Quantum attacks against isogenies

Daniel J. Bernstein

1994 Shor discrete-log algorithm: Input prime $p; g \in \mathbf{F}_p^*; h \in g^{\mathbb{Z}}$. Define $\varphi : \mathbf{Z} \times \mathbf{Z} \to \mathbf{F}_p^*$ by $\varphi(a, b) = g^a h^b$. Fast function. If $h = g^s$ and g has order N

then Ker $\varphi = \mathbf{Z}(N, 0) + \mathbf{Z}(s, -1)$.

Shor computes φ on quantum superposition of many (a, b); deduces Ker φ ; deduces s in **Z**/N.

Shor also generalizes from \mathbf{F}_{p}^{*} to other finite groups with fast computations. e.g. \mathbf{F}_{q}^{*} for prime power q; $E(\mathbf{F}_q)$ for elliptic curve E/\mathbf{F}_q .

Quantum attacks against isogenies

Daniel J. Bernstein

1994 Shor discrete-log algorithm: Input prime $p; g \in \mathbf{F}_p^*; h \in g^{\mathbb{Z}}$. Define $\varphi : \mathbf{Z} \times \mathbf{Z} \to \mathbf{F}_p^*$ by $\varphi(a, b) = g^a h^b$. Fast function. If $h = g^s$ and g has order N

then Ker $\varphi = \mathbf{Z}(N, 0) + \mathbf{Z}(s, -1)$.

Shor computes φ on quantum superposition of many (a, b); deduces Ker φ ; deduces s in **Z**/N.

Shor also generalizes from \mathbf{F}_{p}^{*} to other finite groups with fast computations. e.g. \mathbf{F}_{q}^{*} for prime power q; $E(\mathbf{F}_q)$ for elliptic curve E/\mathbf{F}_q .

1

1995 Boneh–Lipton: Find "hidden" lattice $L \subset \mathbf{Z}^n$, given fast function $\varphi : \mathbb{Z}^n \to X$ that induces $\mathbf{Z}^n/L \hookrightarrow X$.

Quantum attacks against isogenies

Daniel J. Bernstein

1994 Shor discrete-log algorithm: Input prime $p; g \in \mathbf{F}_p^*; h \in g^{\mathbb{Z}}$. Define $\varphi : \mathbf{Z} \times \mathbf{Z} \to \mathbf{F}_{p}^{*}$ by $\varphi(a, b) = g^a h^b$. Fast function. If $h = g^s$ and g has order N

then Ker $\varphi = \mathbf{Z}(N, 0) + \mathbf{Z}(s, -1)$.

Shor computes φ on quantum superposition of many (*a*, *b*); deduces Ker φ ; deduces s in **Z**/N.

Shor also generalizes from \mathbf{F}_{p}^{*} to other finite groups with fast computations. e.g. \mathbf{F}_{q}^{*} for prime power q; $E(\mathbf{F}_q)$ for elliptic curve E/\mathbf{F}_q .

1

1995 Boneh–Lipton: Find "hidden" lattice $L \subseteq \mathbf{Z}^n$, given fast function $\varphi : \mathbb{Z}^n \to X$ that induces $\mathbf{Z}^n/L \hookrightarrow X$.

Non-commutative generalizations: e.g. find hidden subgroup $H \subseteq S_n$, given fast function $\varphi: S_n \to X$ that induces $S_n/H \hookrightarrow X$? Some progress, some obstacles.

- n attacks
- sogenies
- . Bernstein
- or discrete-log algorithm:

ime p;
$$g \in \mathbf{F}_p^*$$
; $h \in g^{\mathbf{Z}}$

 $p: \mathsf{Z} \times \mathsf{Z} \to \mathsf{F}_p^*$ by $= g^a h^b$. Fast function.

s
 and g has order N
r $arphi = {\sf Z}(N,0) + {\sf Z}(s,-1).$

mputes φ on quantum sition of many (*a*, *b*); Ker φ ; deduces *s* in **Z**/*N*.

Shor also generalizes from \mathbf{F}_{p}^{*} to other finite groups with fast computations. e.g. \mathbf{F}_{q}^{*} for prime power q; $E(\mathbf{F}_q)$ for elliptic curve E/\mathbf{F}_q .

1995 Boneh–Lipton: Find "hidden" lattice $L \subseteq \mathbf{Z}^n$, given fast function $\varphi : \mathbb{Z}^n \to X$ that induces $\mathbf{Z}^n/L \hookrightarrow X$.

Non-commutative generalizations: e.g. find hidden subgroup $H \subseteq S_n$, given fast function $\varphi: S_n \to X$ that induces $S_n/H \hookrightarrow X$? Some progress, some obstacles.

The hide

2

Given N $f_0 : {\bf Z}/N$ $f_1(a) =$

Goal: Fi

n

- e-log algorithm:
- $\in \mathbf{F}_p^*$; $h \in g^{\mathbf{Z}}$.
- $ightarrow \mathbf{F}_{p}^{*}$ by fast function.

as order N $(0) + \mathbf{Z}(s, -1).$

on quantum nany (*a, b*); duces *s* in **Z**/N.

Shor also generalizes from \mathbf{F}_{p}^{*} to other finite groups with fast computations. e.g. \mathbf{F}_{q}^{*} for prime power q; $E(\mathbf{F}_q)$ for elliptic curve E/\mathbf{F}_q . 1995 Boneh–Lipton: Find "hidden" lattice $L \subseteq \mathbf{Z}^n$, given fast function $\varphi : \mathbb{Z}^n \to X$ that induces $\mathbf{Z}^n/L \hookrightarrow X$.

Non-commutative generalizations: e.g. find hidden subgroup $H \subseteq S_n$, given fast function $\varphi : S_n \to X$ that induces $S_n/H \hookrightarrow X$? Some progress, some obstacles.

The hidden-shift p

ithm:

1

gZ

on.

, -1).

m

Z/N.

Shor also generalizes from \mathbf{F}_{p}^{*} to other finite groups with fast computations. e.g. \mathbf{F}_{q}^{*} for prime power q; $E(\mathbf{F}_q)$ for elliptic curve E/\mathbf{F}_q . 1995 Boneh–Lipton: Find "hidden" lattice $L \subseteq \mathbf{Z}^n$, given fast function $\varphi : \mathbf{Z}^n \to X$ that induces $\mathbf{Z}^n/L \hookrightarrow X$.

Non-commutative generalizations: e.g. find hidden subgroup $H \subseteq S_n$, given fast function $\varphi: S_n \to X$ that induces $S_n/H \hookrightarrow X$? Some progress, some obstacles.

2

The hidden-shift problem

Given $N \in \mathbb{Z}$, N > 0; $f_0: \mathbb{Z}/N \hookrightarrow X; f_1: \mathbb{Z}/N \hookrightarrow$ $f_1(a) = f_0(a+s)$ for all $a \in$ Goal: Find $s \in \mathbb{Z}/N$.

1995 Boneh–Lipton: Find "hidden" lattice $L \subseteq \mathbf{Z}^n$, given fast function $\varphi : \mathbf{Z}^n \to X$ that induces $\mathbf{Z}^n/L \hookrightarrow X$.

