Quantum algorithms

Daniel J. Bernstein

"Quantum algorithm"

means an algorithm that a quantum computer can run.
i.e. a sequence of instructions, where each instruction is in a quantum computer's supported instruction set.

How do we know which

 instructions a quantum computer will support?Quantum computer type 1 (QC1): contains many "qubits";
can efficiently perform
"NOT gate", "Hadamard gate",
"controlled NOT gate", "T gate".

Quantum algorithms

Daniel J. Bernstein

"Quantum algorithm"

 means an algorithm that a quantum computer can run.i.e. a sequence of instructions, where each instruction is in a quantum computer's supported instruction set.

How do we know which

 instructions a quantum computer will support?Quantum computer type 1 (QC1): contains many "qubits";
can efficiently perform
"NOT gate", "Hadamard gate", "controlled NOT gate", "T gate".

Making these instructions work is the main goal of quantumcomputer engineering.

Quantum algorithms
Daniel J. Bernstein
"Quantum algorithm" means an algorithm that a quantum computer can run.
i.e. a sequence of instructions, where each instruction is in a quantum computer's supported instruction set.

How do we know which

 instructions a quantum computer will support?Quantum computer type 1 (QC1): contains many "qubits";
can efficiently perform
"NOT gate", "Hadamard gate", "controlled NOT gate", "T gate".

Making these instructions work is the main goal of quantumcomputer engineering.

Combine these instructions to compute "Toffoli gate";
... "Simon's algorithm";
... "Shor's algorithm"; etc.

Quantum algorithms

Daniel J. Bernstein

"Quantum algorithm" means an algorithm that a quantum computer can run.
i.e. a sequence of instructions, where each instruction is in a quantum computer's supported instruction set.

How do we know which

 instructions a quantum computer will support?Quantum computer type 1 (QC1):
contains many "qubits";
can efficiently perform
"NOT gate", "Hadamard gate", "controlled NOT gate", " T gate".

Making these instructions work is the main goal of quantumcomputer engineering.

Combine these instructions to compute "Toffoli gate";
... "Simon's algorithm";
... "Shor's algorithm"; etc.
General belief: Traditional CPU isn't QC1; e.g. can't factor quickly.

Bernstein

m algorithm"
n algorithm that im computer can run.
quence of instructions, ach instruction is ntum computer's ed instruction set.
we know which ions a quantum
er will support?

Quantum computer type 1 (QC1):
contains many "qubits";
can efficiently perform
"NOT gate", "Hadamard gate", "controlled NOT gate", "T gate".

Making these instructions work is the main goal of quantumcomputer engineering.

Combine these instructions
to compute "Toffoli gate";
... "Simon's algorithm";
... "Shor's algorithm"; etc.
General belief: Traditional CPU isn't QC1; e.g. can't factor quickly.

Quantur stores a efficient laws of with as

This is t quantun by 1982
physics

Quantum computer type 1 (QC1):
contains many "qubits";
can efficiently perform
"NOT gate", "Hadamard gate", "controlled NOT gate", "T gate".

Making these instructions work is the main goal of quantumcomputer engineering.

Combine these instructions
to compute "Toffoli gate";
... "Simon's algorithm";
... "Shor's algorithm"; etc.
General belief: Traditional CPU isn't QC1; e.g. can't factor quickly.

Quantum comput stores a simulated efficiently simulat laws of quantum F with as much accl

This is the origina quantum compute by 1982 Feynman physics with comp

Quantum computer type 1 (QC1): contains many "qubits";
can efficiently perform
"NOT gate", "Hadamard gate", "controlled NOT gate", "T gate".

Making these instructions work is the main goal of quantumcomputer engineering.

Combine these instructions to compute "Toffoli gate";
... "Simon’s algorithm";
... "Shor's algorithm"; etc.
General belief: Traditional CPU isn't QC1; e.g. can't factor quickly.

Quantum computer type 2 stores a simulated universe; efficiently simulates the laws of quantum physics with as much accuracy as d

This is the original concept quantum computers introdu by 1982 Feynman "Simulati physics with computers".

Quantum computer type 1 (QC1): contains many "qubits";
can efficiently perform
"NOT gate", "Hadamard gate", "controlled NOT gate", " T gate".

Making these instructions work is the main goal of quantumcomputer engineering.

Combine these instructions to compute "Toffoli gate";
... "Simon's algorithm";
... "Shor's algorithm"; etc.
General belief: Traditional CPU isn't QC1; e.g. can't factor quickly.

Quantum computer type 2 (QC2): stores a simulated universe; efficiently simulates the laws of quantum physics with as much accuracy as desired.

This is the original concept of quantum computers introduced by 1982 Feynman "Simulating physics with computers".

Quantum computer type 1 (QC1): contains many "qubits";
can efficiently perform
"NOT gate", "Hadamard gate", "controlled NOT gate", " T gate".

Making these instructions work is the main goal of quantumcomputer engineering.

Combine these instructions to compute "Toffoli gate";
... "Simon's algorithm";
... "Shor's algorithm"; etc.
General belief: Traditional CPU isn't QC1; e.g. can't factor quickly.

Quantum computer type 2 (QC2): stores a simulated universe; efficiently simulates the laws of quantum physics with as much accuracy as desired.

This is the original concept of quantum computers introduced by 1982 Feynman "Simulating physics with computers".

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,
2011 Jordan-Lee-Preskill
"Quantum algorithms for quantum field theories".
n computer type 1 (QC1): many "qubits";
iently perform
ate", "Hadamard gate", led NOT gate", "T gate".
these instructions work aain goal of quantumer engineering.
these instructions
ute "Toffoli gate";
non's algorithm";
r's algorithm" ; etc.
belief: Traditional CPU
1; e.g. can't factor quickly.

Quantum computer type 2 (QC2):
stores a simulated universe;
efficiently simulates the
laws of quantum physics
with as much accuracy as desired.
This is the original concept of quantum computers introduced by 1982 Feynman "Simulating physics with computers".

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,
2011 Jordan-Lee-Preskill
"Quantum algorithms for quantum field theories".

Quantur efficient that any comput
er type 1 (QC1): ubits";
form
damard gate", gate", "T gate".
tructions work of quantumering.
tructions
li gate";
rithm";
hm" ; etc.
aditional CPU
't factor quickly.

Quantum computer type 2 (QC2):
stores a simulated universe; efficiently simulates the laws of quantum physics with as much accuracy as desired.

This is the original concept of quantum computers introduced
by 1982 Feynman "Simulating physics with computers".

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,
2011 Jordan-Lee-Preskill
"Quantum algorithms for quantum field theories".

Quantum comput efficiently comput that any possible computer can com

QC1): Quantum computer type 2 (QC2): stores a simulated universe; efficiently simulates the laws of quantum physics with as much accuracy as desired.

This is the original concept of quantum computers introduced by 1982 Feynman "Simulating physics with computers".

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,
2011 Jordan-Lee-Preskill
"Quantum algorithms for quantum field theories".

Quantum computer type 3 efficiently computes anythin that any possible physical computer can compute effic

Quantum computer type 2 (QC2): stores a simulated universe;
efficiently simulates the laws of quantum physics with as much accuracy as desired.

This is the original concept of quantum computers introduced by 1982 Feynman "Simulating physics with computers".

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,
2011 Jordan-Lee-Preskill
"Quantum algorithms for quantum field theories".

Quantum computer type 3 (QC3): efficiently computes anything that any possible physical computer can compute efficiently.

Quantum computer type 2 (QC2):
stores a simulated universe;
efficiently simulates the laws of quantum physics with as much accuracy as desired.

This is the original concept of quantum computers introduced by 1982 Feynman "Simulating physics with computers".

General belief: any QC1 is a QC2. Partial proof: see, e.g., 2011 Jordan-Lee-Preskill "Quantum algorithms for quantum field theories".

Quantum computer type 3 (QC3): efficiently computes anything that any possible physical computer can compute efficiently.

General belief: any QC2 is a QC3. Argument for belief: any physical computer must follow the laws of quantum physics, so a QC2 can efficiently simulate any physical computer.

Quantum computer type 2 (QC2):
stores a simulated universe;
efficiently simulates the laws of quantum physics with as much accuracy as desired.

This is the original concept of quantum computers introduced by 1982 Feynman "Simulating physics with computers".

General belief: any QC1 is a QC2. Partial proof: see, e.g., 2011 Jordan-Lee-Preskill
"Quantum algorithms for quantum field theories".

Quantum computer type 3 (QC3): efficiently computes anything that any possible physical computer can compute efficiently.

General belief: any QC2 is a QC3. Argument for belief: any physical computer must follow the laws of quantum physics, so a QC2 can efficiently simulate any physical computer.

General belief: any QC3 is a QC1. Argument for belief: look, we're building a QC1.
n computer type 2 (QC2):
simulated universe;
y simulates the
quantum physics much accuracy as desired.
he original concept of l computers introduced
Feynman "Simulating with computers".
belief: any QC1 is a QC2.
roof: see, e.g.,
dan-Lee-Preskill
m algorithms for
field theories".

Quantum computer type 3 (QC3): efficiently computes anything that any possible physical computer can compute efficiently.

General belief: any QC2 is a QC3. Argument for belief:
any physical computer must
follow the laws of quantum physics, so a QC2 can efficiently simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.

A note
Apparen
Current from Dcan be r simulate
er type 2 (QC2):
universe;
es the hysics
uracy as desired.
| concept of
rs introduced
"Simulating uters".

QC1 is a QC2.
e.g.,

Preskill
nms for ories".

Quantum computer type 3 (QC3): efficiently computes anything that any possible physical computer can compute efficiently.

General belief: any QC2 is a QC3. Argument for belief:
any physical computer must follow the laws of quantum physics, so a QC2 can efficiently simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.

A note on D-Wav
Apparent scientific Current "quantum from D-Wave are can be more costsimulated by tradi

QC2): Quantum computer type 3 (QC3): efficiently computes anything that any possible physical computer can compute efficiently. General belief: any QC2 is a QC3. Argument for belief: any physical computer must follow the laws of quantum physics, so a QC2 can efficiently simulate any physical computer.

General belief: any QC3 is a QC1. Argument for belief: look, we're building a QC1.

A note on D-Wave

Apparent scientific consensu Current "quantum compute from D-Wave are uselesscan be more cost-effectively simulated by traditional CPI

Quantum computer type 3 (QC3): efficiently computes anything that any possible physical computer can compute efficiently. General belief: any QC2 is a QC3. Argument for belief: any physical computer must follow the laws of quantum physics, so a QC2 can efficiently simulate any physical computer.

General belief: any QC3 is a QC1. Argument for belief: look, we're building a QC1.

A note on D-Wave

Apparent scientific consensus:
Current "quantum computers" from D-Wave are uselesscan be more cost-effectively simulated by traditional CPUs.

Quantum computer type 3 (QC3): efficiently computes anything that any possible physical computer can compute efficiently. General belief: any QC2 is a QC3. Argument for belief: any physical computer must follow the laws of quantum physics, so a QC2 can efficiently simulate any physical computer.

General belief: any QC3 is a QC1. Argument for belief: look, we're building a QC1.

A note on D-Wave

Apparent scientific consensus:
Current "quantum computers" from D-Wave are uselesscan be more cost-effectively simulated by traditional CPUs.

But D-Wave is

- collecting venture capital;

Quantum computer type 3 (QC3): efficiently computes anything that any possible physical computer can compute efficiently. General belief: any QC2 is a QC3. Argument for belief: any physical computer must follow the laws of quantum physics, so a QC2 can efficiently simulate any physical computer.

General belief: any QC3 is a QC1. Argument for belief: look, we're building a QC1.

A note on D-Wave

Apparent scientific consensus:
Current "quantum computers" from D-Wave are uselesscan be more cost-effectively simulated by traditional CPUs.

But D-Wave is

- collecting venture capital;
- selling some machines;

Quantum computer type 3 (QC3): efficiently computes anything that any possible physical computer can compute efficiently. General belief: any QC2 is a QC3. Argument for belief: any physical computer must follow the laws of quantum physics, so a QC2 can efficiently simulate any physical computer.

General belief: any QC3 is a QC1. Argument for belief: look, we're building a QC1.

A note on D-Wave

Apparent scientific consensus:
Current "quantum computers" from D-Wave are uselesscan be more cost-effectively simulated by traditional CPUs.

But D-Wave is

- collecting venture capital;
- selling some machines;
- collecting possibly useful engineering expertise;

Quantum computer type 3 (QC3): efficiently computes anything that any possible physical computer can compute efficiently.

General belief: any QC2 is a QC3. Argument for belief: any physical computer must follow the laws of quantum physics, so a QC2 can efficiently simulate any physical computer.

General belief: any QC3 is a QC1. Argument for belief: look, we're building a QC1.

A note on D-Wave

Apparent scientific consensus:
Current "quantum computers" from D-Wave are uselesscan be more cost-effectively simulated by traditional CPUs.

But D-Wave is

- collecting venture capital;
- selling some machines;
- collecting possibly useful engineering expertise;
- not being punished for deceiving people.

Quantum computer type 3 (QC3): efficiently computes anything that any possible physical computer can compute efficiently.

General belief: any QC2 is a QC3. Argument for belief: any physical computer must follow the laws of quantum physics, so a QC2 can efficiently simulate any physical computer.

