
1

Quantum attacks

against isogenies

Daniel J. Bernstein

1994 Shor discrete-log algorithm:

Input prime p; g ∈ F∗p; h ∈ gZ.

Define ’ : Z× Z→ F∗p by

’(a; b) = gahb. Fast function.

If h = g s and g has order N

then Ker’ = Z(N; 0) + Z(s;−1).

Shor computes ’ on quantum

superposition of many (a; b);

deduces Ker’; deduces s in Z=N.

2

Shor also generalizes

from F∗p to other finite groups

with fast computations.

e.g. F∗q for prime power q;

E(Fq) for elliptic curve E=Fq.



1

Quantum attacks

against isogenies

Daniel J. Bernstein

1994 Shor discrete-log algorithm:

Input prime p; g ∈ F∗p; h ∈ gZ.

Define ’ : Z× Z→ F∗p by

’(a; b) = gahb. Fast function.

If h = g s and g has order N

then Ker’ = Z(N; 0) + Z(s;−1).

Shor computes ’ on quantum

superposition of many (a; b);

deduces Ker’; deduces s in Z=N.

2

Shor also generalizes

from F∗p to other finite groups

with fast computations.

e.g. F∗q for prime power q;

E(Fq) for elliptic curve E=Fq.

1995 Boneh–Lipton:

Find “hidden” lattice L ⊆ Zn,

given fast function ’ : Zn → X

that induces Zn=L ,→ X.



1

Quantum attacks

against isogenies

Daniel J. Bernstein

1994 Shor discrete-log algorithm:

Input prime p; g ∈ F∗p; h ∈ gZ.

Define ’ : Z× Z→ F∗p by

’(a; b) = gahb. Fast function.

If h = g s and g has order N

then Ker’ = Z(N; 0) + Z(s;−1).

Shor computes ’ on quantum

superposition of many (a; b);

deduces Ker’; deduces s in Z=N.

2

Shor also generalizes

from F∗p to other finite groups

with fast computations.

e.g. F∗q for prime power q;

E(Fq) for elliptic curve E=Fq.

1995 Boneh–Lipton:

Find “hidden” lattice L ⊆ Zn,

given fast function ’ : Zn → X

that induces Zn=L ,→ X.

Non-commutative generalizations:

e.g. find hidden subgroup H ⊆ Sn,

given fast function ’ : Sn → X

that induces Sn=H ,→ X?

Some progress, some obstacles.



1

Quantum attacks

against isogenies

Daniel J. Bernstein

1994 Shor discrete-log algorithm:

Input prime p; g ∈ F∗p; h ∈ gZ.

Define ’ : Z× Z→ F∗p by

’(a; b) = gahb. Fast function.

If h = g s and g has order N

then Ker’ = Z(N; 0) + Z(s;−1).

Shor computes ’ on quantum

superposition of many (a; b);

deduces Ker’; deduces s in Z=N.

2

Shor also generalizes

from F∗p to other finite groups

with fast computations.

e.g. F∗q for prime power q;

E(Fq) for elliptic curve E=Fq.

1995 Boneh–Lipton:

Find “hidden” lattice L ⊆ Zn,

given fast function ’ : Zn → X

that induces Zn=L ,→ X.

Non-commutative generalizations:

e.g. find hidden subgroup H ⊆ Sn,

given fast function ’ : Sn → X

that induces Sn=H ,→ X?

Some progress, some obstacles.

3

The hidden-shift problem

Given N ∈ Z, N > 0;

f0 : Z=N ,→ X; f1 : Z=N ,→ X;

f1(a) = f0(a + s) for all a ∈ Z=N.

Goal: Find s ∈ Z=N.



1

Quantum attacks

against isogenies

Daniel J. Bernstein

1994 Shor discrete-log algorithm:

Input prime p; g ∈ F∗p; h ∈ gZ.

Define ’ : Z× Z→ F∗p by

’(a; b) = gahb. Fast function.

If h = g s and g has order N

then Ker’ = Z(N; 0) + Z(s;−1).

Shor computes ’ on quantum

superposition of many (a; b);

deduces Ker’; deduces s in Z=N.

2

Shor also generalizes

from F∗p to other finite groups

with fast computations.

e.g. F∗q for prime power q;

E(Fq) for elliptic curve E=Fq.

1995 Boneh–Lipton:

Find “hidden” lattice L ⊆ Zn,

given fast function ’ : Zn → X

that induces Zn=L ,→ X.

Non-commutative generalizations:

e.g. find hidden subgroup H ⊆ Sn,

given fast function ’ : Sn → X

that induces Sn=H ,→ X?

Some progress, some obstacles.

3

The hidden-shift problem

Given N ∈ Z, N > 0;

f0 : Z=N ,→ X; f1 : Z=N ,→ X;

f1(a) = f0(a + s) for all a ∈ Z=N.

