Quantum attacks against isogenies

Daniel J. Bernstein

1994 Shor discrete-log algorithm:

Input prime p; $g \in \mathbf{F}_p^*$; $h \in g^{\mathbf{Z}}$.

Define $\varphi : \mathbf{Z} \times \mathbf{Z} \to \mathbf{F}_p^*$ by $\varphi(a, b) = g^a h^b$. Fast function.

If $h = g^s$ and g has order Nthen $\operatorname{Ker} \varphi = \mathbf{Z}(N, 0) + \mathbf{Z}(s, -1)$.

Shor computes φ on quantum superposition of many (a, b); deduces Ker φ ; deduces s in \mathbf{Z}/N .

Shor also generalizes from \mathbf{F}_{p}^{*} to other finite groups with fast computations.

e.g. \mathbf{F}_q^* for prime power q; $E(\mathbf{F}_q)$ for elliptic curve E/\mathbf{F}_q .

Shor also generalizes from \mathbf{F}_{p}^{*} to other finite groups with fast computations.

e.g. \mathbf{F}_q^* for prime power q; $E(\mathbf{F}_q)$ for elliptic curve E/\mathbf{F}_q .

1995 Boneh-Lipton:

Find "hidden" lattice $L \subseteq \mathbf{Z}^n$, given fast function $\varphi : \mathbf{Z}^n \to X$ that induces $\mathbf{Z}^n/L \hookrightarrow X$.

Shor also generalizes from \mathbf{F}_{p}^{*} to other finite groups with fast computations.

e.g. \mathbf{F}_q^* for prime power q; $E(\mathbf{F}_q)$ for elliptic curve E/\mathbf{F}_q .

1995 Boneh-Lipton:

Find "hidden" lattice $L \subseteq \mathbf{Z}^n$, given fast function $\varphi : \mathbf{Z}^n \to X$ that induces $\mathbf{Z}^n/L \hookrightarrow X$.

Non-commutative generalizations: e.g. find hidden subgroup $H \subseteq S_n$, given fast function $\varphi: S_n \to X$ that induces $S_n/H \hookrightarrow X$? Some progress, some obstacles.

Given $N \in \mathbf{Z}$, N > 0; $f_0 : \mathbf{Z}/N \hookrightarrow X$; $f_1 : \mathbf{Z}/N \hookrightarrow X$; $f_1(a) = f_0(a+s)$ for all $a \in \mathbf{Z}/N$.

Goal: Find $s \in \mathbf{Z}/N$.

Given $N \in \mathbf{Z}$, N > 0;

 $f_0: \mathbf{Z}/\mathsf{N} \hookrightarrow X; \ f_1: \mathbf{Z}/\mathsf{N} \hookrightarrow X;$

 $f_1(a) = f_0(a + s)$ for all $a \in {\bf Z}/N$.

Goal: Find $s \in \mathbf{Z}/N$.

Dihedral group $D_N = \mathbf{Z}/N \times \mathbf{Z}/2$: $(a, b)(c, d) = (a + (-1)^b c, b + d)$.

Given $N \in \mathbf{Z}$, N > 0; $f_0 : \mathbf{Z}/N \hookrightarrow X$; $f_1 : \mathbf{Z}/N \hookrightarrow X$; $f_1(a) = f_0(a+s)$ for all $a \in \mathbf{Z}/N$.

Goal: Find $s \in \mathbf{Z}/N$.

Dihedral group $D_N = \mathbf{Z}/N \times \mathbf{Z}/2$: $(a, b)(c, d) = (a + (-1)^b c, b + d)$.

Define $\varphi: D_N \to X$ by $\varphi(a, i) = f_i(a)$. Then φ hides subgroup $\{(0, 0), (s, 1)\}$ of D_N .

Given $N \in \mathbf{Z}$, N > 0; $f_0 : \mathbf{Z}/N \hookrightarrow X$; $f_1 : \mathbf{Z}/N \hookrightarrow X$; $f_1(a) = f_0(a+s)$ for all $a \in \mathbf{Z}/N$.

Goal: Find $s \in \mathbf{Z}/N$.

Dihedral group $D_N = \mathbf{Z}/N \times \mathbf{Z}/2$: $(a, b)(c, d) = (a + (-1)^b c, b + d)$.

Define $\varphi: D_N \to X$ by $\varphi(a, i) = f_i(a)$. Then φ hides subgroup $\{(0, 0), (s, 1)\}$ of D_N .

These are the only "Shor-hard" hidden subgroups of D_N .

1998 Ettinger-Høyer:

Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation.

1998 Ettinger-Høyer:

Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation.

(1999–2004 Ettinger–Høyer–Knill: Similarly few evaluations for hidden subgroups of any group.)