General belief: any QC3 is a QC1. Argument for belief: look, we're building a QC1.

A note on D-Wave

Apparent scientific consensus:
Current "quantum computers" from D-Wave are uselesscan be more cost-effectively simulated by traditional CPUs.

But D-Wave is

- collecting venture capital;
- selling some machines;
- collecting possibly useful engineering expertise;
- not being punished for deceiving people.

Is D-Wave a bad investment?
n computer type 3 (QC3):
y computes anything possible physical
er can compute efficiently.
belief: any QC2 is a QC3.
nt for belief:
sical computer must
ie laws of quantum so a QC2 can efficiently any physical computer.
belief: any QC3 is a QC1.
tt for belief:
're building a QC1.

A note on D-Wave
Apparent scientific consensus:
Current "quantum computers" from D-Wave are useless-
can be more cost-effectively simulated by traditional CPUs.

But D-Wave is

- collecting venture capital;
- selling some machines;
- collecting possibly useful engineering expertise;
- not being punished for deceiving people.

Is D-Wave a bad investment?

The stat
Data (" a list of
e.g.: (0,
er type 3 (QC3):
es anything ohysical pute efficiently.
y QC2 is a QC3. f:
uter must
quantum
can efficiently
cal computer.
QC3 is a QC1.
g a QC1.

A note on D-Wave

Apparent scientific consensus:
Current "quantum computers"
from D-Wave are useless-
can be more cost-effectively simulated by traditional CPUs.

But D-Wave is

- collecting venture capital;
- selling some machines;
- collecting possibly useful engineering expertise;
- not being punished for deceiving people.

Is D-Wave a bad investment?

The state of a cor
Data ("state") stc a list of 3 element e.g.: $(0,0,0)$.

A note on D-Wave
Apparent scientific consensus:
Current "quantum computers"
from D-Wave are useless-
can be more cost-effectively simulated by traditional CPUs.

But D-Wave is

- collecting venture capital;
- selling some machines;
- collecting possibly useful engineering expertise;
- not being punished for deceiving people.

Is D-Wave a bad investment?

The state of a computer

Data ("state") stored in 3 b a list of 3 elements of $\{0,1\}$
e.g.: $(0,0,0)$.

A note on D-Wave

Apparent scientific consensus:
Current "quantum computers" from D-Wave are useless-
can be more cost-effectively simulated by traditional CPUs.

But D-Wave is

- collecting venture capital;
- selling some machines;
- collecting possibly useful engineering expertise;
- not being punished for deceiving people.

Is D-Wave a bad investment?

The state of a computer
Data ("state") stored in 3 bits:
a list of 3 elements of $\{0,1\}$.
e.g.: $(0,0,0)$.

A note on D-Wave

Apparent scientific consensus:
Current "quantum computers" from D-Wave are uselesscan be more cost-effectively simulated by traditional CPUs.

But D-Wave is

- collecting venture capital;
- selling some machines;
- collecting possibly useful engineering expertise;
- not being punished for deceiving people.

Is D-Wave a bad investment?

The state of a computer

Data ("state") stored in 3 bits:
a list of 3 elements of $\{0,1\}$.
e.g.: $(0,0,0)$.
e.g.: $(1,1,1)$.

A note on D-Wave

Apparent scientific consensus:
Current "quantum computers" from D-Wave are uselesscan be more cost-effectively simulated by traditional CPUs.

But D-Wave is

- collecting venture capital;
- selling some machines;
- collecting possibly useful engineering expertise;
- not being punished for deceiving people.

Is D-Wave a bad investment?

The state of a computer

Data ("state") stored in 3 bits:
a list of 3 elements of $\{0,1\}$.
e.g.: $(0,0,0)$.
e.g.: $(1,1,1)$.
e.g.: $(0,1,1)$.

A note on D-Wave

Apparent scientific consensus:
Current "quantum computers" from D-Wave are uselesscan be more cost-effectively simulated by traditional CPUs.

But D-Wave is

- collecting venture capital;
- selling some machines;
- collecting possibly useful engineering expertise;
- not being punished for deceiving people.

Is D-Wave a bad investment?

The state of a computer

Data ("state") stored in 3 bits:
a list of 3 elements of $\{0,1\}$.
e.g.: $(0,0,0)$.
e.g.: $(1,1,1)$.
e.g.: $(0,1,1)$.

Data stored in 64 bits:
a list of 64 elements of $\{0,1\}$.

A note on D-Wave

Apparent scientific consensus:
Current "quantum computers" from D-Wave are uselesscan be more cost-effectively simulated by traditional CPUs.

But D-Wave is

- collecting venture capital;
- selling some machines;
- collecting possibly useful engineering expertise;
- not being punished for deceiving people.

Is D-Wave a bad investment?

The state of a computer

Data ("state") stored in 3 bits:
a list of 3 elements of $\{0,1\}$.
e.g.: $(0,0,0)$.
e.g.: $(1,1,1)$.
e.g.: $(0,1,1)$.

Data stored in 64 bits:
a list of 64 elements of $\{0,1\}$.
e.g.: $(1,1,1,1,1,0,0,0,1$,
$0,0,0,0,0,0,1,1,0,0,0$,
$0,1,0,0,1,0,0,0,0,0,1$,
$1,0,1,0,0,0,1,0,0,0,1$,
$0,0,1,1,1,0,0,1,0,0,0$,
$1,1,0,1,1,0,0,1,0,0,1)$.

The state of a computer

Data ("state") stored in 3 bits:
a list of 3 elements of $\{0,1\}$.
e.g.: $(0,0,0)$.
e.g.: $(1,1,1)$.
e.g.: $(0,1,1)$.

Data stored in 64 bits:
a list of 64 elements of $\{0,1\}$.
e.g.: $(1,1,1,1,1,0,0,0,1$,
$0,0,0,0,0,0,1,1,0,0,0$,
$0,1,0,0,1,0,0,0,0,0,1$,
$1,0,1,0,0,0,1,0,0,0,1$,
$0,0,1,1,1,0,0,1,0,0,0$,
$1,1,0,1,1,0,0,1,0,0,1)$.

The stat
Data stc
a list of
e.g.: (3,

The state of a computer
Data ("state") stored in 3 bits:
a list of 3 elements of $\{0,1\}$.
e.g.: $(0,0,0)$.
e.g.: $(1,1,1)$.
e.g.: $(0,1,1)$.

Data stored in 64 bits:
a list of 64 elements of $\{0,1\}$.
e.g.: $(1,1,1,1,1,0,0,0,1$,
$0,0,0,0,0,0,1,1,0,0,0$,
$0,1,0,0,1,0,0,0,0,0,1$,
$1,0,1,0,0,0,1,0,0,0,1$,
$0,0,1,1,1,0,0,1,0,0,0$,
$1,1,0,1,1,0,0,1,0,0,1)$.

The state of a qua
Data stored in 3 q a list of 8 number
e.g.: $(3,1,4,1,5$,

The state of a computer

Data ("state") stored in 3 bits:
a list of 3 elements of $\{0,1\}$.
e.g.: $(0,0,0)$.
e.g.: $(1,1,1)$.
e.g.: $(0,1,1)$.

Data stored in 64 bits:
a list of 64 elements of $\{0,1\}$.
e.g.: $(1,1,1,1,1,0,0,0,1$,
$0,0,0,0,0,0,1,1,0,0,0$,
$0,1,0,0,1,0,0,0,0,0,1$,
$1,0,1,0,0,0,1,0,0,0,1$,
$0,0,1,1,1,0,0,1,0,0,0$,
$1,1,0,1,1,0,0,1,0,0,1)$.

The state of a quantum con
Data stored in 3 qubits:
a list of 8 numbers, not all
e.g.: $(3,1,4,1,5,9,2,6)$.

The state of a computer

Data ("state") stored in 3 bits:
a list of 3 elements of $\{0,1\}$.
e.g.: $(0,0,0)$.
e.g.: $(1,1,1)$.
e.g.: $(0,1,1)$.

Data stored in 64 bits:
a list of 64 elements of $\{0,1\}$.
e.g.: $(1,1,1,1,1,0,0,0,1$,
$0,0,0,0,0,0,1,1,0,0,0$,
$0,1,0,0,1,0,0,0,0,0,1$,
$1,0,1,0,0,0,1,0,0,0,1$,
$0,0,1,1,1,0,0,1,0,0,0$,
$1,1,0,1,1,0,0,1,0,0,1)$.

The state of a quantum computer
Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: $(3,1,4,1,5,9,2,6)$.

The state of a computer

Data ("state") stored in 3 bits:
a list of 3 elements of $\{0,1\}$.
e.g.: $(0,0,0)$.
e.g.: $(1,1,1)$.
e.g.: $(0,1,1)$.

Data stored in 64 bits:
a list of 64 elements of $\{0,1\}$.
e.g.: $(1,1,1,1,1,0,0,0,1$,
$0,0,0,0,0,0,1,1,0,0,0$,
$0,1,0,0,1,0,0,0,0,0,1$,
$1,0,1,0,0,0,1,0,0,0,1$,
$0,0,1,1,1,0,0,1,0,0,0$,
$1,1,0,1,1,0,0,1,0,0,1)$.

The state of a quantum computer
Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: $(3,1,4,1,5,9,2,6)$.
e.g.: $(-2,7,-1,8,1,-8,-2,8)$.
|

The state of a computer

Data ("state") stored in 3 bits: a list of 3 elements of $\{0,1\}$.
e.g.: $(0,0,0)$.
e.g.: $(1,1,1)$.
e.g.: $(0,1,1)$.

Data stored in 64 bits:
a list of 64 elements of $\{0,1\}$.
e.g.: $(1,1,1,1,1,0,0,0,1$,
$0,0,0,0,0,0,1,1,0,0,0$,
$0,1,0,0,1,0,0,0,0,0,1$,
$1,0,1,0,0,0,1,0,0,0,1$,
$0,0,1,1,1,0,0,1,0,0,0$,
$1,1,0,1,1,0,0,1,0,0,1)$.

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: $(3,1,4,1,5,9,2,6)$.
e.g.: $(-2,7,-1,8,1,-8,-2,8)$.
e.g.: $(0,0,0,0,0,1,0,0)$.

The state of a quantum computer

|

The state of a computer

Data ("state") stored in 3 bits:
a list of 3 elements of $\{0,1\}$.
e.g.: $(0,0,0)$.
e.g.: $(1,1,1)$.
e.g.: $(0,1,1)$.

Data stored in 64 bits:
a list of 64 elements of $\{0,1\}$.
e.g.: $(1,1,1,1,1,0,0,0,1$,
$0,0,0,0,0,0,1,1,0,0,0$,
$0,1,0,0,1,0,0,0,0,0,1$,
$1,0,1,0,0,0,1,0,0,0,1$,
$0,0,1,1,1,0,0,1,0,0,0$,
$1,1,0,1,1,0,0,1,0,0,1)$.

The state of a quantum computer
Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: $(3,1,4,1,5,9,2,6)$.
e.g.: $(-2,7,-1,8,1,-8,-2,8)$.
e.g.: $(0,0,0,0,0,1,0,0)$.

Data stored in 4 qubits: a list of 16 numbers, not all zero. e.g.:
$(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3)$.

The state of a computer

Data ("state") stored in 3 bits:
a list of 3 elements of $\{0,1\}$.
e.g.: $(0,0,0)$.
e.g.: $(1,1,1)$.
e.g.: $(0,1,1)$.

Data stored in 64 bits:
a list of 64 elements of $\{0,1\}$.
e.g.: $(1,1,1,1,1,0,0,0,1$,
$0,0,0,0,0,0,1,1,0,0,0$,
$0,1,0,0,1,0,0,0,0,0,1$,
$1,0,1,0,0,0,1,0,0,0,1$,
$0,0,1,1,1,0,0,1,0,0,0$,
$1,1,0,1,1,0,0,1,0,0,1)$.

The state of a quantum computer
Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: $(3,1,4,1,5,9,2,6)$.
e.g.: $(-2,7,-1,8,1,-8,-2,8)$.
e.g.: $(0,0,0,0,0,1,0,0)$.

Data stored in 4 qubits: a list of 16 numbers, not all zero. e.g.:
$(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3)$.
Data stored in 64 qubits:
a list of 2^{64} numbers, not all zero.

The state of a computer

Data ("state") stored in 3 bits:
a list of 3 elements of $\{0,1\}$.
e.g.: $(0,0,0)$.
e.g.: $(1,1,1)$.
e.g.: $(0,1,1)$.

Data stored in 64 bits:
a list of 64 elements of $\{0,1\}$.
e.g.: $(1,1,1,1,1,0,0,0,1$,
$0,0,0,0,0,0,1,1,0,0,0$,
$0,1,0,0,1,0,0,0,0,0,1$,
$1,0,1,0,0,0,1,0,0,0,1$,
$0,0,1,1,1,0,0,1,0,0,0$,
$1,1,0,1,1,0,0,1,0,0,1)$.

The state of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: $(3,1,4,1,5,9,2,6)$.
e.g.: $(-2,7,-1,8,1,-8,-2,8)$.
e.g.: $(0,0,0,0,0,1,0,0)$.

