Quantum attacks against isogenies

Daniel J. Bernstein

1994 Shor discrete-log algorithm:
Input prime $p ; g \in \mathbf{F}_{p}^{*} ; h \in g^{\mathbf{Z}}$.
Define $\varphi: \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{F}_{p}^{*}$ by
$\varphi(a, b)=g^{a} h^{b}$. Fast function.
If $h=g^{S}$ and g has order N then $\operatorname{Ker} \varphi=\mathbf{Z}(N, 0)+\mathbf{Z}(s,-1)$.

Stor computes φ on quantum superposition of many (a, b); deduces $\operatorname{Ker} \varphi$; deduces s in \mathbf{Z} / N.

Shor also generalizes
from F_{p}^{*} to other finite groups with fast computations.
e.g. F_{q}^{*} for prime power q; $E\left(\mathbf{F}_{q}\right)$ for elliptic curve E / \mathbf{F}_{q}.

Shor also generalizes
from F_{p}^{*} to other finite groups with fast computations. e.g. F_{q}^{*} for prime power q; $E\left(\mathbf{F}_{q}\right)$ for elliptic curve E / F_{q}. 1995 Boneh-Lipton: Find "hidden" lattice $L \subseteq \mathbf{Z}^{n}$, given fast function $\varphi: \mathbf{Z}^{n} \rightarrow X$ that induces $\mathbf{Z}^{n} / L \hookrightarrow X$.

Shor also generalizes
from F_{p}^{*} to other finite groups with fast computations.
egg. F_{q}^{*} for prime power q;
$E\left(\mathbf{F}_{q}\right)$ for elliptic curve E / F_{q}.
1995 Boneh-Lipton:
Find "hidden" lattice $L \subseteq \mathbf{Z}^{n}$,
given fast function $\varphi: \mathbf{Z}^{n} \rightarrow X$ that induces $Z^{n} / L \hookrightarrow X$.

Non-commutative generalizations: e.g. find hidden subgroup $H \subseteq S_{n}$, given fast function $\varphi: S_{n} \rightarrow X$ that induces $S_{n} / H \hookrightarrow X$?
Some progress, some obstacles.

The hidden-shift problem

Given $N \in \mathbf{Z}, N>0$;
$f_{0}: \mathbf{Z} / N \hookrightarrow X ; f_{1}: \mathbf{Z} / N \hookrightarrow X ;$
$f_{1}(a)=f_{0}(a+s)$ for all $a \in \mathbf{Z} / N$.
Goal: Find $s \in \mathbf{Z} / N$.

The hidden-shift problem

Given $N \in \mathbf{Z}, N>0$;
$f_{0}: \mathbf{Z} / N \hookrightarrow X ; f_{1}: \mathbf{Z} / N \hookrightarrow X$; $f_{1}(a)=f_{0}(a+s)$ for all $a \in \mathbf{Z} / N$.

Goal: Find $s \in \mathbf{Z} / N$.
Dihedral group $D_{N}=\mathbf{Z} / N \times \mathbf{Z} / 2$:
$(a, b)(c, d)=\left(a+(-1)^{b} c, b+d\right)$.

The hidden-shift problem

Given $N \in \mathbf{Z}, N>0$;
$f_{0}: \mathbf{Z} / N \hookrightarrow X ; f_{1}: \mathbf{Z} / N \hookrightarrow X$;
$f_{1}(a)=f_{0}(a+s)$ for all $a \in \mathbf{Z} / N$.
Goal: Find $s \in \mathbf{Z} / N$.
Dihedral group $D_{N}=\mathbf{Z} / N \times \mathbf{Z} / 2$:
$(a, b)(c, d)=\left(a+(-1)^{b} c, b+d\right)$.
Define $\varphi: D_{N} \rightarrow X$ by
$\varphi(a, i)=f_{i}(a)$. Then φ hides
subgroup $\{(0,0),(s, 1)\}$ of D_{N}.

