Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies Daniel J. Bernstein Tanja Lange Chloe Martindale Lorenz Panny quantum.isogeny.org

	pre-quantum	post-quantum
SIDH, SIKE	$(24 + o(1))\lambda$	$(36+o(1))\lambda$
compressed	$(14 + o(1))\lambda$	$(21+o(1))\lambda$
CRS, CSIDH	$(4+o(1))\lambda$	superlinear

	pre-quantum	post-quantum
SIDH, SIKE	$(24 + o(1))\lambda$	$(36+o(1))\lambda$
compressed	$(14+o(1))\lambda$	$(21+o(1))\lambda$
CRS, CSIDH	$(4+o(1))\lambda$	superlinear

For which λ does this cross $(21 + o(1))\lambda$?

	pre-quantum	post-quantum
SIDH, SIKE	$(24 + o(1))\lambda$	$(36+o(1))\lambda$
compressed	$(14+o(1))\lambda$	$(21+o(1))\lambda$
CRS, CSIDH	$(4+o(1))\lambda$	superlinear

For which λ does this cross $(21 + o(1))\lambda$?

	pre-quantum	post-quantum
SIDH, SIKE	$(24 + o(1))\lambda$	$(36+o(1))\lambda$
compressed	$(14 + o(1))\lambda$	$(21+o(1))\lambda$
CRS, CSIDH	$(4+o(1))\lambda$	superlinear

For which λ does this cross $(21 + o(1))\lambda$?

Subexp 2010 Childs–Jao–Soukharev attack, using 2003 Kuperberg or 2004 Regev or 2011 Kuperberg.

How many queries do these attacks perform?

	pre-quantum	post-quantum
SIDH, SIKE	$(24 + o(1))\lambda$	$(36+o(1))\lambda$
compressed	$(14+o(1))\lambda$	$(21+o(1))\lambda$
CRS, CSIDH	$(4+o(1))\lambda$	superlinear

For which λ does this cross $(21 + o(1))\lambda$?

- How many queries do these attacks perform?
- How expensive is each CSIDH query?

	pre-quantum	post-quantum
SIDH, SIKE	$(24 + o(1))\lambda$	$(36+o(1))\lambda$
compressed	$(14+o(1))\lambda$	$(21+o(1))\lambda$
CRS, CSIDH	$(4+o(1))\lambda$	superlinear

For which λ does this cross $(21 + o(1))\lambda$?

- How many queries do these attacks perform?
- How expensive is each CSIDH query? Our 56-page paper: see quantum.isogeny.org.

	pre-quantum	post-quantum
SIDH, SIKE	$(24 + o(1))\lambda$	$(36+o(1))\lambda$
compressed	$(14 + o(1))\lambda$	$(21+o(1))\lambda$
CRS, CSIDH	$(4+o(1))\lambda$	superlinear

For which λ does this cross $(21 + o(1))\lambda$?

- How many queries do these attacks perform?
- How expensive is each CSIDH query? Our 56-page paper: see quantum.isogeny.org.
- What about memory, using parallel AT metric?

Case study: attacking CSIDH-512 CSIDH-512 query, uniform over $\{-5, \ldots, 5\}^{74}$, failure chance $<2^{-32}$ (maybe ok), nonlinear bit ops: $\approx 2^{51}$ by 2018 Jao-LeGrow-Leonardi-Ruiz-Lopez.

Case study: attacking CSIDH-512 CSIDH-512 query, uniform over $\{-5, \ldots, 5\}^{74}$, failure chance $<2^{-32}$ (maybe ok), nonlinear bit ops: $\approx 2^{51}$ by 2018 Jao-LeGrow-Leonardi-Ruiz-Lopez. 1118827416420 $\approx 2^{40}$ by our Algorithm 7.1.

CSIDH-512 query, uniform over $\{-5, \ldots, 5\}^{74}$, failure chance $<2^{-32}$ (maybe ok), nonlinear bit ops: $\approx 2^{51}$ by 2018 Jao–LeGrow–Leonardi–Ruiz-Lopez. 1118827416420 $\approx 2^{40}$ by our Algorithm 7.1. 765325228976 $\approx 0.7 \cdot 2^{40}$ by our Algorithm 8.1.

Generic conversion to quantum computation: $\approx 2^{43.3}$ *T*-gates using $\approx 2^{40}$ qubits.

CSIDH-512 query, uniform over $\{-5, \ldots, 5\}^{74}$, failure chance $<2^{-32}$ (maybe ok), nonlinear bit ops: $\approx 2^{51}$ by 2018 Jao–LeGrow–Leonardi–Ruiz-Lopez. 1118827416420 $\approx 2^{40}$ by our Algorithm 7.1. 765325228976 $\approx 0.7 \cdot 2^{40}$ by our Algorithm 8.1.

Generic conversion to quantum computation: $\approx 2^{43.3}$ *T*-gates using $\approx 2^{40}$ qubits. Can do $\approx 2^{45.3}$ *T*-gates using $\approx 2^{20}$ qubits.

CSIDH-512 query, uniform over $\{-5, \ldots, 5\}^{74}$, failure chance $<2^{-32}$ (maybe ok), nonlinear bit ops: $\approx 2^{51}$ by 2018 Jao–LeGrow–Leonardi–Ruiz-Lopez. 1118827416420 $\approx 2^{40}$ by our Algorithm 7.1. 765325228976 $\approx 0.7 \cdot 2^{40}$ by our Algorithm 8.1.

Generic conversion to quantum computation: $\approx 2^{43.3}$ *T*-gates using $\approx 2^{40}$ qubits. Can do $\approx 2^{45.3}$ *T*-gates using $\approx 2^{20}$ qubits. Total gates (*T*+Clifford): $\approx 2^{46.9}$.

Generic conversion to quantum computation: $\approx 2^{43.3}$ *T*-gates using $\approx 2^{40}$ qubits. Can do $\approx 2^{45.3}$ *T*-gates using $\approx 2^{20}$ qubits. Total gates (*T*+Clifford): $\approx 2^{46.9}$.

BS18 claim only $\approx 2^2$ lattice overhead per query. BS18 claim only $\approx 2^{32.5}$ queries using $\approx 2^{31}$ qubits.

Generic conversion to quantum computation: $\approx 2^{43.3}$ *T*-gates using $\approx 2^{40}$ qubits. Can do $\approx 2^{45.3}$ *T*-gates using $\approx 2^{20}$ qubits. Total gates (*T*+Clifford): $\approx 2^{46.9}$.

BS18 claim only $\approx 2^2$ lattice overhead per query. BS18 claim only $\approx 2^{32.5}$ queries using $\approx 2^{31}$ qubits. If these claims are correct: $\approx 2^{81.4}$ total gates.

Generic conversion to quantum computation: $\approx 2^{43.3}$ *T*-gates using $\approx 2^{40}$ qubits. Can do $\approx 2^{45.3}$ *T*-gates using $\approx 2^{20}$ qubits. Total gates (*T*+Clifford): $\approx 2^{46.9}$.

BS18 claim only $\approx 2^2$ lattice overhead per query. BS18 claim only $\approx 2^{32.5}$ queries using $\approx 2^{31}$ qubits. If these claims are correct: $\approx 2^{81.4}$ total gates. BS18 claim 2^{71} total gates. We explain gap.