Non-commutative generalizations: e.g. find hidden subgroup $H \subseteq S_n$, given fast function $\varphi: S_n \to X$ that induces $S_n/H \hookrightarrow X$? Some progress, some obstacles.

The hidden-shift problem

2

Given $N \in \mathbb{Z}$, N > 0; $f_0: \mathbb{Z}/N \hookrightarrow X; f_1: \mathbb{Z}/N \hookrightarrow X;$ $f_1(a) = f_0(a+s)$ for all $a \in \mathbb{Z}/N$.

Goal: Find $s \in \mathbb{Z}/N$.

1995 Boneh–Lipton: Find "hidden" lattice $L \subseteq \mathbf{Z}^n$, given fast function $\varphi : \mathbb{Z}^n \to X$ that induces $\mathbf{Z}^n/L \hookrightarrow X$.

Non-commutative generalizations: e.g. find hidden subgroup $H \subseteq S_n$, given fast function $\varphi: S_n \to X$ that induces $S_n/H \hookrightarrow X$? Some progress, some obstacles.

The hidden-shift problem

2

Given $N \in \mathbb{Z}$, N > 0; $f_0: \mathbb{Z}/N \hookrightarrow X; f_1: \mathbb{Z}/N \hookrightarrow X;$ $f_1(a) = f_0(a+s)$ for all $a \in \mathbb{Z}/N$. Goal: Find $s \in \mathbb{Z}/N$.

 $(a, b)(c, d) = (a + (-1)^{b}c, b + d).$

1995 Boneh–Lipton: Find "hidden" lattice $L \subseteq \mathbf{Z}^n$, given fast function $\varphi : \mathbb{Z}^n \to X$ that induces $\mathbf{Z}^n/L \hookrightarrow X$.

Non-commutative generalizations: e.g. find hidden subgroup $H \subseteq S_n$, given fast function $\varphi: S_n \to X$ that induces $S_n/H \hookrightarrow X$? Some progress, some obstacles.

Given $N \in \mathbb{Z}$, N > 0; $f_0: \mathbb{Z}/N \hookrightarrow X; f_1: \mathbb{Z}/N \hookrightarrow X;$ $f_1(a) = f_0(a+s)$ for all $a \in \mathbb{Z}/N$. Goal: Find $s \in \mathbb{Z}/N$. Define $\varphi: D_M \to X$ by $\varphi(a, i) = f_i(a)$. Then φ hides

2

The hidden-shift problem

1995 Boneh–Lipton: Find "hidden" lattice $L \subseteq \mathbf{Z}^n$, given fast function $\varphi : \mathbb{Z}^n \to X$ that induces $\mathbf{Z}^n/L \hookrightarrow X$.

Non-commutative generalizations: e.g. find hidden subgroup $H \subseteq S_n$, given fast function $\varphi: S_n \to X$ that induces $S_n/H \hookrightarrow X$? Some progress, some obstacles.

The hidden-shift problem Given $N \in \mathbb{Z}$, N > 0; $f_0: \mathbb{Z}/N \hookrightarrow X; f_1: \mathbb{Z}/N \hookrightarrow X;$ $f_1(a) = f_0(a+s)$ for all $a \in \mathbb{Z}/N$. Goal: Find $s \in \mathbb{Z}/N$. Define $\varphi: D_M \to X$ by $\varphi(a, i) = f_i(a)$. Then φ hides subgroup $\{(0, 0), (s, 1)\}$ of D_N .

2

These are the only "Shor-hard" hidden subgroups of D_N .

- o generalizes
- to other finite groups
- t computations.
- for prime power q; or elliptic curve E/\mathbf{F}_q .
- neh-Lipton:
- dden" lattice $L \subseteq \mathbf{Z}^n$,
- st function $\varphi : \mathbf{Z}^n \to X$ uces $\mathbf{Z}^n/L \hookrightarrow X$.
- nmutative generalizations: hidden subgroup $H \subseteq S_n$, st function $\varphi: S_n \to X$ uces $S_n/H \hookrightarrow X$? ogress, some obstacles.

2

Given $N \in \mathbb{Z}$, N > 0; $f_0: \mathbb{Z}/N \hookrightarrow X; f_1: \mathbb{Z}/N \hookrightarrow X;$ $f_1(a) = f_0(a+s)$ for all $a \in \mathbb{Z}/N$.

Goal: Find $s \in \mathbb{Z}/N$.

Dihedral group $D_N = \mathbf{Z}/N \times \mathbf{Z}/2$: $(a, b)(c, d) = (a + (-1)^{b}c, b + d).$

Define $\varphi: D_N \to X$ by $\varphi(a, i) = f_i(a)$. Then φ hides subgroup $\{(0, 0), (s, 1)\}$ of D_N .

These are the only "Shor-hard" hidden subgroups of D_N .

1998 Et⁻ Solve hi $O(\log N)$ huge φ -i

zes

finite groups

2

- tions.
- power q;
- curve E/\mathbf{F}_q .
- n:
- tice $L \subseteq \mathbf{Z}^n$, $\varphi : \mathbf{Z}^n \to X$ $\varphi \to X$.

generalizations: bgroup $H \subseteq S_n$, $\varphi : S_n \to X$ $H \hookrightarrow X$?

me obstacles.

The hidden-shift problem

Given $N \in \mathbb{Z}$, N > 0; $f_0 : \mathbb{Z}/N \hookrightarrow X$; $f_1 : \mathbb{Z}/N \hookrightarrow X$; $f_1(a) = f_0(a + s)$ for all $a \in \mathbb{Z}/N$.

Goal: Find $s \in \mathbb{Z}/N$.

Dihedral group $D_N = \mathbf{Z}/N \times \mathbf{Z}/2$: (*a*, *b*)(*c*, *d*) = $(a + (-1)^b c, b + d)$.

Define $\varphi : D_N \to X$ by $\varphi(a, i) = f_i(a)$. Then φ hides subgroup $\{(0, 0), (s, 1)\}$ of D_N .

These are the only "Shor-hard" hidden subgroups of D_N .

1998 Ettinger–Høy Solve hidden-shift $O(\log N)$ quantum huge φ -independer

ps	
ps	

2

q •

n, X

tions:

 $\subset S_n$, X

les.

The hidden-shift problem
Given
$$N \in \mathbb{Z}$$
, $N > 0$;
 $f_0 : \mathbb{Z}/N \hookrightarrow X$; $f_1 : \mathbb{Z}/N \hookrightarrow X$;
 $f_1(a) = f_0(a + s)$ for all $a \in \mathbb{Z}/N$
Goal: Find $s \in \mathbb{Z}/N$.

Dihedral group $D_N = \mathbf{Z}/N \times \mathbf{Z}/2$: $(a, b)(c, d) = (a + (-1)^{b}c, b + d).$

Define $\varphi: D_N \to X$ by $\varphi(a, i) = f_i(a)$. Then φ hides subgroup $\{(0, 0), (s, 1)\}$ of D_N .

These are the only "Shor-hard" hidden subgroups of D_N .

