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7

≥25 subsequent publications

analyzing one-wayness of system:

1981 Clark–Cain,

crediting Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.
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Forward secrecy: Once cookie key

and secret key for K are erased,

client and server cannot decrypt.


