



2

The target KEMs (all proposed

for wide deployment, IND-CCA2):

frodo 640, 976, 1344.

kyber 512, 768, 1024.

lac 128, 192, 256.

newhope 512, 1024.

ntru hps2048509, hps2048677,

hps4096821, hrss701.

ntrulpr 653, 761, 857.

round5n1 1, 3, 5.

round5nd 1.0d, 3.0d, 5.0d,

1.5d, 3.5d, 5.5d.

saber light, main, fire.

sntrup 653, 761, 857.

threebears baby, mama, papa.

3

One categorization of the KEMs:

frodo Product NTRU.

kyber Product NTRU.

lac Product NTRU.

newhope Product NTRU.

ntru Quotient NTRU.

ntrulpr Product NTRU.

round5n1 Product NTRU.

round5nd Product NTRU.

saber Product NTRU.

sntrup Quotient NTRU.

threebears Product NTRU.



2

The target KEMs (all proposed

for wide deployment, IND-CCA2):

frodo 640, 976, 1344.

kyber 512, 768, 1024.

lac 128, 192, 256.

newhope 512, 1024.

ntru hps2048509, hps2048677,

hps4096821, hrss701.

ntrulpr 653, 761, 857.

round5n1 1, 3, 5.

round5nd 1.0d, 3.0d, 5.0d,

1.5d, 3.5d, 5.5d.

saber light, main, fire.

sntrup 653, 761, 857.

threebears baby, mama, papa.

3

One categorization of the KEMs:

frodo Product NTRU.

kyber Product NTRU.

lac Product NTRU.

newhope Product NTRU.

ntru Quotient NTRU.

ntrulpr Product NTRU.

round5n1 Product NTRU.

round5nd Product NTRU.

saber Product NTRU.

sntrup Quotient NTRU.

threebears Product NTRU.

4

An oversimplified plan

Plan: Verify the security proofs—

make sure there are no mistakes.



2

The target KEMs (all proposed

for wide deployment, IND-CCA2):

frodo 640, 976, 1344.

kyber 512, 768, 1024.

lac 128, 192, 256.

newhope 512, 1024.

ntru hps2048509, hps2048677,

hps4096821, hrss701.

ntrulpr 653, 761, 857.

round5n1 1, 3, 5.

round5nd 1.0d, 3.0d, 5.0d,

1.5d, 3.5d, 5.5d.

saber light, main, fire.

sntrup 653, 761, 857.

threebears baby, mama, papa.

3

One categorization of the KEMs:

frodo Product NTRU.

kyber Product NTRU.

lac Product NTRU.

newhope Product NTRU.

ntru Quotient NTRU.

ntrulpr Product NTRU.

round5n1 Product NTRU.

round5nd Product NTRU.

saber Product NTRU.

sntrup Quotient NTRU.

threebears Product NTRU.

4

An oversimplified plan

Plan: Verify the security proofs—

make sure there are no mistakes.



2

The target KEMs (all proposed

for wide deployment, IND-CCA2):

frodo 640, 976, 1344.

kyber 512, 768, 1024.

lac 128, 192, 256.

newhope 512, 1024.

ntru hps2048509, hps2048677,

hps4096821, hrss701.

ntrulpr 653, 761, 857.

round5n1 1, 3, 5.

round5nd 1.0d, 3.0d, 5.0d,

1.5d, 3.5d, 5.5d.

saber light, main, fire.

sntrup 653, 761, 857.

threebears baby, mama, papa.

3

One categorization of the KEMs:

frodo Product NTRU.

kyber Product NTRU.

lac Product NTRU.

newhope Product NTRU.

ntru Quotient NTRU.

ntrulpr Product NTRU.

round5n1 Product NTRU.

round5nd Product NTRU.

saber Product NTRU.

sntrup Quotient NTRU.

threebears Product NTRU.

4

An oversimplified plan

Plan: Verify the security proofs—

make sure there are no mistakes.



3

One categorization of the KEMs:

frodo Product NTRU.

kyber Product NTRU.

lac Product NTRU.

newhope Product NTRU.

ntru Quotient NTRU.

ntrulpr Product NTRU.

round5n1 Product NTRU.

round5nd Product NTRU.

saber Product NTRU.

sntrup Quotient NTRU.

threebears Product NTRU.

4

An oversimplified plan

Plan: Verify the security proofs—

make sure there are no mistakes.



3

One categorization of the KEMs:

frodo Product NTRU.

kyber Product NTRU.

lac Product NTRU.

newhope Product NTRU.

ntru Quotient NTRU.

ntrulpr Product NTRU.

round5n1 Product NTRU.

round5nd Product NTRU.

saber Product NTRU.

sntrup Quotient NTRU.

threebears Product NTRU.

4

An oversimplified plan

Plan: Verify the security proofs—

make sure there are no mistakes.

Why verification is important:

e.g., Asiacrypt 2004 Rogaway

“OCB2” was standardized in

2009, completely broken in 2018.

The attack exploited proof error.



3

One categorization of the KEMs:

frodo Product NTRU.

kyber Product NTRU.

lac Product NTRU.

newhope Product NTRU.

ntru Quotient NTRU.

ntrulpr Product NTRU.

round5n1 Product NTRU.

round5nd Product NTRU.

saber Product NTRU.

sntrup Quotient NTRU.

threebears Product NTRU.

4

An oversimplified plan

Plan: Verify the security proofs—

make sure there are no mistakes.

Why verification is important:

e.g., Asiacrypt 2004 Rogaway

“OCB2” was standardized in

2009, completely broken in 2018.

The attack exploited proof error.

I did some sanity checks

(tiny part of full verification!)

and found unproven theorems

claimed by frodo, round5n1,

round5nd, saber; also wrong

hypotheses for newhope theorem.



3

One categorization of the KEMs:

frodo Product NTRU.

kyber Product NTRU.

lac Product NTRU.

newhope Product NTRU.

ntru Quotient NTRU.

ntrulpr Product NTRU.

round5n1 Product NTRU.

round5nd Product NTRU.

saber Product NTRU.

sntrup Quotient NTRU.

threebears Product NTRU.

4

An oversimplified plan

Plan: Verify the security proofs—

make sure there are no mistakes.

Why verification is important:

e.g., Asiacrypt 2004 Rogaway

“OCB2” was standardized in

2009, completely broken in 2018.

The attack exploited proof error.

I did some sanity checks

(tiny part of full verification!)

and found unproven theorems

claimed by frodo, round5n1,

round5nd, saber; also wrong

hypotheses for newhope theorem.

5

Strategy to eliminate proof errors:

explain all of the target proofs

to a thoroughly audited program

that completely verifies proofs.



3

One categorization of the KEMs:

frodo Product NTRU.

kyber Product NTRU.

lac Product NTRU.

newhope Product NTRU.

ntru Quotient NTRU.

ntrulpr Product NTRU.

round5n1 Product NTRU.

round5nd Product NTRU.

saber Product NTRU.

sntrup Quotient NTRU.

threebears Product NTRU.

4

An oversimplified plan

Plan: Verify the security proofs—

make sure there are no mistakes.

Why verification is important:

e.g., Asiacrypt 2004 Rogaway

“OCB2” was standardized in

2009, completely broken in 2018.

The attack exploited proof error.

I did some sanity checks

(tiny part of full verification!)

and found unproven theorems

claimed by frodo, round5n1,

round5nd, saber; also wrong

hypotheses for newhope theorem.

5

Strategy to eliminate proof errors:

explain all of the target proofs

to a thoroughly audited program

that completely verifies proofs.



3

One categorization of the KEMs:

frodo Product NTRU.

kyber Product NTRU.

lac Product NTRU.

newhope Product NTRU.

ntru Quotient NTRU.

ntrulpr Product NTRU.

round5n1 Product NTRU.

round5nd Product NTRU.

saber Product NTRU.

sntrup Quotient NTRU.

threebears Product NTRU.

4

An oversimplified plan

Plan: Verify the security proofs—

make sure there are no mistakes.

Why verification is important:

e.g., Asiacrypt 2004 Rogaway

“OCB2” was standardized in

2009, completely broken in 2018.

The attack exploited proof error.

I did some sanity checks

(tiny part of full verification!)

and found unproven theorems

claimed by frodo, round5n1,

round5nd, saber; also wrong

hypotheses for newhope theorem.

5

Strategy to eliminate proof errors:

explain all of the target proofs

to a thoroughly audited program

that completely verifies proofs.



4

An oversimplified plan

Plan: Verify the security proofs—

make sure there are no mistakes.

Why verification is important:

e.g., Asiacrypt 2004 Rogaway

“OCB2” was standardized in

2009, completely broken in 2018.

The attack exploited proof error.

I did some sanity checks

(tiny part of full verification!)

and found unproven theorems

claimed by frodo, round5n1,

round5nd, saber; also wrong

hypotheses for newhope theorem.

5

Strategy to eliminate proof errors:

explain all of the target proofs

to a thoroughly audited program

that completely verifies proofs.



4

An oversimplified plan

Plan: Verify the security proofs—

make sure there are no mistakes.

Why verification is important:

e.g., Asiacrypt 2004 Rogaway

“OCB2” was standardized in

2009, completely broken in 2018.

The attack exploited proof error.

I did some sanity checks

(tiny part of full verification!)

and found unproven theorems

claimed by frodo, round5n1,

round5nd, saber; also wrong

hypotheses for newhope theorem.

5

Strategy to eliminate proof errors:

explain all of the target proofs

to a thoroughly audited program

that completely verifies proofs.

My assessment of this strategy:

• Status today: ≈0% completed.



4

An oversimplified plan

Plan: Verify the security proofs—

make sure there are no mistakes.

Why verification is important:

e.g., Asiacrypt 2004 Rogaway

“OCB2” was standardized in

2009, completely broken in 2018.

The attack exploited proof error.

I did some sanity checks

(tiny part of full verification!)

and found unproven theorems

claimed by frodo, round5n1,

round5nd, saber; also wrong

hypotheses for newhope theorem.