1998 Ettinger–Høyer:

Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation.

(1999–2004 Ettinger–Høyer–Knill: Similarly few evaluations for hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using more quantum φ evaluations, less φ -independent computation.

1998 Ettinger–Høyer:

Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation.

(1999–2004 Ettinger–Høyer–Knill: Similarly few evaluations for hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using more quantum φ evaluations, less φ -independent computation.

2004 Regev, 2011 Kuperberg: More tradeoffs, better tradeoffs.

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$.

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm.

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{\mathbf{Z}}$.

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{\mathbf{Z}}$.

Given $E_0, E_1 \in X$: define

 $f_0: \mathbf{Z}/\mathsf{N} \hookrightarrow X \text{ by } a \mapsto [I]^a E_0;$

 $f_1: \mathbf{Z}/\mathsf{N} \hookrightarrow X \text{ by } a \mapsto [I]^a E_1.$

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{\mathbf{Z}}$.

Given E_0 , $E_1 \in X$: define

 $f_0: \mathbf{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_0$;

 $f_1: \mathbf{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_1$.

 $E_1 = [I]^s E_0$ for some $s \in \mathbf{Z}/N$.

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{\mathbf{Z}}$.

Given E_0 , $E_1 \in X$: define

 $f_0: \mathbf{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_0$;

 $f_1: \mathbf{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_1$.

 $E_1 = [I]^s E_0$ for some $s \in \mathbf{Z}/N$. $f_1(a) = f_0(a+s)$ for all $a \in \mathbf{Z}/N$.

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{\mathbf{Z}}$.

Given $E_0, E_1 \in X$: define $f_0: \mathbf{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_0;$

 $f_1: \mathbf{Z}/\mathsf{N} \hookrightarrow X \text{ by } a \mapsto [I]^a E_1.$

 $E_1 = [I]^s E_0$ for some $s \in \mathbf{Z}/N$. $f_1(a) = f_0(a+s)$ for all $a \in \mathbf{Z}/N$. Find the hidden shift s in f_0, f_1 .

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1]$, $[P_2]$, $[P_3]$, . . . , $[P_d]$. e.g., d = 74 for CSIDH-512.

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1]$, $[P_2]$, $[P_3]$, ..., $[P_d]$. e.g., d = 74 for CSIDH-512. $[P_1]^5[P_2]^4[P_3]^1$: 10 steps.

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1]$, $[P_2]$, $[P_3]$, . . . , $[P_d]$. e.g., d = 74 for CSIDH-512.

 $[P_1]^5[P_2]^4[P_3]^1$: 10 steps. $[P_1]^{7038304916}$: 7038304916 steps.

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1]$, $[P_2]$, $[P_3]$, . . . , $[P_d]$. e.g., d = 74 for CSIDH-512.

 $[P_1]^5[P_2]^4[P_3]^1$: 10 steps. $[P_1]^{7038304916}$: 7038304916 steps. $[P_1]^a$ for huge $a \in \mathbf{Z}/N$: Hmmm.

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1]$, $[P_2]$, $[P_3]$, . . . , $[P_d]$. e.g., d = 74 for CSIDH-512.

 $[P_1]^5[P_2]^4[P_3]^1$: 10 steps. $[P_1]^{7038304916}$: 7038304916 steps. $[P_1]^a$ for huge $a \in \mathbf{Z}/N$: Hmmm.

Approach 1: Compute lattice $L = \text{Ker}(a_1, \dots, a_d \mapsto [P_1]^{a_1} \cdots [P_d]^{a_d}).$

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1]$, $[P_2]$, $[P_3]$, . . . , $[P_d]$. e.g., d = 74 for CSIDH-512.

 $[P_1]^5[P_2]^4[P_3]^1$: 10 steps. $[P_1]^{7038304916}$: 7038304916 steps. $[P_1]^a$ for huge $a \in \mathbf{Z}/N$: Hmmm.

Approach 1: Compute lattice $L = \text{Ker}(a_1, \dots, a_d \mapsto [P_1]^{a_1} \cdots [P_d]^{a_d}).$

Given $a \in \mathbf{Z}^d$, find close $v \in L$: distance $\exp((\log N)^{1/2+o(1)})$ using time $\exp((\log N)^{1/2+o(1)})$.

2010 Childs-Jao-Soukharev:

A. Time $\exp((\log N)^{1/2+o(1)})$ to compute G action by Approach 2.

2010 Childs—Jao—Soukharev:

- A. Time $\exp((\log N)^{1/2+o(1)})$ to compute G action by Approach 2.
- B. Unfixably flawed argument that Approach 2 beats Approach 1.

