
Does open-source
cryptographic software

work correctly?

Daniel J. Bernstein

CVE-2018-0733, an OpenSSL bug

“Because of an implementation bug the PA-RISC
CRYPTO_memcmp function is effectively reduced to
only comparing the least significant bit of each
byte.” Bug introduced May 2016.

How severe is this? “This allows an attacker to
forge messages that would be considered as
authenticated in an amount of tries lower than that
guaranteed by the security claims of the scheme.”
— Yes, 216 is “lower than” 2128.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

CVE-2018-0733, an OpenSSL bug

“Because of an implementation bug the PA-RISC
CRYPTO_memcmp function is effectively reduced to
only comparing the least significant bit of each
byte.” Bug introduced May 2016.
How severe is this? “This allows an attacker to
forge messages that would be considered as
authenticated in an amount of tries lower than that
guaranteed by the security claims of the scheme.”

— Yes, 216 is “lower than” 2128.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

CVE-2018-0733, an OpenSSL bug

“Because of an implementation bug the PA-RISC
CRYPTO_memcmp function is effectively reduced to
only comparing the least significant bit of each
byte.” Bug introduced May 2016.
How severe is this? “This allows an attacker to
forge messages that would be considered as
authenticated in an amount of tries lower than that
guaranteed by the security claims of the scheme.”
— Yes, 216 is “lower than” 2128.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

CVE-2017-3738, another OpenSSL bug

Don’t care about PA-RISC? How about Intel?
“There is an overflow bug in the AVX2 Montgomery
multiplication procedure used in exponentiation with
1024-bit moduli.” Bug introduced July 2013.

“Attacks against DH1024 are considered just
feasible” — How long? How much hardware?

Does open-source cryptographic software work correctly? Daniel J. Bernstein

CVE-2017-3738, another OpenSSL bug

Don’t care about PA-RISC? How about Intel?
“There is an overflow bug in the AVX2 Montgomery
multiplication procedure used in exponentiation with
1024-bit moduli.” Bug introduced July 2013.
“Attacks against DH1024 are considered just
feasible”

— How long? How much hardware?

Does open-source cryptographic software work correctly? Daniel J. Bernstein

CVE-2017-3738, another OpenSSL bug

Don’t care about PA-RISC? How about Intel?
“There is an overflow bug in the AVX2 Montgomery
multiplication procedure used in exponentiation with
1024-bit moduli.” Bug introduced July 2013.
“Attacks against DH1024 are considered just
feasible” — How long? How much hardware?

Does open-source cryptographic software work correctly? Daniel J. Bernstein

CVE-2017-3738, continued

“Analysis suggests that attacks against RSA and
DSA as a result of this defect would be very difficult
to perform and are not believed likely.”

— Really? How much public scrutiny has the
actual computation received from cryptanalysts?
What this looks like to me: “We have analyzed our
new cryptosystem and concluded that attacks are
not likely.” — Don’t we require public review?

Does open-source cryptographic software work correctly? Daniel J. Bernstein

CVE-2017-3738, continued

“Analysis suggests that attacks against RSA and
DSA as a result of this defect would be very difficult
to perform and are not believed likely.”
— Really? How much public scrutiny has the
actual computation received from cryptanalysts?

What this looks like to me: “We have analyzed our
new cryptosystem and concluded that attacks are
not likely.” — Don’t we require public review?

Does open-source cryptographic software work correctly? Daniel J. Bernstein

CVE-2017-3738, continued

“Analysis suggests that attacks against RSA and
DSA as a result of this defect would be very difficult
to perform and are not believed likely.”
— Really? How much public scrutiny has the
actual computation received from cryptanalysts?
What this looks like to me: “We have analyzed our
new cryptosystem and concluded that attacks are
not likely.”

— Don’t we require public review?

Does open-source cryptographic software work correctly? Daniel J. Bernstein

CVE-2017-3738, continued

“Analysis suggests that attacks against RSA and
DSA as a result of this defect would be very difficult
to perform and are not believed likely.”
— Really? How much public scrutiny has the
actual computation received from cryptanalysts?
What this looks like to me: “We have analyzed our
new cryptosystem and concluded that attacks are
not likely.” — Don’t we require public review?

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Part of the CVE-2017-3738 patch

@@ -1093,7 +1093,9 @@
vmovdqu -8+32*2-128($ap),$TEMP2

mov $r1, %rax
+ vpblendd \$0xfc, $ZERO, $ACC9, $ACC9 # correct $ACC3

imull $n0, %eax
+ vpaddq $ACC9,$ACC4,$ACC4 # correct $ACC3

and \$0x1fffffff, %eax

imulq 16-128($ap),%rbx
@@ -1329,15 +1331,12 @@

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Is open-source software bug-free?