5

Strategy to eliminate proof errors:

explain all of the target proofs

to a thoroughly audited program

that completely verifies proofs.

My assessment of this strategy:

• Status today: ≈0% completed.

• Progress is painful and slow.

Will we even reach 1% before

post-quantum standardization?



4

An oversimplified plan

Plan: Verify the security proofs—

make sure there are no mistakes.

Why verification is important:

e.g., Asiacrypt 2004 Rogaway

“OCB2” was standardized in

2009, completely broken in 2018.

The attack exploited proof error.

I did some sanity checks

(tiny part of full verification!)

and found unproven theorems

claimed by frodo, round5n1,

round5nd, saber; also wrong

hypotheses for newhope theorem.

5

Strategy to eliminate proof errors:

explain all of the target proofs

to a thoroughly audited program

that completely verifies proofs.

My assessment of this strategy:

• Status today: ≈0% completed.

• Progress is painful and slow.

Will we even reach 1% before

post-quantum standardization?

• Easier-to-use proof tools

could make strategy work.



4

An oversimplified plan

Plan: Verify the security proofs—

make sure there are no mistakes.

Why verification is important:

e.g., Asiacrypt 2004 Rogaway

“OCB2” was standardized in

2009, completely broken in 2018.

The attack exploited proof error.

I did some sanity checks

(tiny part of full verification!)

and found unproven theorems

claimed by frodo, round5n1,

round5nd, saber; also wrong

hypotheses for newhope theorem.

5

Strategy to eliminate proof errors:

explain all of the target proofs

to a thoroughly audited program

that completely verifies proofs.

My assessment of this strategy:

• Status today: ≈0% completed.

• Progress is painful and slow.

Will we even reach 1% before

post-quantum standardization?

• Easier-to-use proof tools

could make strategy work.

Backup strategies: Clean up

proofs. Check proofs by hand.

Track bug categories, as in code.



4

An oversimplified plan

Plan: Verify the security proofs—

make sure there are no mistakes.

Why verification is important:

e.g., Asiacrypt 2004 Rogaway

“OCB2” was standardized in

2009, completely broken in 2018.

The attack exploited proof error.

I did some sanity checks

(tiny part of full verification!)

and found unproven theorems

claimed by frodo, round5n1,

round5nd, saber; also wrong

hypotheses for newhope theorem.

5

Strategy to eliminate proof errors:

explain all of the target proofs

to a thoroughly audited program

that completely verifies proofs.

My assessment of this strategy:

• Status today: ≈0% completed.

• Progress is painful and slow.

Will we even reach 1% before

post-quantum standardization?

• Easier-to-use proof tools

could make strategy work.

Backup strategies: Clean up

proofs. Check proofs by hand.

Track bug categories, as in code.

6

Why call this “oversimplified”?

What “security proofs” prove

is not actually security.



4

An oversimplified plan

Plan: Verify the security proofs—

make sure there are no mistakes.

Why verification is important:

e.g., Asiacrypt 2004 Rogaway

“OCB2” was standardized in

2009, completely broken in 2018.

The attack exploited proof error.

I did some sanity checks

(tiny part of full verification!)

and found unproven theorems

claimed by frodo, round5n1,

round5nd, saber; also wrong

hypotheses for newhope theorem.

5

Strategy to eliminate proof errors:

explain all of the target proofs

to a thoroughly audited program

that completely verifies proofs.

My assessment of this strategy:

• Status today: ≈0% completed.

• Progress is painful and slow.

Will we even reach 1% before

post-quantum standardization?

• Easier-to-use proof tools

could make strategy work.

Backup strategies: Clean up

proofs. Check proofs by hand.

Track bug categories, as in code.

6

Why call this “oversimplified”?

What “security proofs” prove

is not actually security.



4

An oversimplified plan

Plan: Verify the security proofs—

make sure there are no mistakes.

Why verification is important:

e.g., Asiacrypt 2004 Rogaway

“OCB2” was standardized in

2009, completely broken in 2018.

The attack exploited proof error.

I did some sanity checks

(tiny part of full verification!)

and found unproven theorems

claimed by frodo, round5n1,

round5nd, saber; also wrong

hypotheses for newhope theorem.

5

Strategy to eliminate proof errors:

explain all of the target proofs

to a thoroughly audited program

that completely verifies proofs.

My assessment of this strategy:

• Status today: ≈0% completed.

• Progress is painful and slow.

Will we even reach 1% before

post-quantum standardization?

• Easier-to-use proof tools

could make strategy work.

Backup strategies: Clean up

proofs. Check proofs by hand.

Track bug categories, as in code.

6

Why call this “oversimplified”?

What “security proofs” prove

is not actually security.



5

Strategy to eliminate proof errors:

explain all of the target proofs

to a thoroughly audited program

that completely verifies proofs.

My assessment of this strategy:

• Status today: ≈0% completed.

• Progress is painful and slow.

Will we even reach 1% before

post-quantum standardization?

• Easier-to-use proof tools

could make strategy work.

Backup strategies: Clean up

proofs. Check proofs by hand.

Track bug categories, as in code.

6

Why call this “oversimplified”?

What “security proofs” prove

is not actually security.



5

Strategy to eliminate proof errors:

explain all of the target proofs

to a thoroughly audited program

that completely verifies proofs.

My assessment of this strategy:

• Status today: ≈0% completed.

• Progress is painful and slow.

Will we even reach 1% before

post-quantum standardization?

• Easier-to-use proof tools

could make strategy work.

Backup strategies: Clean up

proofs. Check proofs by hand.

Track bug categories, as in code.

6

Why call this “oversimplified”?

What “security proofs” prove

is not actually security.

Even with correct proofs,

there are still risks of attacks.

We all rely on cryptanalysis

for analyzing remaining risks.



5

Strategy to eliminate proof errors:

explain all of the target proofs

to a thoroughly audited program

that completely verifies proofs.

My assessment of this strategy:

• Status today: ≈0% completed.

• Progress is painful and slow.

Will we even reach 1% before

post-quantum standardization?

• Easier-to-use proof tools

could make strategy work.

Backup strategies: Clean up

proofs. Check proofs by hand.

Track bug categories, as in code.

6

Why call this “oversimplified”?

What “security proofs” prove

is not actually security.

Even with correct proofs,

there are still risks of attacks.

We all rely on cryptanalysis

for analyzing remaining risks.

Revised plan:

1. Verify the “security proofs”.

2. Verify the cryptanalysis

of the risks left by the proofs.

Again clean up; check by hand;

track failure categories.



5

Strategy to eliminate proof errors:

explain all of the target proofs

to a thoroughly audited program

that completely verifies proofs.

My assessment of this strategy:

• Status today: ≈0% completed.

• Progress is painful and slow.

Will we even reach 1% before

post-quantum standardization?

• Easier-to-use proof tools

could make strategy work.

Backup strategies: Clean up

proofs. Check proofs by hand.

Track bug categories, as in code.

6

Why call this “oversimplified”?

What “security proofs” prove

is not actually security.

Even with correct proofs,

there are still risks of attacks.

We all rely on cryptanalysis

for analyzing remaining risks.

Revised plan:

1. Verify the “security proofs”.

2. Verify the cryptanalysis

of the risks left by the proofs.

Again clean up; check by hand;

track failure categories.

7

Are attack-cost analyses correct?

How thorough is exploration

of space of optimizations?

How thorough is the study of

claimed barriers to speedups

that work for similar problems?

Do the cryptanalytic targets

match the proof risks? etc.

Long history of failures: e.g.,

NSA overstated DES attack cost;

L(1=2) optimality conjecture

for factorization was wrong;

TLS Triple-DES-CBC was broken

without Triple-DES attack; etc.



5

Strategy to eliminate proof errors:

explain all of the target proofs

to a thoroughly audited program

that completely verifies proofs.

My assessment of this strategy:

• Status today: ≈0% completed.

• Progress is painful and slow.

Will we even reach 1% before

post-quantum standardization?

• Easier-to-use proof tools

could make strategy work.

Backup strategies: Clean up

proofs. Check proofs by hand.

Track bug categories, as in code.

6

Why call this “oversimplified”?

What “security proofs” prove

is not actually security.

Even with correct proofs,

there are still risks of attacks.

We all rely on cryptanalysis

for analyzing remaining risks.

Revised plan:

1. Verify the “security proofs”.

2. Verify the cryptanalysis

of the risks left by the proofs.

Again clean up; check by hand;

track failure categories.

7

Are attack-cost analyses correct?

How thorough is exploration

of space of optimizations?

How thorough is the study of

claimed barriers to speedups

that work for similar problems?

Do the cryptanalytic targets

match the proof risks? etc.

Long history of failures: e.g.,

NSA overstated DES attack cost;

L(1=2) optimality conjecture

for factorization was wrong;

TLS Triple-DES-CBC was broken

without Triple-DES attack; etc.



5

Strategy to eliminate proof errors:

explain all of the target proofs

to a thoroughly audited program

that completely verifies proofs.

My assessment of this strategy:

• Status today: ≈0% completed.

• Progress is painful and slow.

Will we even reach 1% before

post-quantum standardization?

• Easier-to-use proof tools

could make strategy work.

Backup strategies: Clean up

proofs. Check proofs by hand.

Track bug categories, as in code.

6

Why call this “oversimplified”?

What “security proofs” prove

is not actually security.

Even with correct proofs,

there are still risks of attacks.

We all rely on cryptanalysis

for analyzing remaining risks.

Revised plan:

1. Verify the “security proofs”.

2. Verify the cryptanalysis

of the risks left by the proofs.

Again clean up; check by hand;

track failure categories.

7

Are attack-cost analyses correct?

How thorough is exploration

of space of optimizations?

How thorough is the study of

claimed barriers to speedups

that work for similar problems?

Do the cryptanalytic targets

match the proof risks? etc.

Long history of failures: e.g.,

NSA overstated DES attack cost;

L(1=2) optimality conjecture

for factorization was wrong;

TLS Triple-DES-CBC was broken

without Triple-DES attack; etc.