Goal: Find s ∈ Z=N.



1

Quantum attacks

against isogenies

Daniel J. Bernstein

1994 Shor discrete-log algorithm:

Input prime p; g ∈ F∗p; h ∈ gZ.

Define ’ : Z× Z→ F∗p by

’(a; b) = gahb. Fast function.

If h = g s and g has order N

then Ker’ = Z(N; 0) + Z(s;−1).

Shor computes ’ on quantum

superposition of many (a; b);

deduces Ker’; deduces s in Z=N.

2

Shor also generalizes

from F∗p to other finite groups

with fast computations.

e.g. F∗q for prime power q;

E(Fq) for elliptic curve E=Fq.

1995 Boneh–Lipton:

Find “hidden” lattice L ⊆ Zn,

given fast function ’ : Zn → X

that induces Zn=L ,→ X.

Non-commutative generalizations:

e.g. find hidden subgroup H ⊆ Sn,

given fast function ’ : Sn → X

that induces Sn=H ,→ X?

Some progress, some obstacles.

3

The hidden-shift problem

Given N ∈ Z, N > 0;

f0 : Z=N ,→ X; f1 : Z=N ,→ X;

f1(a) = f0(a + s) for all a ∈ Z=N.

Goal: Find s ∈ Z=N.



2

Shor also generalizes

from F∗p to other finite groups

with fast computations.

e.g. F∗q for prime power q;

E(Fq) for elliptic curve E=Fq.

1995 Boneh–Lipton:

Find “hidden” lattice L ⊆ Zn,

given fast function ’ : Zn → X

that induces Zn=L ,→ X.

Non-commutative generalizations:

e.g. find hidden subgroup H ⊆ Sn,

given fast function ’ : Sn → X

that induces Sn=H ,→ X?

Some progress, some obstacles.

3

The hidden-shift problem

Given N ∈ Z, N > 0;

f0 : Z=N ,→ X; f1 : Z=N ,→ X;

f1(a) = f0(a + s) for all a ∈ Z=N.

Goal: Find s ∈ Z=N.



2

Shor also generalizes

from F∗p to other finite groups

with fast computations.

e.g. F∗q for prime power q;

E(Fq) for elliptic curve E=Fq.

1995 Boneh–Lipton:

Find “hidden” lattice L ⊆ Zn,

given fast function ’ : Zn → X

that induces Zn=L ,→ X.

Non-commutative generalizations:

e.g. find hidden subgroup H ⊆ Sn,

given fast function ’ : Sn → X

that induces Sn=H ,→ X?

Some progress, some obstacles.

3

The hidden-shift problem

Given N ∈ Z, N > 0;

f0 : Z=N ,→ X; f1 : Z=N ,→ X;

f1(a) = f0(a + s) for all a ∈ Z=N.

Goal: Find s ∈ Z=N.

Dihedral group DN = Z=N × Z=2:

(a; b)(c; d) = (a + (−1)bc; b + d).



2

Shor also generalizes

from F∗p to other finite groups

with fast computations.

e.g. F∗q for prime power q;

E(Fq) for elliptic curve E=Fq.

1995 Boneh–Lipton:

Find “hidden” lattice L ⊆ Zn,

given fast function ’ : Zn → X

that induces Zn=L ,→ X.

Non-commutative generalizations:

e.g. find hidden subgroup H ⊆ Sn,

given fast function ’ : Sn → X

that induces Sn=H ,→ X?

Some progress, some obstacles.

3

The hidden-shift problem

Given N ∈ Z, N > 0;

f0 : Z=N ,→ X; f1 : Z=N ,→ X;

f1(a) = f0(a + s) for all a ∈ Z=N.

Goal: Find s ∈ Z=N.

Dihedral group DN = Z=N × Z=2:

(a; b)(c; d) = (a + (−1)bc; b + d).

Define ’ : DN → X by

’(a; i) = fi (a). Then ’ hides

subgroup {(0; 0); (s; 1)} of DN .



2

Shor also generalizes

from F∗p to other finite groups

with fast computations.

e.g. F∗q for prime power q;

E(Fq) for elliptic curve E=Fq.

1995 Boneh–Lipton:

Find “hidden” lattice L ⊆ Zn,

given fast function ’ : Zn → X

that induces Zn=L ,→ X.

Non-commutative generalizations:

e.g. find hidden subgroup H ⊆ Sn,

given fast function ’ : Sn → X

that induces Sn=H ,→ X?

Some progress, some obstacles.

3

The hidden-shift problem

Given N ∈ Z, N > 0;

f0 : Z=N ,→ X; f1 : Z=N ,→ X;

f1(a) = f0(a + s) for all a ∈ Z=N.

Goal: Find s ∈ Z=N.

Dihedral group DN = Z=N × Z=2:

(a; b)(c; d) = (a + (−1)bc; b + d).