3

1998 Ettinger-Høyer: Solve hidden-shift problem ι $O(\log N)$ quantum φ evalua huge φ -independent comput

Given
$$N \in \mathbb{Z}$$
, $N > 0$;
 $f_0 : \mathbb{Z}/N \hookrightarrow X$; $f_1 : \mathbb{Z}/N \hookrightarrow X$;
 $f_1(a) = f_0(a + s)$ for all $a \in \mathbb{Z}/N$.

Goal: Find $s \in \mathbb{Z}/N$.

Dihedral group
$$D_N = Z/N \times Z/2$$
:
(*a*, *b*)(*c*, *d*) = $(a + (-1)^b c, b + d)$.

Define $\varphi: D_M \to X$ by $\varphi(a, i) = f_i(a)$. Then φ hides subgroup $\{(0, 0), (s, 1)\}$ of D_N .

These are the only "Shor-hard" hidden subgroups of D_N .

3

1998 Ettinger–Høyer: Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation.

Given
$$N \in \mathbb{Z}$$
, $N > 0$;
 $f_0 : \mathbb{Z}/N \hookrightarrow X$; $f_1 : \mathbb{Z}/N \hookrightarrow X$;
 $f_1(a) = f_0(a + s)$ for all $a \in \mathbb{Z}/N$.

Goal: Find $s \in \mathbb{Z}/N$.

Dihedral group $D_N = \mathbf{Z}/N \times \mathbf{Z}/2$: $(a, b)(c, d) = (a + (-1)^{b}c, b + d).$

Define $\varphi: D_N \to X$ by $\varphi(a, i) = f_i(a)$. Then φ hides subgroup $\{(0, 0), (s, 1)\}$ of D_N .

These are the only "Shor-hard" hidden subgroups of D_N .

3

1998 Ettinger–Høyer: Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation.

(1999–2004 Ettinger–Høyer–Knill: Similarly few evaluations for hidden subgroups of any group.)

Given
$$N \in \mathbb{Z}$$
, $N > 0$;
 $f_0 : \mathbb{Z}/N \hookrightarrow X$; $f_1 : \mathbb{Z}/N \hookrightarrow X$;
 $f_1(a) = f_0(a + s)$ for all $a \in \mathbb{Z}/N$.
Goal: Find $s \in \mathbb{Z}/N$.

Dihedral group $D_N = \mathbf{Z}/N \times \mathbf{Z}/2$: $(a, b)(c, d) = (a + (-1)^{b}c, b + d).$

Define $\varphi: D_N \to X$ by $\varphi(a, i) = f_i(a)$. Then φ hides subgroup $\{(0, 0), (s, 1)\}$ of D_N .

These are the only "Shor-hard" hidden subgroups of D_N .

3

1998 Ettinger–Høyer: Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation.

(1999–2004 Ettinger–Høyer–Knill: Similarly few evaluations for hidden subgroups of any group.)

2003 Kuperberg: Solve hidden-shift problem using more quantum φ evaluations, less φ -independent computation.

Given
$$N \in \mathbb{Z}$$
, $N > 0$;
 $f_0 : \mathbb{Z}/N \hookrightarrow X$; $f_1 : \mathbb{Z}/N \hookrightarrow X$;
 $f_1(a) = f_0(a + s)$ for all $a \in \mathbb{Z}/N$.
Goal: Find $s \in \mathbb{Z}/N$.

Dihedral group $D_N = \mathbf{Z}/N \times \mathbf{Z}/2$: $(a, b)(c, d) = (a + (-1)^{b}c, b + d).$

Define $\varphi: D_M \to X$ by $\varphi(a, i) = f_i(a)$. Then φ hides subgroup $\{(0, 0), (s, 1)\}$ of D_N .

These are the only "Shor-hard" hidden subgroups of D_N .

1998 Ettinger–Høyer: Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation. (1999–2004 Ettinger–Høyer–Knill:

3

Similarly few evaluations for hidden subgroups of any group.)

2003 Kuperberg: Solve hidden-shift problem using more quantum φ evaluations, less φ -independent computation.

2004 Regev, 2011 Kuperberg: More tradeoffs, better tradeoffs.

den-shift problem

 \in **Z**, *N* > 0; $\hookrightarrow X; f_1 : \mathbb{Z}/N \hookrightarrow X;$ $f_0(a+s)$ for all $a \in \mathbb{Z}/N$.

nd $s \in \mathbf{Z}/N$.

group $D_N = \mathbf{Z}/N \times \mathbf{Z}/2$: $d) = (a + (-1)^{b}c, b + d).$

 $p: D_N \to X$ by = $f_i(a)$. Then φ hides $o \{(0,0), (s,1)\} of D_N.$

re the only "Shor-hard" ubgroups of D_N .

1998 Ettinger–Høyer:

3

Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation.

(1999–2004 Ettinger–Høyer–Knill: Similarly few evaluations for hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using more quantum φ evaluations, less φ -independent computation.

2004 Regev, 2011 Kuperberg: More tradeoffs, better tradeoffs.

Attackin

4

CRS/CS acts free on a set

oroblem

• 0; : $\mathbf{Z}/N \hookrightarrow X$; for all $a \in \mathbf{Z}/N$. 3

 $V = \mathbf{Z}/N \times \mathbf{Z}/2$: - $(-1)^b c, b+d$).

X by then φ hides $\{s, 1\}$ of D_N .

• "Shor-hard" of D_N .

1998 Ettinger–Høyer: Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation. (1999–2004 Ettinger–Høyer–Knill: Similarly few evaluations for hidden subgroups of any group.) 2003 Kuperberg: Solve hidden-shift problem using more quantum φ evaluations, less φ -independent computation. 2004 Regev, 2011 Kuperberg: More tradeoffs, better tradeoffs.

Attacking isogenie

CRS/CSIDH: Class acts freely and transformed transfor

X;Z/N. 3

× **Z**/2: b+d).

S \mathcal{D}_{N} .

rd"

1998 Ettinger–Høyer: Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation.

(1999–2004 Ettinger–Høyer–Knill: Similarly few evaluations for hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using more quantum φ evaluations, less φ -independent computation.

2004 Regev, 2011 Kuperberg: More tradeoffs, better tradeoffs.

4

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}

Attacking isogenies

Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation.

(1999–2004 Ettinger–Høyer–Knill: Similarly few evaluations for hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using more quantum φ evaluations,

less φ -independent computation.

2004 Regev, 2011 Kuperberg: More tradeoffs, better tradeoffs. Attacking isogenies

4

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation.

(1999–2004 Ettinger–Høyer–Knill: Similarly few evaluations for hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using more quantum φ evaluations,

less φ -independent computation.

2004 Regev, 2011 Kuperberg: More tradeoffs, better tradeoffs. Attacking isogenies

4

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$.

Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation.

(1999–2004 Ettinger–Høyer–Knill: Similarly few evaluations for hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using more quantum φ evaluations,

less φ -independent computation.

2004 Regev, 2011 Kuperberg: More tradeoffs, better tradeoffs. Attacking isogenies

4

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm.

Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation.