6

Why call this “oversimplified”?

What “security proofs” prove

is not actually security.

Even with correct proofs,

there are still risks of attacks.

We all rely on cryptanalysis

for analyzing remaining risks.

Revised plan:

1. Verify the “security proofs”.

2. Verify the cryptanalysis

of the risks left by the proofs.

Again clean up; check by hand;

track failure categories.

7

Are attack-cost analyses correct?

How thorough is exploration

of space of optimizations?

How thorough is the study of

claimed barriers to speedups

that work for similar problems?

Do the cryptanalytic targets

match the proof risks? etc.

Long history of failures: e.g.,

NSA overstated DES attack cost;

L(1=2) optimality conjecture

for factorization was wrong;

TLS Triple-DES-CBC was broken

without Triple-DES attack; etc.



6

Why call this “oversimplified”?

What “security proofs” prove

is not actually security.

Even with correct proofs,

there are still risks of attacks.

We all rely on cryptanalysis

for analyzing remaining risks.

Revised plan:

1. Verify the “security proofs”.

2. Verify the cryptanalysis

of the risks left by the proofs.

Again clean up; check by hand;

track failure categories.

7

Are attack-cost analyses correct?

How thorough is exploration

of space of optimizations?

How thorough is the study of

claimed barriers to speedups

that work for similar problems?

Do the cryptanalytic targets

match the proof risks? etc.

Long history of failures: e.g.,

NSA overstated DES attack cost;

L(1=2) optimality conjecture

for factorization was wrong;

TLS Triple-DES-CBC was broken

without Triple-DES attack; etc.

8

Why bother with proofs?

Plan without proofs is simpler:

Verify cryptanalysis of the KEMs.



6

Why call this “oversimplified”?

What “security proofs” prove

is not actually security.

Even with correct proofs,

there are still risks of attacks.

We all rely on cryptanalysis

for analyzing remaining risks.

Revised plan:

1. Verify the “security proofs”.

2. Verify the cryptanalysis

of the risks left by the proofs.

Again clean up; check by hand;

track failure categories.

7

Are attack-cost analyses correct?

How thorough is exploration

of space of optimizations?

How thorough is the study of

claimed barriers to speedups

that work for similar problems?

Do the cryptanalytic targets

match the proof risks? etc.

Long history of failures: e.g.,

NSA overstated DES attack cost;

L(1=2) optimality conjecture

for factorization was wrong;

TLS Triple-DES-CBC was broken

without Triple-DES attack; etc.

8

Why bother with proofs?

Plan without proofs is simpler:

Verify cryptanalysis of the KEMs.



6

Why call this “oversimplified”?

What “security proofs” prove

is not actually security.

Even with correct proofs,

there are still risks of attacks.

We all rely on cryptanalysis

for analyzing remaining risks.

Revised plan:

1. Verify the “security proofs”.

2. Verify the cryptanalysis

of the risks left by the proofs.

Again clean up; check by hand;

track failure categories.

7

Are attack-cost analyses correct?

How thorough is exploration

of space of optimizations?

How thorough is the study of

claimed barriers to speedups

that work for similar problems?

Do the cryptanalytic targets

match the proof risks? etc.

Long history of failures: e.g.,

NSA overstated DES attack cost;

L(1=2) optimality conjecture

for factorization was wrong;

TLS Triple-DES-CBC was broken

without Triple-DES attack; etc.

8

Why bother with proofs?

Plan without proofs is simpler:

Verify cryptanalysis of the KEMs.



7

Are attack-cost analyses correct?

How thorough is exploration

of space of optimizations?

How thorough is the study of

claimed barriers to speedups

that work for similar problems?

Do the cryptanalytic targets

match the proof risks? etc.

Long history of failures: e.g.,

NSA overstated DES attack cost;

L(1=2) optimality conjecture

for factorization was wrong;

TLS Triple-DES-CBC was broken

without Triple-DES attack; etc.

8

Why bother with proofs?

Plan without proofs is simpler:

Verify cryptanalysis of the KEMs.



7

Are attack-cost analyses correct?

How thorough is exploration

of space of optimizations?

How thorough is the study of

claimed barriers to speedups

that work for similar problems?

Do the cryptanalytic targets

match the proof risks? etc.

Long history of failures: e.g.,

NSA overstated DES attack cost;

L(1=2) optimality conjecture

for factorization was wrong;

TLS Triple-DES-CBC was broken

without Triple-DES attack; etc.

8

Why bother with proofs?

Plan without proofs is simpler:

Verify cryptanalysis of the KEMs.

But sometimes the proofs

reduce cost of cryptanalysis.



7

Are attack-cost analyses correct?

How thorough is exploration

of space of optimizations?

How thorough is the study of

claimed barriers to speedups

that work for similar problems?

Do the cryptanalytic targets

match the proof risks? etc.

Long history of failures: e.g.,

NSA overstated DES attack cost;

L(1=2) optimality conjecture

for factorization was wrong;

TLS Triple-DES-CBC was broken

without Triple-DES attack; etc.

8

Why bother with proofs?

Plan without proofs is simpler:

Verify cryptanalysis of the KEMs.

But sometimes the proofs

reduce cost of cryptanalysis.

Sometimes this outweighs

cost to verify proofs: reduces

cost of thorough security review.

Hopefully less chance of disaster.



7

Are attack-cost analyses correct?

How thorough is exploration

of space of optimizations?

How thorough is the study of

claimed barriers to speedups

that work for similar problems?

Do the cryptanalytic targets

match the proof risks? etc.

Long history of failures: e.g.,

NSA overstated DES attack cost;

L(1=2) optimality conjecture

for factorization was wrong;

TLS Triple-DES-CBC was broken

without Triple-DES attack; etc.

8

Why bother with proofs?

Plan without proofs is simpler:

Verify cryptanalysis of the KEMs.

But sometimes the proofs

reduce cost of cryptanalysis.

Sometimes this outweighs

cost to verify proofs: reduces

cost of thorough security review.

Hopefully less chance of disaster.

This paper’s verification plan

skips proofs that clearly fail

to reduce cost of cryptanalysis:

e.g., frodo seed “reduction”.



7

Are attack-cost analyses correct?

How thorough is exploration

of space of optimizations?

How thorough is the study of

claimed barriers to speedups

that work for similar problems?

Do the cryptanalytic targets

match the proof risks? etc.

Long history of failures: e.g.,

NSA overstated DES attack cost;

L(1=2) optimality conjecture

for factorization was wrong;

TLS Triple-DES-CBC was broken

without Triple-DES attack; etc.

8

Why bother with proofs?

Plan without proofs is simpler:

Verify cryptanalysis of the KEMs.

But sometimes the proofs

reduce cost of cryptanalysis.

Sometimes this outweighs

cost to verify proofs: reduces

cost of thorough security review.

Hopefully less chance of disaster.

This paper’s verification plan

skips proofs that clearly fail

to reduce cost of cryptanalysis:

e.g., frodo seed “reduction”.

9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .



7

Are attack-cost analyses correct?

How thorough is exploration

of space of optimizations?

How thorough is the study of

claimed barriers to speedups

that work for similar problems?

Do the cryptanalytic targets

match the proof risks? etc.

Long history of failures: e.g.,

NSA overstated DES attack cost;

L(1=2) optimality conjecture

for factorization was wrong;

TLS Triple-DES-CBC was broken

without Triple-DES attack; etc.

8

Why bother with proofs?

Plan without proofs is simpler:

Verify cryptanalysis of the KEMs.

But sometimes the proofs

reduce cost of cryptanalysis.

Sometimes this outweighs

cost to verify proofs: reduces

cost of thorough security review.

Hopefully less chance of disaster.

This paper’s verification plan

skips proofs that clearly fail

to reduce cost of cryptanalysis:

e.g., frodo seed “reduction”.

9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .



7

Are attack-cost analyses correct?

How thorough is exploration

of space of optimizations?

How thorough is the study of

claimed barriers to speedups

that work for similar problems?

Do the cryptanalytic targets

match the proof risks? etc.

Long history of failures: e.g.,

NSA overstated DES attack cost;

L(1=2) optimality conjecture

for factorization was wrong;

TLS Triple-DES-CBC was broken

without Triple-DES attack; etc.

8

Why bother with proofs?

Plan without proofs is simpler:

Verify cryptanalysis of the KEMs.

But sometimes the proofs

reduce cost of cryptanalysis.

Sometimes this outweighs

cost to verify proofs: reduces

cost of thorough security review.

Hopefully less chance of disaster.

This paper’s verification plan

skips proofs that clearly fail

to reduce cost of cryptanalysis:

e.g., frodo seed “reduction”.

9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .



8

Why bother with proofs?

Plan without proofs is simpler:

Verify cryptanalysis of the KEMs.

But sometimes the proofs

reduce cost of cryptanalysis.

Sometimes this outweighs

cost to verify proofs: reduces

cost of thorough security review.

Hopefully less chance of disaster.

This paper’s verification plan

skips proofs that clearly fail

to reduce cost of cryptanalysis:

e.g., frodo seed “reduction”.

9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .



8

Why bother with proofs?

Plan without proofs is simpler:

Verify cryptanalysis of the KEMs.

But sometimes the proofs

reduce cost of cryptanalysis.

Sometimes this outweighs

cost to verify proofs: reduces

cost of thorough security review.

Hopefully less chance of disaster.

This paper’s verification plan

skips proofs that clearly fail

to reduce cost of cryptanalysis:

e.g., frodo seed “reduction”.

9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .

Risk #1: P does not reach

security level –′.



8

Why bother with proofs?

Plan without proofs is simpler:

Verify cryptanalysis of the KEMs.

But sometimes the proofs

reduce cost of cryptanalysis.

Sometimes this outweighs

cost to verify proofs: reduces

cost of thorough security review.

Hopefully less chance of disaster.

This paper’s verification plan

skips proofs that clearly fail

to reduce cost of cryptanalysis:

e.g., frodo seed “reduction”.

9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .

Risk #1: P does not reach

security level –′.