Define ’ : DN → X by

’(a; i) = fi (a). Then ’ hides

subgroup {(0; 0); (s; 1)} of DN .

These are the only “Shor-hard”

hidden subgroups of DN .



2

Shor also generalizes

from F∗p to other finite groups

with fast computations.

e.g. F∗q for prime power q;

E(Fq) for elliptic curve E=Fq.

1995 Boneh–Lipton:

Find “hidden” lattice L ⊆ Zn,

given fast function ’ : Zn → X

that induces Zn=L ,→ X.

Non-commutative generalizations:

e.g. find hidden subgroup H ⊆ Sn,

given fast function ’ : Sn → X

that induces Sn=H ,→ X?

Some progress, some obstacles.

3

The hidden-shift problem

Given N ∈ Z, N > 0;

f0 : Z=N ,→ X; f1 : Z=N ,→ X;

f1(a) = f0(a + s) for all a ∈ Z=N.

Goal: Find s ∈ Z=N.

Dihedral group DN = Z=N × Z=2:

(a; b)(c; d) = (a + (−1)bc; b + d).

Define ’ : DN → X by

’(a; i) = fi (a). Then ’ hides

subgroup {(0; 0); (s; 1)} of DN .

These are the only “Shor-hard”

hidden subgroups of DN .

4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.



2

Shor also generalizes

from F∗p to other finite groups

with fast computations.

e.g. F∗q for prime power q;

E(Fq) for elliptic curve E=Fq.

1995 Boneh–Lipton:

Find “hidden” lattice L ⊆ Zn,

given fast function ’ : Zn → X

that induces Zn=L ,→ X.

Non-commutative generalizations:

e.g. find hidden subgroup H ⊆ Sn,

given fast function ’ : Sn → X

that induces Sn=H ,→ X?

Some progress, some obstacles.

3

The hidden-shift problem

Given N ∈ Z, N > 0;

f0 : Z=N ,→ X; f1 : Z=N ,→ X;

f1(a) = f0(a + s) for all a ∈ Z=N.

Goal: Find s ∈ Z=N.

Dihedral group DN = Z=N × Z=2:

(a; b)(c; d) = (a + (−1)bc; b + d).

Define ’ : DN → X by

’(a; i) = fi (a). Then ’ hides

subgroup {(0; 0); (s; 1)} of DN .

These are the only “Shor-hard”

hidden subgroups of DN .

4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.



2

Shor also generalizes

from F∗p to other finite groups

with fast computations.

e.g. F∗q for prime power q;

E(Fq) for elliptic curve E=Fq.

1995 Boneh–Lipton:

Find “hidden” lattice L ⊆ Zn,

given fast function ’ : Zn → X

that induces Zn=L ,→ X.

Non-commutative generalizations:

e.g. find hidden subgroup H ⊆ Sn,

given fast function ’ : Sn → X

that induces Sn=H ,→ X?

Some progress, some obstacles.

3

The hidden-shift problem

Given N ∈ Z, N > 0;

f0 : Z=N ,→ X; f1 : Z=N ,→ X;

f1(a) = f0(a + s) for all a ∈ Z=N.

Goal: Find s ∈ Z=N.

Dihedral group DN = Z=N × Z=2:

(a; b)(c; d) = (a + (−1)bc; b + d).

Define ’ : DN → X by

’(a; i) = fi (a). Then ’ hides

subgroup {(0; 0); (s; 1)} of DN .

These are the only “Shor-hard”

hidden subgroups of DN .

4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.



3

The hidden-shift problem

Given N ∈ Z, N > 0;

f0 : Z=N ,→ X; f1 : Z=N ,→ X;

f1(a) = f0(a + s) for all a ∈ Z=N.

Goal: Find s ∈ Z=N.

Dihedral group DN = Z=N × Z=2:

(a; b)(c; d) = (a + (−1)bc; b + d).

Define ’ : DN → X by

’(a; i) = fi (a). Then ’ hides

subgroup {(0; 0); (s; 1)} of DN .

These are the only “Shor-hard”

hidden subgroups of DN .

4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.



3

The hidden-shift problem

Given N ∈ Z, N > 0;

f0 : Z=N ,→ X; f1 : Z=N ,→ X;

f1(a) = f0(a + s) for all a ∈ Z=N.

Goal: Find s ∈ Z=N.

Dihedral group DN = Z=N × Z=2:

(a; b)(c; d) = (a + (−1)bc; b + d).

Define ’ : DN → X by

’(a; i) = fi (a). Then ’ hides

subgroup {(0; 0); (s; 1)} of DN .

These are the only “Shor-hard”

hidden subgroups of DN .

4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.

(1999–2004 Ettinger–Høyer–Knill:

Similarly few evaluations for

hidden subgroups of any group.)



