Lattice-based

public-key cryptosystems

D. J. Bernstein

NIST post-quantum competition:
82 submissions in first round,
from hundreds of people.

- 13 submissions that NIST
declared incomplete or improper.
- 5 withdrawn submissions.
- 3 merged submissions.

22 signature-system submissions.
5 lattice-based: Dilithium;
DRS (broken); FALCON**
pqNTRUSign^i ; qTESLA.

47 encryption-system submissions.
20 lattice-based:
Compact LWE (broken); Ding^^ ; EMBLEM; Frodo; HILA5 (CCA broken); KCL* ; KINDI; Kyber; LAC; LIMA; Lizard^^ ; LOTUS; NewHope; NTRUEncrypt; NTRU HRSS; NTRU Prime; Odd Manhattan; Round2^A ; SABER; Titanium.

47 encryption-system submissions.
20 lattice-based:
Compact LWE A (broken);
Ding ^A ; EMBLEM; Frodo; HILA5 (CCA broken); KCL** KINDI; Kyber; LAC; LIMA; Lizard^A ; LOTUS; NewHope; NTRUEncrypt; NTRU HRSS; NTRU Prime; Odd Manhattan; Round 2^A ; SABER; Titanium.
A. : submitter claims patent on this submission. Warning: even without ${ }^{\wedge}$, submission could be covered by other patents!

First serious lattice-based encryption system: NTRU from Hoffstein-Pipher-Silverman.

Announced 20 August 1996 at Crypto 1996 rump session. Patented until 2017.

First serious lattice-based encryption system: NTRU from Hoffstein-Pipher-Silverman.

Announced 20 August 1996 at Crypts 1996 rump session. Patented until 2017.

First version of NTRU paper, handed out at Crypts 1996, finally put online in 2016:
web.securityinnovation.com /hubfs/files/ntru-orig.pdf

First serious lattice-based encryption system: NTRU from Hoffstein-Pipher-Silverman.

Announced 20 August 1996 at Crypto 1996 rump session. Patented until 2017.

First version of NTRU paper, handed out at Crypts 1996, finally put online in 2016:
web.securityinnovation.com /hubfs/files/ntru-orig.pdf

Proposed 104-byte public keys for 2^{80} security.

1996 paper converted NTRU attack problem into a lattice problem (suboptimally), and then applied LLL (not state of the art) to attack the lattice problem.

1996 paper converted NTRU attack problem into a lattice problem (suboptimally), and then applied LLL (not state of the art) to attack the lattice problem.

Coppersmith-Shamir, Eurocrypt 1997: better conversion + better attacks than LLL.
Quantitative impact? Unclear.

1996 paper converted NTRU attack problem into a lattice problem (suboptimally), and then applied LLL (not state of the art) to attack the lattice problem.

Coppersmith-Shamir, Eurocrypt 1997: better conversion + better attacks than LLL. Quantitative impact? Unclear.

NTRU paper, ANTS 1998: proposed 147-byte or 503-byte keys for 2^{77} or 2^{170} security.

Let's try NTRU on the computer.

Debian: apt install sagemath
Fedora: yum install sagemath
Source: www.sagemath.org
Web: sagecell.sagemath.org
Sage is Python 2

+ many math libraries
+ a few syntax differences:
sage: 10~6 \# power, not xor 1000000
sage: factor (314159265358979323)
317213509 * 990371647
sage:
sage: $\mathrm{Zx} .\langle\mathrm{X}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class sage: \# Xx objects are polys sage: \# in x with int coeffs sage:
sage: $\mathrm{Zx} .\langle\mathrm{x}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class sage: \# Xx objects are polys sage: \# in x with int coeffs sage: $f=\operatorname{Zx}([3,1,4])$
sage:
sage: $\mathrm{Zx} .\langle\mathrm{X}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class sage: \# Xx objects are polys sage: \# in x with int coeffs sage: $f=\operatorname{Zx}([3,1,4])$ sage: f
$4 * x^{\wedge} 2+x+3$
sage:
sage: $\mathrm{Zx} .\langle\mathrm{X}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class sage: \# Xx objects are polys sage: \# in x with int coeffs sage: $f=\operatorname{Zx}([3,1,4])$ sage: f
$4 * x^{\wedge} 2+x+3$
sage: $g=\operatorname{Zx}([2,7,1])$
sage:
sage: $\mathrm{Zx} .\langle\mathrm{X}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class
sage: \# Xx objects are polys sage: \# in x with int coeffs sage: $f=\operatorname{Zx}([3,1,4])$
sage: f
$4 * x^{\wedge} 2+x+3$
sage: $g=\operatorname{Zx}([2,7,1])$
sage: g
$x^{\wedge} 2+7 * x+2$
sage:
sage: $\mathrm{Zx} .\langle\mathrm{X}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class
sage: \# Xx objects are polys
sage: \# in x with int coeffs
sage: $f=\operatorname{Zx}([3,1,4])$
sage: f
$4 * x^{\wedge} 2+x+3$
sage: $g=\operatorname{Zx}([2,7,1])$
sage: g
$x^{\wedge} 2+7 * x+2$
sage: fog \# built-in add
$5 * x^{\wedge} 2+8 * x+5$
sage:
sage: f*x \# built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage:
sage: $f * x$ \# built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage: $f * x^{\wedge} 2$

