Quantum attacks
against i1sogenies

Daniel J. Bernstein

1994 Shor discrete-log algorithm:
Input prime p; g € F%; h € g,

Define 9 : Z X Z — F}, by
p(a, b) = g?hP. Fast function.

If h= g and g has order N/
then Keryp = Z(N,0) + Z(s, —1).

Shor computes ¢ on quantum
superposition of many (a, b);
deduces Ker ¢; deduces s in Z/N.
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Shor also generalizes

from F7 to other finite groups
with fast computations.

e.g. Fg for prime power g;
E(Fg) for elliptic curve E/F,.

1995 Boneh—Lipton:
Find “hidden” lattice L C Z"

given fast function ¢ : Z" — X
that induces Z" /L — X.

Non-commutative generalizations:
e.g. find hidden subgroup H C §,,
given fast function ¢ : 5, — X
that induces S,/H — X7

Some progress, some obstacles.
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Given Ne Z, N > 0;
fo: Z/N — X; f1:Z/N — X;
fi(a) = fo(a+s) for all ae Z/N.

Goal: Find se Z/N.

Dihedral group Dy = Z/N x Z/2:
(a, b)(c,d) = (a+ (—1)Pc, b+ d).
Define ¢ : Dy — X by

@(a, i) = fi(a). Then ¢ hides
subgroup {(0,0), (s, 1)} of Dy.

These are the only “Shor-hard”
hidden subgroups of Dy.
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1998 Ettinger—Hgyer:
Solve hidden-shift problem using

O(log N) quantum ¢ evaluations,
huge p-independent computation.

(1999-2004 Ettinger—Hgyer—Knill:
Similarly few evaluations for
hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using
more quantum ¢ evaluations,
less p-Independent computation.

2004 Regev, 2011 Kuperberg:
More tradeoffs, better tradeoffs.
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Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively
on a set X of curves over Fy.

Usually G = Z/N with N = p!/2.
Compute N by Shor's algorithm.
Find ideal I with G = [I]4.

Given Eq, E1 € X: define
fO Z/N‘%X by at— _I_aE();
Z/N — X by a— [I|?E;.

Ei1 = [I]?Eqg for some s € Z/N.
fi(a) = fo(a+s) for all a€ Z/N.
Find the hidden shift s in fp, f1.
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Steps for CRS/CSIDH users:
fast algorithms for actions of
small [Pi], [P>], [P3], ..., [P,].
e.g., d = 74 for CSIDH-512.

P1]°[Po]*[P3]t: 10 steps.
P;]7038304916. 7038304916 steps.
P1]? for huge a € Z/N: Hmmm.

Approach 1: Compute lattice L =
Ker(ay, ..., ag +— [P1]?t - [Pyg]9d).

Given a € Z9, find close v € L:
distance exp((log N)1/2+o(1))
using time exp((log N)1/2+0(1)).
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Approach 2: Increase d up to
exp((log N)1/2+2(1)Y " Search
randomly for small relations.

2010 Childs—Jao—Soukharev:

A. Time exp((log N)1/2to(1)) to
compute G action by Approach 2.

B. Unfixably flawed argument that
Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):
Time exp((log N)1/2+o(1))
to find g € G with gEg = E;.

D. Proof assuming only GRH,
using provable-factoring ideas.
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Approach 3 (mentioned in 2018
Bernstein—Lange—Martindale—
Panny): Uniform (a1,...,ay4)
in {—c,...,c}9. Choose ¢
somewhat larger than users do.

Not much slowdown in action.
Surely g = [Py]°1 - - - [P4]%d is
nearly uniformly distributed in G.

Can quickly compute gEy,
and image of g in Z/N.

Need more analysis of impact of
these redundant representations
upon Kuperberg's algorithm.
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How fast are the steps?

e.g. CSIDH-512, user distribution
on G, error rate <273 (is this
adequate?), nonlinear bit ops:

~2°1 by 2018 Jao—-LeGrow-
| eonardi—Ruiz-Lopez.

Many optimizations, detailed
analysis: 765325228976 = 0.7 - 240
by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:
full software and 56-page paper;

variations in 512, distrib, 232

Next big challenge: AT analysis.


https://quantum.isogenies.org
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2011 Kuperberg estimates “time”
exp((0.98... + o(1))(log, N)1/2);
compares to 2003 Kuperberg:

exp((1.23 ... + o(1))(logy, N)1/2).

Open: Do better than 1/27
Do better than 0.98...7

Exact number of actions? Some
work on analysis+optimization:

2003 Kuperberg; 2011 Kuperberg;

2018 Bonnetain—Naya-Plasencia;
2018 Bonnetain—Schrottenloher;
2019 Kuperberg; 2019 Peikert;

2019 Bonnetain—Schrottenloher.
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