Risk #2 (looseness): – is below

claimed security level of X.



8

Why bother with proofs?

Plan without proofs is simpler:

Verify cryptanalysis of the KEMs.

But sometimes the proofs

reduce cost of cryptanalysis.

Sometimes this outweighs

cost to verify proofs: reduces

cost of thorough security review.

Hopefully less chance of disaster.

This paper’s verification plan

skips proofs that clearly fail

to reduce cost of cryptanalysis:

e.g., frodo seed “reduction”.

9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .

Risk #1: P does not reach

security level –′.

Risk #2 (looseness): – is below

claimed security level of X.

Risk #3: There are faster

attacks outside type T .



8

Why bother with proofs?

Plan without proofs is simpler:

Verify cryptanalysis of the KEMs.

But sometimes the proofs

reduce cost of cryptanalysis.

Sometimes this outweighs

cost to verify proofs: reduces

cost of thorough security review.

Hopefully less chance of disaster.

This paper’s verification plan

skips proofs that clearly fail

to reduce cost of cryptanalysis:

e.g., frodo seed “reduction”.

9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .

Risk #1: P does not reach

security level –′.

Risk #2 (looseness): – is below

claimed security level of X.

Risk #3: There are faster

attacks outside type T .

Risk #4: Proof is incorrect.



8

Why bother with proofs?

Plan without proofs is simpler:

Verify cryptanalysis of the KEMs.

But sometimes the proofs

reduce cost of cryptanalysis.

Sometimes this outweighs

cost to verify proofs: reduces

cost of thorough security review.

Hopefully less chance of disaster.

This paper’s verification plan

skips proofs that clearly fail

to reduce cost of cryptanalysis:

e.g., frodo seed “reduction”.

9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .

Risk #1: P does not reach

security level –′.

Risk #2 (looseness): – is below

claimed security level of X.

Risk #3: There are faster

attacks outside type T .

Risk #4: Proof is incorrect.

10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.



8

Why bother with proofs?

Plan without proofs is simpler:

Verify cryptanalysis of the KEMs.

But sometimes the proofs

reduce cost of cryptanalysis.

Sometimes this outweighs

cost to verify proofs: reduces

cost of thorough security review.

Hopefully less chance of disaster.

This paper’s verification plan

skips proofs that clearly fail

to reduce cost of cryptanalysis:

e.g., frodo seed “reduction”.

9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .

Risk #1: P does not reach

security level –′.

Risk #2 (looseness): – is below

claimed security level of X.

Risk #3: There are faster

attacks outside type T .

Risk #4: Proof is incorrect.

10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.



8

Why bother with proofs?

Plan without proofs is simpler:

Verify cryptanalysis of the KEMs.

But sometimes the proofs

reduce cost of cryptanalysis.

Sometimes this outweighs

cost to verify proofs: reduces

cost of thorough security review.

Hopefully less chance of disaster.

This paper’s verification plan

skips proofs that clearly fail

to reduce cost of cryptanalysis:

e.g., frodo seed “reduction”.

9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .

Risk #1: P does not reach

security level –′.

Risk #2 (looseness): – is below

claimed security level of X.

Risk #3: There are faster

attacks outside type T .

Risk #4: Proof is incorrect.

10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.



9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .

Risk #1: P does not reach

security level –′.

Risk #2 (looseness): – is below

claimed security level of X.

Risk #3: There are faster

attacks outside type T .

Risk #4: Proof is incorrect.

10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.



9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .

Risk #1: P does not reach

security level –′.

Risk #2 (looseness): – is below

claimed security level of X.

Risk #3: There are faster

attacks outside type T .

Risk #4: Proof is incorrect.

10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.

For some targets: Attack

IND-CPA security of core PKEs.



9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .

Risk #1: P does not reach

security level –′.

Risk #2 (looseness): – is below

claimed security level of X.

Risk #3: There are faster

attacks outside type T .

Risk #4: Proof is incorrect.

10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.

For some targets: Attack

IND-CPA security of core PKEs.

For some targets: Attack

pseudorandom multipliers.



9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .

Risk #1: P does not reach

security level –′.

Risk #2 (looseness): – is below

claimed security level of X.

Risk #3: There are faster

attacks outside type T .

Risk #4: Proof is incorrect.

10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.

For some targets: Attack

IND-CPA security of core PKEs.

For some targets: Attack

pseudorandom multipliers.

For some targets: KEM proofs

are loose. Find faster attacks.



9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .

Risk #1: P does not reach

security level –′.

Risk #2 (looseness): – is below

claimed security level of X.

Risk #3: There are faster

attacks outside type T .

Risk #4: Proof is incorrect.

10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.

For some targets: Attack

IND-CPA security of core PKEs.

For some targets: Attack

pseudorandom multipliers.

For some targets: KEM proofs

are loose. Find faster attacks.

Also, some KEM “proofs”

rely on unproven conjectures.



9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .

Risk #1: P does not reach

security level –′.

Risk #2 (looseness): – is below

claimed security level of X.

Risk #3: There are faster

attacks outside type T .

Risk #4: Proof is incorrect.

10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.

For some targets: Attack

IND-CPA security of core PKEs.

For some targets: Attack

pseudorandom multipliers.

For some targets: KEM proofs

are loose. Find faster attacks.

Also, some KEM “proofs”

rely on unproven conjectures.

For all targets: KEM proofs

allow non-ROM attacks.



9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .

Risk #1: P does not reach

security level –′.

Risk #2 (looseness): – is below

claimed security level of X.

Risk #3: There are faster

attacks outside type T .

Risk #4: Proof is incorrect.

10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.

For some targets: Attack

IND-CPA security of core PKEs.

For some targets: Attack

pseudorandom multipliers.

For some targets: KEM proofs

are loose. Find faster attacks.

Also, some KEM “proofs”

rely on unproven conjectures.

For all targets: KEM proofs

allow non-ROM attacks.

11

The core PKEs (“P”)

Key generation:

• Table 8.6: Public multiplier G.

• Table 8.7: Short secret a.

• Table 8.8: Public A ≈ aG.



9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .

Risk #1: P does not reach

security level –′.

Risk #2 (looseness): – is below

claimed security level of X.

Risk #3: There are faster

attacks outside type T .

Risk #4: Proof is incorrect.

10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.

For some targets: Attack

IND-CPA security of core PKEs.

For some targets: Attack

pseudorandom multipliers.

For some targets: KEM proofs

are loose. Find faster attacks.

Also, some KEM “proofs”

rely on unproven conjectures.

For all targets: KEM proofs

allow non-ROM attacks.

11

The core PKEs (“P”)

Key generation:

• Table 8.6: Public multiplier G.

• Table 8.7: Short secret a.

• Table 8.8: Public A ≈ aG.



9

Risks not ruled out by proofs

A “security proof” guarantees

security level – for system X

against all attacks of type T

assuming security level –′

for underlying problem P .

Risk #1: P does not reach

security level –′.

Risk #2 (looseness): – is below

claimed security level of X.

Risk #3: There are faster

attacks outside type T .

Risk #4: Proof is incorrect.

10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.

For some targets: Attack

IND-CPA security of core PKEs.

For some targets: Attack

pseudorandom multipliers.

For some targets: KEM proofs

are loose. Find faster attacks.

Also, some KEM “proofs”

rely on unproven conjectures.

For all targets: KEM proofs

allow non-ROM attacks.

11

The core PKEs (“P”)

Key generation:

• Table 8.6: Public multiplier G.

• Table 8.7: Short secret a.

• Table 8.8: Public A ≈ aG.



10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.

For some targets: Attack

IND-CPA security of core PKEs.

For some targets: Attack

pseudorandom multipliers.

For some targets: KEM proofs

are loose. Find faster attacks.

Also, some KEM “proofs”

rely on unproven conjectures.

For all targets: KEM proofs

allow non-ROM attacks.

11

The core PKEs (“P”)

Key generation:

• Table 8.6: Public multiplier G.

• Table 8.7: Short secret a.

• Table 8.8: Public A ≈ aG.



10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.

For some targets: Attack

IND-CPA security of core PKEs.

For some targets: Attack

pseudorandom multipliers.

For some targets: KEM proofs

are loose. Find faster attacks.

Also, some KEM “proofs”

rely on unproven conjectures.

For all targets: KEM proofs

allow non-ROM attacks.

11

The core PKEs (“P”)

Key generation:

• Table 8.6: Public multiplier G.

• Table 8.7: Short secret a.

• Table 8.8: Public A ≈ aG.

Encryption: Short secret b;

public ciphertext B ≈ Gb
(or B ≈ Gb=3 or B ≈ 3Gb).



10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.

For some targets: Attack

IND-CPA security of core PKEs.

For some targets: Attack

pseudorandom multipliers.

For some targets: KEM proofs

are loose. Find faster attacks.

Also, some KEM “proofs”

rely on unproven conjectures.

For all targets: KEM proofs

allow non-ROM attacks.

11

The core PKEs (“P”)

Key generation:

• Table 8.6: Public multiplier G.

• Table 8.7: Short secret a.

• Table 8.8: Public A ≈ aG.

Encryption: Short secret b;

public ciphertext B ≈ Gb
(or B ≈ Gb=3 or B ≈ 3Gb).

That’s it for Quotient NTRU.



10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.

For some targets: Attack

IND-CPA security of core PKEs.

For some targets: Attack

pseudorandom multipliers.

For some targets: KEM proofs

are loose. Find faster attacks.

Also, some KEM “proofs”

rely on unproven conjectures.

For all targets: KEM proofs

allow non-ROM attacks.

11

The core PKEs (“P”)

Key generation:

• Table 8.6: Public multiplier G.

• Table 8.7: Short secret a.

• Table 8.8: Public A ≈ aG.

Encryption: Short secret b;

public ciphertext B ≈ Gb
(or B ≈ Gb=3 or B ≈ 3Gb).

That’s it for Quotient NTRU.

More for Product NTRU:

• Table 8.9: Public C ≈ Ab +M.

• Table 8.10: Secret M.



10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.