$$
4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2
$$

sage:
sage: fox \# built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage: $\mathrm{f} * \mathrm{x}^{\wedge} 2$
$4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2$
sage: $f * 2$
$8 * x^{\wedge} 2+2 * x+6$
sage:
sage: $f * x$ \# built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage: $f * x^{\wedge} 2$
$4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2$
sage: $f * 2$

$$
8 * x^{\wedge} 2+2 * x+6
$$

sage: $f *(7 * x)$

$$
28 * x^{\wedge} 3+7 * x^{\wedge} 2+21 * x
$$

sage:
sage: fox \# built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage: $f * x^{\wedge} 2$
$4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2$
sage: $f * 2$
$8 * x^{\wedge} 2+2 * x+6$
sage: $f *(7 * x)$
$28 * x^{\wedge} 3+7 * x^{\wedge} 2+21 * x$
sage: $f * g$
$4 * x^{\wedge} 4+29 * x^{\wedge} 3+18 * x^{\wedge} 2+23 * x$ $+6$
sage:
sage: fox \# built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage: $f * x^{\wedge} 2$
$4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2$
sage: $f * 2$
$8 * x^{\wedge} 2+2 * x+6$
sage: $f *(7 * x)$
$28 * x^{\wedge} 3+7 * x^{\wedge} 2+21 * x$
sage: $f * g$
$4 * x^{\wedge} 4+29 * x^{\wedge} 3+18 * x^{\wedge} 2+23 * x$ $+6$
sage: $f * g==f * 2+f *(7 * x)+f * x^{\wedge} 2$ True
sage:
sage: \# replace x^n with 1, sage: \# $\mathrm{X}^{\wedge}(\mathrm{n}+1)$ with x , etc. sage: def convolution (fog):: return (fog) \% ($x^{\wedge} n-1$)
sage:
sage: \# replace x^n with 1, sage: \# $\mathrm{x}^{\wedge}(\mathrm{n}+1)$ with x , etc. sage: def convolution (fog):: return (fog) \% ($x^{\wedge} n-1$)
sage: $n=3$ \# global variable sage:
sage: \# replace x^n with 1, sage: \# $\mathrm{x}^{\wedge}(\mathrm{n}+1)$ with x , etc. sage: def convolution (fog):: return (fog) \% ($x^{\wedge} n-1$)
sage: $n=3$ \# global variable sage: convolution (fix)
$x^{\wedge} 2+3 * x+4$
sage:
sage: \# replace x^n with 1, sage: \# $\mathrm{x}^{\wedge}(\mathrm{n}+1)$ with x , etc. sage: def convolution (fog):: return (fog) \% ($x^{\wedge} n-1$)
sage: $n=3$ \# global variable sage: convolution (fix)
$x^{\wedge} 2+3 * x+4$
sage: convolution (f, $x^{\wedge} 2$)
$3 * x^{\wedge} 2+4 * x+1$
sage:
sage: \# replace x^n with 1, sage: \# $\mathrm{x}^{\wedge}(\mathrm{n}+1)$ with x , etc. sage: def convolution (fog):: return (fog) \% ($x^{\wedge} n-1$)
sage: $n=3$ \# global variable sage: convolution (fix)
$x^{\wedge} 2+3 * x+4$
sage: convolution (f, $x^{\wedge} 2$)
$3 * x^{\wedge} 2+4 * x+1$
sage: convolution (fog)
$18 * x^{\wedge} 2+27 * x+35$
sage:
sage: def randompoly():
....: $\quad f=$ list (randrange (3)-1
....: for j in range(n))
....: return $\mathrm{Zx}(\mathrm{f})$
sage:
sage: def randompoly():
....: $\quad f=$ list (randrange (3)-1 for j in range (n))
....: return $\mathrm{Zx}(\mathrm{f})$
sage: $\mathrm{n}=7$
sage:
sage: def randompoly():
....: $\quad f=$ list (randrange (3)-1
....: for j in range(n))
....: return $\mathrm{Zx}(\mathrm{f})$