3

The hidden-shift problem

Given N ∈ Z, N > 0;

f0 : Z=N ,→ X; f1 : Z=N ,→ X;

f1(a) = f0(a + s) for all a ∈ Z=N.

Goal: Find s ∈ Z=N.

Dihedral group DN = Z=N × Z=2:

(a; b)(c; d) = (a + (−1)bc; b + d).

Define ’ : DN → X by

’(a; i) = fi (a). Then ’ hides

subgroup {(0; 0); (s; 1)} of DN .

These are the only “Shor-hard”

hidden subgroups of DN .

4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.

(1999–2004 Ettinger–Høyer–Knill:

Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using

more quantum ’ evaluations,

less ’-independent computation.



3

The hidden-shift problem

Given N ∈ Z, N > 0;

f0 : Z=N ,→ X; f1 : Z=N ,→ X;

f1(a) = f0(a + s) for all a ∈ Z=N.

Goal: Find s ∈ Z=N.

Dihedral group DN = Z=N × Z=2:

(a; b)(c; d) = (a + (−1)bc; b + d).

Define ’ : DN → X by

’(a; i) = fi (a). Then ’ hides

subgroup {(0; 0); (s; 1)} of DN .

These are the only “Shor-hard”

hidden subgroups of DN .

4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.

(1999–2004 Ettinger–Høyer–Knill:

Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using

more quantum ’ evaluations,

less ’-independent computation.

2004 Regev, 2011 Kuperberg:

More tradeoffs, better tradeoffs.



3

The hidden-shift problem

Given N ∈ Z, N > 0;

f0 : Z=N ,→ X; f1 : Z=N ,→ X;

f1(a) = f0(a + s) for all a ∈ Z=N.

Goal: Find s ∈ Z=N.

Dihedral group DN = Z=N × Z=2:

(a; b)(c; d) = (a + (−1)bc; b + d).

Define ’ : DN → X by

’(a; i) = fi (a). Then ’ hides

subgroup {(0; 0); (s; 1)} of DN .

These are the only “Shor-hard”

hidden subgroups of DN .

4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.

(1999–2004 Ettinger–Høyer–Knill:

Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using

more quantum ’ evaluations,

less ’-independent computation.

2004 Regev, 2011 Kuperberg:

More tradeoffs, better tradeoffs.

5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.



3

The hidden-shift problem

Given N ∈ Z, N > 0;

f0 : Z=N ,→ X; f1 : Z=N ,→ X;

f1(a) = f0(a + s) for all a ∈ Z=N.

Goal: Find s ∈ Z=N.

Dihedral group DN = Z=N × Z=2:

(a; b)(c; d) = (a + (−1)bc; b + d).

Define ’ : DN → X by

’(a; i) = fi (a). Then ’ hides

subgroup {(0; 0); (s; 1)} of DN .

These are the only “Shor-hard”

hidden subgroups of DN .

4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.

(1999–2004 Ettinger–Høyer–Knill:

Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using

more quantum ’ evaluations,

less ’-independent computation.

2004 Regev, 2011 Kuperberg:

More tradeoffs, better tradeoffs.

5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.



3

The hidden-shift problem

Given N ∈ Z, N > 0;

f0 : Z=N ,→ X; f1 : Z=N ,→ X;

f1(a) = f0(a + s) for all a ∈ Z=N.

Goal: Find s ∈ Z=N.

Dihedral group DN = Z=N × Z=2:

(a; b)(c; d) = (a + (−1)bc; b + d).

Define ’ : DN → X by

’(a; i) = fi (a). Then ’ hides

subgroup {(0; 0); (s; 1)} of DN .

These are the only “Shor-hard”

hidden subgroups of DN .

4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.

(1999–2004 Ettinger–Høyer–Knill:

Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using

more quantum ’ evaluations,

less ’-independent computation.

2004 Regev, 2011 Kuperberg:

More tradeoffs, better tradeoffs.

5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.



4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.

(1999–2004 Ettinger–Høyer–Knill:

Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using

more quantum ’ evaluations,

less ’-independent computation.

2004 Regev, 2011 Kuperberg:

More tradeoffs, better tradeoffs.

5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.



4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.

(1999–2004 Ettinger–Høyer–Knill:

Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using

more quantum ’ evaluations,

less ’-independent computation.

2004 Regev, 2011 Kuperberg:

More tradeoffs, better tradeoffs.

5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.



4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.

(1999–2004 Ettinger–Høyer–Knill:

Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using

more quantum ’ evaluations,

less ’-independent computation.

2004 Regev, 2011 Kuperberg:

More tradeoffs, better tradeoffs.

5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.

Compute N by Shor’s algorithm.



4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.

(1999–2004 Ettinger–Høyer–Knill:

Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using

more quantum ’ evaluations,

less ’-independent computation.