Eric S. Raymond, 1999: “Given a large enough
beta-tester and co-developer base, almost every
problem will be characterized quickly and the
fix obvious to someone. Or, less formally,
‘Given enough eyeballs, all bugs are shallow.’ ”

— “Beta-tester”: Ultimately, the unhappy user?
— “Almost every problem”: That’s not “all bugs”!
Don’t we care about the exceptions?
Rare bugs can be devastating, especially for security!

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Is open-source software bug-free?

Eric S. Raymond, 1999: “Given a large enough
beta-tester and co-developer base, almost every
problem will be characterized quickly and the
fix obvious to someone. Or, less formally,
‘Given enough eyeballs, all bugs are shallow.’ ”
— “Beta-tester”: Ultimately, the unhappy user?

— “Almost every problem”: That’s not “all bugs”!
Don’t we care about the exceptions?
Rare bugs can be devastating, especially for security!

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Is open-source software bug-free?

Eric S. Raymond, 1999: “Given a large enough
beta-tester and co-developer base, almost every
problem will be characterized quickly and the
fix obvious to someone. Or, less formally,
‘Given enough eyeballs, all bugs are shallow.’ ”
— “Beta-tester”: Ultimately, the unhappy user?
— “Almost every problem”: That’s not “all bugs”!
Don’t we care about the exceptions?
Rare bugs can be devastating, especially for security!

Does open-source cryptographic software work correctly? Daniel J. Bernstein

More reasons for skepticism

— How do we know how many exceptions there are?
How many people are looking for unobvious bugs?

— How can there be enough people looking for bugs
when most developers prefer writing new code?
— ESR advocates a development methodology
that releases a constant flood of new bugs.
Doesn’t this make his “law” automatically true?
Is this the correctness metric that users want?

Does open-source cryptographic software work correctly? Daniel J. Bernstein

More reasons for skepticism

— How do we know how many exceptions there are?
How many people are looking for unobvious bugs?
— How can there be enough people looking for bugs
when most developers prefer writing new code?

— ESR advocates a development methodology
that releases a constant flood of new bugs.
Doesn’t this make his “law” automatically true?
Is this the correctness metric that users want?

Does open-source cryptographic software work correctly? Daniel J. Bernstein

More reasons for skepticism

— How do we know how many exceptions there are?
How many people are looking for unobvious bugs?
— How can there be enough people looking for bugs
when most developers prefer writing new code?
— ESR advocates a development methodology
that releases a constant flood of new bugs.
Doesn’t this make his “law” automatically true?
Is this the correctness metric that users want?

Does open-source cryptographic software work correctly? Daniel J. Bernstein

So we should use closed source?

“Closed source stops attackers from finding bugs.”

— What’s the evidence for this?
How long does it take for an attacker to
extract, disassemble, decompile the code?
“Closed source scares away some lazy academics,
so we have fewer bug announcements to deal with.”
— Sounds plausible, but is the delay worthwhile?
e.g. Infineon deployed RSALib very widely before
2017 Nemec–Sys–Svenda–Klinec–Matyas “ROCA”.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

So we should use closed source?

“Closed source stops attackers from finding bugs.”
— What’s the evidence for this?
How long does it take for an attacker to
extract, disassemble, decompile the code?

“Closed source scares away some lazy academics,
so we have fewer bug announcements to deal with.”
— Sounds plausible, but is the delay worthwhile?
e.g. Infineon deployed RSALib very widely before
2017 Nemec–Sys–Svenda–Klinec–Matyas “ROCA”.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

So we should use closed source?

“Closed source stops attackers from finding bugs.”
— What’s the evidence for this?
How long does it take for an attacker to
extract, disassemble, decompile the code?
“Closed source scares away some lazy academics,
so we have fewer bug announcements to deal with.”

— Sounds plausible, but is the delay worthwhile?
e.g. Infineon deployed RSALib very widely before
2017 Nemec–Sys–Svenda–Klinec–Matyas “ROCA”.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

So we should use closed source?

“Closed source stops attackers from finding bugs.”
— What’s the evidence for this?
How long does it take for an attacker to
extract, disassemble, decompile the code?
“Closed source scares away some lazy academics,
so we have fewer bug announcements to deal with.”
— Sounds plausible, but is the delay worthwhile?
e.g. Infineon deployed RSALib very widely before
2017 Nemec–Sys–Svenda–Klinec–Matyas “ROCA”.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Closed source, continued

“Closed source makes money, allowing investment
in serious code review, producing bug-free code.”
— What’s the evidence that this process works?