(1999–2004 Ettinger–Høyer–Knill: Similarly few evaluations for hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using more quantum φ evaluations,

less φ -independent computation.

2004 Regev, 2011 Kuperberg: More tradeoffs, better tradeoffs. Attacking isogenies

4

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{Z}$.

Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation.

(1999–2004 Ettinger–Høyer–Knill: Similarly few evaluations for hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using more quantum φ evaluations, less φ -independent computation.

2004 Regev, 2011 Kuperberg: More tradeoffs, better tradeoffs. Attacking isogenies

4

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{Z}$.

Given $E_0, E_1 \in X$: define $f_0: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_0$; $f_1: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_1$.

Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation.

(1999–2004 Ettinger–Høyer–Knill: Similarly few evaluations for hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using more quantum φ evaluations, less φ -independent computation.

2004 Regev, 2011 Kuperberg: More tradeoffs, better tradeoffs.

Attacking isogenies

4

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{Z}$.

Given $E_0, E_1 \in X$: define $f_0: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_0$; $f_1: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_1$.

 $E_1 = [I]^s E_0$ for some $s \in \mathbb{Z}/N$.

Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation.

(1999–2004 Ettinger–Høyer–Knill: Similarly few evaluations for hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using more quantum φ evaluations, less φ -independent computation.

2004 Regev, 2011 Kuperberg: More tradeoffs, better tradeoffs. Attacking isogenies

4

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{Z}$.

Given $E_0, E_1 \in X$: define $f_0: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_0$; $f_1: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_1$.

 $E_1 = [I]^s E_0$ for some $s \in \mathbb{Z}/N$. $f_1(a) = f_0(a+s)$ for all $a \in \mathbb{Z}/N$.

Solve hidden-shift problem using $O(\log N)$ quantum φ evaluations, huge φ -independent computation.

(1999–2004 Ettinger–Høyer–Knill: Similarly few evaluations for hidden subgroups of any group.)

2003 Kuperberg:

Solve hidden-shift problem using more quantum φ evaluations, less φ -independent computation.

2004 Regev, 2011 Kuperberg: More tradeoffs, better tradeoffs. Attacking isogenies

4

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{Z}$.

Given $E_0, E_1 \in X$: define $f_0: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_0$; $f_1: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_1$.

 $E_1 = [I]^s E_0$ for some $s \in \mathbb{Z}/N$. $f_1(a) = f_0(a+s)$ for all $a \in \mathbb{Z}/N$.

- Find the hidden shift *s* in f_0 , f_1 .

dden-shift problem using) quantum φ evaluations, independent computation.

004 Ettinger–Høyer–Knill: few evaluations for ubgroups of any group.)

perberg:

dden-shift problem using antum φ evaluations,

dependent computation.

gev, 2011 Kuperberg: adeoffs, better tradeoffs. Attacking isogenies

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{Z}$.

Given $E_0, E_1 \in X$: define $f_0: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_0$; $f_1: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_1$.

 $E_1 = [I]^s E_0$ for some $s \in \mathbb{Z}/N$. $f_1(a) = f_0(a+s)$ for all $a \in \mathbb{Z}/N$. Find the hidden shift *s* in f_0 , f_1 .

How ma

5

Steps fo fast algo small [P e.g., *d* =

yer:

problem using φ evaluations, nt computation.

ger—Høyer—Knill: Lations for of any group.)

problem using evaluations,

t computation.

Kuperberg: etter tradeoffs.

Attacking isogenies

CRS/CSIDH: Class group Gacts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{\mathbf{Z}}$.

Given $E_0, E_1 \in X$: define $f_0 : \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_0;$ $f_1 : \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_1.$

 $E_1 = [I]^s E_0$ for some $s \in \mathbb{Z}/N$. $f_1(a) = f_0(a + s)$ for all $a \in \mathbb{Z}/N$. Find the hidden shift s in f_0, f_1 .

How many steps in

5

Steps for CRS/CS fast algorithms for small $[P_1]$, $[P_2]$, $[P_3]$ e.g., d = 74 for C

ising tions, ation. 4

-Knill:

oup.)

ising S,

tion.

g: offs.

Attacking isogenies

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{Z}$.

Given $E_0, E_1 \in X$: define $f_0: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_0$; $f_1: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_1$.

 $E_1 = [I]^s E_0$ for some $s \in \mathbb{Z}/N$. $f_1(a) = f_0(a+s)$ for all $a \in \mathbb{Z}/N$. Find the hidden shift *s* in f_0 , f_1 .

5

How many steps in an actio

Steps for CRS/CSIDH users fast algorithms for actions o small $[P_1], [P_2], [P_3], \ldots, [P_d]$ e.g., d = 74 for CSIDH-512.

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{Z}$.

Given $E_0, E_1 \in X$: define $f_0: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_0;$ $f_1: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_1$.

 $E_1 = [I]^s E_0$ for some $s \in \mathbb{Z}/N$. $f_1(a) = f_0(a+s)$ for all $a \in \mathbb{Z}/N$. Find the hidden shift s in f_0, f_1 .

How many steps in an action?

5

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1], [P_2], [P_3], \ldots, [P_d].$ e.g., d = 74 for CSIDH-512.

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{Z}$.

Given $E_0, E_1 \in X$: define $f_0: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_0;$ $f_1: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_1$.

 $E_1 = [I]^s E_0$ for some $s \in \mathbb{Z}/N$. $f_1(a) = f_0(a+s)$ for all $a \in \mathbb{Z}/N$. Find the hidden shift s in f_0, f_1 .

How many steps in an action?

5

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1], [P_2], [P_3], \ldots, [P_d].$ e.g., d = 74 for CSIDH-512.

 $[P_1]^5 [P_2]^4 [P_3]^1$: 10 steps.

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_{p} .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{Z}$.

Given $E_0, E_1 \in X$: define $f_0: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_0;$ $f_1: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_1$.

 $E_1 = [I]^s E_0$ for some $s \in \mathbb{Z}/N$. $f_1(a) = f_0(a+s)$ for all $a \in \mathbb{Z}/N$. Find the hidden shift s in f_0, f_1 .

How many steps in an action?

5

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1], [P_2], [P_3], \ldots, [P_d].$ e.g., d = 74 for CSIDH-512.

 $[P_1]^5 [P_2]^4 [P_3]^1$: 10 steps. [*P*₁]⁷⁰³⁸³⁰⁴⁹¹⁶: 7038304916 steps.

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{Z}$.

Given $E_0, E_1 \in X$: define $f_0: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_0$; $f_1: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_1$.

 $E_1 = [I]^s E_0$ for some $s \in \mathbb{Z}/N$. $f_1(a) = f_0(a+s)$ for all $a \in \mathbb{Z}/N$. Find the hidden shift s in f_0, f_1 .

How many steps in an action?

5

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1], [P_2], [P_3], \ldots, [P_d].$ e.g., d = 74 for CSIDH-512.

 $[P_1]^5 [P_2]^4 [P_3]^1$: 10 steps. $[P_1]^{7038304916}$: 7038304916 steps.

6

$[P_1]^a$ for huge $a \in \mathbb{Z}/N$: Hmmm.