Data stored in 4 qubits: a list of 16 numbers, not all zero. e.g.:
$(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3)$.
Data stored in 64 qubits:
a list of 2^{64} numbers, not all zero.
Data stored in 1000 qubits: a list of 2^{1000} numbers, not all zero.

The state of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: $(3,1,4,1,5,9,2,6)$.
e.g.: $(-2,7,-1,8,1,-8,-2,8)$.
e.g.: $(0,0,0,0,0,1,0,0)$.

Data stored in 4 qubits: a list of 16 numbers, not all zero. e.g.:
$(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3)$.
Data stored in 64 qubits:
a list of 2^{64} numbers, not all zero.
Data stored in 1000 qubits: a list of 2^{1000} numbers, not all zero.
red in 64 bits:
64 elements of $\{0,1\}$.
$1,1,1,1,0,0,0,1$,
, 0, 0, 1, 1, 0, 0, 0,
, 1, 0, 0, 0, 0, 0, 1,
, 0, 0, 1, 0, 0, 0, 1,
$1,0,0,1,0,0,0$,
$1,0,0,1,0,0,1)$.
state") stored in 3 bits:
3 elements of $\{0,1\}$.
$0,0)$.
$1,1)$.
$1,1)$.
e of a computer

red in 3 bits:

s of $\{0,1\}$.
bits:
ts of $\{0,1\}$.
, 0, 0, 1,
$0,0,0$,
$0,0,1$,
$0,0,1$,
$0,0,0$,
$0,0,1)$.

The state of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: $(3,1,4,1,5,9,2,6)$.
e.g.: $(-2,7,-1,8,1,-8,-2,8)$.
e.g.: $(0,0,0,0,0,1,0,0)$.

Data stored in 4 qubits: a list of 16 numbers, not all zero. e.g.:
$(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3)$.
Data stored in 64 qubits:
a list of 2^{64} numbers, not all zero.
Data stored in 1000 qubits: a list of 2^{1000} numbers, not all zero.

Measuring a quan
Can simply look a Cannot simply loo of numbers stored

The state of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: $(3,1,4,1,5,9,2,6)$.
e.g.: $(-2,7,-1,8,1,-8,-2,8)$.
e.g.: $(0,0,0,0,0,1,0,0)$.

Data stored in 4 qubits: a list of 16 numbers, not all zero. e.g.:
$(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3)$.
Data stored in 64 qubits:
a list of 2^{64} numbers, not all zero.
Data stored in 1000 qubits: a list of 2^{1000} numbers, not all zero.

Measuring a quantum comp
Can simply look at a bit.
Cannot simply look at the li of numbers stored in n qubi

The state of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: $(3,1,4,1,5,9,2,6)$.
e.g.: $(-2,7,-1,8,1,-8,-2,8)$.
e.g.: $(0,0,0,0,0,1,0,0)$.

Data stored in 4 qubits: a list of 16 numbers, not all zero. e.g.:
$(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3)$.
Data stored in 64 qubits:
a list of 2^{64} numbers, not all zero.
Data stored in 1000 qubits: a list of 2^{1000} numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list of numbers stored in n qubits.

The state of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: $(3,1,4,1,5,9,2,6)$.
e.g.: $(-2,7,-1,8,1,-8,-2,8)$.
e.g.: $(0,0,0,0,0,1,0,0)$.

Data stored in 4 qubits: a list of 16 numbers, not all zero. e.g.:
$(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3)$.
Data stored in 64 qubits:
a list of 2^{64} numbers, not all zero.
Data stored in 1000 qubits: a list of 2^{1000} numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list of numbers stored in n qubits.

Measuring n qubits

- produces n bits and
- destroys the state.

The state of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: $(3,1,4,1,5,9,2,6)$.
e.g.: $(-2,7,-1,8,1,-8,-2,8)$.
e.g.: $(0,0,0,0,0,1,0,0)$.

Data stored in 4 qubits: a list of 16 numbers, not all zero. e.g.:
$(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3)$.
Data stored in 64 qubits:
a list of 2^{64} numbers, not all zero.
Data stored in 1000 qubits: a list of 2^{1000} numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list of numbers stored in n qubits.

Measuring n qubits

- produces n bits and
- destroys the state.

If n qubits have state $\left(a_{0}, a_{1}, \ldots, a_{2}{ }^{n}-1\right)$ then
measurement produces q with probability $\left|a_{q}\right|^{2} / \sum_{r}\left|a_{r}\right|^{2}$.

The state of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: $(3,1,4,1,5,9,2,6)$.
e.g.: $(-2,7,-1,8,1,-8,-2,8)$.
e.g.: $(0,0,0,0,0,1,0,0)$.

Data stored in 4 qubits: a list of 16 numbers, not all zero. e.g.:
$(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3)$.
Data stored in 64 qubits:
a list of 2^{64} numbers, not all zero.
Data stored in 1000 qubits: a list of 2^{1000} numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list of numbers stored in n qubits.

Measuring n qubits

- produces n bits and
- destroys the state.

If n qubits have state $\left(a_{0}, a_{1}, \ldots, a_{2}{ }^{n}-1\right)$ then
measurement produces q with probability $\left|a_{q}\right|^{2} / \sum_{r}\left|a_{r}\right|^{2}$.

State is then all zeros
except 1 at position q.
e.g.: Sa
(1, 1, 1,

8 numbers, not all zero.
$1,4,1,5,9,2,6)$.
$2,7,-1,8,1,-8,-2,8)$.
$0,0,0,0,1,0,0)$.
red in 4 qubits: a list of eers, not all zero. e.g.:
$1,5,9,2,6,5,3,5,8,9,7,9,3)$.
red in 64 qubits:
2^{64} numbers, not all zero.
red in 1000 qubits: a list numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit. Cannot simply look at the list of numbers stored in n qubits.

Measuring n qubits

- produces n bits and
- destroys the state.

If n qubits have state $\left(a_{0}, a_{1}, \ldots, a_{2}{ }^{n}-1\right)$ then
measurement produces q with probability $\left|a_{q}\right|^{2} / \sum_{r}\left|a_{r}\right|^{2}$.

State is then all zeros
except 1 at position q.
ubits:
s, not all zero.
, 2, 6).
, 1, -8, -2, 8).
1, 0,0).
ubits: a list of
Il zero. e.g.:
, $5,3,5,8,9,7,9,3)$.
qubits:
ers, not all zero.
0 qubits: a list not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list of numbers stored in n qubits.

Measuring n qubits

- produces n bits and
- destroys the state.

If n qubits have state $\left(a_{0}, a_{1}, \ldots, a_{2}{ }^{n}-1\right)$ then measurement produces q with probability $\left|a_{q}\right|^{2} / \sum_{r}\left|a_{r}\right|^{2}$.

State is then all zeros except 1 at position q.
e.g.: Say 3 qubits
($1,1,1,1,1,1,1,1$

Measuring a quantum computer
Can simply look at a bit.
Cannot simply look at the list of numbers stored in n qubits.

Measuring n qubits

- produces n bits and
- destroys the state.

If n qubits have state $\left(a_{0}, a_{1}, \ldots, a_{2}{ }^{n}-1\right)$ then measurement produces q with probability $\left|a_{q}\right|^{2} / \sum_{r}\left|a_{r}\right|^{2}$.

State is then all zeros except 1 at position q.
e.g.: Say 3 qubits have stat $(1,1,1,1,1,1,1,1)$.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list of numbers stored in n qubits.

Measuring n qubits

- produces n bits and
- destroys the state.

If n qubits have state $\left(a_{0}, a_{1}, \ldots, a_{2}{ }^{n}-1\right)$ then
measurement produces q with probability $\left|a_{q}\right|^{2} / \sum_{r}\left|a_{r}\right|^{2}$.

State is then all zeros
except 1 at position q.
e.g.: Say 3 qubits have state $(1,1,1,1,1,1,1,1)$.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list of numbers stored in n qubits.

Measuring n qubits

- produces n bits and
- destroys the state.

If n qubits have state $\left(a_{0}, a_{1}, \ldots, a_{2}{ }^{n}-1\right)$ then
measurement produces q with probability $\left|a_{q}\right|^{2} / \sum_{r}\left|a_{r}\right|^{2}$.

State is then all zeros except 1 at position q.
e.g.: Say 3 qubits have state $(1,1,1,1,1,1,1,1)$.

Measurement produces $000=0$ with probability $1 / 8$; $001=1$ with probability $1 / 8$; $010=2$ with probability $1 / 8 ;$ $011=3$ with probability $1 / 8$; $100=4$ with probability $1 / 8 ;$ $101=5$ with probability $1 / 8$;
$110=6$ with probability $1 / 8$;
$111=7$ with probability $1 / 8$.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list of numbers stored in n qubits.

Measuring n qubits

- produces n bits and
- destroys the state.

If n qubits have state $\left(a_{0}, a_{1}, \ldots, a_{2}{ }^{n}-1\right)$ then
measurement produces q with probability $\left|a_{q}\right|^{2} / \sum_{r}\left|a_{r}\right|^{2}$.

State is then all zeros except 1 at position q.
e.g.: Say 3 qubits have state $(1,1,1,1,1,1,1,1)$.

Measurement produces $000=0$ with probability $1 / 8$; $001=1$ with probability $1 / 8$; $010=2$ with probability $1 / 8 ;$ $011=3$ with probability $1 / 8$; $100=4$ with probability $1 / 8 ;$ $101=5$ with probability $1 / 8$; $110=6$ with probability $1 / 8$; $111=7$ with probability $1 / 8$.
"Quantum RNG."

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list of numbers stored in n qubits.

Measuring n qubits

- produces n bits and
- destroys the state.

If n qubits have state $\left(a_{0}, a_{1}, \ldots, a_{2}{ }^{n}-1\right)$ then
measurement produces q with probability $\left|a_{q}\right|^{2} / \sum_{r}\left|a_{r}\right|^{2}$.

State is then all zeros except 1 at position q.
e.g.: Say 3 qubits have state $(1,1,1,1,1,1,1,1)$.

Measurement produces $000=0$ with probability $1 / 8 ;$ $001=1$ with probability $1 / 8$; $010=2$ with probability $1 / 8 ;$ $011=3$ with probability $1 / 8$; $100=4$ with probability $1 / 8 ;$ $101=5$ with probability $1 / 8$; $110=6$ with probability $1 / 8$; $111=7$ with probability $1 / 8$.
"Quantum RNG."
Warning: Quantum RNGs sold today are measurably biased.
ply look at a bit. simply look at the list ers stored in n qubits.
ing n qubits
ces n bits and
ys the state.
its have state
$\left.\ldots, a_{2^{n}-1}\right)$ then
ment produces q
bability $\left|a_{q}\right|^{2} / \sum_{r}\left|a_{r}\right|^{2}$.
then all zeros
at position q.
e.g.: Say 3 qubits have state $(1,1,1,1,1,1,1,1)$.
e.g.: Sa
(3, 1, 4,
Measurement produces
$000=0$ with probability $1 / 8$;
$001=1$ with probability $1 / 8$;
$010=2$ with probability $1 / 8$;
$011=3$ with probability $1 / 8$;
$100=4$ with probability $1 / 8 ;$
$101=5$ with probability $1 / 8$;
$110=6$ with probability $1 / 8$;
$111=7$ with probability $1 / 8$.
"Quantum RNG."
Warning: Quantum RNGs sold today are measurably biased.
t a bit.
k at the list in n qubits.

```
its
```

and
e.
ate
then
luces q
$\left.q\right|^{2} / \sum_{r}\left|a_{r}\right|^{2}$.
n q.
e.g.: Say 3 qubits have state $(1,1,1,1,1,1,1,1)$.

Measurement produces
$000=0$ with probability $1 / 8$;
$001=1$ with probability $1 / 8$;
$010=2$ with probability $1 / 8$;
$011=3$ with probability $1 / 8$;
$100=4$ with probability $1 / 8 ;$
$101=5$ with probability $1 / 8$;
$110=6$ with probability $1 / 8$;
$111=7$ with probability $1 / 8$.
"Quantum RNG."
Warning: Quantum RNGs sold today are measurably biased.
e.g.: Say 3 qubits $(3,1,4,1,5,9,2,6$
e.g.: Say 3 qubits have state $(1,1,1,1,1,1,1,1)$.

Measurement produces
$000=0$ with probability $1 / 8$;
$001=1$ with probability $1 / 8$;
$010=2$ with probability $1 / 8$;
$011=3$ with probability $1 / 8$;
$100=4$ with probability $1 / 8 ;$
$101=5$ with probability $1 / 8 ;$
$110=6$ with probability $1 / 8$;
$111=7$ with probability $1 / 8$.
"Quantum RNG."
Warning: Quantum RNGs sold today are measurably biased.
e.g.: Say 3 qubits have stat
$(3,1,4,1,5,9,2,6)$.
e.g.: Say 3 qubits have state $(1,1,1,1,1,1,1,1)$.

Measurement produces $000=0$ with probability $1 / 8$; $001=1$ with probability $1 / 8$; $010=2$ with probability $1 / 8 ;$ $011=3$ with probability $1 / 8$; $100=4$ with probability $1 / 8 ;$ $101=5$ with probability $1 / 8$; $110=6$ with probability $1 / 8$; $111=7$ with probability $1 / 8$.
"Quantum RNG."
Warning: Quantum RNGs sold today are measurably biased.
e.g.: Say 3 qubits have state $(3,1,4,1,5,9,2,6)$.
e.g.: Say 3 qubits have state $(1,1,1,1,1,1,1,1)$.