2004 Regev, 2011 Kuperberg:

More tradeoffs, better tradeoffs.

5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.

Compute N by Shor’s algorithm.

Find ideal I with G = [I]Z.



4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.

(1999–2004 Ettinger–Høyer–Knill:

Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using

more quantum ’ evaluations,

less ’-independent computation.

2004 Regev, 2011 Kuperberg:

More tradeoffs, better tradeoffs.

5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.

Compute N by Shor’s algorithm.

Find ideal I with G = [I]Z.

Given E0; E1 ∈ X: define

f0 : Z=N ,→ X by a 7→ [I]aE0;

f1 : Z=N ,→ X by a 7→ [I]aE1.



4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.

(1999–2004 Ettinger–Høyer–Knill:

Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using

more quantum ’ evaluations,

less ’-independent computation.

2004 Regev, 2011 Kuperberg:

More tradeoffs, better tradeoffs.

5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.

Compute N by Shor’s algorithm.

Find ideal I with G = [I]Z.

Given E0; E1 ∈ X: define

f0 : Z=N ,→ X by a 7→ [I]aE0;

f1 : Z=N ,→ X by a 7→ [I]aE1.

E1 = [I]sE0 for some s ∈ Z=N.



4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.

(1999–2004 Ettinger–Høyer–Knill:

Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using

more quantum ’ evaluations,

less ’-independent computation.

2004 Regev, 2011 Kuperberg:

More tradeoffs, better tradeoffs.

5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.

Compute N by Shor’s algorithm.

Find ideal I with G = [I]Z.

Given E0; E1 ∈ X: define

f0 : Z=N ,→ X by a 7→ [I]aE0;

f1 : Z=N ,→ X by a 7→ [I]aE1.

E1 = [I]sE0 for some s ∈ Z=N.

f1(a) = f0(a + s) for all a ∈ Z=N.



4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.

(1999–2004 Ettinger–Høyer–Knill:

Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using

more quantum ’ evaluations,

less ’-independent computation.

2004 Regev, 2011 Kuperberg:

More tradeoffs, better tradeoffs.

5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.

Compute N by Shor’s algorithm.

Find ideal I with G = [I]Z.

Given E0; E1 ∈ X: define

f0 : Z=N ,→ X by a 7→ [I]aE0;

f1 : Z=N ,→ X by a 7→ [I]aE1.

E1 = [I]sE0 for some s ∈ Z=N.

f1(a) = f0(a + s) for all a ∈ Z=N.

Find the hidden shift s in f0; f1.



4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.

(1999–2004 Ettinger–Høyer–Knill:

Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using

more quantum ’ evaluations,

less ’-independent computation.

2004 Regev, 2011 Kuperberg:

More tradeoffs, better tradeoffs.

5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.

Compute N by Shor’s algorithm.

Find ideal I with G = [I]Z.

Given E0; E1 ∈ X: define

f0 : Z=N ,→ X by a 7→ [I]aE0;

f1 : Z=N ,→ X by a 7→ [I]aE1.

E1 = [I]sE0 for some s ∈ Z=N.

f1(a) = f0(a + s) for all a ∈ Z=N.

Find the hidden shift s in f0; f1.

6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.



4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.

(1999–2004 Ettinger–Høyer–Knill:

Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using

more quantum ’ evaluations,

less ’-independent computation.

2004 Regev, 2011 Kuperberg:

More tradeoffs, better tradeoffs.

5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.

Compute N by Shor’s algorithm.

Find ideal I with G = [I]Z.

Given E0; E1 ∈ X: define

f0 : Z=N ,→ X by a 7→ [I]aE0;

f1 : Z=N ,→ X by a 7→ [I]aE1.

E1 = [I]sE0 for some s ∈ Z=N.

f1(a) = f0(a + s) for all a ∈ Z=N.

Find the hidden shift s in f0; f1.

6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.



4

1998 Ettinger–Høyer:

Solve hidden-shift problem using

O(logN) quantum ’ evaluations,

huge ’-independent computation.

(1999–2004 Ettinger–Høyer–Knill:

Similarly few evaluations for

hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using

more quantum ’ evaluations,

less ’-independent computation.

2004 Regev, 2011 Kuperberg:

More tradeoffs, better tradeoffs.

5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.

Compute N by Shor’s algorithm.

Find ideal I with G = [I]Z.

Given E0; E1 ∈ X: define

f0 : Z=N ,→ X by a 7→ [I]aE0;

f1 : Z=N ,→ X by a 7→ [I]aE1.

E1 = [I]sE0 for some s ∈ Z=N.

f1(a) = f0(a + s) for all a ∈ Z=N.

Find the hidden shift s in f0; f1.

6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.



5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.

Compute N by Shor’s algorithm.

Find ideal I with G = [I]Z.

Given E0; E1 ∈ X: define

f0 : Z=N ,→ X by a 7→ [I]aE0;

f1 : Z=N ,→ X by a 7→ [I]aE1.