CRS/CSIDH: Class group G acts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{Z}$.

Given $E_0, E_1 \in X$: define $f_0: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_0$; $f_1: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_1$.

 $E_1 = [I]^s E_0$ for some $s \in \mathbb{Z}/N$. $f_1(a) = f_0(a+s)$ for all $a \in \mathbb{Z}/N$. Find the hidden shift s in f_0, f_1 .

How many steps in an action?

5

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1], [P_2], [P_3], \ldots, [P_d].$ e.g., d = 74 for CSIDH-512.

 $[P_1]^5 [P_2]^4 [P_3]^1$: 10 steps.

[*P*₁]⁷⁰³⁸³⁰⁴⁹¹⁶: 7038304916 steps. $[P_1]^a$ for huge $a \in \mathbb{Z}/N$: Hmmm. Approach 1: Compute lattice L = $\operatorname{Ker}(a_1,\ldots,a_d\mapsto [P_1]^{a_1}\cdots [P_d]^{a_d}).$

CRS/CSIDH: Class group Gacts freely and transitively on a set X of curves over \mathbf{F}_p .

Usually $G \cong \mathbf{Z}/N$ with $N \approx p^{1/2}$. Compute N by Shor's algorithm. Find ideal I with $G = [I]^{Z}$.

Given $E_0, E_1 \in X$: define $f_0: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_0$; $f_1: \mathbb{Z}/N \hookrightarrow X$ by $a \mapsto [I]^a E_1$.

 $E_1 = [I]^s E_0$ for some $s \in \mathbb{Z}/N$. $f_1(a) = f_0(a+s)$ for all $a \in \mathbb{Z}/N$. Find the hidden shift s in f_0 , f_1 .

How many steps in an action?

5

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1], [P_2], [P_3], \ldots, [P_d].$ e.g., d = 74 for CSIDH-512.

 $[P_1]^5 [P_2]^4 [P_3]^1$: 10 steps. $[P_1]^{7038304916}$: 7038304916 steps.

Approach 1: Compute lattice L =

Given $a \in \mathbf{Z}^d$, find close $v \in L$: distance $exp((\log N)^{1/2+o(1)})$ using time $\exp((\log N)^{1/2+o(1)})$.

- $[P_1]^a$ for huge $a \in \mathbb{Z}/N$: Hmmm.
- $\operatorname{Ker}(a_1,\ldots,a_d\mapsto [P_1]^{a_1}\cdots [P_d]^{a_d}).$

g isogenies

IDH: Class group G ely and transitively X of curves over \mathbf{F}_p .

 $G\cong {f Z}/N$ with $Npprox p^{1/2}$. e *N* by Shor's algorithm. al I with $G = [I]^{\mathbb{Z}}$.

 $E_1, E_1 \in X$: define $\hookrightarrow X$ by $a \mapsto [I]^a E_0$; $G \hookrightarrow X$ by $a \mapsto [I]^a E_1$.

^{*s*} E_0 for some $s \in \mathbb{Z}/N$. $f_0(a+s)$ for all $a \in \mathbb{Z}/N$. hidden shift s in f_0, f_1 .

How many steps in an action?

5

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1], [P_2], [P_3], \ldots, [P_d].$ e.g., d = 74 for CSIDH-512.

 $[P_1]^5 [P_2]^4 [P_3]^1$: 10 steps. $[P_1]^{7038304916}$: 7038304916 steps. $[P_1]^a$ for huge $a \in \mathbb{Z}/N$: Hmmm.

Approach 1: Compute lattice L = $\operatorname{Ker}(a_1,\ldots,a_d\mapsto [P_1]^{a_1}\cdots [P_d]^{a_d}).$

Given $a \in \mathbf{Z}^d$, find close $v \in L$: distance $exp((\log N)^{1/2+o(1)})$ using time $\exp((\log N)^{1/2+o(1)})$.

Approac exp((log randoml

S

s group *G* nsitively ves over **F**_p. 5

with $N \approx p^{1/2}$. or's algorithm. $G = [I]^{\mathbf{Z}}$.

 ${f define}\ a\mapsto [I]^aE_0;\ a\mapsto [I]^aE_1.$

ome $s \in \mathbb{Z}/N$. For all $a \in \mathbb{Z}/N$. hift s in f_0, f_1 . How many steps in an action?

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1], [P_2], [P_3], \dots, [P_d]$. e.g., d = 74 for CSIDH-512.

 $[P_1]^5 [P_2]^4 [P_3]^1$: 10 steps. $[P_1]^{7038304916}$: 7038304916 steps. $[P_1]^a$ for huge $a \in \mathbb{Z}/N$: Hmmm.

Approach 1: Compute lattice $L = \text{Ker}(a_1, \ldots, a_d \mapsto [P_1]^{a_1} \cdots [P_d]^{a_d}).$

Given $a \in \mathbb{Z}^d$, find close $v \in L$: distance $\exp((\log N)^{1/2+o(1)})$ using time $\exp((\log N)^{1/2+o(1)})$.

Approach 2: Incre $\exp((\log N)^{1/2+o(1)})$ randomly for smal

5

How many steps in an action?

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1], [P_2], [P_3], \dots, [P_d]$. e.g., d = 74 for CSIDH-512.

 $[P_1]^5 [P_2]^4 [P_3]^1$: 10 steps. $[P_1]^{7038304916}$: 7038304916 steps. $[P_1]^a$ for huge $a \in \mathbb{Z}/N$: Hmmm.

Approach 1: Compute lattice $L = \text{Ker}(a_1, \ldots, a_d \mapsto [P_1]^{a_1} \cdots [P_d]^{a_d}).$

Given $a \in \mathbb{Z}^d$, find close $v \in L$: distance $\exp((\log N)^{1/2+o(1)})$ using time $\exp((\log N)^{1/2+o(1)})$. Approach 2: Increase d up to $\exp((\log N)^{1/2+o(1)})$. Search randomly for small relations.

6

D •

 $p^{1/2}.$ thm.

. 1. /*N*. **Z**/*N*. , *f*₁.

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1], [P_2], [P_3], \ldots, [P_d].$ e.g., d = 74 for CSIDH-512.

 $[P_1]^5 [P_2]^4 [P_3]^1$: 10 steps. $[P_1]^{7038304916}$: 7038304916 steps. $[P_1]^a$ for huge $a \in \mathbb{Z}/N$: Hmmm.

Approach 1: Compute lattice L = $\operatorname{Ker}(a_1,\ldots,a_d\mapsto [P_1]^{a_1}\cdots [P_d]^{a_d}).$

Given $a \in \mathbf{Z}^d$, find close $v \in L$: distance $exp((\log N)^{1/2+o(1)})$ using time $\exp((\log N)^{1/2+o(1)})$.

Approach 2: Increase *d* up to $exp((\log N)^{1/2+o(1)})$. Search randomly for small relations.

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1], [P_2], [P_3], \dots, [P_d]$. e.g., d = 74 for CSIDH-512.