Measurement produces $000=0$ with probability $1 / 8$; $001=1$ with probability $1 / 8$; $010=2$ with probability $1 / 8$; $011=3$ with probability $1 / 8$; $100=4$ with probability $1 / 8 ;$ $101=5$ with probability $1 / 8$; $110=6$ with probability $1 / 8$; $111=7$ with probability $1 / 8$.
"Quantum RNG."
Warning: Quantum RNGs sold today are measurably biased.
e.g.: Say 3 qubits have state $(3,1,4,1,5,9,2,6)$.

Measurement produces $000=0$ with probability $9 / 173 ;$
$001=1$ with probability $1 / 173 ;$
$010=2$ with probability $16 / 173 ;$
$011=3$ with probability $1 / 173$;
$100=4$ with probability $25 / 173$;
$101=5$ with probability $81 / 173 ;$
$110=6$ with probability $4 / 173$;
$111=7$ with probability $36 / 173$.
e.g.: Say 3 qubits have state $(1,1,1,1,1,1,1,1)$.

Measurement produces $000=0$ with probability $1 / 8$; $001=1$ with probability $1 / 8$; $010=2$ with probability $1 / 8 ;$ $011=3$ with probability $1 / 8$; $100=4$ with probability $1 / 8 ;$ $101=5$ with probability $1 / 8$; $110=6$ with probability $1 / 8$; $111=7$ with probability $1 / 8$.
"Quantum RNG."
Warning: Quantum RNGs sold today are measurably biased.
e.g.: Say 3 qubits have state $(3,1,4,1,5,9,2,6)$.

Measurement produces $000=0$ with probability $9 / 173 ;$
$001=1$ with probability $1 / 173 ;$
$010=2$ with probability $16 / 173 ;$
$011=3$ with probability $1 / 173$;
$100=4$ with probability $25 / 173$;
$101=5$ with probability $81 / 173 ;$
$110=6$ with probability $4 / 173$;
$111=7$ with probability $36 / 173$.
5 is most likely outcome.
y 3 qubits have state $1,1,1,1$).
ment produces
with probability $1 / 8$; with probability $1 / 8$. m RNG."

Quantum RNGs sold e measurably biased.
e.g.: Say 3 qubits have state $(3,1,4,1,5,9,2,6)$.
e.g.: Sa
(0, 0, 0,
Measurement produces
$000=0$ with probability $9 / 173 ;$
$001=1$ with probability $1 / 173$;
$010=2$ with probability $16 / 173 ;$
$011=3$ with probability $1 / 173$;
$100=4$ with probability $25 / 173 ;$
$101=5$ with probability $81 / 173 ;$
$110=6$ with probability 4/173;
$111=7$ with probability $36 / 173$.
5 is most likely outcome.
have state

duces

ability $1 / 8$; ability $1 / 8$.
m RNGs sold bly biased.
e.g.: Say 3 qubits have state $(3,1,4,1,5,9,2,6)$.

Measurement produces
$000=0$ with probability $9 / 173$;
$001=1$ with probability $1 / 173$;
$010=2$ with probability $16 / 173 ;$
$011=3$ with probability $1 / 173$;
$100=4$ with probability $25 / 173$;
$101=5$ with probability $81 / 173 ;$
$110=6$ with probability 4/173;
$111=7$ with probability $36 / 173$.
5 is most likely outcome.
e.g.: Say 3 qubits ($0,0,0,0,0,1,0,0$
e.g.: Say 3 qubits have state $(3,1,4,1,5,9,2,6)$.
e.g.: Say 3 qubits have stat ($0,0,0,0,0,1,0,0$).

Measurement produces
$000=0$ with probability $9 / 173$;
$001=1$ with probability $1 / 173$;
$010=2$ with probability $16 / 173 ;$
$011=3$ with probability $1 / 173$;
$100=4$ with probability $25 / 173 ;$
$101=5$ with probability $81 / 173 ;$
$110=6$ with probability $4 / 173 ;$
$111=7$ with probability $36 / 173$.
5 is most likely outcome.
e.g.: Say 3 qubits have state $(3,1,4,1,5,9,2,6)$.

Measurement produces $000=0$ with probability $9 / 173$; $001=1$ with probability $1 / 173$; $010=2$ with probability $16 / 173$; $011=3$ with probability $1 / 173$; $100=4$ with probability $25 / 173 ;$
$101=5$ with probability $81 / 173 ;$
$110=6$ with probability $4 / 173$;
$111=7$ with probability $36 / 173$.
5 is most likely outcome.
e.g.: Say 3 qubits have state ($0,0,0,0,0,1,0,0$).
e.g.: Say 3 qubits have state $(3,1,4,1,5,9,2,6)$.

Measurement produces $000=0$ with probability $9 / 173 ;$ $001=1$ with probability $1 / 173$; $010=2$ with probability $16 / 173$; $011=3$ with probability $1 / 173$; $100=4$ with probability $25 / 173 ;$ $101=5$ with probability $81 / 173 ;$ $110=6$ with probability 4/173;
$111=7$ with probability $36 / 173$.
5 is most likely outcome.
e.g.: Say 3 qubits have state ($0,0,0,0,0,1,0,0$).

Measurement produces $000=0$ with probability 0 ; $001=1$ with probability 0 ; $010=2$ with probability 0 ; $011=3$ with probability 0 ; $100=4$ with probability 0 ; $101=5$ with probability 1 ; $110=6$ with probability 0 ; $111=7$ with probability 0 .
e.g.: Say 3 qubits have state $(3,1,4,1,5,9,2,6)$.

Measurement produces $000=0$ with probability $9 / 173 ;$ $001=1$ with probability $1 / 173$; $010=2$ with probability $16 / 173$; $011=3$ with probability $1 / 173$; $100=4$ with probability $25 / 173 ;$
$101=5$ with probability $81 / 173 ;$
$110=6$ with probability 4/173;
$111=7$ with probability $36 / 173$.
5 is most likely outcome.
e.g.: Say 3 qubits have state ($0,0,0,0,0,1,0,0$).

Measurement produces $000=0$ with probability 0 ; $001=1$ with probability 0 ; $010=2$ with probability 0 ; $011=3$ with probability 0 ; $100=4$ with probability 0 ; $101=5$ with probability 1 ; $110=6$ with probability 0 ; $111=7$ with probability 0 .

5 is guaranteed outcome.
y 3 qubits have state
1, 5, 9, 2, 6).
ment produces
with probability $9 / 173$;
with probability $1 / 173$;
with probability $16 / 173$;
with probability $1 / 173$;
with probability $25 / 173$;
with probability $81 / 173$; with probability 4/173; with probability $36 / 173$.
t likely outcome.
e.g.: Say 3 qubits have state ($0,0,0,0,0,1,0,0$).

Measurement produces
$000=0$ with probability 0 ;
$001=1$ with probability 0 ;
$010=2$ with probability 0 ;
$011=3$ with probability 0 ;
$100=4$ with probability 0 ;
$101=5$ with probability 1 ;
$110=6$ with probability 0 ;
$111=7$ with probability 0 .
5 is guaranteed outcome.

NOT ga $\mathrm{NOT}_{0} \mathrm{~g}$
(3, 1, 4,
(1, 3, 1,
have state

duces

ability $9 / 173 ;$
ability $1 / 173$;
ability 16/173;
ability $1 / 173$;
ability 25/173;
ability 81/173;
ability 4/173;
ability $36 / 173$.
tcome.
e.g.: Say 3 qubits have state ($0,0,0,0,0,1,0,0$).

Measurement produces
$000=0$ with probability 0 ;
$001=1$ with probability 0 ;
$010=2$ with probability 0 ;
$011=3$ with probability 0 ;
$100=4$ with probability 0 ;
$101=5$ with probability 1 ;
$110=6$ with probability 0 ;
$111=7$ with probability 0 .
5 is guaranteed outcome.

NOT gates

NOT_{0} gate on 3 c
$(3,1,4,1,5,9,2,6$
$(1,3,1,4,9,5,6,2$
e.g.: Say 3 qubits have state ($0,0,0,0,0,1,0,0$).

Measurement produces
$000=0$ with probability 0 ;
$001=1$ with probability 0 ;
$010=2$ with probability 0 ; $011=3$ with probability 0 ; $100=4$ with probability 0 ; $101=5$ with probability 1 ; $110=6$ with probability 0 ; $111=7$ with probability 0 .

5 is guaranteed outcome.

NOT gates

NOT $_{0}$ gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
$(1,3,1,4,9,5,6,2)$.
e.g.: Say 3 qubits have state $(0,0,0,0,0,1,0,0)$.

Measurement produces $000=0$ with probability 0 ;
$001=1$ with probability 0 ; $010=2$ with probability 0 ; $011=3$ with probability 0 ; $100=4$ with probability 0 ; $101=5$ with probability 1 ; $110=6$ with probability 0 ;
$111=7$ with probability 0 .
5 is guaranteed outcome.

NOT gates

NOT_{0} gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
$(1,3,1,4,9,5,6,2)$.
e.g.: Say 3 qubits have state $(0,0,0,0,0,1,0,0)$.

Measurement produces $000=0$ with probability 0 ; $001=1$ with probability 0 ; $010=2$ with probability 0 ; $011=3$ with probability 0 ; $100=4$ with probability 0 ; $101=5$ with probability 1 ; $110=6$ with probability 0 ; $111=7$ with probability 0 .

5 is guaranteed outcome.

NOT gates

NOT_{0} gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
$(1,3,1,4,9,5,6,2)$.
NOT_{0} gate on 4 qubits:
$(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) \mapsto$
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).
e.g.: Say 3 qubits have state $(0,0,0,0,0,1,0,0)$.

Measurement produces $000=0$ with probability 0 ; $001=1$ with probability 0 ; $010=2$ with probability 0 ; $011=3$ with probability 0 ; $100=4$ with probability 0 ; $101=5$ with probability 1 ; $110=6$ with probability 0 ; $111=7$ with probability 0 .

NOT gates

NOT_{0} gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
$(1,3,1,4,9,5,6,2)$.
NOT_{0} gate on 4 qubits:
$(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) \mapsto$
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).
NOT_{1} gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
$(4,1,3,1,2,6,5,9)$.
e.g.: Say 3 qubits have state $(0,0,0,0,0,1,0,0)$.

Measurement produces $000=0$ with probability 0 ; $001=1$ with probability 0 ; $010=2$ with probability 0 ; $011=3$ with probability 0 ; $100=4$ with probability 0 ; $101=5$ with probability 1 ; $110=6$ with probability 0 ; $111=7$ with probability 0 .

5 is guaranteed outcome.

NOT gates

NOT_{0} gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
$(1,3,1,4,9,5,6,2)$.
NOT_{0} gate on 4 qubits:
$(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) \mapsto$
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).
NOT_{1} gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
$(4,1,3,1,2,6,5,9)$.
NOT_{2} gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
$(5,9,2,6,3,1,4,1)$.
y qubits have state , $0,1,0,0$).
ment produces
with probability 0 ; with probability 1 ; with probability 0 ; with probability 0 .
ranteed outcome.

NOT gates
NOT_{0} gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
$(1,3,1,4,9,5,6,2)$.
NOT_{0} gate on 4 qubits:
$(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) \mapsto$
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).
NOT_{1} gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
$(4,1,3,1,2,6,5,9)$.
NOT_{2} gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
(5, 9, 2, 6, 3, 1, 4, 1).
(1, 0, 0,
($0,1,0$,
(0, 0, 1,
(0, 0, 0,
(0, 0, 0,
(0, 0, 0,
(0, 0, 0,
(0, 0, 0,
Operatic NOT_{0},
Operatic flipping
Flip: ou
have state

duces

ability 0 ;
ability 0 ;
ability 0 ; ability 0 ; ability 0 ; ability 1 ; ability 0 ; ability 0 .
tcome.

NOT gates

NOT 0 gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
(1, 3, 1, 4, 9, 5, 6, 2).
NOT 0 gate on 4 qubits:
$(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) \mapsto$
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).
NOT $_{1}$ gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
(4, 1, 3, 1, 2, 6, 5, 9).
NOT_{2} gate on 3 qubits:
(3, 1, 4, 1, 5, 9, 2, 6) \mapsto
(5, 9, 2, 6, 3, 1, 4, 1).
state
(1, 0, 0, 0, 0, 0, 0,
($0,1,0,0,0,0,0$,
($0,0,1,0,0,0,0$,
($0,0,0,1,0,0,0$,
(0, 0, 0, 0, 1, 0, 0 ,
(0, 0, 0, 0, 0, 1, 0 ,
($0,0,0,0,0,0,1$,
($0,0,0,0,0,0,0$,
Operation on qua NOT_{0}, swapping
Operation after m flipping bit 0 of re Flip: output is no

NOT gates
NOT_{0} gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
$(1,3,1,4,9,5,6,2)$.
NOT_{0} gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) \mapsto
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).
NOT_{1} gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
$(4,1,3,1,2,6,5,9)$.
NOT_{2} gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
(5, 9, 2, 6, 3, 1, 4, 1).
$(1,0,0,0,0,0,0,0) \quad 000$
$(0,1,0,0,0,0,0,0) \quad 001$
$(0,0,1,0,0,0,0,0) \quad 010$
$(0,0,0,1,0,0,0,0) \quad 011$
$(0,0,0,0,1,0,0,0) \quad 100$
$(0,0,0,0,0,1,0,0) \quad 101$
$(0,0,0,0,0,0,1,0) \quad 110$
$(0,0,0,0,0,0,0,1) \quad 111$
Operation on quantum state NOT_{0}, swapping pairs.
Operation after measuremer flipping bit 0 of result.
Flip: output is not input.