The hidden-shift problem

Given $N \in \mathbf{Z}, N>0$;
$f_{0}: \mathbf{Z} / N \hookrightarrow X ; f_{1}: \mathbf{Z} / N \hookrightarrow X$;
$f_{1}(a)=f_{0}(a+s)$ for all $a \in \mathbf{Z} / N$.
Goal: Find $s \in \mathbf{Z} / N$.
Dihedral group $D_{N}=\mathbf{Z} / N \times \mathbf{Z} / 2$:
$(a, b)(c, d)=\left(a+(-1)^{b} c, b+d\right)$.
Define $\varphi: D_{N} \rightarrow X$ by
$\varphi(a, i)=f_{i}(a)$. Then φ hides
subgroup $\{(0,0),(s, 1)\}$ of D_{N}.
These are the only "Shor-hard" hidden subgroups of D_{N}.

1998 Ettinger-Høyer:
Solve hidden-shift problem using
$O(\log N)$ quantum φ evaluations, huge φ-independent computation.

1998 Ettinger-Høyer:
Solve hidden-shift problem using
$O(\log N)$ quantum φ evaluations, huge φ-independent computation.
(1999-2004 Ettinger-Høyer-Knill:
Similarly few evaluations for
hidden subgroups of any group.)

1998 Ettinger-Høyer:
Solve hidden-shift problem using
$O(\log N)$ quantum φ evaluations, huge φ-independent computation.
(1999-2004 Ettinger-Høyer-Knill:
Similarly few evaluations for hidden subgroups of any group.)

2003 Kuperberg:
Solve hidden-shift problem using more quantum φ evaluations, less φ-independent computation.

1998 Ettinger-Høyer:
Solve hidden-shift problem using
$O(\log N)$ quantum φ evaluations, huge φ-independent computation.
(1999-2004 Ettinger-Høyer-Knill:
Similarly few evaluations for hidden subgroups of any group.)

2003 Kuperberg:
Solve hidden-shift problem using more quantum φ evaluations, less φ-independent computation.

2004 Regev, 2011 Kuperberg: More tradeoffs, better tradeoffs.

Attacking isogenies

CRS/CSIDH: Class group G acts freely and transitively
on a set X of curves over \mathbf{F}_{p}.

Attacking isogenies

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_{p}. Usually $G \cong \mathbf{Z} / N$ with $N \approx p^{1 / 2}$.

Attacking isogenies

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_{p}. Usually $G \cong \mathbf{Z} / N$ with $N \approx p^{1 / 2}$. Compute N by Shor's algorithm.

Attacking isogenies

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_{p}. Usually $G \cong \mathbf{Z} / N$ with $N \approx p^{1 / 2}$. Compute N by Shor's algorithm. Find ideal I with $G=[I]^{\mathbf{Z}}$.

Attacking isogenies

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_{p}. Usually $G \cong \mathbf{Z} / N$ with $N \approx p^{1 / 2}$. Compute N by Shor's algorithm. Find ideal I with $G=[I]^{\mathbf{Z}}$.

Given $E_{0}, E_{1} \in X$: define $f_{0}: \mathbf{Z} / N \hookrightarrow X$ by $a \mapsto[I]^{a} E_{0}$; $f_{1}: \mathbf{Z} / N \hookrightarrow X$ by $a \mapsto[I]^{a} E_{1}$.

Attacking isogenies

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_{p}. Usually $G \cong \mathbf{Z} / N$ with $N \approx p^{1 / 2}$.
Compute N by Shor's algorithm. Find ideal I with $G=[I]^{\mathbf{Z}}$.

Given $E_{0}, E_{1} \in X$: define $f_{0}: \mathbf{Z} / N \hookrightarrow X$ by $a \mapsto[I]^{a} E_{0}$; $f_{1}: \mathbf{Z} / N \hookrightarrow X$ by $a \mapsto[I]^{a} E_{1}$.
$E_{1}=[I]^{s} E_{0}$ for some $s \in \mathbf{Z} / N$.