For some targets: Attack

IND-CPA security of core PKEs.

For some targets: Attack

pseudorandom multipliers.

For some targets: KEM proofs

are loose. Find faster attacks.

Also, some KEM “proofs”

rely on unproven conjectures.

For all targets: KEM proofs

allow non-ROM attacks.

11

The core PKEs (“P”)

Key generation:

• Table 8.6: Public multiplier G.

• Table 8.7: Short secret a.

• Table 8.8: Public A ≈ aG.

Encryption: Short secret b;

public ciphertext B ≈ Gb
(or B ≈ Gb=3 or B ≈ 3Gb).

That’s it for Quotient NTRU.

More for Product NTRU:

• Table 8.9: Public C ≈ Ab +M.

• Table 8.10: Secret M.

12

OW-Passive vs. IND-CPA (“dist”)

Quotient NTRU (ntru, sntrup)

asks for OW-Passive cryptanalysis.

2003 Naor: this is “falsifiable”.



10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.

For some targets: Attack

IND-CPA security of core PKEs.

For some targets: Attack

pseudorandom multipliers.

For some targets: KEM proofs

are loose. Find faster attacks.

Also, some KEM “proofs”

rely on unproven conjectures.

For all targets: KEM proofs

allow non-ROM attacks.

11

The core PKEs (“P”)

Key generation:

• Table 8.6: Public multiplier G.

• Table 8.7: Short secret a.

• Table 8.8: Public A ≈ aG.

Encryption: Short secret b;

public ciphertext B ≈ Gb
(or B ≈ Gb=3 or B ≈ 3Gb).

That’s it for Quotient NTRU.

More for Product NTRU:

• Table 8.9: Public C ≈ Ab +M.

• Table 8.10: Secret M.

12

OW-Passive vs. IND-CPA (“dist”)

Quotient NTRU (ntru, sntrup)

asks for OW-Passive cryptanalysis.

2003 Naor: this is “falsifiable”.



10

Targets for lattice cryptanalysis

Attack OW-Passive (“OW-CPA”)

security of the 36 core PKEs.

For some targets: Attack

IND-CPA security of core PKEs.

For some targets: Attack

pseudorandom multipliers.

For some targets: KEM proofs

are loose. Find faster attacks.

Also, some KEM “proofs”

rely on unproven conjectures.

For all targets: KEM proofs

allow non-ROM attacks.

11

The core PKEs (“P”)

Key generation:

• Table 8.6: Public multiplier G.

• Table 8.7: Short secret a.

• Table 8.8: Public A ≈ aG.

Encryption: Short secret b;

public ciphertext B ≈ Gb
(or B ≈ Gb=3 or B ≈ 3Gb).

That’s it for Quotient NTRU.

More for Product NTRU:

• Table 8.9: Public C ≈ Ab +M.

• Table 8.10: Secret M.

12

OW-Passive vs. IND-CPA (“dist”)

Quotient NTRU (ntru, sntrup)

asks for OW-Passive cryptanalysis.

2003 Naor: this is “falsifiable”.



11

The core PKEs (“P”)

Key generation:

• Table 8.6: Public multiplier G.

• Table 8.7: Short secret a.

• Table 8.8: Public A ≈ aG.

Encryption: Short secret b;

public ciphertext B ≈ Gb
(or B ≈ Gb=3 or B ≈ 3Gb).

That’s it for Quotient NTRU.

More for Product NTRU:

• Table 8.9: Public C ≈ Ab +M.

• Table 8.10: Secret M.

12

OW-Passive vs. IND-CPA (“dist”)

Quotient NTRU (ntru, sntrup)

asks for OW-Passive cryptanalysis.

2003 Naor: this is “falsifiable”.



11

The core PKEs (“P”)

Key generation:

• Table 8.6: Public multiplier G.

• Table 8.7: Short secret a.

• Table 8.8: Public A ≈ aG.

Encryption: Short secret b;

public ciphertext B ≈ Gb
(or B ≈ Gb=3 or B ≈ 3Gb).

That’s it for Quotient NTRU.

More for Product NTRU:

• Table 8.9: Public C ≈ Ab +M.

• Table 8.10: Secret M.

12

OW-Passive vs. IND-CPA (“dist”)

Quotient NTRU (ntru, sntrup)

asks for OW-Passive cryptanalysis.

2003 Naor: this is “falsifiable”.

Product NTRU (ntrulpr and

systems not named after NTRU)

asks for IND-CPA cryptanalysis.

Lower security than OW-Passive?

Only “somewhat falsifiable”.



11

The core PKEs (“P”)

Key generation:

• Table 8.6: Public multiplier G.

• Table 8.7: Short secret a.

• Table 8.8: Public A ≈ aG.

Encryption: Short secret b;

public ciphertext B ≈ Gb
(or B ≈ Gb=3 or B ≈ 3Gb).

That’s it for Quotient NTRU.

More for Product NTRU:

• Table 8.9: Public C ≈ Ab +M.

• Table 8.10: Secret M.

12

OW-Passive vs. IND-CPA (“dist”)

Quotient NTRU (ntru, sntrup)

asks for OW-Passive cryptanalysis.

2003 Naor: this is “falsifiable”.

Product NTRU (ntrulpr and

systems not named after NTRU)

asks for IND-CPA cryptanalysis.

Lower security than OW-Passive?

Only “somewhat falsifiable”.

Compare 2006 Goldreich: “What

concerns us about” DDH is that

“DDH is less simple than DH”

making it “harder to evaluate.”



11

The core PKEs (“P”)

Key generation:

• Table 8.6: Public multiplier G.

• Table 8.7: Short secret a.

• Table 8.8: Public A ≈ aG.

Encryption: Short secret b;

public ciphertext B ≈ Gb
(or B ≈ Gb=3 or B ≈ 3Gb).

That’s it for Quotient NTRU.

More for Product NTRU:

• Table 8.9: Public C ≈ Ab +M.

• Table 8.10: Secret M.

12

OW-Passive vs. IND-CPA (“dist”)

Quotient NTRU (ntru, sntrup)

asks for OW-Passive cryptanalysis.

2003 Naor: this is “falsifiable”.

Product NTRU (ntrulpr and

systems not named after NTRU)

asks for IND-CPA cryptanalysis.

Lower security than OW-Passive?

Only “somewhat falsifiable”.

Compare 2006 Goldreich: “What

concerns us about” DDH is that

“DDH is less simple than DH”

making it “harder to evaluate.”

13

Pseudorandom multipliers (“ROM2”)

Product NTRU: convert core PKE

into PKE that builds multiplier G

pseudorandomly from public seed.



11

The core PKEs (“P”)

Key generation:

• Table 8.6: Public multiplier G.

• Table 8.7: Short secret a.

• Table 8.8: Public A ≈ aG.

Encryption: Short secret b;

public ciphertext B ≈ Gb
(or B ≈ Gb=3 or B ≈ 3Gb).

That’s it for Quotient NTRU.

More for Product NTRU:

• Table 8.9: Public C ≈ Ab +M.

• Table 8.10: Secret M.

12

OW-Passive vs. IND-CPA (“dist”)

Quotient NTRU (ntru, sntrup)

asks for OW-Passive cryptanalysis.

2003 Naor: this is “falsifiable”.

Product NTRU (ntrulpr and

systems not named after NTRU)

asks for IND-CPA cryptanalysis.

Lower security than OW-Passive?

Only “somewhat falsifiable”.

Compare 2006 Goldreich: “What

concerns us about” DDH is that

“DDH is less simple than DH”

making it “harder to evaluate.”

13

Pseudorandom multipliers (“ROM2”)

Product NTRU: convert core PKE

into PKE that builds multiplier G

pseudorandomly from public seed.



11

The core PKEs (“P”)

Key generation:

• Table 8.6: Public multiplier G.

• Table 8.7: Short secret a.

• Table 8.8: Public A ≈ aG.

Encryption: Short secret b;

public ciphertext B ≈ Gb
(or B ≈ Gb=3 or B ≈ 3Gb).

That’s it for Quotient NTRU.

More for Product NTRU:

• Table 8.9: Public C ≈ Ab +M.

• Table 8.10: Secret M.

12

OW-Passive vs. IND-CPA (“dist”)

Quotient NTRU (ntru, sntrup)

asks for OW-Passive cryptanalysis.

2003 Naor: this is “falsifiable”.

Product NTRU (ntrulpr and

systems not named after NTRU)

asks for IND-CPA cryptanalysis.

Lower security than OW-Passive?

Only “somewhat falsifiable”.

Compare 2006 Goldreich: “What

concerns us about” DDH is that

“DDH is less simple than DH”

making it “harder to evaluate.”

13

Pseudorandom multipliers (“ROM2”)

Product NTRU: convert core PKE

into PKE that builds multiplier G

pseudorandomly from public seed.



12

OW-Passive vs. IND-CPA (“dist”)

Quotient NTRU (ntru, sntrup)

asks for OW-Passive cryptanalysis.

2003 Naor: this is “falsifiable”.

Product NTRU (ntrulpr and

systems not named after NTRU)

asks for IND-CPA cryptanalysis.

Lower security than OW-Passive?

Only “somewhat falsifiable”.

Compare 2006 Goldreich: “What

concerns us about” DDH is that

“DDH is less simple than DH”

making it “harder to evaluate.”

13

Pseudorandom multipliers (“ROM2”)

Product NTRU: convert core PKE

into PKE that builds multiplier G

pseudorandomly from public seed.



12

OW-Passive vs. IND-CPA (“dist”)

Quotient NTRU (ntru, sntrup)

asks for OW-Passive cryptanalysis.

2003 Naor: this is “falsifiable”.

Product NTRU (ntrulpr and

systems not named after NTRU)

asks for IND-CPA cryptanalysis.

Lower security than OW-Passive?

Only “somewhat falsifiable”.

Compare 2006 Goldreich: “What

concerns us about” DDH is that

“DDH is less simple than DH”

making it “harder to evaluate.”