NOT gates

NOT_{0} gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
$(1,3,1,4,9,5,6,2)$.
NOT_{0} gate on 4 qubits:
$(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) \mapsto$
$(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9)$.
NOT_{1} gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
$(4,1,3,1,2,6,5,9)$.
NOT_{2} gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
$(5,9,2,6,3,1,4,1)$.
measurement

Operation on quantum state:
NOT_{0}, swapping pairs.
Operation after measurement:
flipping bit 0 of result.
Flip: output is not input.
ate on 3 qubits:
$1,5,9,2,6) \mapsto$
$4,9,5,6,2)$.
ate on 4 qubits:
$5,9,2,6,5,3,5,8,9,7,9,3) \mapsto$
$9,5,6,2,3,5,8,5,7,9,3,9)$.
ate on 3 qubits:
$1,5,9,2,6) \mapsto$
$1,2,6,5,9)$.
ate on 3 qubits:
$1,5,9,2,6) \mapsto$
$5,3,1,4,1)$.
state
$(1,0,0,0,0,0,0,0)$
$(0,1,0,0,0,0,0,0)$
($0,0,1,0,0,0,0,0$)
$(0,0,0,1,0,0,0,0)$
$(0,0,0,0,1,0,0,0)$
$(0,0,0,0,0,1,0,0)$
$(0,0,0,0,0,0,1,0)$
$(0,0,0,0,0,0,0,1)$
measurement
Controll
e.g. C_{1}
(3, 1, 4,
$(3,1,1$,

Operation on quantum state:
NOT_{0}, swapping pairs.
Operation after measurement:
flipping bit 0 of result.
Flip: output is not input.

ubits:

\mapsto
ubits:
$3,5,8,9,7,9,3) \mapsto$
5,8,5,7,9,3,9).
ubits:
\longmapsto
ubits:
\mapsto
measurement

Operation on quantum state: NOT_{0}, swapping pairs.
Operation after measurement:
flipping bit 0 of result.
Flip: output is not input.

Controlled-NOT

e.g. $\mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6$
$(3,1,1,4,5,9,6,2$
state measurement

$(1,0,0,0,0,0,0,0)$	000
$(0,1,0,0,0,0,0,0)$	001
$(0,0,1,0,0,0,0,0)$	010
$(0,0,0,1,0,0,0,0)$	011
$(0,0,0,0,1,0,0,0)$	100
$(0,0,0,0,0,1,0,0)$	101
$(0,0,0,0,0,0,1,0)$	
$(0,0,0,0,0,0,0,1)$	11

Operation on quantum state:
NOT_{0}, swapping pairs.
Operation after measurement:
flipping bit 0 of result.
Flip: output is not input.

Controlled-NOT (CNOT) ga

e.g. $\mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,1,4,5,9,6,2)$.

$(1,0,0,0,0,0,0,0)$	000
$(0,1,0,0,0,0,0,0)$	001

(0, 0, 1, 0, 0, 0, 0, 0)
(0, 0, 0, 1, 0, 0, 0, 0)
(0, 0, 0, 0, 1, 0, 0, 0)
($0,0,0,0,0,1,0,0$)
(0, 0, 0, 0, 0, 0, 1, 0)
($0,0,0,0,0,0,0,1$)

Operation on quantum state:
NOT_{0}, swapping pairs.
Operation after measurement:
flipping bit 0 of result.
Flip: output is not input.

Controlled-NOT (CNOT) gates

e.g. $\mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,1,4,5,9,6,2)$.
state

Operation on quantum state:
NOT_{0}, swapping pairs.
Operation after measurement:
flipping bit 0 of result.
Flip: output is not input.

Controlled-NOT (CNOT) gates

e.g. $\mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,1,4,5,9,6,2)$.
Operation after measurement: flipping bit 0 if bit 1 is set; i.e., $\left(q_{2}, q_{1}, q_{0}\right) \mapsto\left(q_{2}, q_{1}, q_{0} \oplus q_{1}\right)$.
state

Operation on quantum state:
NOT_{0}, swapping pairs.
Operation after measurement:
flipping bit 0 of result.
Flip: output is not input.

Controlled-NOT (CNOT) gates

e.g. $\mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,1,4,5,9,6,2)$.
Operation after measurement: flipping bit 0 if bit 1 is set; i.e., $\left(q_{2}, q_{1}, q_{0}\right) \mapsto\left(q_{2}, q_{1}, q_{0} \oplus q_{1}\right)$.
e.g. $\mathrm{C}_{2} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,4,1,9,5,6,2)$.
state

Operation on quantum state:
NOT_{0}, swapping pairs.
Operation after measurement:
flipping bit 0 of result.
Flip: output is not input.

Controlled-NOT (CNOT) gates

e.g. $\mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,1,4,5,9,6,2)$.
Operation after measurement: flipping bit 0 if bit 1 is set; i.e., $\left(q_{2}, q_{1}, q_{0}\right) \mapsto\left(q_{2}, q_{1}, q_{0} \oplus q_{1}\right)$.
e.g. $\mathrm{C}_{2} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,4,1,9,5,6,2)$.
e.g. $\mathrm{C}_{0} \mathrm{NOT}_{2}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,9,4,6,5,1,2,1)$.

state

$0,0,0,0,0)$
$0,0,0,0,0)$
$0,0,0,0,0)$
$1,0,0,0,0)$
$0,1,0,0,0)$
$0,0,1,0,0)$
$0,0,0,1,0)$
$0,0,0,0,1)$
measurement

n on quantum state:
wapping pairs.
on after measurement:
bit 0 of result.
tput is not input.

Controlled-NOT (CNOT) gates
e.g. $\mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,1,4,5,9,6,2)$.
Operation after measurement: flipping bit 0 if bit 1 is set; i.e., $\left(q_{2}, q_{1}, q_{0}\right) \mapsto\left(q_{2}, q_{1}, q_{0} \oplus q_{1}\right)$.
e.g. $\mathrm{C}_{2} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,4,1,9,5,6,2)$.
e.g. $\mathrm{C}_{0} \mathrm{NOT}_{2}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,9,4,6,5,1,2,1)$.

Toffoli g
Also knc controlle e.g. $\mathrm{C}_{2} \mathrm{C}$ (3, 1, 4,
(3, 1, 4,
measurement

ttum state:
zairs.
easurement:
sult.
input.

Controlled-NOT (CNOT) gates

e.g. $\mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,1,4,5,9,6,2)$.
Operation after measurement:
flipping bit 0 if bit 1 is set; i.e., $\left(q_{2}, q_{1}, q_{0}\right) \mapsto\left(q_{2}, q_{1}, q_{0} \oplus q_{1}\right)$.
e.g. $\mathrm{C}_{2} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,4,1,9,5,6,2)$.
e.g. $\mathrm{C}_{0} \mathrm{NOT}_{2}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,9,4,6,5,1,2,1)$.

Toffoli gates
Also known as CC controlled-controll
e.g. $\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{NOT}_{0}$: $(3,1,4,1,5,9,2,6$ $(3,1,4,1,5,9,6,2$

Controlled-NOT (CNOT) gates
e.g. $\mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
(3, 1, 1, 4, 5, 9, 6, 2).
Operation after measurement: flipping bit 0 if bit 1 is set; i.e., $\left(q_{2}, q_{1}, q_{0}\right) \mapsto\left(q_{2}, q_{1}, q_{0} \oplus q_{1}\right)$.
e.g. $\mathrm{C}_{2} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
(3, 1, 4, 1, 9, 5, 6, 2).
e.g. $\mathrm{C}_{0} \mathrm{NOT}_{2}$:
$(3,1,4,1,5,9,2,6) \mapsto$
(3, 9, 4, 6, 5, 1, 2, 1).

Toffoli gates

Also known as CCNOT gate controlled-controlled-NOT g
e.g. $\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,4,1,5,9,6,2)$.

Controlled-NOT (CNOT) gates

e.g. $\mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
(3, 1, 1, 4, 5, 9, 6, 2).
Operation after measurement:
flipping bit 0 if bit 1 is set; i.e., $\left(q_{2}, q_{1}, q_{0}\right) \mapsto\left(q_{2}, q_{1}, q_{0} \oplus q_{1}\right)$.
e.g. $\mathrm{C}_{2} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
(3, 1, 4, 1, 9, 5, 6, 2).
e.g. $\mathrm{C}_{0} \mathrm{NOT}_{2}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,9,4,6,5,1,2,1)$.

Toffoli gates

Also known as CCNOT gates: controlled-controlled-NOT gates.
e.g. $\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
(3, 1, 4, 1, 5, 9, 6, 2).

Controlled-NOT (CNOT) gates

e.g. $\mathrm{C}_{1} \mathrm{NOT}_{0}$:

$(3,1,4,1,5,9,2,6) \mapsto$
(3, 1, 1, 4, 5, 9, 6, 2).
Operation after measurement: flipping bit 0 if bit 1 is set; i.e., $\left(q_{2}, q_{1}, q_{0}\right) \mapsto\left(q_{2}, q_{1}, q_{0} \oplus q_{1}\right)$.
e.g. $\mathrm{C}_{2} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
(3, 1, 4, 1, 9, 5, 6, 2).
e.g. $\mathrm{C}_{0} \mathrm{NOT}_{2}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,9,4,6,5,1,2,1)$.

Toffoli gates

Also known as CCNOT gates: controlled-controlled-NOT gates.
e.g. $\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
(3, 1, 4, 1, 5, 9, 6, 2).
Operation after measurement:
$\left(q_{2}, q_{1}, q_{0}\right) \mapsto\left(q_{2}, q_{1}, q_{0} \oplus q_{1} q_{2}\right)$.

Controlled-NOT (CNOT) gates

e.g. $\mathrm{C}_{1} \mathrm{NOT}_{0}$:

$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,1,4,5,9,6,2)$.
Operation after measurement: flipping bit 0 if bit 1 is set; i.e., $\left(q_{2}, q_{1}, q_{0}\right) \mapsto\left(q_{2}, q_{1}, q_{0} \oplus q_{1}\right)$.
e.g. $\mathrm{C}_{2} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,4,1,9,5,6,2)$.
e.g. $\mathrm{C}_{0} \mathrm{NOT}_{2}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,9,4,6,5,1,2,1)$.

Toffoli gates

Also known as CCNOT gates: controlled-controlled-NOT gates.
e.g. $\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,4,1,5,9,6,2)$.
Operation after measurement:
$\left(q_{2}, q_{1}, q_{0}\right) \mapsto\left(q_{2}, q_{1}, q_{0} \oplus q_{1} q_{2}\right)$.
e.g. $\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,4,6,5,9,2,1)$.
IOT_{0} :
$1,5,9,2,6) \mapsto$
7, 5, 9, 6, 2).
on after measurement:
bit 0 if bit 1 is set; i.e.,
$\left.q_{0}\right) \mapsto\left(q_{2}, q_{1}, q_{0} \oplus q_{1}\right)$.
OT_{0} :
$1,5,9,2,6) \mapsto$
$1,9,5,6,2)$.
OT_{2} :
$1,5,9,2,6) \mapsto$
5, 5, 1, 2, 1).

Toffoli gates
Also known as CCNOT gates: controlled-controlled-NOT gates.
e.g. $\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
(3, 1, 4, 1, 5, 9, 6, 2).
Operation after measurement:
$\left(q_{2}, q_{1}, q_{0}\right) \mapsto\left(q_{2}, q_{1}, q_{0} \oplus q_{1} q_{2}\right)$.
e.g. $\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$:
$(3,1,4,1,5,9,2,6) \mapsto$
(3, 1, 4, 6, 5, 9, 2, 1).

More sh
Combin to build

Toffoli gates
Also known as CCNOT gates: controlled-controlled-NOT gates.
e.g. $\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,4,1,5,9,6,2)$.
Operation after measurement:
$\left(q_{2}, q_{1}, q_{0}\right) \mapsto\left(q_{2}, q_{1}, q_{0} \oplus q_{1} q_{2}\right)$.
e.g. $\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,4,6,5,9,2,1)$.

More shuffling
Combine NOT, Cl to build other perı

Toffoli gates
Also known as CCNOT gates: controlled-controlled-NOT gates.
e.g. $\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,4,1,5,9,6,2)$.
Operation after measurement:
$\left(q_{2}, q_{1}, q_{0}\right) \mapsto\left(q_{2}, q_{1}, q_{0} \oplus q_{1} q_{2}\right)$.
e.g. $\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$:
$(3,1,4,1,5,9,2,6) \mapsto$
$(3,1,4,6,5,9,2,1)$.

More shuffling
Combine NOT, CNOT, Toff to build other permutations.

