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1994 Shor discrete-log algorithm:
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’(a; b) = gahb. Fast function.
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then Ker’ = Z(N; 0) + Z(s;−1).

Shor computes ’ on quantum

superposition of many (a; b);
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Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )
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somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.



6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.

[P1]5[P2]4[P3]1: 10 steps.

[P1]7038304916: 7038304916 steps.

[P1]a for huge a ∈ Z=N: Hmmm.

Approach 1: Compute lattice L =

Ker(a1; : : : ; ad 7→ [P1]a1 · · · [Pd ]ad ).

Given a ∈ Zd , find close v ∈ L:

distance exp((logN)1=2+o(1))

using time exp((logN)1=2+o(1)).

7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.

D. Proof assuming only GRH,

using provable-factoring ideas.

8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.



6

How many steps in an action?

Steps for CRS/CSIDH users:

fast algorithms for actions of

small [P1]; [P2]; [P3]; : : : ; [Pd ].

e.g., d = 74 for CSIDH-512.

[P1]5[P2]4[P3]1: 10 steps.

[P1]7038304916: 7038304916 steps.

[P1]a for huge a ∈ Z=N: Hmmm.

Approach 1: Compute lattice L =

Ker(a1; : : : ; ad 7→ [P1]a1 · · · [Pd ]ad ).

Given a ∈ Zd , find close v ∈ L:

distance exp((logN)1=2+o(1))

using time exp((logN)1=2+o(1)).

7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.

D. Proof assuming only GRH,

using provable-factoring ideas.

8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.



7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.

D. Proof assuming only GRH,

using provable-factoring ideas.

8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.



7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.

D. Proof assuming only GRH,

using provable-factoring ideas.

8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.



7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.

D. Proof assuming only GRH,

using provable-factoring ideas.

8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.



7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.

D. Proof assuming only GRH,

using provable-factoring ideas.

8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.



7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.

D. Proof assuming only GRH,

using provable-factoring ideas.

8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.



7

Approach 2: Increase d up to

exp((logN)1=2+o(1)). Search

randomly for small relations.

2010 Childs–Jao–Soukharev:

A. Time exp((logN)1=2+o(1)) to

compute G action by Approach 2.

B. Unfixably flawed argument that

Approach 2 beats Approach 1.

C. Apply Kuperberg (or Regev):

Time exp((logN)1=2+o(1))

to find g ∈ G with gE0 = E1.

D. Proof assuming only GRH,

using provable-factoring ideas.

8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.



8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.



8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.

Many optimizations, detailed

analysis: 765325228976 ≈ 0:7 ·240

by 2018 BLMP Algorithm 8.1.



8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.

Many optimizations, detailed

analysis: 765325228976 ≈ 0:7 ·240

by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper;

variations in 512, distrib, 2−32.



8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.

Many optimizations, detailed

analysis: 765325228976 ≈ 0:7 ·240

by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper;

variations in 512, distrib, 2−32.

Next big challenge: AT analysis.



8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.

Many optimizations, detailed

analysis: 765325228976 ≈ 0:7 ·240

by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper;

variations in 512, distrib, 2−32.

Next big challenge: AT analysis.

10

How many actions + other costs?

2011 Kuperberg estimates “time”

exp((0:98 : : : + o(1))(log2 N)1=2);

compares to 2003 Kuperberg:

exp((1:23 : : : + o(1))(log2 N)1=2).



8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.

Many optimizations, detailed

analysis: 765325228976 ≈ 0:7 ·240

by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper;

variations in 512, distrib, 2−32.

Next big challenge: AT analysis.

10

How many actions + other costs?

2011 Kuperberg estimates “time”

exp((0:98 : : : + o(1))(log2 N)1=2);

compares to 2003 Kuperberg:

exp((1:23 : : : + o(1))(log2 N)1=2).



8

Approach 3 (mentioned in 2018

Bernstein–Lange–Martindale–

Panny): Uniform (a1; : : : ; ad )

in {−c; : : : ; c}d . Choose c

somewhat larger than users do.

Not much slowdown in action.

Surely g = [P1]a1 · · · [Pd ]ad is

nearly uniformly distributed in G.

Can quickly compute gEb

and image of g in Z=N.

Need more analysis of impact of

these redundant representations

upon Kuperberg’s algorithm.

9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.

Many optimizations, detailed

analysis: 765325228976 ≈ 0:7 ·240

by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper;

variations in 512, distrib, 2−32.

Next big challenge: AT analysis.

10

How many actions + other costs?

2011 Kuperberg estimates “time”

exp((0:98 : : : + o(1))(log2 N)1=2);

compares to 2003 Kuperberg:

exp((1:23 : : : + o(1))(log2 N)1=2).



9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.

Many optimizations, detailed

analysis: 765325228976 ≈ 0:7 ·240

by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper;

variations in 512, distrib, 2−32.

Next big challenge: AT analysis.

10

How many actions + other costs?

2011 Kuperberg estimates “time”

exp((0:98 : : : + o(1))(log2 N)1=2);

compares to 2003 Kuperberg:

exp((1:23 : : : + o(1))(log2 N)1=2).



9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.

Many optimizations, detailed

analysis: 765325228976 ≈ 0:7 ·240

by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper;

variations in 512, distrib, 2−32.

Next big challenge: AT analysis.

10

How many actions + other costs?

2011 Kuperberg estimates “time”

exp((0:98 : : : + o(1))(log2 N)1=2);

compares to 2003 Kuperberg:

exp((1:23 : : : + o(1))(log2 N)1=2).

Open: Do better than 1=2?

Do better than 0:98 : : :?



9

How fast are the steps?

e.g. CSIDH-512, user distribution

on G, error rate <2−32 (is this

adequate?), nonlinear bit ops:

≈251 by 2018 Jao–LeGrow–

Leonardi–Ruiz-Lopez.

Many optimizations, detailed

analysis: 765325228976 ≈ 0:7 ·240

by 2018 BLMP Algorithm 8.1.

quantum.isogenies.org:

full software and 56-page paper;

variations in 512, distrib, 2−32.

Next big challenge: AT analysis.

10

How many actions + other costs?

2011 Kuperberg estimates “time”

exp((0:98 : : : + o(1))(log2 N)1=2);

compares to 2003 Kuperberg:

exp((1:23 : : : + o(1))(log2 N)1=2).

Open: Do better than 1=2?

Do better than 0:98 : : :?

Exact number of actions? Some

work on analysis+optimization:

2003 Kuperberg; 2011 Kuperberg;

2018 Bonnetain–Naya-Plasencia;

2018 Bonnetain–Schrottenloher;

2019 Kuperberg; 2019 Peikert;

2019 Bonnetain–Schrottenloher.