- • - •
sage: $\mathrm{n}=7$
sage: randompoly()
$-x^{\wedge} 3-x^{\wedge} 2-x-1$
sage:
sage: def randompoly():
....: $\quad f=$ list (randrange (3)-1
....: for j in range(n))
....: return $\mathrm{Zx}(\mathrm{f})$
- • - •
sage: $\mathrm{n}=7$
sage: randompoly()
$-x^{\wedge} 3-x^{\wedge} 2-x-1$
sage: randompoly()
$x^{\wedge} 6+x^{\wedge} 5+x^{\wedge} 3-x$
sage:
sage: def randompoly():
$\ldots: \quad f=$ list (randrange (3)-1
....: for j in range(n))
....: return $\mathrm{Zx}(\mathrm{f})$
. . . :
sage: $\mathrm{n}=7$
sage: randompoly()
$-x^{\wedge} 3-x^{\wedge} 2-x-1$
sage: randompoly()
$x^{\wedge} 6+x^{\wedge} 5+x^{\wedge} 3-x$
sage: randompoly()
$-x^{\wedge} 6+x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2+$
$x+1$
sage:

Will use bigger n for security.
Some choices of n in submissions to NIST:
$n=701$ for NTRU HRSS. $n=743$ for NTRUEncrypt. $n=761$ for sntrup4591761.

Will use bigger n for security.
Some choices of n in submissions to NIST:
$n=701$ for NTRU HRSS. $n=743$ for NTRUEncrypt. $n=761$ for sntrup4591761.

Overkill against attack algorithms known today, even for future attacker with quantum computer.

Will use bigger n for security.
Some choices of n in submissions to NIST:
$n=701$ for NTRU HRSS. $n=743$ for NTRUEncrypt. $n=761$ for sntrup4591761.

Overkill against attack algorithms known today, even for future attacker with quantum computer.

Can we find better algorithms?

Will use bigger n for security.
Some choices of n
in submissions to NIST:
$n=701$ for NTRU HRSS.
$n=743$ for NTRUEncrypt.
$n=761$ for sntrup4591761.
Overkill against attack algorithms known today, even for future attacker with quantum computer.

Can we find better algorithms?
1998 NTRU paper took $n=503$.

Modular reduction

For integers u, q with $\mathrm{q}>0$,
Sage's "u\%q" always produces
outputs between 0 and $q-1$.
Matches standard math definition.

Modular reduction

For integers u, q with $\mathrm{q}>0$,
Sage's "u\%q" always produces
outputs between 0 and $q-1$.
Matches standard math definition.
Warning: Typically
$\mathrm{u}<0$ produces $\mathrm{u} \% \mathrm{q}<0$
in lower-level languages, so
nonzero output leaks input sign.

Modular reduction

For integers u, q with $q>0$,
Sage's "u\%q" always produces outputs between 0 and $q-1$.