 $[P_1]^5 [P_2]^4 [P_3]^1$: 10 steps. $[P_1]^{7038304916}$: 7038304916 steps. $[P_1]^a$ for huge $a \in \mathbb{Z}/N$: Hmmm.

Approach 1: Compute lattice $L = \text{Ker}(a_1, \ldots, a_d \mapsto [P_1]^{a_1} \cdots [P_d]^{a_d}).$

Given $a \in \mathbb{Z}^d$, find close $v \in L$: distance $\exp((\log N)^{1/2+o(1)})$ using time $\exp((\log N)^{1/2+o(1)})$. Approach 2: Increase d up to exp $((\log N)^{1/2+o(1)})$. Search randomly for small relations.

6

2010 Childs–Jao–Soukharev:

A. Time $\exp((\log N)^{1/2+o(1)})$ to compute G action by Approach 2.

rease d up to $^{(1)}$). Search all relations. -Soukharev: $(N)^{1/2+o(1)}$ to $(N)^{1/2+o(1)}$

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1], [P_2], [P_3], \dots, [P_d]$. e.g., d = 74 for CSIDH-512.

 $[P_1]^5 [P_2]^4 [P_3]^1$: 10 steps. $[P_1]^{7038304916}$: 7038304916 steps. $[P_1]^a$ for huge $a \in \mathbb{Z}/N$: Hmmm.

Approach 1: Compute lattice $L = \text{Ker}(a_1, \ldots, a_d \mapsto [P_1]^{a_1} \cdots [P_d]^{a_d}).$

Given $a \in \mathbb{Z}^d$, find close $v \in L$: distance $\exp((\log N)^{1/2+o(1)})$ using time $\exp((\log N)^{1/2+o(1)})$. Approach 2: Increase d up to exp $((\log N)^{1/2+o(1)})$. Search randomly for small relations.

6

2010 Childs–Jao–Soukharev:

A. Time $\exp((\log N)^{1/2+o(1)})$ to compute G action by Approach 2.

B. Unfixably flawed argument that Approach 2 beats Approach 1.

rease d up to $f^{(1)}$). Search all relations. -Soukharev: $(S N)^{1/2+o(1)}$) to n by Approach 2 wed argument that

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1], [P_2], [P_3], \ldots, [P_d].$ e.g., d = 74 for CSIDH-512.

 $[P_1]^5 [P_2]^4 [P_3]^1$: 10 steps. $[P_1]^{7038304916}$: 7038304916 steps. $[P_1]^a$ for huge $a \in \mathbb{Z}/N$: Hmmm.

Approach 1: Compute lattice L = $\operatorname{Ker}(a_1,\ldots,a_d\mapsto [P_1]^{a_1}\cdots [P_d]^{a_d}).$

Given $a \in \mathbf{Z}^d$, find close $v \in L$: distance $exp((\log N)^{1/2+o(1)})$ using time $\exp((\log N)^{1/2+o(1)})$.

Approach 2: Increase *d* up to $exp((\log N)^{1/2+o(1)})$. Search randomly for small relations.

6

2010 Childs–Jao–Soukharev:

A. Time $\exp((\log N)^{1/2+o(1)})$ to compute G action by Approach 2.

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev): Time $\exp((\log N)^{1/2+o(1)})$ to find $g \in G$ with $gE_0 = E_1$.

- B. Unfixably flawed argument that

Steps for CRS/CSIDH users: fast algorithms for actions of small $[P_1], [P_2], [P_3], \ldots, [P_d].$ e.g., d = 74 for CSIDH-512.

 $[P_1]^5 [P_2]^4 [P_3]^1$: 10 steps. $[P_1]^{7038304916}$: 7038304916 steps. $[P_1]^a$ for huge $a \in \mathbb{Z}/N$: Hmmm.

Approach 1: Compute lattice L = $\operatorname{Ker}(a_1,\ldots,a_d\mapsto [P_1]^{a_1}\cdots [P_d]^{a_d}).$

Given $a \in \mathbf{Z}^d$, find close $v \in L$: distance $exp((\log N)^{1/2+o(1)})$ using time $\exp((\log N)^{1/2+o(1)})$.

Approach 2: Increase *d* up to $exp((\log N)^{1/2+o(1)})$. Search randomly for small relations.

6

2010 Childs–Jao–Soukharev:

A. Time $\exp((\log N)^{1/2+o(1)})$ to compute G action by Approach 2.

B. Unfixably flawed argument that Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev): Time $\exp((\log N)^{1/2+o(1)})$ to find $g \in G$ with $gE_0 = E_1$.

D. Proof assuming only GRH, using provable-factoring ideas.

ny steps in an action?

6

r CRS/CSIDH users: orithms for actions of $[P_1], [P_2], [P_3], \ldots, [P_d].$ = 74 for CSIDH-512.

 $|^{4}[P_{3}]^{1}$: 10 steps. ³⁰⁴⁹¹⁶: 7038304916 steps. huge $a \in \mathbf{Z}/N$: Hmmm.

h 1: Compute lattice L = $\ldots, a_d \mapsto [P_1]^{a_1} \cdots [P_d]^{a_d}$.

 $\in \mathbf{Z}^d$, find close $v \in L$: $\exp((\log N)^{1/2+o(1)})$ ne $\exp((\log N)^{1/2+o(1)})$.

Approach 2: Increase d up to $exp((\log N)^{1/2+o(1)})$. Search randomly for small relations. 2010 Childs–Jao–Soukharev: A. Time $\exp((\log N)^{1/2+o(1)})$ to compute G action by Approach 2. B. Unfixably flawed argument that Approach 2 beats Approach 1. C. Apply Kuperberg (or Regev): Time $\exp((\log N)^{1/2+o(1)})$ to find $g \in G$ with $gE_0 = E_1$. D. Proof assuming only GRH, using provable-factoring ideas.

Approac Bernstei Panny): in $\{-c,$ somewh Not muo Surely g

nearly u

n an action?

6

IDH users: actions of $[3], \ldots, [P_d].$ SIDH-512.

0 steps. 38304916 steps.

Z/*N*: Hmmm.

pute lattice $L = [P_1]^{a_1} \cdots [P_d]^{a_d}$.

 $(V)^{1/2+o(1)}$ $(V)^{1/2+o(1)}$ $(V)^{1/2+o(1)}$.

Approach 2: Increase *d* up to $exp((\log N)^{1/2+o(1)})$. Search randomly for small relations. 2010 Childs–Jao–Soukharev: A. Time $\exp((\log N)^{1/2+o(1)})$ to compute G action by Approach 2. B. Unfixably flawed argument that Approach 2 beats Approach 1. C. Apply Kuperberg (or Regev): Time $\exp((\log N)^{1/2+o(1)})$

to find $g \in G$ with $gE_0 = E_1$.

D. Proof assuming only GRH, using provable-factoring ideas.

Approach 3 (ment Bernstein–Lange–I Panny): Uniform (in $\{-c, ..., c\}^d$. somewhat larger t Not much slowdow Surely $g = [P_1]^{a_1}$ nearly uniformly d

<u>n?</u>

6

: f].

steps. nmm.

e $L = [P_d]^{a_d}$.