Attacking isogenies

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_{p}. Usually $G \cong \mathbf{Z} / N$ with $N \approx p^{1 / 2}$.
Compute N by Shor's algorithm. Find ideal I with $G=[I]^{\mathbf{Z}}$.

Given $E_{0}, E_{1} \in X$: define $f_{0}: \mathbf{Z} / N \hookrightarrow X$ by $a \mapsto[I]^{a} E_{0}$; $f_{1}: \mathbf{Z} / N \hookrightarrow X$ by $a \mapsto[I]^{a} E_{1}$.
$E_{1}=[I]^{S} E_{0}$ for some $s \in \mathbf{Z} / N$. $f_{1}(a)=f_{0}(a+s)$ for all $a \in \mathbf{Z} / N$.

Attacking isogenies

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_{p}. Usually $G \cong \mathbf{Z} / N$ with $N \approx p^{1 / 2}$.
Compute N by Shor's algorithm. Find ideal I with $G=[I]^{\mathbf{Z}}$.

Given $E_{0}, E_{1} \in X$: define $f_{0}: \mathbf{Z} / N \hookrightarrow X$ by $a \mapsto[I]^{a} E_{0}$; $f_{1}: \mathbf{Z} / N \hookrightarrow X$ by $a \mapsto[I]^{a} E_{1}$.
$E_{1}=[I]^{s} E_{0}$ for some $s \in \mathbf{Z} / N$. $f_{1}(a)=f_{0}(a+s)$ for all $a \in \mathbf{Z} / N$.
Find the hidden shift s in f_{0}, f_{1}.

How many steps in an action?

Steps for CRS/CSIDH users:
fast algorithms for actions of small $\left[P_{1}\right],\left[P_{2}\right],\left[P_{3}\right], \ldots,\left[P_{d}\right]$. e.g., $d=74$ for CSIDH-512.

How many steps in an action?

Steps for CRS/CSIDH users:
fast algorithms for actions of small $\left[P_{1}\right],\left[P_{2}\right],\left[P_{3}\right], \ldots,\left[P_{d}\right]$. e.g., $d=74$ for CSIDH-512.
$\left[P_{1}\right]^{5}\left[P_{2}\right]^{4}\left[P_{3}\right]^{1}: 10$ steps.

How many steps in an action?

Steps for CRS/CSIDH users:
fast algorithms for actions of small $\left[P_{1}\right],\left[P_{2}\right],\left[P_{3}\right], \ldots,\left[P_{d}\right]$. e.g., $d=74$ for CSIDH-512.
$\left[P_{1}\right]^{5}\left[P_{2}\right]^{4}\left[P_{3}\right]^{1}: 10$ steps.
$\left[P_{1}\right]^{7038304916: ~} 7038304916$ steps.

How many steps in an action?

Steps for CRS/CSIDH users:
fast algorithms for actions of small $\left[P_{1}\right],\left[P_{2}\right],\left[P_{3}\right], \ldots,\left[P_{d}\right]$. e.g., $d=74$ for CSIDH-512.
$\left[P_{1}\right]^{5}\left[P_{2}\right]^{4}\left[P_{3}\right]^{1}: 10$ steps.
$\left[P_{1}\right]^{7038304916: ~} 7038304916$ steps.
$\left[P_{1}\right]^{a}$ for huge $a \in \mathbf{Z} / N: H m m$.

How many steps in an action?

Steps for CRS/CSIDH users:
fast algorithms for actions of small $\left[P_{1}\right],\left[P_{2}\right],\left[P_{3}\right], \ldots,\left[P_{d}\right]$. e.g., $d=74$ for CSIDH-512.
$\left[P_{1}\right]^{5}\left[P_{2}\right]^{4}\left[P_{3}\right]^{1}: 10$ steps. $\left[P_{1}\right]^{7038304916: ~} 7038304916$ steps. $\left[P_{1}\right]^{a}$ for huge $a \in \mathbf{Z} / N$: Hmm.