E1 = [I]sE0 for some s ∈ Z=N.

f1(a) = f0(a + s) for all a ∈ Z=N.

Find the hidden shift s in f0; f1.

6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.



5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.

Compute N by Shor’s algorithm.

Find ideal I with G = [I]Z.

Given E0; E1 ∈ X: define

f0 : Z=N ,→ X by a 7→ [I]aE0;

f1 : Z=N ,→ X by a 7→ [I]aE1.

E1 = [I]sE0 for some s ∈ Z=N.

f1(a) = f0(a + s) for all a ∈ Z=N.

Find the hidden shift s in f0; f1.

6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.

[P1]5[P2]4[P3]1: 10 steps.



5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.

Compute N by Shor’s algorithm.

Find ideal I with G = [I]Z.

Given E0; E1 ∈ X: define

f0 : Z=N ,→ X by a 7→ [I]aE0;

f1 : Z=N ,→ X by a 7→ [I]aE1.

E1 = [I]sE0 for some s ∈ Z=N.

f1(a) = f0(a + s) for all a ∈ Z=N.

Find the hidden shift s in f0; f1.

6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.

[P1]5[P2]4[P3]1: 10 steps.

[P1]7038304916: 7038304916 steps.



5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.

Compute N by Shor’s algorithm.

Find ideal I with G = [I]Z.

Given E0; E1 ∈ X: define

f0 : Z=N ,→ X by a 7→ [I]aE0;

f1 : Z=N ,→ X by a 7→ [I]aE1.

E1 = [I]sE0 for some s ∈ Z=N.

f1(a) = f0(a + s) for all a ∈ Z=N.

Find the hidden shift s in f0; f1.

6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.

[P1]5[P2]4[P3]1: 10 steps.

[P1]7038304916: 7038304916 steps.

[P1]a for huge a ∈ Z=N: Hmmm.



5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.

Compute N by Shor’s algorithm.

Find ideal I with G = [I]Z.

Given E0; E1 ∈ X: define

f0 : Z=N ,→ X by a 7→ [I]aE0;

f1 : Z=N ,→ X by a 7→ [I]aE1.

E1 = [I]sE0 for some s ∈ Z=N.

f1(a) = f0(a + s) for all a ∈ Z=N.

Find the hidden shift s in f0; f1.

6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.

[P1]5[P2]4[P3]1: 10 steps.

[P1]7038304916: 7038304916 steps.

[P1]a for huge a ∈ Z=N: Hmmm.

Approach 1: Compute lattice L =

Ker(a1; : : : ; ad 7→ [P1]a1 · · · [Pd ]ad ).



5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.

Compute N by Shor’s algorithm.

Find ideal I with G = [I]Z.

Given E0; E1 ∈ X: define

f0 : Z=N ,→ X by a 7→ [I]aE0;

f1 : Z=N ,→ X by a 7→ [I]aE1.

E1 = [I]sE0 for some s ∈ Z=N.

f1(a) = f0(a + s) for all a ∈ Z=N.

Find the hidden shift s in f0; f1.

6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.

[P1]5[P2]4[P3]1: 10 steps.

[P1]7038304916: 7038304916 steps.

[P1]a for huge a ∈ Z=N: Hmmm.

Approach 1: Compute lattice L =

Ker(a1; : : : ; ad 7→ [P1]a1 · · · [Pd ]ad ).

Given a ∈ Zd , find close v ∈ L:

distance exp((logN)1=2+o(1))

using time exp((logN)1=2+o(1)).



5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.

Compute N by Shor’s algorithm.

Find ideal I with G = [I]Z.

Given E0; E1 ∈ X: define

f0 : Z=N ,→ X by a 7→ [I]aE0;

f1 : Z=N ,→ X by a 7→ [I]aE1.

E1 = [I]sE0 for some s ∈ Z=N.

f1(a) = f0(a + s) for all a ∈ Z=N.

Find the hidden shift s in f0; f1.

6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.

[P1]5[P2]4[P3]1: 10 steps.

[P1]7038304916: 7038304916 steps.

[P1]a for huge a ∈ Z=N: Hmmm.

Approach 1: Compute lattice L =

Ker(a1; : : : ; ad 7→ [P1]a1 · · · [Pd ]ad ).

Given a ∈ Zd , find close v ∈ L:

distance exp((logN)1=2+o(1))

using time exp((logN)1=2+o(1)).

7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.



5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.

Compute N by Shor’s algorithm.

Find ideal I with G = [I]Z.

Given E0; E1 ∈ X: define

f0 : Z=N ,→ X by a 7→ [I]aE0;

f1 : Z=N ,→ X by a 7→ [I]aE1.

E1 = [I]sE0 for some s ∈ Z=N.

f1(a) = f0(a + s) for all a ∈ Z=N.