Toffoli gates

Also known as CCNOT gates: controlled-controlled-NOT gates.
e.g. $\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
(3, 1, 4, 1, 5, 9, 6, 2).
Operation after measurement:
$\left(q_{2}, q_{1}, q_{0}\right) \mapsto\left(q_{2}, q_{1}, q_{0} \oplus q_{1} q_{2}\right)$.
e.g. $\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$:
$(3,1,4,1,5,9,2,6) \mapsto$
(3, 1, 4, 6, 5, 9, 2, 1).

More shuffling
Combine NOT, CNOT, Toffoli to build other permutations.

Toffoli gates

Also known as CCNOT gates: controlled-controlled-NOT gates.
e.g. $\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{NOT}_{0}$:
$(3,1,4,1,5,9,2,6) \mapsto$
(3, 1, 4, 1, 5, 9, 6, 2).
Operation after measurement:
$\left(q_{2}, q_{1}, q_{0}\right) \mapsto\left(q_{2}, q_{1}, q_{0} \oplus q_{1} q_{2}\right)$.
e.g. $\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$:
$(3,1,4,1,5,9,2,6) \mapsto$
(3, 1, 4, 6, 5, 9, 2, 1).

More shuffling

Combine NOT, CNOT, Toffoli to build other permutations.
e.g. series of gates to rotate 8 positions by distance 1 :
$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$

ates
wn as CCNOT gates:
d-controlled-NOT gates.
${ }_{1} \mathrm{NOT}_{0}$:
$L, 5,9,2,6) \mapsto$
$L, 5,9,6,2)$.
n after measurement:
$\left.q_{0}\right) \mapsto\left(q_{2}, q_{1}, q_{0} \oplus q_{1} q_{2}\right)$
${ }_{1} \mathrm{NOT}_{2}$:
$1,5,9,2,6) \mapsto$
$5,5,9,2,1)$.

More shuffling

Combine NOT, CNOT, Toffoli to build other permutations.
e.g. series of gates to rotate 8 positions by distance 1 :
$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$

$$
\begin{array}{llllllll}
6 & 3 & 1 & 4 & 5 & 9 & 2
\end{array}
$$

$\mathrm{C}_{0} \mathrm{NOT}_{1}$
NOT_{0}

Hadama
Hadama
$(a, b) \mapsto$
31

NOT gates: ed-NOT gates.
easurement:
$\left.q_{1}, q_{0} \oplus q_{1} q_{2}\right)$.

More shuffling
Combine NOT, CNOT, Toffoli to build other permutations.
e.g. series of gates to
rotate 8 positions by distance 1 :
$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$

Hadamard gates

Hadamard 0_{0} :
$(a, b) \mapsto(a+b, a$

More shuffling

Hadamard gates

Hadamard 0_{0} :
$(a, b) \mapsto(a+b, a-b)$.

More shuffling

Combine NOT, CNOT, Toffoli

 to build other permutations.e.g. series of gates to rotate 8 positions by distance 1 :
$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$
$\mathrm{C}_{0} \mathrm{NOT}_{1}$
NOT_{0}

Hadamard gates

Hadamard 0 :
$(a, b) \mapsto(a+b, a-b)$.

More shuffling

Combine NOT, CNOT, Toffoli

 to build other permutations.e.g. series of gates to rotate 8 positions by distance 1 :
$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$

Hadamard gates

Hadamard ${ }_{0}$:
$(a, b) \mapsto(a+b, a-b)$.

Hadamard $_{1}$:
$(a, b, c, d) \mapsto$
$(a+c, b+d, a-c, b-d)$.

uffling
NOT, CNOT, Toffoli
other permutations.
es of gates to
positions by distance 1 :

Hadamard gates

Hadamard 0 :
$(a, b) \mapsto(a+b, a-b)$.

Hadamard $_{1}$:
$(a, b, c, d) \mapsto$
$(a+c, b+d, a-c, b-d)$.

Some us
Hadama

Hadamard gates

Hadamard 0_{0} :
$(a, b) \mapsto(a+b, a-b)$.

Hadamard $_{1}$:
$(a, b, c, d) \mapsto$
$(a+c, b+d, a-c, b-d)$.

Some uses of Had Hadamard $_{0}$, NOT

Hadamard gates
Hadamard 0_{0} :
$(a, b) \mapsto(a+b, a-b)$.

Hadamard $_{1}$:
$(a, b, c, d) \mapsto$
$(a+c, b+d, a-c, b-d)$.

Some uses of Hadamard gat
Hadamard ${ }_{0}, \mathrm{NOT}_{0}$, Hadam

592

Hadamard gates

Hadamard ${ }_{0}$:
$(a, b) \mapsto(a+b, a-b)$.

Hadamard $_{1}$:
$(a, b, c, d) \mapsto$
$(a+c, b+d, a-c, b-d)$.

Some uses of Hadamard gates

Hadamard $0, \mathrm{NOT}_{0}$, Hadamard ${ }_{0}$:

Hadamard gates

Hadamard 0 :
$(a, b) \mapsto(a+b, a-b)$.

Hadamard $_{1}$:
$(a, b, c, d) \mapsto$
$(a+c, b+d, a-c, b-d)$.

Some uses of Hadamard gates

Hadamard 0_{0}, NOT $_{0}$, Hadamard 0 :

"Multiply each amplitude by 2. ."
This is not physically observable.

Hadamard gates

Hadamard 0 :
$(a, b) \mapsto(a+b, a-b)$.

Hadamard $_{1}$:
$(a, b, c, d) \mapsto$
$(a+c, b+d, a-c, b-d)$.

Some uses of Hadamard gates

Hadamard 0, NOT $_{0}$, Hadamard 0 :

"Multiply each amplitude by 2. ."
This is not physically observable.
"Negate amplitude if q_{0} is set."
No effect on measuring now.
rd gates
$\mathrm{rd}_{0}:$

$$
(a+b, a-b)
$$

$\mathrm{rd}_{1}:$
d) \mapsto
$+d, a-c, b-d)$

Some uses of Hadamard gates
Hadamard ${ }_{0}, \mathrm{NOT}_{0}$, Hadamard ${ }_{0}$:

"Multiply each amplitude by 2."
This is not physically observable.
"Negate amplitude if q_{0} is set."
No effect on measuring now.

Fancier
"Negate
Assumes
$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{~N}$

Hadam

NOT

Hadam
$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{~N}$

Some uses of Hadamard gates

Hadamard $0_{0}, \mathrm{NOT}_{0}$, Hadamard ${ }_{0}$

"Multiply each amplitude by 2."
This is not physically observable.
"Negate amplitude if q_{0} is set."
No effect on measuring now.

Fancier example:
"Negate amplitud
Assumes $q_{2}=0$:
NOT_{2}

Hadamard 2
$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$

Some uses of Hadamard gates

Hadamard $0_{0}, \mathrm{NOT}_{0}$, Hadamard ${ }_{0}$:

"Multiply each amplitude by 2."
This is not physically observable.
"Negate amplitude if q_{0} is set."
No effect on measuring now.

Fancier example:
"Negate amplitude if $q_{0} q_{1}$ Assumes $q_{2}=0$: "ancilla"

$$
\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}
$$

Hadamard 2
NOT_{2}

Hadamard 2
$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$

$$
628-20
$$

Some uses of Hadamard gates

Hadamard $0, \mathrm{NOT}_{0}$, Hadamard ${ }_{0}$:

"Multiply each amplitude by 2."
This is not physically observable.
"Negate amplitude if q_{0} is set."
No effect on measuring now.

Fancier example:
"Negate amplitude if $q_{0} q_{1}$ is set."
Assumes $q_{2}=0$: "ancilla" qubit.

Hadamard 2

NOT_{2}

Hadamard 2
$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$

$$
628-2 \widehat{0} 00
$$

es of Hadamard gates
$\mathrm{rd}_{0}, \mathrm{NOT}_{0}$, Hadamard $_{0}:$

y each amplitude by 2. ." ot physically observable. amplitude if q_{0} is set." t on measuring now.

Fancier example:
"Negate amplitude if $q_{0} q_{1}$ is set."
Assumes $q_{2}=0$: "ancilla" qubit.
Affects amplituc (3, 1, 4,
$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$

Hadamard 2
NOT_{2}

Hadamard 2

$$
628-20000
$$

$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$

amard gates

0 , Hadamard 0 :

plitude by 2."
ally observable.
e if q_{0} is set."
uring now.

Fancier example:
"Negate amplitude if $q_{0} q_{1}$ is set."
Assumes $q_{2}=0$: "ancilla" qubit.
$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$

Hadamard 2
NOT_{2}

Hadamard 2
$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$

$$
628-20000
$$

Affects measurem amplitude around $(3,1,4,1) \mapsto(1.5$,

Fancier example:
"Negate amplitude if $q_{0} q_{1}$ is set."
Assumes $q_{2}=0$: "ancilla" qubit.
$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$

Affects measurements: "Ne amplitude around its averag $(3,1,4,1) \mapsto(1.5,3.5,0.5,3$

Fancier example:
"Negate amplitude if $q_{0} q_{1}$ is set."
Assumes $q_{2}=0$: "ancilla" qubit.
$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$

Hadamard $_{2}$
NOT_{2}

Hadamard 2
$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$

$$
628-20000
$$

Affects measurements: "Negate amplitude around its average." $(3,1,4,1) \mapsto(1.5,3.5,0.5,3.5)$.

Fancier example:
"Negate amplitude if $q_{0} q_{1}$ is set."
Assumes $q_{2}=0$: "ancilla" qubit.
$\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{NOT}_{2}$

Affects measurements: "Negate amplitude around its average."
$(3,1,4,1) \mapsto(1.5,3.5,0.5,3.5)$.
H_{0}
H_{1}

$\cdots|\quad| \quad \mid$ $-9 \quad 5 \quad-1-1$
H_{0}

H_{1}

example:
amplitude if $q_{0} q_{1}$ is set." $q_{2}=0:$ "ancilla" qubit.

Affects measurements: "Negate amplitude around its average."
$(3,1,4,1) \mapsto(1.5,3.5,0.5,3.5)$.

Simon's
Assump

- Given can ef
- Nonze
- $f(u)=$
- f has

Goal: Fi

Affects measurements: "Negate amplitude around its average." $(3,1,4,1) \mapsto(1.5,3.5,0.5,3.5)$.

Simon's algorithm
Assumptions:

- Given any $u \in\{$ can efficiently c
- Nonzero $s \in\{0$,
- $f(u)=f(u \oplus s)$
- f has no other

Goal: Figure out

Affects measurements: "Negate
s set.'
qubit.

$14-1$
 amplitude around its average."

$$
(3,1,4,1) \mapsto(1.5,3.5,0.5,3.5)
$$

Simon's algorithm

Assumptions:

- Given any $u \in\{0,1\}^{n}$, can efficiently compute $f($
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.

Affects measurements: "Negate amplitude around its average."

$$
(3,1,4,1) \mapsto(1.5,3.5,0.5,3.5) .
$$

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$, can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.

Affects measurements: "Negate amplitude around its average."

$$
(3,1,4,1) \mapsto(1.5,3.5,0.5,3.5) .
$$

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$, can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Affects measurements: "Negate amplitude around its average."

$$
(3,1,4,1) \mapsto(1.5,3.5,0.5,3.5) .
$$

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$, can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.
neasurements: "Negate le around its average."
) $\mapsto(1.5,3.5,0.5,3.5)$.

Simon's algorithm

Assumptions:

- Given any $u \in\{0,1\}^{n}$, can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example

Step 1.
1, 0, 0,
$0,0,0$,
$0,0,0$,
$0,0,0$,
$0,0,0$,
$0,0,0$,
$0,0,0$,
$0,0,0$,
ents: "Negate its average."
$3.5,0.5,3.5)$.

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$, can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon
Step 1. Set up pu
$1,0,0,0,0,0$,
$0,0,0,0,0,0$,
$0,0,0,0,0,0$,
$0,0,0,0,0,0$,
$0,0,0,0,0,0$,
$0,0,0,0,0,0$,
$0,0,0,0,0,0$,
$0,0,0,0,0,0$,

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$, can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorith

Step 1. Set up pure zero sta $1,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$.

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$,
can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 1. Set up pure zero state:
$1,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$.

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$, can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 2. Hadamard ${ }_{0}$:
$1,1,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$.

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$,
can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 3. Hadamard ${ }_{1}$:
$1,1,1,1,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$.

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$,
can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 4. Hadamard ${ }_{2}$:
$1,1,1,1,1,1,1,1$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$.
Each column is a parallel universe.

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$,
can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 5. $\mathrm{C}_{0} \mathrm{NOT}_{3}$:
1, 0, 1, 0, 1, 0, 1, 0,
$0,1,0,1,0,1,0,1$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$.
Each column is a parallel universe performing its own computations.

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$,
can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 5b. More shuffling:
$1,0,0,0,1,0,0,0$,
$0,1,0,0,0,1,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,1,0,0,0,1,0$,
$0,0,0,1,0,0,0,1$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$.
Each column is a parallel universe performing its own computations.

