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Non-interactive key exchange

Alice: secret a, public aG . Bob: secret b, public bG .
Shared secret a(bG ) = (ab)G = (ba)G = b(aG ).

DH: 1976 Diffie–Hellman.
ECDH: 1985 Miller, 1987 Koblitz.
Cost poly(λ) for pre-quantum security level 2λ

(assuming that the best attacks known are optimal).
Fast addition of public keys → post-quantum break.

CRS: 2006 Rostovtsev–Stolbunov, 2006 Couveignes.
CSIDH: 2018 Castryck-Lange-Martindale-Panny-Renes.
Cost poly(λ) for pre-quantum security level 2λ.
Cost poly(λ) for post-quantum security level 2λ.
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Encryption systems with small public keys

PKE doesn’t require NIKE: e.g., 2011 SIDH/SIKE.

Key bits where all known attacks take 2λ operations
(naive serial attack metric, ignoring memory cost):

pre-quantum post-quantum
SIDH, SIKE (24 + o(1))λ (36 + o(1))λ
compressed (14 + o(1))λ (21 + o(1))λ
CRS, CSIDH (4 + o(1))λ superlinear
ECDH (2 + o(1))λ exponential

Subexp 2010 Childs–Jao–Soukharev attack, using
2003 Kuperberg or 2004 Regev or 2011 Kuperberg.
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Major questions
What CSIDH key sizes are needed for
post-quantum security level 264? 296? 2128?

Subexp attack: many quantum CSIDH queries.

• How many queries do these attacks perform?
2011 Kuperberg supersedes previous papers.

• How is attack affected by occasional errors
and non-uniform distributions over the group?

• How expensive is each CSIDH query?
See our paper—full 56-page version online,
with detailed analysis and many optimizations.

• What about memory, using parallel AT metric?
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Verifying quantum costs on your laptop

We provide software to compute CSIDH group
action using bit operations. Automatic tallies of
nonlinear ops (AND, OR), linear ops (XOR, NOT).

Generic conversions:
sequence of bit ops with ≤B nonlinear ops
⇒ sequence of reversible ops with ≤2B Toffoli ops
⇒ sequence of quantum gates with ≤14B T -gates.

Building confidence in correctness of output:
1. Compare output to Sage script for CSIDH.
2. Generating-function analysis of exact error rates.
Compare to experiments with noticeable error rates.
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Case study: one CSIDH-512 query

CSIDH-512 query, uniform over {−5, . . . , 5}74,
error rate <2−32 (maybe ok), nonlinear bit ops:
≈251 by 2018 Jao–LeGrow–Leonardi–Ruiz-Lopez.

1118827416420 ≈ 240 by our Algorithm 7.1.
765325228976 ≈ 0.7 · 240 by our Algorithm 8.1.

⇒ ≈243.3 T -gates using ≈240 qubits.
Can do ≈245.3 T -gates using ≈220 qubits.
Total gates (T+Clifford): ≈246.9.

Variations in 512, {−5, . . . , 5}, 2−32: see paper.
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Case study: full CSIDH-512 attack

Important issues from other layers of attack:

• CSIDH-512 user has inputs {−5, . . . , 5}74
but attack seems to need wider range of inputs.
BS18 claim1: ≈22 overhead to handle this issue.

• Attack has big outer loop, many queries.
BS18 claim2: ≈232.5 queries using ≈231 qubits.

BS18 = 2018 Bonnetain–Schrottenloher.

If claim1 and claim2 are correct: ≈281.4 total gates.
(Presumably larger cost in AT metric. Big circuit!)

BS18 claim3: 271 total gates. Our paper explains gap.
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