Matches standard math definition.
Warning: Typically
$\mathrm{u}<0$ produces $\mathrm{u} \% \mathrm{q}<0$
in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials u,
Sage can make the same mistake.
sage: def balancedmod(f,q): sage: $\quad g=l i s t(((f[i]+q / / 2) \% q)$
sage: $-q / / 2$ for i in range(n))
sage: return $\mathrm{Zx}(\mathrm{g})$
sage:
sage:
sage: def balancedmod(f,q):
sage: $\quad g=l i s t(((f[i]+q / / 2) \% q)$
sage: $-q / / 2$ for i in range (n))
sage: return $\mathrm{Zx}(\mathrm{g})$
sage:
sage: $u=314-159 * x$
sage:
sage: def balancedmod(f,q):
sage: $\quad g=l i s t(((f[i]+q / / 2) \% q)$
sage: $-q / / 2$ for i in range (n))
sage: return $\mathrm{Zx}(\mathrm{g})$
sage:
sage: u = 314-159*x
sage: u \% 200
$-159 * x+114$
sage:
sage: def balancedmod(f,q): sage: $\quad g=l i s t(((f[i]+q / / 2) \% q)$
sage: $-q / / 2$ for i in range (n))
sage: return $\mathrm{Zx}(\mathrm{g})$
sage:
sage: u = 314-159*x
sage: u \% 200
$-159 * x+114$
sage: (u - 400) \% 200
$-159 * x-86$
sage:
sage: def balancedmod(f,q): sage: $\quad g=l i s t(((f[i]+q / / 2) \% q)$
sage: $-q / / 2$ for i in range (n))
sage: return $\mathrm{Zx}(\mathrm{g})$
sage:
sage: $u=314-159 * x$
sage: u \% 200
$-159 * x+114$
sage: (u - 400) \% 200
$-159 * x-86$
sage: balancedmod (u, 200)
$41 * x-86$
sage:
sage: def invertmodprime(f,p):
....: $F p=$ Integers (p)
....: $\mathrm{Fpx}=\mathrm{Zx}$. change_ring (Fp)
$\ldots \mathrm{T}=\mathrm{Fpx} . \mathrm{quotient}^{\left(\mathrm{x}^{\wedge} \mathrm{n}-1\right)}$
....: return $\mathrm{Zx}(\operatorname{lift}(1 / \mathrm{T}(\mathrm{f}))$)
sage:
sage: def invertmodprime(f,p):
....: $F p=\operatorname{Integers}(p)$
....: Fpx = Zx.change_ring (Fp)
$\ldots: \quad \mathrm{T}=\mathrm{Fpx} . \mathrm{quotient}^{\left(\mathrm{x}^{\wedge} \mathrm{n}-1\right)}$
....: return $\mathrm{Zx}(\operatorname{lift}(1 / \mathrm{T}(\mathrm{f}))$)
sage: $\mathrm{n}=7$
sage:
sage: def invertmodprime(f,p):
....: $F p=$ Integers (p)
....: $\mathrm{Fpx}=\mathrm{Zx}$. change_ring (Fp)
$\ldots: \quad \mathrm{T}=\mathrm{Fpx} . \mathrm{quotient}^{\left(\mathrm{x}^{\wedge} \mathrm{n}-1\right)}$
....: return $\mathrm{Zx}(\operatorname{lift}(1 / \mathrm{T}(\mathrm{f}))$)
sage: $\mathrm{n}=7$
sage: $f=$ randompoly()
sage:
sage: def invertmodprime(f,p):
....: Fp = Integers (p)
....: $\mathrm{Fpx}=\mathrm{Zx}$. change_ring (Fp)
....: $T=F p x . q u o t i e n t\left(x^{\wedge} n-1\right)$
....: return $\mathrm{Zx}(\operatorname{lift}(1 / \mathrm{T}(\mathrm{f}))$)
sage: $\mathrm{n}=7$
sage: $f=$ randompoly()
sage: f3 = invertmodprime (f,3)
sage:
sage: def invertmodprime(f,p):
....: $F p=\operatorname{Integers}(p)$
....: $\mathrm{Fpx}=\mathrm{Zx}$. change_ring (Fp)

$$
T=F p x \cdot q u o t i e n t\left(x^{\wedge} n-1\right)
$$

....: return $\mathrm{Zx}(\operatorname{lift}(1 / \mathrm{T}(\mathrm{f}))$)
sage: $\mathrm{n}=7$
sage: $f=$ randompoly()
sage: $\mathrm{f} 3=$ invertmodprime (f,3)
sage: convolution (f,f3)
$6 * x^{\wedge} 6+6 * x^{\wedge} 5+3 * x^{\wedge} 4+3 * x^{\wedge} 3+$ $3 * x^{\wedge} 2+3 * x+4$
sage:
def invertmodpowerof2(f,q): assert q.is_power_of (2)
$g=$ invertmodprime (fo)
M = balancedmod
C = convolution
while True:

$$
\begin{aligned}
& r=M(C(g, f), q) \\
& \text { if } r==1: \text { return } g \\
& g=M(C(g, 2-r), q)
\end{aligned}
$$