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$,
can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 5c. More shuffling:
$1,0,0,0,0,0,0,0$,
$0,1,0,0,0,0,0,0$,
$0,0,0,0,1,0,0,0$,
$0,0,0,0,0,1,0,0$,
$0,0,1,0,0,0,0,0$,
$0,0,0,1,0,0,0,0$,
$0,0,0,0,0,0,1,0$,
$0,0,0,0,0,0,0,1$.
Each column is a parallel universe performing its own computations.

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$,
can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 5d. More shuffling:
$1,0,0,0,0,0,0,0$,
$0,0,0,0,0,1,0,0$,
$0,0,0,0,1,0,0,0$,
$0,1,0,0,0,0,0,0$,
$0,0,1,0,0,0,0,0$,
$0,0,0,0,0,0,0,1$,
$0,0,0,0,0,0,1,0$,
$0,0,0,1,0,0,0,0$.
Each column is a parallel universe performing its own computations.

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$, can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 5 e . More shuffling:
$1,0,0,0,0,0,0,0$,
$0,0,0,0,0,1,0,0$,
$0,0,0,0,1,0,0,0$,
$0,1,0,0,0,0,0,0$,
$0,0,1,0,0,0,0,1$,
$0,0,0,0,0,0,0,0$,
$0,0,0,1,0,0,1,0$,
$0,0,0,0,0,0,0,0$.
Each column is a parallel universe performing its own computations.

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$,
can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 5f. More shuffling:
$0,0,0,0,0,1,0,0$,
$1,0,0,0,0,0,0,0$,
$0,1,0,0,0,0,0,0$,
$0,0,0,0,1,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,1,0,0,0,0,1$,
$0,0,0,0,0,0,0,0$,
$0,0,0,1,0,0,1,0$.
Each column is a parallel universe performing its own computations.

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$, can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 5g. More shuffling:
$0,1,0,0,0,0,0,0$,
$0,0,0,0,1,0,0,0$,
$0,0,0,0,0,1,0,0$,
$1,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,1,0,0,1,0$,
$0,0,0,0,0,0,0,0$,
$0,0,1,0,0,0,0,1$.
Each column is a parallel universe performing its own computations.

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$,
can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 5h. More shuffling:
$0,0,0,0,0,0,0,0$,
$0,0,0,1,0,0,1,0$,
$0,0,0,0,0,0,0,0$,
$0,0,1,0,0,0,0,1$,
$0,1,0,0,0,0,0,0$,
$0,0,0,0,1,0,0,0$,
$0,0,0,0,0,1,0,0$,
$1,0,0,0,0,0,0,0$.
Each column is a parallel universe performing its own computations.

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$,
can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 5i. More shuffling:
$0,0,0,0,0,0,1,0$,
$0,0,0,1,0,0,0,0$,
$0,0,0,0,0,0,0,1$,
$0,0,1,0,0,0,0,0$,
$0,1,0,0,0,0,0,0$,
$0,0,0,0,1,0,0,0$,
$0,0,0,0,0,1,0,0$,
$1,0,0,0,0,0,0,0$.
Each column is a parallel universe performing its own computations.

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$,
can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 5 j . Final shuffling:
$0,0,0,0,0,0,0,0$,
$0,0,0,1,0,0,1,0$,
$0,0,0,0,0,0,0,0$,
$0,0,1,0,0,0,0,1$,
$0,1,0,0,1,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$1,0,0,0,0,1,0,0$.
Each column is a parallel universe performing its own computations.

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$, can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 5 j . Final shuffling:
$0,0,0,0,0,0,0,0$,
$0,0,0,1,0,0,1,0$,
$0,0,0,0,0,0,0,0$,
$0,0,1,0,0,0,0,1$,
$0,1,0,0,1,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$1,0,0,0,0,1,0,0$.
Each column is a parallel universe performing its own computations. Surprise: u and $u \oplus 101$ match.

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$,
can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 6. Hadamard ${ }_{0}$:
$0,0,0,0,0,0,0,0$,
$0,0,1, \overline{1}, 0,0,1,1$,
$0,0,0,0,0,0,0,0$,
$0,0,1,1,0,0,1, \overline{1}$,
$1, \overline{1}, 0,0,1,1,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$1,1,0,0,1, \overline{1}, 0,0$.
Notation: $\overline{1}$ means -1 .

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$, can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 7. Hadamard ${ }_{1}$:
$0,0,0,0,0,0,0,0$,
$1, \overline{1}, \overline{1}, 1,1,1, \overline{1}, \overline{1}$,
$0,0,0,0,0,0,0,0$,
$1,1, \overline{1}, \overline{1}, 1, \overline{1}, \overline{1}, 1$,
$1, \overline{1}, 1, \overline{1}, 1,1,1,1$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$1,1,1,1,1, \overline{1}, 1, \overline{1}$.

Simon's algorithm
Assumptions:

- Given any $u \in\{0,1\}^{n}$, can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 8. Hadamard ${ }_{2}$:
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0, \overline{2}, 0,2$,
$0,0,0,0,0,0,0,0$,
2, 0, $\overline{2}, 0,0,2,0, \overline{2}$,
$2,0,2,0,0, \overline{2}, 0, \overline{2}$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$2,0,2,0,0,2,0,2$.

Simon's algorithm

Assumptions:

- Given any $u \in\{0,1\}^{n}$, can efficiently compute $f(u)$.
- Nonzero $s \in\{0,1\}^{n}$.
- $f(u)=f(u \oplus s)$ for all u.
- f has no other collisions.

Goal: Figure out s.
Traditional algorithm to find s : compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ quantum computations of f.

Example of Simon's algorithm

Step 8. Hadamard ${ }_{2}$:
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0, \overline{2}, 0,2$,
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0,2,0, \overline{2}$,
$2,0,2,0,0, \overline{2}, 0, \overline{2}$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$2,0,2,0,0,2,0,2$.
Step 9: Measure. Obtain some information about the surprise: a random vector orthogonal to 101.

algorithm

cions:

$$
\text { any } u \in\{0,1\}^{n},
$$

ficiently compute $f(u)$.
ro $s \in\{0,1\}^{n}$.
$=f(u \oplus s)$ for all u.
no other collisions.
gure out s.
nal algorithm to find s :
f for many inputs, find collision.
algorithm finds s with itum computations of f.

Example of Simon's algorithm
Step 8. Hadamard 2 :
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0, \overline{2}, 0,2$,
$0,0,0,0,0,0,0,0$,
2, 0, $\overline{2}, 0,0,2,0, \overline{2}$,
$2,0,2,0,0, \overline{2}, 0, \overline{2}$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$2,0,2,0,0,2,0,2$.
Step 9: Measure. Obtain some information about the surprise: a random vector orthogonal to 101.

Example of Simon's algorithm

Repeat to figure o
$0,1\}^{n}$,
mpute $f(u)$.
$1\}^{n}$.
for all u.
ollisions.
hm to find s :
ny inputs,
ion.
finds s with
outations of f.

Step 8. Hadamard ${ }_{2}$:
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0, \overline{2}, 0,2$,
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0,2,0, \overline{2}$,
$2,0,2,0,0, \overline{2}, 0, \overline{2}$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
2, 0, 2, 0, 0, 2, 0, 2.
Step 9: Measure. Obtain some information about the surprise: a random vector orthogonal to 101.

Example of Simon's algorithm
Repeat to figure out 101.
Step 8. Hadamard ${ }_{2}$:
0, 0, 0, 0, 0, 0, 0, 0,
2, 0, $\overline{2}, 0,0, \overline{2}, 0,2$,
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0,2,0, \overline{2}$,
2, 0, 2, 0, 0, $\overline{2}, 0, \overline{2}$,
$0,0,0,0,0,0,0,0$,
0, 0, 0, 0, 0, 0, 0, 0,
2, 0, 2, 0, 0, 2, 0, 2.
Step 9: Measure. Obtain some information about the surprise: a random vector orthogonal to 101.

Example of Simon's algorithm

Repeat to figure out 101.
Step 8. Hadamard 2 :
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0, \overline{2}, 0,2$,
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0,2,0, \overline{2}$,
$2,0,2,0,0, \overline{2}, 0, \overline{2}$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$2,0,2,0,0,2,0,2$.
Step 9: Measure. Obtain some information about the surprise: a random vector orthogonal to 101.

Example of Simon's algorithm

Step 8. Hadamard ${ }_{2}$:
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0, \overline{2}, 0,2$,
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0,2,0, \overline{2}$,
$2,0,2,0,0, \overline{2}, 0, \overline{2}$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$2,0,2,0,0,2,0,2$.
Step 9: Measure. Obtain some information about the surprise: a random vector orthogonal to 101.

Repeat to figure out 101.
Generalize Step 5 to any function $u \mapsto f(u)$ with $f(u)=f(u \oplus s)$.
"Usually" algorithm figures out s.

Example of Simon's algorithm

Step 8. Hadamard ${ }_{2}$:
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0, \overline{2}, 0,2$,
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0,2,0, \overline{2}$,
$2,0,2,0,0, \overline{2}, 0, \overline{2}$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$2,0,2,0,0,2,0,2$.
Step 9: Measure. Obtain some information about the surprise: a random vector orthogonal to 101.

Repeat to figure out 101.
Generalize Step 5 to any function $u \mapsto f(u)$ with $f(u)=f(u \oplus s)$.
"Usually" algorithm figures out s.
Shor's algorithm replaces \oplus with more general + operation.
Many spectacular applications.

Example of Simon's algorithm

Step 8. Hadamard ${ }_{2}$:
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0, \overline{2}, 0,2$,
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0,2,0, \overline{2}$,
$2,0,2,0,0, \overline{2}, 0, \overline{2}$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$2,0,2,0,0,2,0,2$.
Step 9: Measure. Obtain some information about the surprise: a random vector orthogonal to 101.

Repeat to figure out 101.
Generalize Step 5 to any function $u \mapsto f(u)$ with $f(u)=f(u \oplus s)$.
"Usually" algorithm figures out s.
Shor's algorithm replaces \oplus with more general + operation.
Many spectacular applications.
e.g. Shor finds "random" s with $2^{u} \bmod N=2^{u+s} \bmod N$.
Easy to factor N using this.

Example of Simon's algorithm

Step 8. Hadamard ${ }_{2}$:
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0, \overline{2}, 0,2$,
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0,2,0, \overline{2}$,
$2,0,2,0,0, \overline{2}, 0, \overline{2}$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$2,0,2,0,0,2,0,2$.
Step 9: Measure. Obtain some information about the surprise: a random vector orthogonal to 101.

Repeat to figure out 101.
Generalize Step 5 to any function $u \mapsto f(u)$ with $f(u)=f(u \oplus s)$.
"Usually" algorithm figures out s.
Shor's algorithm replaces \oplus with more general + operation.
Many spectacular applications.
e.g. Shor finds "random" s with $2^{u} \bmod N=2^{u+s} \bmod N$.
Easy to factor N using this.
e.g. Shor finds "random" s, t with $4^{u} 9^{v} \bmod p=4^{u+s} 9^{v+t} \bmod p$.
Easy to compute discrete logs.

of Simon's algorithm

Hadamard $_{2}$:
$0,0,0,0,0$,
$0,0, \overline{2}, 0,2$,
$0,0,0,0,0$,
$0,0,2,0, \overline{2}$,
$0,0, \overline{2}, 0, \overline{2}$,
$0,0,0,0,0$,
$0,0,0,0,0$,
$0,0,2,0,2$.
Measure. Obtain some ion about the surprise: a vector orthogonal to 101.

Repeat to figure out 101.
Generalize Step 5 to any function $u \mapsto f(u)$ with $f(u)=f(u \oplus s)$. "Usually" algorithm figures out s.

Shor's algorithm replaces \oplus
with more general + operation.
Many spectacular applications.
e.g. Shor finds "random" s with $2^{u} \bmod N=2^{u+s} \bmod N$.
Easy to factor N using this.
e.g. Shor finds "random" s, t with $4^{u} 9^{v} \bmod p=4^{u+s} 9^{v+t} \bmod p$.
Easy to compute discrete logs.

Grover's

Assume: has $f(s)$

Traditio compute hope to
Success
until \#i
's algorithm
, 2,
) 0 ,
), $\overline{2}$,
), $\overline{2}$
) 0 ,
) 0 ,
) 2.
Obtain some the surprise: a hogonal to 101.

Repeat to figure out 101.
Generalize Step 5 to any function $u \mapsto f(u)$ with $f(u)=f(u \oplus s)$.
"Usually" algorithm figures out s.
Shor's algorithm replaces \oplus
with more general + operation.
Many spectacular applications.
e.g. Shor finds "random" s with $2^{u} \bmod N=2^{u+s} \bmod N$.
Easy to factor N using this.
e.g. Shor finds "random" s, t with $4^{u} 9^{v} \bmod p=4^{u+s} 9^{v+t} \bmod p$.
Easy to compute discrete logs.

Grover's algorithm
Assume: unique s has $f(s)=0$.

Traditional algorit compute f for ma hope to find outpı Success probabilit until \#inputs app

Repeat to figure out 101.
Generalize Step 5 to any function
$u \mapsto f(u)$ with $f(u)=f(u \oplus s)$.
"Usually" algorithm figures out s.
Shor's algorithm replaces \oplus with more general + operation.
Many spectacular applications.
e.g. Shor finds "random" s with $2^{u} \bmod N=2^{u+s} \bmod N$.
Easy to factor N using this.
e.g. Shor finds "random" s, t with $4^{u} 9^{v} \bmod p=4^{u+s} 9^{v+t} \bmod p$.
Easy to compute discrete logs.