Find the hidden shift s in f0; f1.

6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.

[P1]5[P2]4[P3]1: 10 steps.

[P1]7038304916: 7038304916 steps.

[P1]a for huge a ∈ Z=N: Hmmm.

Approach 1: Compute lattice L =

Ker(a1; : : : ; ad 7→ [P1]a1 · · · [Pd ]ad ).

Given a ∈ Zd , find close v ∈ L:

distance exp((logN)1=2+o(1))

using time exp((logN)1=2+o(1)).

7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.



5

Attacking isogenies

CRS/CSIDH: Class group G

acts freely and transitively

on a set X of curves over Fp.

Usually G ∼= Z=N with N ≈ p1=2.

Compute N by Shor’s algorithm.

Find ideal I with G = [I]Z.

Given E0; E1 ∈ X: define

f0 : Z=N ,→ X by a 7→ [I]aE0;

f1 : Z=N ,→ X by a 7→ [I]aE1.

E1 = [I]sE0 for some s ∈ Z=N.

f1(a) = f0(a + s) for all a ∈ Z=N.

Find the hidden shift s in f0; f1.

6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.

[P1]5[P2]4[P3]1: 10 steps.

[P1]7038304916: 7038304916 steps.

[P1]a for huge a ∈ Z=N: Hmmm.

Approach 1: Compute lattice L =

Ker(a1; : : : ; ad 7→ [P1]a1 · · · [Pd ]ad ).

Given a ∈ Zd , find close v ∈ L:

distance exp((logN)1=2+o(1))

using time exp((logN)1=2+o(1)).

7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.



6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.

[P1]5[P2]4[P3]1: 10 steps.

[P1]7038304916: 7038304916 steps.

[P1]a for huge a ∈ Z=N: Hmmm.

Approach 1: Compute lattice L =

Ker(a1; : : : ; ad 7→ [P1]a1 · · · [Pd ]ad ).

Given a ∈ Zd , find close v ∈ L:

distance exp((logN)1=2+o(1))

using time exp((logN)1=2+o(1)).

7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.



6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.

[P1]5[P2]4[P3]1: 10 steps.

[P1]7038304916: 7038304916 steps.

[P1]a for huge a ∈ Z=N: Hmmm.

Approach 1: Compute lattice L =

Ker(a1; : : : ; ad 7→ [P1]a1 · · · [Pd ]ad ).

Given a ∈ Zd , find close v ∈ L:

distance exp((logN)1=2+o(1))

using time exp((logN)1=2+o(1)).

7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.



6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.

[P1]5[P2]4[P3]1: 10 steps.

[P1]7038304916: 7038304916 steps.

[P1]a for huge a ∈ Z=N: Hmmm.

Approach 1: Compute lattice L =

Ker(a1; : : : ; ad 7→ [P1]a1 · · · [Pd ]ad ).

Given a ∈ Zd , find close v ∈ L:

distance exp((logN)1=2+o(1))

using time exp((logN)1=2+o(1)).

7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.



6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.

[P1]5[P2]4[P3]1: 10 steps.

[P1]7038304916: 7038304916 steps.

[P1]a for huge a ∈ Z=N: Hmmm.

Approach 1: Compute lattice L =

Ker(a1; : : : ; ad 7→ [P1]a1 · · · [Pd ]ad ).

Given a ∈ Zd , find close v ∈ L:

distance exp((logN)1=2+o(1))

using time exp((logN)1=2+o(1)).

7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.



6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.

[P1]5[P2]4[P3]1: 10 steps.

[P1]7038304916: 7038304916 steps.

[P1]a for huge a ∈ Z=N: Hmmm.

Approach 1: Compute lattice L =

Ker(a1; : : : ; ad 7→ [P1]a1 · · · [Pd ]ad ).

Given a ∈ Zd , find close v ∈ L:

distance exp((logN)1=2+o(1))

using time exp((logN)1=2+o(1)).

7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.

D. Proof assuming only GRH,

using provable-factoring ideas.



6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.

[P1]5[P2]4[P3]1: 10 steps.

[P1]7038304916: 7038304916 steps.

[P1]a for huge a ∈ Z=N: Hmmm.

Approach 1: Compute lattice L =

Ker(a1; : : : ; ad 7→ [P1]a1 · · · [Pd ]ad ).

Given a ∈ Zd , find close v ∈ L:

distance exp((logN)1=2+o(1))

using time exp((logN)1=2+o(1)).

7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.

D. Proof assuming only GRH,

using provable-factoring ideas.

8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.



6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.

[P1]5[P2]4[P3]1: 10 steps.

[P1]7038304916: 7038304916 steps.

[P1]a for huge a ∈ Z=N: Hmmm.

Approach 1: Compute lattice L =

Ker(a1; : : : ; ad 7→ [P1]a1 · · · [Pd ]ad ).