Approach 1: Compute lattice $L=$ $\operatorname{Ker}\left(a_{1}, \ldots, a_{d} \mapsto\left[P_{1}\right]^{a_{1}} \ldots\left[P_{d}\right]^{a_{d}}\right)$.

How many steps in an action?

Steps for CRS/CSIDH users:
fast algorithms for actions of small $\left[P_{1}\right],\left[P_{2}\right],\left[P_{3}\right], \ldots,\left[P_{d}\right]$. e.g., $d=74$ for CSIDH-512.
$\left[P_{1}\right]^{5}\left[P_{2}\right]^{4}\left[P_{3}\right]^{1}: 10$ steps. $\left[P_{1}\right]^{7038304916: ~ 7038304916 ~ s t e p s . ~}$
$\left[P_{1}\right]^{a}$ for huge $a \in \mathbf{Z} / N$: Hmm.
Approach 1: Compute lattice $L=$ $\operatorname{Ker}\left(a_{1}, \ldots, a_{d} \mapsto\left[P_{1}\right]^{a_{1}} \ldots\left[P_{d}\right]^{a_{d}}\right)$.

Given $a \in \mathbf{Z}^{d}$, find close $v \in L$: distance $\exp \left((\log N)^{1 / 2+o(1)}\right)$ using time $\exp \left((\log N)^{1 / 2+o(1)}\right)$.

Approach 2: Increase d up to $\exp \left((\log N)^{1 / 2+o(1)}\right)$. Search randomly for small relations.

Approach 2: Increase d up to $\exp \left((\log N)^{1 / 2+o(1)}\right)$. Search randomly for small relations.

2010 Childs-Jao-Soukharev:
A. Time $\exp \left((\log N)^{1 / 2+o(1)}\right)$ to compute G action by Approach 2.

Approach 2: Increase d up to $\exp \left((\log N)^{1 / 2+o(1)}\right)$. Search randomly for small relations.

2010 Childs-Jao-Soukharev:
A. Time $\exp \left((\log N)^{1 / 2+o(1)}\right)$ to compute G action by Approach 2 .
B. Unfixably flawed argument that Approach 2 beats Approach 1.

Approach 2: Increase d up to $\exp \left((\log N)^{1 / 2+o(1)}\right)$. Search randomly for small relations.

2010 Childs-Jao-Soukharev:
A. Time $\exp \left((\log N)^{1 / 2+o(1)}\right)$ to compute G action by Approach 2 .
B. Unfixably flawed argument that Approach 2 beats Approach 1.
C. Apply Kuperberg (or Regev): Time $\exp \left((\log N)^{1 / 2+o(1)}\right)$
to find $g \in G$ with $g E_{0}=E_{1}$.

Approach 2: Increase d up to $\exp \left((\log N)^{1 / 2+o(1)}\right)$. Search randomly for small relations.

2010 Childs-Jao-Soukharev:
A. Time $\exp \left((\log N)^{1 / 2+o(1)}\right)$ to compute G action by Approach 2 .
B. Unfixably flawed argument that Approach 2 beats Approach 1.
C. Apply Kuperberg (or Regev): Time $\exp \left((\log N)^{1 / 2+o(1)}\right)$ to find $g \in G$ with $g E_{0}=E_{1}$.
D. Proof assuming only GRH, using provable-factoring ideas.

Approach 3 (mentioned in 2018
Bernstein-Lange-Martindale-
Panne): Uniform $\left(a_{1}, \ldots, a_{d}\right)$
in $\{-c, \ldots, c\}^{d}$. Choose c somewhat larger than users do.

Not much slowdown in action.
Surely $g=\left[P_{1}\right]^{a_{1}} \cdots\left[P_{d}\right]^{a_{d}}$ is nearly uniformly distributed in G.

Approach 3 (mentioned in 2018
Bernstein-Lange-Martindale-
Panne): Uniform $\left(a_{1}, \ldots, a_{d}\right)$
in $\{-c, \ldots, c\}^{d}$. Choose c somewhat larger than users do.