This isn’t a talk recommending closed source.
I’m focusing on open source in this talk because
• I spend most of my time with open source and
• the only paths that I see towards real security

need everything published to build confidence.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Closed source, continued

“Closed source makes money, allowing investment
in serious code review, producing bug-free code.”
— What’s the evidence that this process works?
This isn’t a talk recommending closed source.

I’m focusing on open source in this talk because
• I spend most of my time with open source and
• the only paths that I see towards real security

need everything published to build confidence.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Closed source, continued

“Closed source makes money, allowing investment
in serious code review, producing bug-free code.”
— What’s the evidence that this process works?
This isn’t a talk recommending closed source.
I’m focusing on open source in this talk because
• I spend most of my time with open source and
• the only paths that I see towards real security

need everything published to build confidence.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Cryptography is notoriously hard to review
Mathematical complications lead to subtle bugs.

Side-channel countermeasures add more complexity.
Post-quantum cryptography: even more complex.
Cryptography is applied to large volumes of data.
Often individual computations are time-consuming.
Pursuit of speed ⇒ many cryptographic choices;
cryptographic code optimized for particular CPUs.
e.g. Keccak Code Package: >20 implementations.
e.g. Google added hand-written Cortex-A7 asm to
Linux kernel for Speck, then switched to ChaCha.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Cryptography is notoriously hard to review
Mathematical complications lead to subtle bugs.
Side-channel countermeasures add more complexity.

Post-quantum cryptography: even more complex.
Cryptography is applied to large volumes of data.
Often individual computations are time-consuming.
Pursuit of speed ⇒ many cryptographic choices;
cryptographic code optimized for particular CPUs.
e.g. Keccak Code Package: >20 implementations.
e.g. Google added hand-written Cortex-A7 asm to
Linux kernel for Speck, then switched to ChaCha.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Cryptography is notoriously hard to review
Mathematical complications lead to subtle bugs.
Side-channel countermeasures add more complexity.
Post-quantum cryptography: even more complex.

Cryptography is applied to large volumes of data.
Often individual computations are time-consuming.
Pursuit of speed ⇒ many cryptographic choices;
cryptographic code optimized for particular CPUs.
e.g. Keccak Code Package: >20 implementations.
e.g. Google added hand-written Cortex-A7 asm to
Linux kernel for Speck, then switched to ChaCha.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Cryptography is notoriously hard to review
Mathematical complications lead to subtle bugs.
Side-channel countermeasures add more complexity.
Post-quantum cryptography: even more complex.
Cryptography is applied to large volumes of data.
Often individual computations are time-consuming.
Pursuit of speed ⇒ many cryptographic choices;
cryptographic code optimized for particular CPUs.

e.g. Keccak Code Package: >20 implementations.
e.g. Google added hand-written Cortex-A7 asm to
Linux kernel for Speck, then switched to ChaCha.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Cryptography is notoriously hard to review
Mathematical complications lead to subtle bugs.
Side-channel countermeasures add more complexity.
Post-quantum cryptography: even more complex.
Cryptography is applied to large volumes of data.
Often individual computations are time-consuming.
Pursuit of speed ⇒ many cryptographic choices;
cryptographic code optimized for particular CPUs.
e.g. Keccak Code Package: >20 implementations.
e.g. Google added hand-written Cortex-A7 asm to
Linux kernel for Speck, then switched to ChaCha.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Formal logic to the rescue?

Whitehead and Russell, Principia Mathematica,
volume 1, 1st edition (1910), page 379:

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Formal verification today
Require code reviewer to prove correctness.
Require proofs to pass a proof-checking tool.
(Mathematicians rarely use these tools today.)

This is tedious but not impossible.
Latest EverCrypt release: verified software for
Curve25519, Ed25519, ChaCha20, Poly1305,
AES-CTR (if CPU has AES-NI), AES-GCM (same),
MD5, SHA-1, SHA-2, SHA-3, BLAKE2.
Good: High confidence that subtle bugs are gone
(in the code; but worry about compiler, CPU, . . .).
Bad: Tons of effort for each implementation.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Formal verification today
Require code reviewer to prove correctness.
Require proofs to pass a proof-checking tool.
(Mathematicians rarely use these tools today.)
This is tedious but not impossible.
Latest EverCrypt release: verified software for
Curve25519, Ed25519, ChaCha20, Poly1305,
AES-CTR (if CPU has AES-NI), AES-GCM (same),
MD5, SHA-1, SHA-2, SHA-3, BLAKE2.