13

Pseudorandom multipliers (“ROM2”)

Product NTRU: convert core PKE

into PKE that builds multiplier G

pseudorandomly from public seed.

saber, round5n1, round5nd

claim that this provably preserves

security assuming PRG/PRF.



12

OW-Passive vs. IND-CPA (“dist”)

Quotient NTRU (ntru, sntrup)

asks for OW-Passive cryptanalysis.

2003 Naor: this is “falsifiable”.

Product NTRU (ntrulpr and

systems not named after NTRU)

asks for IND-CPA cryptanalysis.

Lower security than OW-Passive?

Only “somewhat falsifiable”.

Compare 2006 Goldreich: “What

concerns us about” DDH is that

“DDH is less simple than DH”

making it “harder to evaluate.”

13

Pseudorandom multipliers (“ROM2”)

Product NTRU: convert core PKE

into PKE that builds multiplier G

pseudorandomly from public seed.

saber, round5n1, round5nd

claim that this provably preserves

security assuming PRG/PRF.

I dispute this. Need non-ROM

cryptanalysis for all these PKEs.

Proofs cover only ROM attacks.

Must modify theorem statements.



12

OW-Passive vs. IND-CPA (“dist”)

Quotient NTRU (ntru, sntrup)

asks for OW-Passive cryptanalysis.

2003 Naor: this is “falsifiable”.

Product NTRU (ntrulpr and

systems not named after NTRU)

asks for IND-CPA cryptanalysis.

Lower security than OW-Passive?

Only “somewhat falsifiable”.

Compare 2006 Goldreich: “What

concerns us about” DDH is that

“DDH is less simple than DH”

making it “harder to evaluate.”

13

Pseudorandom multipliers (“ROM2”)

Product NTRU: convert core PKE

into PKE that builds multiplier G

pseudorandomly from public seed.

saber, round5n1, round5nd

claim that this provably preserves

security assuming PRG/PRF.

I dispute this. Need non-ROM

cryptanalysis for all these PKEs.

Proofs cover only ROM attacks.

Must modify theorem statements.

frodo seed “reduction”: Useless.

Still need non-ROM cryptanalysis.



12

OW-Passive vs. IND-CPA (“dist”)

Quotient NTRU (ntru, sntrup)

asks for OW-Passive cryptanalysis.

2003 Naor: this is “falsifiable”.

Product NTRU (ntrulpr and

systems not named after NTRU)

asks for IND-CPA cryptanalysis.

Lower security than OW-Passive?

Only “somewhat falsifiable”.

Compare 2006 Goldreich: “What

concerns us about” DDH is that

“DDH is less simple than DH”

making it “harder to evaluate.”

13

Pseudorandom multipliers (“ROM2”)

Product NTRU: convert core PKE

into PKE that builds multiplier G

pseudorandomly from public seed.

saber, round5n1, round5nd

claim that this provably preserves

security assuming PRG/PRF.

I dispute this. Need non-ROM

cryptanalysis for all these PKEs.

Proofs cover only ROM attacks.

Must modify theorem statements.

frodo seed “reduction”: Useless.

Still need non-ROM cryptanalysis.

14

More hashing (“ROM”)

Want the target KEMs

to provide IND-CCA2 security.

The proofs don’t give this,

even assuming security

of the underlying PKEs.

The proofs are limited to

ROM IND-CCA2 attacks.

Issue for Product NTRU

and for Quotient NTRU.



12

OW-Passive vs. IND-CPA (“dist”)

Quotient NTRU (ntru, sntrup)

asks for OW-Passive cryptanalysis.

2003 Naor: this is “falsifiable”.

Product NTRU (ntrulpr and

systems not named after NTRU)

asks for IND-CPA cryptanalysis.

Lower security than OW-Passive?

Only “somewhat falsifiable”.

Compare 2006 Goldreich: “What

concerns us about” DDH is that

“DDH is less simple than DH”

making it “harder to evaluate.”

13

Pseudorandom multipliers (“ROM2”)

Product NTRU: convert core PKE

into PKE that builds multiplier G

pseudorandomly from public seed.

saber, round5n1, round5nd

claim that this provably preserves

security assuming PRG/PRF.

I dispute this. Need non-ROM

cryptanalysis for all these PKEs.

Proofs cover only ROM attacks.

Must modify theorem statements.

frodo seed “reduction”: Useless.

Still need non-ROM cryptanalysis.

14

More hashing (“ROM”)

Want the target KEMs

to provide IND-CCA2 security.

The proofs don’t give this,

even assuming security

of the underlying PKEs.

The proofs are limited to

ROM IND-CCA2 attacks.

Issue for Product NTRU

and for Quotient NTRU.



12

OW-Passive vs. IND-CPA (“dist”)

Quotient NTRU (ntru, sntrup)

asks for OW-Passive cryptanalysis.

2003 Naor: this is “falsifiable”.

Product NTRU (ntrulpr and

systems not named after NTRU)

asks for IND-CPA cryptanalysis.

Lower security than OW-Passive?

Only “somewhat falsifiable”.

Compare 2006 Goldreich: “What

concerns us about” DDH is that

“DDH is less simple than DH”

making it “harder to evaluate.”

13

Pseudorandom multipliers (“ROM2”)

Product NTRU: convert core PKE

into PKE that builds multiplier G

pseudorandomly from public seed.

saber, round5n1, round5nd

claim that this provably preserves

security assuming PRG/PRF.

I dispute this. Need non-ROM

cryptanalysis for all these PKEs.

Proofs cover only ROM attacks.

Must modify theorem statements.

frodo seed “reduction”: Useless.

Still need non-ROM cryptanalysis.

14

More hashing (“ROM”)

Want the target KEMs

to provide IND-CCA2 security.

The proofs don’t give this,

even assuming security

of the underlying PKEs.

The proofs are limited to

ROM IND-CCA2 attacks.

Issue for Product NTRU

and for Quotient NTRU.



13

Pseudorandom multipliers (“ROM2”)

Product NTRU: convert core PKE

into PKE that builds multiplier G

pseudorandomly from public seed.

saber, round5n1, round5nd

claim that this provably preserves

security assuming PRG/PRF.

I dispute this. Need non-ROM

cryptanalysis for all these PKEs.

Proofs cover only ROM attacks.

Must modify theorem statements.

frodo seed “reduction”: Useless.

Still need non-ROM cryptanalysis.

14

More hashing (“ROM”)

Want the target KEMs

to provide IND-CCA2 security.

The proofs don’t give this,

even assuming security

of the underlying PKEs.

The proofs are limited to

ROM IND-CCA2 attacks.

Issue for Product NTRU

and for Quotient NTRU.



13

Pseudorandom multipliers (“ROM2”)

Product NTRU: convert core PKE

into PKE that builds multiplier G

pseudorandomly from public seed.

saber, round5n1, round5nd

claim that this provably preserves

security assuming PRG/PRF.

I dispute this. Need non-ROM

cryptanalysis for all these PKEs.

Proofs cover only ROM attacks.

Must modify theorem statements.

frodo seed “reduction”: Useless.

Still need non-ROM cryptanalysis.

14

More hashing (“ROM”)

Want the target KEMs

to provide IND-CCA2 security.

The proofs don’t give this,

even assuming security

of the underlying PKEs.

The proofs are limited to

ROM IND-CCA2 attacks.

Issue for Product NTRU

and for Quotient NTRU.

For all target KEMs, need non-

ROM IND-CCA2 cryptanalysis.



13

Pseudorandom multipliers (“ROM2”)

Product NTRU: convert core PKE

into PKE that builds multiplier G

pseudorandomly from public seed.

saber, round5n1, round5nd

claim that this provably preserves

security assuming PRG/PRF.

I dispute this. Need non-ROM

cryptanalysis for all these PKEs.

Proofs cover only ROM attacks.

Must modify theorem statements.

frodo seed “reduction”: Useless.

Still need non-ROM cryptanalysis.

14

More hashing (“ROM”)

Want the target KEMs

to provide IND-CCA2 security.

The proofs don’t give this,

even assuming security

of the underlying PKEs.

The proofs are limited to

ROM IND-CCA2 attacks.

Issue for Product NTRU

and for Quotient NTRU.

For all target KEMs, need non-

ROM IND-CCA2 cryptanalysis.

15

Decryption failures (“fail”/“conj”)

2017 Hofheinz–Hövelmanns–Kiltz

proofs do not rule out ROM IND-

CCA2 attacks with probability Q‹,

even if the PKEs are secure.

Q: number of hash calls.

‹: failure probability.



13

Pseudorandom multipliers (“ROM2”)

Product NTRU: convert core PKE

into PKE that builds multiplier G

pseudorandomly from public seed.

saber, round5n1, round5nd

claim that this provably preserves

security assuming PRG/PRF.

I dispute this. Need non-ROM

cryptanalysis for all these PKEs.

Proofs cover only ROM attacks.

Must modify theorem statements.

frodo seed “reduction”: Useless.

Still need non-ROM cryptanalysis.

14

More hashing (“ROM”)

Want the target KEMs

to provide IND-CCA2 security.

The proofs don’t give this,

even assuming security

of the underlying PKEs.

The proofs are limited to

ROM IND-CCA2 attacks.

Issue for Product NTRU

and for Quotient NTRU.

For all target KEMs, need non-

ROM IND-CCA2 cryptanalysis.

15

Decryption failures (“fail”/“conj”)

2017 Hofheinz–Hövelmanns–Kiltz

proofs do not rule out ROM IND-

CCA2 attacks with probability Q‹,

even if the PKEs are secure.

Q: number of hash calls.

‹: failure probability.



13

Pseudorandom multipliers (“ROM2”)

Product NTRU: convert core PKE

into PKE that builds multiplier G

pseudorandomly from public seed.

saber, round5n1, round5nd

claim that this provably preserves

security assuming PRG/PRF.

I dispute this. Need non-ROM

cryptanalysis for all these PKEs.

Proofs cover only ROM attacks.

Must modify theorem statements.

frodo seed “reduction”: Useless.

Still need non-ROM cryptanalysis.