E L:) (1)). Approach 2: Increase *d* up to $\exp((\log N)^{1/2+o(1)})$. Search randomly for small relations. 2010 Childs–Jao–Soukharev: A. Time $\exp((\log N)^{1/2+o(1)})$ to

compute G action by Approach 2.

B. Unfixably flawed argument that Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev): Time $\exp((\log N)^{1/2+o(1)})$ to find $g \in G$ with $gE_0 = E_1$.

D. Proof assuming only GRH, using provable-factoring ideas.

Approach 3 (mentioned in 2 Bernstein–Lange–Martindale Panny): Uniform (a_1, \ldots, a_d) in $\{-c, \ldots, c\}^d$. Choose csomewhat larger than users Not much slowdown in actic

Not much slowdown in action Surely $g = [P_1]^{a_1} \cdots [P_d]^{a_d}$ nearly uniformly distributed

Approach 2: Increase d up to $exp((\log N)^{1/2+o(1)})$. Search randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time $\exp((\log N)^{1/2+o(1)})$ to compute G action by Approach 2.

B. Unfixably flawed argument that Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev): Time $\exp((\log N)^{1/2+o(1)})$ to find $g \in G$ with $gE_0 = E_1$.

D. Proof assuming only GRH, using provable-factoring ideas.

Approach 3 (mentioned in 2018 Bernstein–Lange–Martindale– Panny): Uniform (a_1, \ldots, a_d) in $\{-c, \ldots, c\}^d$. Choose c somewhat larger than users do.

7

Not much slowdown in action. Surely $g = [P_1]^{a_1} \cdots [P_d]^{a_d}$ is nearly uniformly distributed in G.

Approach 2: Increase d up to $exp((\log N)^{1/2+o(1)})$. Search randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time $\exp((\log N)^{1/2+o(1)})$ to compute G action by Approach 2.

B. Unfixably flawed argument that Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev): Time $\exp((\log N)^{1/2+o(1)})$ to find $g \in G$ with $gE_0 = E_1$.

D. Proof assuming only GRH, using provable-factoring ideas.

Approach 3 (mentioned in 2018 Bernstein–Lange–Martindale– Panny): Uniform (a_1, \ldots, a_d) in $\{-c, \ldots, c\}^d$. Choose c somewhat larger than users do.

7

Not much slowdown in action. Surely $g = [P_1]^{a_1} \cdots [P_d]^{a_d}$ is nearly uniformly distributed in G.

Can quickly compute gE_b and image of g in \mathbb{Z}/N .

Approach 2: Increase *d* up to $exp((\log N)^{1/2+o(1)})$. Search randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time $\exp((\log N)^{1/2+o(1)})$ to compute G action by Approach 2.

B. Unfixably flawed argument that Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev): Time $\exp((\log N)^{1/2+o(1)})$ to find $g \in G$ with $gE_0 = E_1$.

D. Proof assuming only GRH, using provable-factoring ideas.

Approach 3 (mentioned in 2018 Bernstein–Lange–Martindale– Panny): Uniform (a_1, \ldots, a_d) in $\{-c, \ldots, c\}^d$. Choose c somewhat larger than users do.

7

Not much slowdown in action. Surely $g = [P_1]^{a_1} \cdots [P_d]^{a_d}$ is nearly uniformly distributed in G.

Can quickly compute gE_b and image of g in \mathbb{Z}/N .

Need more analysis of impact of these redundant representations upon Kuperberg's algorithm.

h 2: Increase d up to $(N)^{1/2+o(1)})$. Search y for small relations.

ilds–Jao–Soukharev:

 $\exp((\log N)^{1/2+o(1)})$ to e G action by Approach 2.

ably flawed argument that h 2 beats Approach 1.

/ Kuperberg (or Regev): $p((\log N)^{1/2+o(1)})$ $g \in G$ with $gE_0 = E_1$.

f assuming only GRH, ovable-factoring ideas.

Approach 3 (mentioned in 2018 Bernstein-Lange-Martindale-Panny): Uniform (a_1, \ldots, a_d) in $\{-c, \ldots, c\}^d$. Choose c somewhat larger than users do.

Not much slowdown in action. Surely $g = [P_1]^{a_1} \cdots [P_d]^{a_d}$ is nearly uniformly distributed in G.

Can quickly compute gE_b and image of g in \mathbb{Z}/N .

Need more analysis of impact of these redundant representations upon Kuperberg's algorithm.

How fas

8

e.g. CSI on G, er adequate

 $\approx 2^{51}$ by Leonard

- ase *d* up to ^{L)}). Search
- l relations.
- Soukharev:
- $(V)^{1/2+o(1)})$ to by Approach 2.
- d argument that Approach 1.
- rg (or Regev): $\frac{1}{2+o(1)}$
- $gE_0=E_1.$
- g only GRH, toring ideas.

Not much slowdown in action. Surely $g = [P_1]^{a_1} \cdots [P_d]^{a_d}$ is nearly uniformly distributed in G.

Can quickly compute gE_b and image of g in \mathbf{Z}/N .

Need more analysis of impact of these redundant representations upon Kuperberg's algorithm.

How fast are the s

e.g. CSIDH-512, u on G, error rate <adequate?), nonlin $\approx 2^{51}$ by 2018 Jao

Leonardi–Ruiz-Lop

03 1

7

) to ach 2.

nt that 1.

ev):

1. ┨,

AS.

Approach 3 (mentioned in 2018 Bernstein–Lange–Martindale– Panny): Uniform (a_1, \ldots, a_d) in $\{-c, \ldots, c\}^d$. Choose c somewhat larger than users do.

Not much slowdown in action. Surely $g = [P_1]^{a_1} \cdots [P_d]^{a_d}$ is nearly uniformly distributed in G.

Can quickly compute gE_h and image of g in \mathbf{Z}/N .

Need more analysis of impact of these redundant representations upon Kuperberg's algorithm.

8

e.g. CSIDH-512, user distrib on G, error rate $<2^{-32}$ (is t adequate?), nonlinear bit op

 $\approx 2^{51}$ by 2018 Jao–LeGrow– Leonardi–Ruiz-Lopez.

How fast are the steps?

Not much slowdown in action. Surely $g = [P_1]^{a_1} \cdots [P_d]^{a_d}$ is nearly uniformly distributed in G.

Can quickly compute gE_b and image of g in \mathbf{Z}/N .

Need more analysis of impact of these redundant representations upon Kuperberg's algorithm.

How fast are the steps?

8

e.g. CSIDH-512, user distribution on G, error rate $<2^{-32}$ (is this adequate?), nonlinear bit ops:

 $\approx 2^{51}$ by 2018 Jao–LeGrow– Leonardi–Ruiz-Lopez.

Not much slowdown in action. Surely $g = [P_1]^{a_1} \cdots [P_d]^{a_d}$ is nearly uniformly distributed in G.

Can quickly compute gE_b and image of g in \mathbb{Z}/N .

Need more analysis of impact of these redundant representations upon Kuperberg's algorithm.

How fast are the steps?