Not much slowdown in action.
Surely $g=\left[P_{1}\right]^{a_{1}} \cdots\left[P_{d}\right]^{a_{d}}$ is nearly uniformly distributed in G.

Can quickly compute $g E_{b}$ and image of g in \mathbf{Z} / N.

Approach 3 (mentioned in 2018
Bernstein-Lange-Martindale-
Panne): Uniform $\left(a_{1}, \ldots, a_{d}\right)$
in $\{-c, \ldots, c\}^{d}$. Choose c somewhat larger than users do.

Not much slowdown in action.
Surely $g=\left[P_{1}\right]^{a_{1}} \cdots\left[P_{d}\right]^{a_{d}}$ is nearly uniformly distributed in G.

Can quickly compute $g E_{b}$ and image of g in \mathbf{Z} / N.

Need more analysis of impact of these redundant representations upon Kuperberg's algorithm.

How fast are the steps?

e.g. CSIDH-512, user distribution on G, error rate $<2^{-32}$ (is this adequate?), nonlinear bit ops:
$\approx 2^{51}$ by 2018 Jao-LeGrow-Leonardi-Ruiz-Lopez.

How fast are the steps?

e.g. CSIDH-512, user distribution on G, error rate $<2^{-32}$ (is this adequate?), nonlinear bit ops:
$\approx 2^{51}$ by 2018 Jao-LeGrow-Leonardi-Ruiz-Lopez.

Many optimizations, detailed analysis: $765325228976 \approx 0.7 \cdot 2^{40}$ by 2018 BLMP Algorithm 8.1.

How fast are the steps?

e.g. CSIDH-512, user distribution on G, error rate $<2^{-32}$ (is this adequate?), nonlinear bit ops:
$\approx 2^{51}$ by 2018 Jao-LeGrow-Leonardi-Ruiz-Lopez.

Many optimizations, detailed analysis: $765325228976 \approx 0.7 \cdot 2^{40}$ by 2018 BLMP Algorithm 8.1.
quantum.isogenies.org:
full software and 56-page paper;
variations in 512, distrib, 2^{-32}.

How fast are the steps?

e.g. CSIDH-512, user distribution on G, error rate $<2^{-32}$ (is this adequate?), nonlinear bit ops:
$\approx 2^{51}$ by 2018 Jao-LeGrow-Leonardi-Ruiz-Lopez.

Many optimizations, detailed analysis: $765325228976 \approx 0.7 \cdot 2^{40}$ by 2018 BLMP Algorithm 8.1.
quantum.isogenies.org:
full software and 56-page paper;
variations in 512, distrib, 2^{-32}.
Next big challenge: AT analysis.

How many actions + other costs?
2011 Kuperberg estimates "time" $\exp \left((0.98 \ldots+o(1))\left(\log _{2} N\right)^{1 / 2}\right)$; compares to 2003 Kuperberg: $\exp \left((1.23 \ldots+o(1))\left(\log _{2} N\right)^{1 / 2}\right)$.

How many actions + other costs?
2011 Kuperberg estimates "time" $\exp \left((0.98 \ldots+o(1))\left(\log _{2} N\right)^{1 / 2}\right)$; compares to 2003 Kuperberg: $\exp \left((1.23 \ldots+o(1))\left(\log _{2} N\right)^{1 / 2}\right)$.

Open: Do better than $1 / 2$? Do better than 0.98...?

How many actions + other costs?
2011 Kuperberg estimates "time" $\exp \left((0.98 \ldots+o(1))\left(\log _{2} N\right)^{1 / 2}\right)$; compares to 2003 Kuperberg: $\exp \left((1.23 \ldots+o(1))\left(\log _{2} N\right)^{1 / 2}\right)$.

Open: Do better than $1 / 2$? Do better than 0.98...?

Exact number of actions? Some work on analysis+optimization: 2003 Kuperberg; 2011 Kuperberg; 2018 Bonnetain-Naya-Plasencia; 2018 Bonnetain-Schrottenloher; 2019 Kuperberg; 2019 Peikert; 2019 Bonnetain-Schrottenloher.