Given a ∈ Zd , find close v ∈ L:

distance exp((logN)1=2+o(1))

using time exp((logN)1=2+o(1)).

7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.

D. Proof assuming only GRH,

using provable-factoring ideas.

8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.



6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.

[P1]5[P2]4[P3]1: 10 steps.

[P1]7038304916: 7038304916 steps.

[P1]a for huge a ∈ Z=N: Hmmm.

Approach 1: Compute lattice L =

Ker(a1; : : : ; ad 7→ [P1]a1 · · · [Pd ]ad ).

Given a ∈ Zd , find close v ∈ L:

distance exp((logN)1=2+o(1))

using time exp((logN)1=2+o(1)).

7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.

D. Proof assuming only GRH,

using provable-factoring ideas.

8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.



7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.

D. Proof assuming only GRH,

using provable-factoring ideas.

8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.



7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.

D. Proof assuming only GRH,

using provable-factoring ideas.

8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.



7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.

D. Proof assuming only GRH,

using provable-factoring ideas.

8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.



7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.

D. Proof assuming only GRH,

using provable-factoring ideas.

8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.



7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.

D. Proof assuming only GRH,

using provable-factoring ideas.

8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.



7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.

D. Proof assuming only GRH,

using provable-factoring ideas.

8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.



8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.



8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.

Many optimizations, detailed

analysis: 765325228976 ≈ 0:7 ·240

by 2018 BLMP Algorithm 8.1.



8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.

Many optimizations, detailed

analysis: 765325228976 ≈ 0:7 ·240

by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper;

variations in 512, distrib, 2−32.



8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.

Many optimizations, detailed

analysis: 765325228976 ≈ 0:7 ·240

by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper;

variations in 512, distrib, 2−32.

Next big challenge: AT analysis.



8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.

Many optimizations, detailed

analysis: 765325228976 ≈ 0:7 ·240

by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper;

variations in 512, distrib, 2−32.

Next big challenge: AT analysis.

10

How many actions + other costs?

2011 Kuperberg estimates “time”

exp((0:98 : : : + o(1))(log2 N)1=2);

compares to 2003 Kuperberg:

exp((1:23 : : : + o(1))(log2 N)1=2).



8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.

Many optimizations, detailed

analysis: 765325228976 ≈ 0:7 ·240

by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper;

variations in 512, distrib, 2−32.

Next big challenge: AT analysis.

10

How many actions + other costs?

2011 Kuperberg estimates “time”

exp((0:98 : : : + o(1))(log2 N)1=2);

compares to 2003 Kuperberg:

exp((1:23 : : : + o(1))(log2 N)1=2).



8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.

Many optimizations, detailed

analysis: 765325228976 ≈ 0:7 ·240

by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper;

variations in 512, distrib, 2−32.

Next big challenge: AT analysis.

10

How many actions + other costs?

2011 Kuperberg estimates “time”

exp((0:98 : : : + o(1))(log2 N)1=2);

compares to 2003 Kuperberg:

exp((1:23 : : : + o(1))(log2 N)1=2).



9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.

Many optimizations, detailed

analysis: 765325228976 ≈ 0:7 ·240

by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper;

variations in 512, distrib, 2−32.

Next big challenge: AT analysis.

10

How many actions + other costs?

2011 Kuperberg estimates “time”

exp((0:98 : : : + o(1))(log2 N)1=2);

compares to 2003 Kuperberg:

exp((1:23 : : : + o(1))(log2 N)1=2).



9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.

Many optimizations, detailed

analysis: 765325228976 ≈ 0:7 ·240

by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper;

variations in 512, distrib, 2−32.

Next big challenge: AT analysis.

10

How many actions + other costs?

2011 Kuperberg estimates “time”

exp((0:98 : : : + o(1))(log2 N)1=2);

compares to 2003 Kuperberg:

exp((1:23 : : : + o(1))(log2 N)1=2).

Open: Do better than 1=2?

Do better than 0:98 : : :?



9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.

Many optimizations, detailed

analysis: 765325228976 ≈ 0:7 ·240

by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper;

variations in 512, distrib, 2−32.

Next big challenge: AT analysis.

10

How many actions + other costs?

2011 Kuperberg estimates “time”

exp((0:98 : : : + o(1))(log2 N)1=2);

compares to 2003 Kuperberg:

exp((1:23 : : : + o(1))(log2 N)1=2).

Open: Do better than 1=2?

Do better than 0:98 : : :?

Exact number of actions? Some

work on analysis+optimization:

2003 Kuperberg; 2011 Kuperberg;

2018 Bonnetain–Naya-Plasencia;

2018 Bonnetain–Schrottenloher;

2019 Kuperberg; 2019 Peikert;

2019 Bonnetain–Schrottenloher.