2010 Childs-Jao-Soukharev:

- A. Time $\exp((\log N)^{1/2+o(1)})$ to compute G action by Approach 2.
- B. Unfixably flawed argument that Approach 2 beats Approach 1.
- C. Apply Kuperberg (or Regev): Time $\exp((\log N)^{1/2+o(1)})$ to find $g \in G$ with $gE_0 = E_1$.

2010 Childs-Jao-Soukharev:

- A. Time $\exp((\log N)^{1/2+o(1)})$ to compute G action by Approach 2.
- B. Unfixably flawed argument that Approach 2 beats Approach 1.
- C. Apply Kuperberg (or Regev): Time $\exp((\log N)^{1/2+o(1)})$ to find $g \in G$ with $gE_0 = E_1$.
- D. Proof assuming only GRH, using provable-factoring ideas.

Approach 3 (mentioned in 2018 Bernstein-Lange-Martindale-Panny): Uniform (a_1, \ldots, a_d) in $\{-c, \ldots, c\}^d$. Choose c somewhat larger than users do.

Not much slowdown in action. Surely $g = [P_1]^{a_1} \cdots [P_d]^{a_d}$ is nearly uniformly distributed in G.

Approach 3 (mentioned in 2018 Bernstein-Lange-Martindale-Panny): Uniform (a_1, \ldots, a_d) in $\{-c, \ldots, c\}^d$. Choose c somewhat larger than users do.

Not much slowdown in action. Surely $g = [P_1]^{a_1} \cdots [P_d]^{a_d}$ is nearly uniformly distributed in G.

Can quickly compute gE_b and image of g in \mathbf{Z}/N .

Approach 3 (mentioned in 2018 Bernstein-Lange-Martindale-Panny): Uniform (a_1, \ldots, a_d) in $\{-c, \ldots, c\}^d$. Choose c somewhat larger than users do.

Not much slowdown in action. Surely $g = [P_1]^{a_1} \cdots [P_d]^{a_d}$ is nearly uniformly distributed in G.

Can quickly compute gE_b and image of g in \mathbf{Z}/N .

Need more analysis of impact of these redundant representations upon Kuperberg's algorithm.

e.g. CSIDH-512, user distribution on G, error rate $<2^{-32}$ (is this adequate?), nonlinear bit ops:

 $pprox 2^{51}$ by 2018 Jao-LeGrow-Leonardi-Ruiz-Lopez.

e.g. CSIDH-512, user distribution on G, error rate $<2^{-32}$ (is this adequate?), nonlinear bit ops:

 $pprox 2^{51}$ by 2018 Jao-LeGrow-Leonardi-Ruiz-Lopez.

Many optimizations, detailed analysis: $765325228976 \approx 0.7 \cdot 2^{40}$ by 2018 BLMP Algorithm 8.1.

e.g. CSIDH-512, user distribution on G, error rate $<2^{-32}$ (is this adequate?), nonlinear bit ops:

 $pprox 2^{51}$ by 2018 Jao-LeGrow-Leonardi-Ruiz-Lopez.

Many optimizations, detailed analysis: $765325228976 \approx 0.7 \cdot 2^{40}$ by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org

full software and 56-page paper; variations in 512, distrib, 2^{-32} .

e.g. CSIDH-512, user distribution on G, error rate $<2^{-32}$ (is this adequate?), nonlinear bit ops:

 $pprox 2^{51}$ by 2018 Jao-LeGrow-Leonardi-Ruiz-Lopez.

Many optimizations, detailed analysis: $765325228976 \approx 0.7 \cdot 2^{40}$ by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper; variations in 512, distrib, 2^{-32} .

Next big challenge: AT analysis.

How many actions + other costs?

2011 Kuperberg estimates "time" $\exp((0.98...+o(1))(\log_2 N)^{1/2});$ compares to 2003 Kuperberg: $\exp((1.23...+o(1))(\log_2 N)^{1/2}).$

How many actions + other costs?

2011 Kuperberg estimates "time" $\exp((0.98...+o(1))(\log_2 N)^{1/2});$ compares to 2003 Kuperberg: $\exp((1.23...+o(1))(\log_2 N)^{1/2}).$

Open: Do better than 1/2? Do better than 0.98...?

How many actions + other costs?

2011 Kuperberg estimates "time" $\exp((0.98...+o(1))(\log_2 N)^{1/2});$ compares to 2003 Kuperberg: $\exp((1.23...+o(1))(\log_2 N)^{1/2}).$

Open: Do better than 1/2? Do better than 0.98...?

Exact number of actions? Some work on analysis+optimization: 2003 Kuperberg; 2011 Kuperberg; 2018 Bonnetain-Naya-Plasencia; 2018 Bonnetain-Schrottenloher; 2019 Kuperberg; 2019 Peikert; 2019 Bonnetain-Schrottenloher.