Grover's algorithm

Assume: unique $s \in\{0,1\}^{n}$ has $f(s)=0$.

Traditional algorithm to finc compute f for many inputs, hope to find output 0 .
Success probability is very lc until \#inputs approaches 2^{n}

Repeat to figure out 101.
Generalize Step 5 to any function $u \mapsto f(u)$ with $f(u)=f(u \oplus s)$. "Usually" algorithm figures out s.

Shor's algorithm replaces \oplus with more general + operation. Many spectacular applications.
e.g. Shor finds "random" s with $2^{u} \bmod N=2^{u+s} \bmod N$.
Easy to factor N using this.
e.g. Shor finds "random" s, t with $4^{u} 9^{v} \bmod p=4^{u+s} 9^{v+t} \bmod p$.
Easy to compute discrete logs.

Grover's algorithm

Assume: unique $s \in\{0,1\}^{n}$ has $f(s)=0$.

Traditional algorithm to find s : compute f for many inputs, hope to find output 0 .
Success probability is very low until \#inputs approaches 2^{n}.

Repeat to figure out 101.
Generalize Step 5 to any function $u \mapsto f(u)$ with $f(u)=f(u \oplus s)$. "Usually" algorithm figures out s.

Shor's algorithm replaces \oplus with more general + operation. Many spectacular applications.
e.g. Shor finds "random" s with $2^{u} \bmod N=2^{u+s} \bmod N$.
Easy to factor N using this.
e.g. Shor finds "random" s, t with $4^{u} 9^{v} \bmod p=4^{u+s} 9^{v+t} \bmod p$. Easy to compute discrete logs.

Grover's algorithm

Assume: unique $s \in\{0,1\}^{n}$ has $f(s)=0$.

Traditional algorithm to find s : compute f for many inputs, hope to find output 0 .
Success probability is very low until \#inputs approaches 2^{n}.

Grover's algorithm takes only $2^{\text {n/2 }}$ reversible computations of f. Typically: reversibility overhead is small enough that this easily beats traditional algorithm.
o figure out 101.
ze Step 5 to any function 1) with $f(u)=f(u \oplus s)$. algorithm figures out s. Igorithm replaces \oplus re general + operation. ectacular applications.
r finds "random" s with $N=2^{u+s} \bmod N$. factor N using this.
r finds "random" s, t with $\mathrm{d} p=4^{u+s} 9^{v+t} \bmod p$. compute discrete logs.

Grover's algorithm
Assume: unique $s \in\{0,1\}^{n}$ has $f(s)=0$.

Traditional algorithm to find s : compute f for many inputs, hope to find output 0 .
Success probability is very low until \#inputs approaches 2^{n}.

Grover's algorithm takes only $2^{n / 2}$ reversible computations of f. Typically: reversibility overhead is small enough that this easily beats traditional algorithm.

Start fro
over all
ut 101.
to any function
$\mu)=f(u \oplus s)$.
m figures out s.
eplaces \oplus

+ operation.
applications.
ndom" s with
$\bmod N$.
using this.
ndom" s, t with ${ }^{-s} g^{v+t} \bmod p$. discrete logs.

Grover's algorithm

Assume: unique $s \in\{0,1\}^{n}$ has $f(s)=0$.

Traditional algorithm to find s : compute f for many inputs, hope to find output 0 .
Success probability is very low until \#inputs approaches 2^{n}.

Grover's algorithm takes only $2^{\text {n/2 }}$ reversible computations of f. Typically: reversibility overhead is small enough that this easily beats traditional algorithm.

Start from uniforn over all n-bit strin

Grover's algorithm
Assume: unique $s \in\{0,1\}^{n}$ has $f(s)=0$.

Traditional algorithm to find s : compute f for many inputs, hope to find output 0 .
Success probability is very low until \#inputs approaches 2^{n}.

Grover's algorithm takes only $2^{\text {n/2 }}$ reversible computations of f.
Typically: reversibility overhead is small enough that this easily beats traditional algorithm. over all n-bit strings u.

Grover's algorithm

Assume: unique $s \in\{0,1\}^{n}$ has $f(s)=0$.

Traditional algorithm to find s : compute f for many inputs, hope to find output 0 .
Success probability is very low until \#inputs approaches 2^{n}.

Grover's algorithm takes only $2^{n / 2}$ reversible computations of f.
Typically: reversibility overhead is small enough that this easily beats traditional algorithm.

Start from uniform superposition

Grover's algorithm

Assume: unique $s \in\{0,1\}^{n}$ has $f(s)=0$.

Traditional algorithm to find s : compute f for many inputs, hope to find output 0 .
Success probability is very low until \#inputs approaches 2^{n}.

Grover's algorithm takes only $2^{\text {n/2 }}$ reversible computations of f.
Typically: reversibility overhead is small enough that this easily beats traditional algorithm.

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where $b_{u}=-a_{u}$ if $f(u)=0$, $b_{u}=a_{u}$ otherwise.
This is fast.

Grover's algorithm

Assume: unique $s \in\{0,1\}^{n}$ has $f(s)=0$.

Traditional algorithm to find s : compute f for many inputs, hope to find output 0 .
Success probability is very low until \#inputs approaches 2^{n}.

Grover's algorithm takes only $2^{n / 2}$ reversible computations of f. Typically: reversibility overhead is small enough that this easily beats traditional algorithm.

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where $b_{u}=-a_{u}$ if $f(u)=0$, $b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.

Grover's algorithm

Assume: unique $s \in\{0,1\}^{n}$ has $f(s)=0$.

Traditional algorithm to find s : compute f for many inputs, hope to find output 0 .
Success probability is very low until \#inputs approaches 2^{n}.

Grover's algorithm takes only $2^{n / 2}$ reversible computations of f.
Typically: reversibility overhead is small enough that this easily beats traditional algorithm.

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where $b_{u}=-a_{u}$ if $f(u)=0$, $b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Grover's algorithm

Assume: unique $s \in\{0,1\}^{n}$ has $f(s)=0$.

Traditional algorithm to find s : compute f for many inputs, hope to find output 0 .
Success probability is very low until \#inputs approaches 2^{n}.

Grover's algorithm takes only $2^{n / 2}$ reversible computations of f. Typically: reversibility overhead is small enough that this easily beats traditional algorithm.

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where $b_{u}=-a_{u}$ if $f(u)=0$, $b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
algorithm
unique $s \in\{0,1\}^{n}$
$=0$.
nal algorithm to find s :
f for many inputs, find output 0 .
probability is very low
nputs approaches 2^{n}.
algorithm takes only $2^{n / 2}$
e computations of f.
/: reversibility overhead enough that this
ats traditional algorithm.

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2
about $0.58 \cdot 2^{0.5 n}$ times.
Measure the n qubits.
Normali for an e) after 0 s

With high probability this finds s.
$\in\{0,1\}^{n}$
hm to find s :
ny inputs,
t 0 .
is very low oaches 2^{n}.
takes only $2^{n / 2}$
tions of f.
ility overhead
at this
onal algorithm.

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where $b_{u}=-a_{u}$ if $f(u)=0$, $b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2
about $0.58 \cdot 2^{0.5 n}$ times.
Measure the n qubits.
With high probability this finds s.

Normalized graph for an example wi after 0 steps:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where $b_{u}=-a_{u}$ if $f(u)=0$, $b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average. This is also fast.

Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of $u \mapsto a_{\iota}$ for an example with $n=12$ after 0 steps:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$
after 0 steps:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$
after Step 1:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after Step $1+$ Step 2:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after Step $1+$ Step $2+$ Step 1 :

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $2 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $3 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $4 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $5 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $6 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $7 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $8 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $9 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $10 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $11 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $12 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $13 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $14 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $15 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $16 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $17 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $18 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $19 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $20 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $25 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $30 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $35 \times($ Step $1+$ Step 2$)$:

Good moment to stop, measure.

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $40 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $45 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $50 \times($ Step $1+$ Step 2$)$:

Traditional stopping point.

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $60 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $70 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $80 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $90 \times($ Step $1+$ Step 2$)$:

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where
$b_{u}=-a_{u}$ if $f(u)=0$,
$b_{u}=a_{u}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n qubits.
With high probability this finds s.
Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $100 \times($ Step $1+$ Step 2$)$:

Very bad stopping point.
m uniform superposition n-bit strings u.

Set $a \leftarrow b$ where
u if $f(u)=0$,
otherwise.
ast.
"Grover diffusion".
a around its average.
lso fast.
Step $1+$ Step 2
$58 \cdot 2^{0.5 n}$ times.
the n qubits.
probability this finds s.

Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$
after $100 \times($ Step $1+$ Step 2$)$:

Very bad stopping point.
$u \mapsto a_{u}$ by a vec (with fix
(1) a_{u}
(2) a_{u}
superposition gs u.
where
$=0$,
iffusion".
ts average.

Step 2
times.
oits.
lity this finds s.

Normalized graph of $u \mapsto a_{u}$
for an example with $n=12$ after $100 \times($ Step $1+$ Step 2$)$:

Very bad stopping point.
$u \mapsto a_{u}$ is complet by a vector of two (with fixed multip
(1) a_{u} for roots u;
(2) a_{u} for non-roo
ition
nds s.

Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $100 \times($ Step $1+$ Step 2$)$:

Very bad stopping point.
$u \mapsto a_{u}$ is completely descrit by a vector of two numbers (with fixed multiplicities):
(1) a_{u} for roots u;
(2) a_{u} for non-roots u.

Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $100 \times($ Step $1+$ Step 2$)$:

Very bad stopping point.
$u \mapsto a_{u}$ is completely described by a vector of two numbers (with fixed multiplicities):
(1) a_{u} for roots u;
(2) a_{u} for non-roots u.

Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $100 \times($ Step $1+$ Step 2):

Very bad stopping point.
$u \mapsto a_{u}$ is completely described by a vector of two numbers (with fixed multiplicities):
(1) a_{u} for roots u;
(2) a_{u} for non-roots u.

Step $1+$ Step 2
act linearly on this vector.

Normalized graph of $u \mapsto a_{u}$ for an example with $n=12$ after $100 \times($ Step $1+$ Step 2$)$:

Very bad stopping point.
$u \mapsto a_{u}$ is completely described by a vector of two numbers (with fixed multiplicities):
(1) a_{u} for roots u;
(2) a_{u} for non-roots u.

Step $1+$ Step 2
act linearly on this vector.
Easily compute eigenvalues and powers of this linear map to understand evolution of state of Grover's algorithm.
\Rightarrow Probability is ≈ 1
after $\approx(\pi / 4) 2^{0.5 n}$ iterations.
zed graph of $u \mapsto a_{u}$
kample with $n=12$
$0 \times($ Step $1+$ Step 2$)$:

of $u \mapsto a_{u}$
ch $n=12$
$1+$ Step 2):
$u \mapsto a_{u}$ is completely described by a vector of two numbers
(with fixed multiplicities):
(1) a_{u} for roots u;
(2) a_{u} for non-roots u.

Step $1+$ Step 2
act linearly on this vector.
Easily compute eigenvalues and powers of this linear map to understand evolution of state of Grover's algorithm.
\Rightarrow Probability is ≈ 1
after $\approx(\pi / 4) 2^{0.5 n}$ iterations.

Many more applic
Shor generalizatio e.g., poly-time att "cyclotomic" case STOC 2009 "Fully encryption using i

Grover generalizat e.g., fastest subse
use "quantum wal
Not just Shor and
e.g., subexponenti CRS/CSIDH isoge uses "Kuperberg's
$u \mapsto a_{u}$ is completely described by a vector of two numbers (with fixed multiplicities):
(1) a_{u} for roots u;
(2) a_{u} for non-roots u.

Step $1+$ Step 2
act linearly on this vector.
Easily compute eigenvalues and powers of this linear map
to understand evolution
of state of Grover's algorithm.
\Rightarrow Probability is ≈ 1
after $\approx(\pi / 4) 2^{0.5 n}$ iterations.

Many more applications
Shor generalizations:
e.g., poly-time attack breaki "cyclotomic" case of Gentry STOC 2009 "Fully homomo encryption using ideal lattic

Grover generalizations:
e.g., fastest subset-sum atta use "quantum walks".

Not just Shor and Grover:
e.g., subexponential-time

CRS/CSIDH isogeny attack uses "Kuperberg's algorithm
$u \mapsto a_{u}$ is completely described by a vector of two numbers (with fixed multiplicities):
(1) a_{u} for roots u;
(2) a_{u} for non-roots u.

Step $1+$ Step 2
act linearly on this vector.
Easily compute eigenvalues and powers of this linear map to understand evolution of state of Grover's algorithm.
\Rightarrow Probability is ≈ 1
after $\approx(\pi / 4) 2^{0.5 n}$ iterations.

Many more applications

Shor generalizations:
e.g., poly-time attack breaking "cyclotomic" case of Gentry
STOC 2009 "Fully homomorphic encryption using ideal lattices".

Grover generalizations:
e.g., fastest subset-sum attacks use "quantum walks".

Not just Shor and Grover:
e.g., subexponential-time

CRS/CSIDH isogeny attack
uses "Kuperberg's algorithm".