Good: High confidence that subtle bugs are gone
(in the code; but worry about compiler, CPU, . . .).
Bad: Tons of effort for each implementation.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Formal verification today
Require code reviewer to prove correctness.
Require proofs to pass a proof-checking tool.
(Mathematicians rarely use these tools today.)
This is tedious but not impossible.
Latest EverCrypt release: verified software for
Curve25519, Ed25519, ChaCha20, Poly1305,
AES-CTR (if CPU has AES-NI), AES-GCM (same),
MD5, SHA-1, SHA-2, SHA-3, BLAKE2.
Good: High confidence that subtle bugs are gone
(in the code; but worry about compiler, CPU, . . .).

Bad: Tons of effort for each implementation.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Formal verification today
Require code reviewer to prove correctness.
Require proofs to pass a proof-checking tool.
(Mathematicians rarely use these tools today.)
This is tedious but not impossible.
Latest EverCrypt release: verified software for
Curve25519, Ed25519, ChaCha20, Poly1305,
AES-CTR (if CPU has AES-NI), AES-GCM (same),
MD5, SHA-1, SHA-2, SHA-3, BLAKE2.
Good: High confidence that subtle bugs are gone
(in the code; but worry about compiler, CPU, . . .).
Bad: Tons of effort for each implementation.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Testing

Testing is great. Test everything. Design for tests.
Why wasn’t the PA-RISC CRYPTO_memcmp
run through millions of tests on random inputs?
And tests on inputs differing in a few positions?
SUPERCOP test framework has always done this.

Good reaction to a bug: “How can I build fast
automated tests that will catch this kind of bug?”
Even better to ask question before bug happens.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Testing

Testing is great. Test everything. Design for tests.
Why wasn’t the PA-RISC CRYPTO_memcmp
run through millions of tests on random inputs?
And tests on inputs differing in a few positions?
SUPERCOP test framework has always done this.
Good reaction to a bug: “How can I build fast
automated tests that will catch this kind of bug?”
Even better to ask question before bug happens.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

Going beyond testing particular inputs

Testing (and fuzzing) many smart inputs can still
miss attacker-triggerable bugs for rare inputs.

Fix: Run code on all inputs.
1. Easy if code has no input-dependent branches:
code → simple language without loops/vectors/. . . .
(I’m using angr.io for symbolic execution.)
2. Automatically identify equivalent computations.
Don’t have to redo work for each implementation!
3. Build tools to check that the computations work.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

https://angr.io

Going beyond testing particular inputs

Testing (and fuzzing) many smart inputs can still
miss attacker-triggerable bugs for rare inputs.
Fix: Run code on all inputs.

1. Easy if code has no input-dependent branches:
code → simple language without loops/vectors/. . . .
(I’m using angr.io for symbolic execution.)
2. Automatically identify equivalent computations.
Don’t have to redo work for each implementation!
3. Build tools to check that the computations work.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

https://angr.io

Going beyond testing particular inputs

Testing (and fuzzing) many smart inputs can still
miss attacker-triggerable bugs for rare inputs.
Fix: Run code on all inputs.
1. Easy if code has no input-dependent branches:
code → simple language without loops/vectors/. . . .
(I’m using angr.io for symbolic execution.)

2. Automatically identify equivalent computations.
Don’t have to redo work for each implementation!
3. Build tools to check that the computations work.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

https://angr.io

Going beyond testing particular inputs

Testing (and fuzzing) many smart inputs can still
miss attacker-triggerable bugs for rare inputs.
Fix: Run code on all inputs.
1. Easy if code has no input-dependent branches:
code → simple language without loops/vectors/. . . .
(I’m using angr.io for symbolic execution.)
2. Automatically identify equivalent computations.
Don’t have to redo work for each implementation!

3. Build tools to check that the computations work.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

https://angr.io

Going beyond testing particular inputs

Testing (and fuzzing) many smart inputs can still
miss attacker-triggerable bugs for rare inputs.
Fix: Run code on all inputs.
1. Easy if code has no input-dependent branches:
code → simple language without loops/vectors/. . . .
(I’m using angr.io for symbolic execution.)
2. Automatically identify equivalent computations.
Don’t have to redo work for each implementation!
3. Build tools to check that the computations work.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

https://angr.io

A case study

Subroutine in some post-quantum proposals:
sorting arrays of integers.

Software library from sorting.cr.yp.to:
I New speed records for in-memory sorting.
I Side-channel countermeasures: no secret

branch conditions; no secret array indices.
I Tool verifies correct sorting of all inputs.

No need to review per-CPU optimized code.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

https://sorting.cr.yp.to

A case study

Subroutine in some post-quantum proposals:
sorting arrays of integers.
Software library from sorting.cr.yp.to:

I New speed records for in-memory sorting.
I Side-channel countermeasures: no secret

branch conditions; no secret array indices.
I Tool verifies correct sorting of all inputs.

No need to review per-CPU optimized code.

Does open-source cryptographic software work correctly? Daniel J. Bernstein

https://sorting.cr.yp.to