8

e.g. CSIDH-512, user distribution on G, error rate $<2^{-32}$ (is this adequate?), nonlinear bit ops:

 $\approx 2^{51}$ by 2018 Jao–LeGrow– Leonardi–Ruiz-Lopez.

Many optimizations, detailed by 2018 BLMP Algorithm 8.1.

analysis: 765325228976 $\approx 0.7 \cdot 2^{40}$

Not much slowdown in action. Surely $g = [P_1]^{a_1} \cdots [P_d]^{a_d}$ is nearly uniformly distributed in G.

Can quickly compute gE_b and image of g in \mathbb{Z}/N .

Need more analysis of impact of these redundant representations upon Kuperberg's algorithm.

How fast are the steps?

8

e.g. CSIDH-512, user distribution on G, error rate $<2^{-32}$ (is this adequate?), nonlinear bit ops:

 $\approx 2^{51}$ by 2018 Jao–LeGrow– Leonardi–Ruiz-Lopez.

Many optimizations, detailed by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org: full software and 56-page paper; variations in 512, distrib, 2^{-32} .

analysis: 765325228976 $\approx 0.7 \cdot 2^{40}$

Not much slowdown in action. Surely $g = [P_1]^{a_1} \cdots [P_d]^{a_d}$ is nearly uniformly distributed in G.

Can quickly compute gE_b and image of g in \mathbb{Z}/N .

Need more analysis of impact of these redundant representations upon Kuperberg's algorithm.

How fast are the steps?

8

e.g. CSIDH-512, user distribution on G, error rate $<2^{-32}$ (is this adequate?), nonlinear bit ops:

 $\approx 2^{51}$ by 2018 Jao–LeGrow– Leonardi–Ruiz-Lopez.

Many optimizations, detailed by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org: full software and 56-page paper; variations in 512, distrib, 2^{-32} .

Next big challenge: AT analysis.

analysis: 765325228976 $\approx 0.7 \cdot 2^{40}$

h 3 (mentioned in 2018 n–Lange–Martindale– Uniform (a_1, \ldots, a_d) $\ldots, c\}^d$. Choose c

at larger than users do.

ch slowdown in action. $F = [P_1]^{a_1} \cdots [P_d]^{a_d}$ is niformly distributed in G.

ckly compute gE_b ge of g in \mathbf{Z}/N .

ore analysis of impact of dundant representations perberg's algorithm.

How fast are the steps?

8

e.g. CSIDH-512, user distribution on G, error rate $<2^{-32}$ (is this adequate?), nonlinear bit ops:

 $\approx 2^{51}$ by 2018 Jao–LeGrow– Leonardi–Ruiz-Lopez.

Many optimizations, detailed analysis: 765325228976 $\approx 0.7 \cdot 2^{40}$ by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org: full software and 56-page paper; variations in 512, distrib, 2^{-32} .

Next big challenge: AT analysis.

How ma

9

2011 Ku exp((0.9)compare $\exp((1.2$

ioned in 2018 Martindale– 8

- (a_1,\ldots,a_d)
- Choose c
- han users do.
- wn in action. $\cdots [P_d]^{a_d}$ is istributed in G.
- ute gE_b **Z**/N.
- s of impact of epresentations algorithm.

How fast are the steps?

e.g. CSIDH-512, user distribution on *G*, error rate $<2^{-32}$ (is this adequate?), nonlinear bit ops:

 $\approx 2^{51}$ by 2018 Jao–LeGrow– Leonardi–Ruiz-Lopez.

Many optimizations, detailed analysis: 765325228976 $\approx 0.7\cdot 2^{40}$ by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org: full software and 56-page paper; variations in 512, distrib, 2^{-32} .

Next big challenge: AT analysis.

How many actions

9

2011 Kuperberg eserve exp((0.98...+o(compares to 2003 exp((1.23...+o(

018

8

))

do.

on. is in *G*.

ct of ions

How fast are the steps?

e.g. CSIDH-512, user distribution on *G*, error rate $<2^{-32}$ (is this adequate?), nonlinear bit ops:

 $\approx 2^{51}$ by 2018 Jao–LeGrow– Leonardi–Ruiz-Lopez.

Many optimizations, detailed analysis: 765325228976 $\approx 0.7\cdot 2^{40}$ by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org: full software and 56-page paper; variations in 512, distrib, 2^{-32} .

Next big challenge: AT analysis.

How many actions + other

2011 K exp((0. compar exp((1.

9

2011 Kuperberg estimates "

$\exp((0.98...+o(1))(\log_2 N))$

compares to 2003 Kuperberg

 $\exp((1.23...+o(1))(\log_2 N))$

How fast are the steps?

e.g. CSIDH-512, user distribution on G, error rate $<2^{-32}$ (is this adequate?), nonlinear bit ops:

 $\approx 2^{51}$ by 2018 Jao–LeGrow– Leonardi–Ruiz-Lopez.

Many optimizations, detailed analysis: 765325228976 $\approx 0.7 \cdot 2^{40}$ by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper; variations in 512, distrib, 2^{-32} .

Next big challenge: AT analysis.

9

2011 Kuperberg estimates "time" $\exp((0.98...+o(1))(\log_2 N)^{1/2});$ compares to 2003 Kuperberg: $\exp((1.23...+o(1))(\log_2 N)^{1/2}).$

How many actions + other costs?

How fast are the steps?

e.g. CSIDH-512, user distribution on G, error rate $<2^{-32}$ (is this adequate?), nonlinear bit ops:

 $\approx 2^{51}$ by 2018 Jao–LeGrow– Leonardi–Ruiz-Lopez.

Many optimizations, detailed analysis: 765325228976 $\approx 0.7 \cdot 2^{40}$ by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper; variations in 512, distrib, 2^{-32} .

Next big challenge: AT analysis.

9

2011 Kuperberg estimates "time" $\exp((0.98...+o(1))(\log_2 N)^{1/2});$ compares to 2003 Kuperberg: $\exp((1.23...+o(1))(\log_2 N)^{1/2}).$

Open: Do better than 1/2?Do better than 0.98...?

How many actions + other costs?

How fast are the steps?

e.g. CSIDH-512, user distribution on G, error rate $<2^{-32}$ (is this adequate?), nonlinear bit ops:

 $\approx 2^{51}$ by 2018 Jao–LeGrow– Leonardi–Ruiz-Lopez.

Many optimizations, detailed analysis: 765325228976 $\approx 0.7 \cdot 2^{40}$ by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper; variations in 512, distrib, 2^{-32} .

Next big challenge: AT analysis.

<u>How many actions + other costs</u>?

9

2011 Kuperberg estimates "time" $\exp((0.98...+o(1))(\log_2 N)^{1/2});$ compares to 2003 Kuperberg: $\exp((1.23...+o(1))(\log_2 N)^{1/2}).$

Open: Do better than 1/2?Do better than 0.98...?

Exact number of actions? Some work on analysis+optimization: 2003 Kuperberg; 2011 Kuperberg; 2018 Bonnetain–Naya-Plasencia; 2018 Bonnetain–Schrottenloher; 2019 Kuperberg; 2019 Peikert; 2019 Bonnetain–Schrottenloher.