14

More hashing (“ROM”)

Want the target KEMs

to provide IND-CCA2 security.

The proofs don’t give this,

even assuming security

of the underlying PKEs.

The proofs are limited to

ROM IND-CCA2 attacks.

Issue for Product NTRU

and for Quotient NTRU.

For all target KEMs, need non-

ROM IND-CCA2 cryptanalysis.

15

Decryption failures (“fail”/“conj”)

2017 Hofheinz–Hövelmanns–Kiltz

proofs do not rule out ROM IND-

CCA2 attacks with probability Q‹,

even if the PKEs are secure.

Q: number of hash calls.

‹: failure probability.



14

More hashing (“ROM”)

Want the target KEMs

to provide IND-CCA2 security.

The proofs don’t give this,

even assuming security

of the underlying PKEs.

The proofs are limited to

ROM IND-CCA2 attacks.

Issue for Product NTRU

and for Quotient NTRU.

For all target KEMs, need non-

ROM IND-CCA2 cryptanalysis.

15

Decryption failures (“fail”/“conj”)

2017 Hofheinz–Hövelmanns–Kiltz

proofs do not rule out ROM IND-

CCA2 attacks with probability Q‹,

even if the PKEs are secure.

Q: number of hash calls.

‹: failure probability.



14

More hashing (“ROM”)

Want the target KEMs

to provide IND-CCA2 security.

The proofs don’t give this,

even assuming security

of the underlying PKEs.

The proofs are limited to

ROM IND-CCA2 attacks.

Issue for Product NTRU

and for Quotient NTRU.

For all target KEMs, need non-

ROM IND-CCA2 cryptanalysis.

15

Decryption failures (“fail”/“conj”)

2017 Hofheinz–Hövelmanns–Kiltz

proofs do not rule out ROM IND-

CCA2 attacks with probability Q‹,

even if the PKEs are secure.

Q: number of hash calls.

‹: failure probability.

‹ = 0 proven for 10 KEMs:

ntru, ntrulpr, sntrup. (Also,

simpler ROM IND-CCA2 proof.)



14

More hashing (“ROM”)

Want the target KEMs

to provide IND-CCA2 security.

The proofs don’t give this,

even assuming security

of the underlying PKEs.

The proofs are limited to

ROM IND-CCA2 attacks.

Issue for Product NTRU

and for Quotient NTRU.

For all target KEMs, need non-

ROM IND-CCA2 cryptanalysis.

15

Decryption failures (“fail”/“conj”)

2017 Hofheinz–Hövelmanns–Kiltz

proofs do not rule out ROM IND-

CCA2 attacks with probability Q‹,

even if the PKEs are secure.

Q: number of hash calls.

‹: failure probability.

‹ = 0 proven for 10 KEMs:

ntru, ntrulpr, sntrup. (Also,

simpler ROM IND-CCA2 proof.)

frodo640, kyber512 prove

‹ ≤ 2−128 with security goal 2128.

frodo976 proves ‹ ≤ 2−192.



14

More hashing (“ROM”)

Want the target KEMs

to provide IND-CCA2 security.

The proofs don’t give this,

even assuming security

of the underlying PKEs.

The proofs are limited to

ROM IND-CCA2 attacks.

Issue for Product NTRU

and for Quotient NTRU.

For all target KEMs, need non-

ROM IND-CCA2 cryptanalysis.

15

Decryption failures (“fail”/“conj”)

2017 Hofheinz–Hövelmanns–Kiltz

proofs do not rule out ROM IND-

CCA2 attacks with probability Q‹,

even if the PKEs are secure.

Q: number of hash calls.

‹: failure probability.

‹ = 0 proven for 10 KEMs:

ntru, ntrulpr, sntrup. (Also,

simpler ROM IND-CCA2 proof.)

frodo640, kyber512 prove

‹ ≤ 2−128 with security goal 2128.

frodo976 proves ‹ ≤ 2−192.

16

The other 23 KEMs:

Security goal 2k

without proof that ‹ ≤ 2−k .

So need CCA cryptanalysis.



14

More hashing (“ROM”)

Want the target KEMs

to provide IND-CCA2 security.

The proofs don’t give this,

even assuming security

of the underlying PKEs.

The proofs are limited to

ROM IND-CCA2 attacks.

Issue for Product NTRU

and for Quotient NTRU.

For all target KEMs, need non-

ROM IND-CCA2 cryptanalysis.

15

Decryption failures (“fail”/“conj”)

2017 Hofheinz–Hövelmanns–Kiltz

proofs do not rule out ROM IND-

CCA2 attacks with probability Q‹,

even if the PKEs are secure.

Q: number of hash calls.

‹: failure probability.

‹ = 0 proven for 10 KEMs:

ntru, ntrulpr, sntrup. (Also,

simpler ROM IND-CCA2 proof.)

frodo640, kyber512 prove

‹ ≤ 2−128 with security goal 2128.

frodo976 proves ‹ ≤ 2−192.

16

The other 23 KEMs:

Security goal 2k

without proof that ‹ ≤ 2−k .

So need CCA cryptanalysis.



14

More hashing (“ROM”)

Want the target KEMs

to provide IND-CCA2 security.

The proofs don’t give this,

even assuming security

of the underlying PKEs.

The proofs are limited to

ROM IND-CCA2 attacks.

Issue for Product NTRU

and for Quotient NTRU.

For all target KEMs, need non-

ROM IND-CCA2 cryptanalysis.

15

Decryption failures (“fail”/“conj”)

2017 Hofheinz–Hövelmanns–Kiltz

proofs do not rule out ROM IND-

CCA2 attacks with probability Q‹,

even if the PKEs are secure.

Q: number of hash calls.

‹: failure probability.

‹ = 0 proven for 10 KEMs:

ntru, ntrulpr, sntrup. (Also,

simpler ROM IND-CCA2 proof.)

frodo640, kyber512 prove

‹ ≤ 2−128 with security goal 2128.

frodo976 proves ‹ ≤ 2−192.

16

The other 23 KEMs:

Security goal 2k

without proof that ‹ ≤ 2−k .

So need CCA cryptanalysis.



15

Decryption failures (“fail”/“conj”)

2017 Hofheinz–Hövelmanns–Kiltz

proofs do not rule out ROM IND-

CCA2 attacks with probability Q‹,

even if the PKEs are secure.

Q: number of hash calls.

‹: failure probability.

‹ = 0 proven for 10 KEMs:

ntru, ntrulpr, sntrup. (Also,

simpler ROM IND-CCA2 proof.)

frodo640, kyber512 prove

‹ ≤ 2−128 with security goal 2128.

frodo976 proves ‹ ≤ 2−192.

16

The other 23 KEMs:

Security goal 2k

without proof that ‹ ≤ 2−k .

So need CCA cryptanalysis.



15

Decryption failures (“fail”/“conj”)

2017 Hofheinz–Hövelmanns–Kiltz

proofs do not rule out ROM IND-

CCA2 attacks with probability Q‹,

even if the PKEs are secure.

Q: number of hash calls.

‹: failure probability.

‹ = 0 proven for 10 KEMs:

ntru, ntrulpr, sntrup. (Also,

simpler ROM IND-CCA2 proof.)

frodo640, kyber512 prove

‹ ≤ 2−128 with security goal 2128.

frodo976 proves ‹ ≤ 2−192.

16

The other 23 KEMs:

Security goal 2k

without proof that ‹ ≤ 2−k .

So need CCA cryptanalysis.

Main issues in these 23 KEMs:

• 14 KEMs do not claim

that ‹ is small enough.



15

Decryption failures (“fail”/“conj”)

2017 Hofheinz–Hövelmanns–Kiltz

proofs do not rule out ROM IND-

CCA2 attacks with probability Q‹,

even if the PKEs are secure.

Q: number of hash calls.

‹: failure probability.

‹ = 0 proven for 10 KEMs:

ntru, ntrulpr, sntrup. (Also,

simpler ROM IND-CCA2 proof.)

frodo640, kyber512 prove

‹ ≤ 2−128 with security goal 2128.

frodo976 proves ‹ ≤ 2−192.

16

The other 23 KEMs:

Security goal 2k

without proof that ‹ ≤ 2−k .

So need CCA cryptanalysis.

Main issues in these 23 KEMs:

• 14 KEMs do not claim

that ‹ is small enough.

• 15 KEMs conjecture ‹ ≤ · · ·
without claiming proof.



15

Decryption failures (“fail”/“conj”)

2017 Hofheinz–Hövelmanns–Kiltz

proofs do not rule out ROM IND-

CCA2 attacks with probability Q‹,

even if the PKEs are secure.

Q: number of hash calls.

‹: failure probability.

‹ = 0 proven for 10 KEMs:

ntru, ntrulpr, sntrup. (Also,

simpler ROM IND-CCA2 proof.)

frodo640, kyber512 prove

‹ ≤ 2−128 with security goal 2128.

frodo976 proves ‹ ≤ 2−192.

16

The other 23 KEMs:

Security goal 2k

without proof that ‹ ≤ 2−k .

So need CCA cryptanalysis.

Main issues in these 23 KEMs:

• 14 KEMs do not claim

that ‹ is small enough.

• 15 KEMs conjecture ‹ ≤ · · ·
without claiming proof.

• 5 KEMs have proofs but do not

clearly use correct ‹ definition.

(LEDA uses wrong definition.)



15

Decryption failures (“fail”/“conj”)

2017 Hofheinz–Hövelmanns–Kiltz

proofs do not rule out ROM IND-

CCA2 attacks with probability Q‹,

even if the PKEs are secure.

Q: number of hash calls.

‹: failure probability.

‹ = 0 proven for 10 KEMs:

ntru, ntrulpr, sntrup. (Also,

simpler ROM IND-CCA2 proof.)

frodo640, kyber512 prove

‹ ≤ 2−128 with security goal 2128.

frodo976 proves ‹ ≤ 2−192.

16

The other 23 KEMs:

Security goal 2k

without proof that ‹ ≤ 2−k .

So need CCA cryptanalysis.

Main issues in these 23 KEMs:

• 14 KEMs do not claim

that ‹ is small enough.

• 15 KEMs conjecture ‹ ≤ · · ·
without claiming proof.

• 5 KEMs have proofs but do not

clearly use correct ‹ definition.

(LEDA uses wrong definition.)

17

What about quantum attacks?

Consider quantum computers

for each cryptanalytic target.



15

Decryption failures (“fail”/“conj”)

2017 Hofheinz–Hövelmanns–Kiltz

proofs do not rule out ROM IND-

CCA2 attacks with probability Q‹,

even if the PKEs are secure.

Q: number of hash calls.

‹: failure probability.

‹ = 0 proven for 10 KEMs:

ntru, ntrulpr, sntrup. (Also,

simpler ROM IND-CCA2 proof.)

frodo640, kyber512 prove

‹ ≤ 2−128 with security goal 2128.

frodo976 proves ‹ ≤ 2−192.

16

The other 23 KEMs:

Security goal 2k

without proof that ‹ ≤ 2−k .

So need CCA cryptanalysis.

Main issues in these 23 KEMs:

• 14 KEMs do not claim

that ‹ is small enough.

• 15 KEMs conjecture ‹ ≤ · · ·
without claiming proof.

• 5 KEMs have proofs but do not

clearly use correct ‹ definition.

(LEDA uses wrong definition.)

17

What about quantum attacks?

Consider quantum computers

for each cryptanalytic target.



15

Decryption failures (“fail”/“conj”)

2017 Hofheinz–Hövelmanns–Kiltz

proofs do not rule out ROM IND-

CCA2 attacks with probability Q‹,

even if the PKEs are secure.

Q: number of hash calls.

‹: failure probability.

‹ = 0 proven for 10 KEMs:

ntru, ntrulpr, sntrup. (Also,

simpler ROM IND-CCA2 proof.)

frodo640, kyber512 prove

‹ ≤ 2−128 with security goal 2128.

frodo976 proves ‹ ≤ 2−192.

16

The other 23 KEMs:

Security goal 2k

without proof that ‹ ≤ 2−k .

So need CCA cryptanalysis.

Main issues in these 23 KEMs:

• 14 KEMs do not claim

that ‹ is small enough.

• 15 KEMs conjecture ‹ ≤ · · ·
without claiming proof.

• 5 KEMs have proofs but do not

clearly use correct ‹ definition.

(LEDA uses wrong definition.)

17

What about quantum attacks?

Consider quantum computers

for each cryptanalytic target.



16

The other 23 KEMs:

Security goal 2k

without proof that ‹ ≤ 2−k .

So need CCA cryptanalysis.

Main issues in these 23 KEMs:

• 14 KEMs do not claim

that ‹ is small enough.

• 15 KEMs conjecture ‹ ≤ · · ·
without claiming proof.

• 5 KEMs have proofs but do not

clearly use correct ‹ definition.

(LEDA uses wrong definition.)

17

What about quantum attacks?

Consider quantum computers

for each cryptanalytic target.



16

The other 23 KEMs:

Security goal 2k

without proof that ‹ ≤ 2−k .

So need CCA cryptanalysis.

Main issues in these 23 KEMs:

• 14 KEMs do not claim

that ‹ is small enough.

• 15 KEMs conjecture ‹ ≤ · · ·
without claiming proof.

• 5 KEMs have proofs but do not

clearly use correct ‹ definition.

(LEDA uses wrong definition.)

17

What about quantum attacks?

Consider quantum computers

for each cryptanalytic target.

When hashing is involved,

analyze three types of attacks:

(1) ROM attacks.

(2) Non-ROM QROM attacks.

(3) Non-QROM attacks.



16

The other 23 KEMs:

Security goal 2k

without proof that ‹ ≤ 2−k .

So need CCA cryptanalysis.

Main issues in these 23 KEMs:

• 14 KEMs do not claim

that ‹ is small enough.

• 15 KEMs conjecture ‹ ≤ · · ·
without claiming proof.

• 5 KEMs have proofs but do not

clearly use correct ‹ definition.

(LEDA uses wrong definition.)

17

What about quantum attacks?

Consider quantum computers

for each cryptanalytic target.

When hashing is involved,

analyze three types of attacks:

(1) ROM attacks.

(2) Non-ROM QROM attacks.

(3) Non-QROM attacks.

Sometimes proofs eliminate #1.

Ongoing efforts to extend proofs

to similarly eliminate #2.

Most QROM proofs are loose,

but see 2019 Bindel–Hamburg–

Hülsing–Persichetti.



16

The other 23 KEMs:

Security goal 2k

without proof that ‹ ≤ 2−k .

So need CCA cryptanalysis.

Main issues in these 23 KEMs:

• 14 KEMs do not claim

that ‹ is small enough.

• 15 KEMs conjecture ‹ ≤ · · ·
without claiming proof.

• 5 KEMs have proofs but do not

clearly use correct ‹ definition.

(LEDA uses wrong definition.)

17

What about quantum attacks?

Consider quantum computers

for each cryptanalytic target.

When hashing is involved,

analyze three types of attacks:

(1) ROM attacks.

(2) Non-ROM QROM attacks.

(3) Non-QROM attacks.

Sometimes proofs eliminate #1.

Ongoing efforts to extend proofs

to similarly eliminate #2.

Most QROM proofs are loose,

but see 2019 Bindel–Hamburg–

Hülsing–Persichetti.

18

What about multi-user attacks?

Each KEM has quantitative claim

of single-user security level –.



16

The other 23 KEMs:

Security goal 2k

without proof that ‹ ≤ 2−k .

So need CCA cryptanalysis.

Main issues in these 23 KEMs:

• 14 KEMs do not claim

that ‹ is small enough.

• 15 KEMs conjecture ‹ ≤ · · ·
without claiming proof.

• 5 KEMs have proofs but do not

clearly use correct ‹ definition.

(LEDA uses wrong definition.)

17

What about quantum attacks?

Consider quantum computers

for each cryptanalytic target.

When hashing is involved,

analyze three types of attacks:

(1) ROM attacks.

(2) Non-ROM QROM attacks.

(3) Non-QROM attacks.

Sometimes proofs eliminate #1.

Ongoing efforts to extend proofs

to similarly eliminate #2.

Most QROM proofs are loose,

but see 2019 Bindel–Hamburg–

Hülsing–Persichetti.

18

What about multi-user attacks?

Each KEM has quantitative claim

of single-user security level –.



16

The other 23 KEMs:

Security goal 2k

without proof that ‹ ≤ 2−k .

So need CCA cryptanalysis.

Main issues in these 23 KEMs:

• 14 KEMs do not claim

that ‹ is small enough.

• 15 KEMs conjecture ‹ ≤ · · ·
without claiming proof.

• 5 KEMs have proofs but do not

clearly use correct ‹ definition.

(LEDA uses wrong definition.)

17

What about quantum attacks?

Consider quantum computers

for each cryptanalytic target.

When hashing is involved,

analyze three types of attacks:

(1) ROM attacks.

(2) Non-ROM QROM attacks.

(3) Non-QROM attacks.

Sometimes proofs eliminate #1.

Ongoing efforts to extend proofs

to similarly eliminate #2.

Most QROM proofs are loose,

but see 2019 Bindel–Hamburg–

Hülsing–Persichetti.

18

What about multi-user attacks?

Each KEM has quantitative claim

of single-user security level –.



17

What about quantum attacks?

Consider quantum computers

for each cryptanalytic target.

When hashing is involved,

analyze three types of attacks:

(1) ROM attacks.

(2) Non-ROM QROM attacks.

(3) Non-QROM attacks.

Sometimes proofs eliminate #1.

Ongoing efforts to extend proofs

to similarly eliminate #2.

Most QROM proofs are loose,

but see 2019 Bindel–Hamburg–

Hülsing–Persichetti.

18

What about multi-user attacks?

Each KEM has quantitative claim

of single-user security level –.



17

What about quantum attacks?

Consider quantum computers

for each cryptanalytic target.

When hashing is involved,

analyze three types of attacks:

(1) ROM attacks.

(2) Non-ROM QROM attacks.

(3) Non-QROM attacks.

Sometimes proofs eliminate #1.

Ongoing efforts to extend proofs

to similarly eliminate #2.

Most QROM proofs are loose,

but see 2019 Bindel–Hamburg–

Hülsing–Persichetti.

18

What about multi-user attacks?

Each KEM has quantitative claim

of single-user security level –.

This claim implies quantitative

claim –′ of U-user security.

–′ vs. –: looseness factor U.



17

What about quantum attacks?

Consider quantum computers

for each cryptanalytic target.

When hashing is involved,

analyze three types of attacks:

(1) ROM attacks.

(2) Non-ROM QROM attacks.

(3) Non-QROM attacks.

Sometimes proofs eliminate #1.

Ongoing efforts to extend proofs

to similarly eliminate #2.

Most QROM proofs are loose,

but see 2019 Bindel–Hamburg–

Hülsing–Persichetti.

18

What about multi-user attacks?

Each KEM has quantitative claim

of single-user security level –.

This claim implies quantitative

claim –′ of U-user security.

–′ vs. –: looseness factor U.

The only risks of this U-user

security claim being broken

come from the single-user

security claim – being broken.



17

What about quantum attacks?

Consider quantum computers

for each cryptanalytic target.

When hashing is involved,

analyze three types of attacks:

(1) ROM attacks.

(2) Non-ROM QROM attacks.

(3) Non-QROM attacks.

Sometimes proofs eliminate #1.

Ongoing efforts to extend proofs

to similarly eliminate #2.

Most QROM proofs are loose,

but see 2019 Bindel–Hamburg–

Hülsing–Persichetti.

18

What about multi-user attacks?

Each KEM has quantitative claim

of single-user security level –.

This claim implies quantitative

claim –′ of U-user security.

–′ vs. –: looseness factor U.

The only risks of this U-user

security claim being broken

come from the single-user

security claim – being broken.

As far as I can tell,

none of the target KEMs

claim higher U-user security.