Exercise: Figure out how invertmodpowerof2 works.
Hint: Compare r to previous r.
sage: $\mathrm{n}=7$
sage: $q=256$
sage:
sage: $\mathrm{n}=7$
sage: $q=256$
sage: $f=$ randompoly()
sage:
sage: $\mathrm{n}=7$
sage: $q=256$
sage: $f=$ randompoly()
sage: f
$-x^{\wedge} 6-x^{\wedge} 4+x^{\wedge} 2+x-1$
sage:
sage: $\mathrm{n}=7$
sage: $q=256$
sage: $f=$ randompoly()
sage: f
$-x^{\wedge} 6-x^{\wedge} 4+x^{\wedge} 2+x-1$
sage: $g=$ invertmodpowerof2 (faq)
sage:
sage: $\mathrm{n}=7$
sage: $q=256$
sage: $f=$ randompoly()
sage: f
$-x^{\wedge} 6-x^{\wedge} 4+x^{\wedge} 2+x-1$
sage: $g=$ invertmodpowerof2 (faq)
sage: g
$47 * x^{\wedge} 6+126 * x^{\wedge} 5-54 * x^{\wedge} 4-$ $87 * x^{\wedge} 3-36 * x^{\wedge} 2-58 * x+61$
sage:
sage: $\mathrm{n}=7$
sage: $q=256$
sage: $f=$ randompoly()
sage: f
$-x^{\wedge} 6-x^{\wedge} 4+x^{\wedge} 2+x-1$
sage: $g=$ invertmodpowerof2 (faq)
sage: g
$47 * x^{\wedge} 6+126 * x^{\wedge} 5-54 * x^{\wedge} 4-$ $87 * x^{\wedge} 3-36 * x^{\wedge} 2-58 * x+61$
sage: convolution (fog)
$-256 * x^{\wedge} 5-256 * x^{\wedge} 4+256 * x+257$
sage:
sage: $\mathrm{n}=7$
sage: $q=256$
sage: $f=$ randompoly()
sage: f
$-x^{\wedge} 6-x^{\wedge} 4+x^{\wedge} 2+x-1$
sage: $g=$ invertmodpowerof2 (faq)
sage: g
$47 * x^{\wedge} 6+126 * x^{\wedge} 5-54 * x^{\wedge} 4-$ $87 * x^{\wedge} 3-36 * x^{\wedge} 2-58 * x+61$
sage: convolution (fog)
$-256 * x^{\wedge} 5-256 * x^{\wedge} 4+256 * x+257$
sage: balancedmod (_, q)
1
sage:

NTRU key generation
Parameters:
n, positive integer (e.g., 701);
q, power of 2 (e.g., 4096).

NTRU key generation
Parameters:
n, positive integer (e.g., 701); q, power of 2 (e.g., 4096).

Secret key:
random n-coeff polynomial a; random n-coeff polynomial d; all coefficients in $\{-1,0,1\}$.

NTRU key generation

Parameters:
n, positive integer (e.g., 701); q, power of 2 (e.g., 4096).

Secret key:
random n-coeff polynomial a; random n-coeff polynomial d; all coefficients in $\{-1,0,1\}$.

Require d invertible mod q. Require d invertible mod 3 .

NTRU key generation

Parameters:
n, positive integer (e.g., 701); q, power of 2 (egg., 4096).

Secret key:
random n-coeff polynomial a; random n-coeff polynomial d; all coefficients in $\{-1,0,1\}$.

Require d invertible mod q. Require d invertible mod 3 .

Public key: $A=3 a / d$ in the ring $R_{q}=(\mathbf{Z} / q)[x] /\left(x^{n}-1\right)$.
def keypair():
while True:
try:
d = randompoly()
d3 = invertmodprime (d,3)
dq = invertmodpowerof2(d,q)
break

except:

pass
a = randompoly()
publickey = balancedmod(3 *
convolution(a,dq),q)
secretkey = d,d3
return publickey,secretkey
sage: A,secretkey = keypair()
sage:
sage: A,secretkey = keypair() sage: A
$-126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4-$ $33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7$ sage :
sage: A,secretkey = keypair() sage: A
$-126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4-$ $33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7$
sage: d,d3 = secretkey
sage:
sage: A,secretkey = keypair()
sage: A
$-126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4-$ $33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7$
sage: d,d3 = secretkey
sage: d
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage:
sage: A,secretkey = keypair()
sage: A
$-126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4-$
$33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7$
sage: d,d3 = secretkey
sage: d
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage: convolution(d,A)
$-3 * x^{\wedge} 6+253 * x^{\wedge} 5+253 * x^{\wedge} 3-$
$253 * x^{\wedge} 2-3 * x-3$
sage:
sage: A,secretkey = keypair()
sage: A
$-126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4-$ $33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7$
sage: d,d3 = secretkey
sage: d
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage: convolution(d,A)
$-3 * x^{\wedge} 6+253 * x^{\wedge} 5+253 * x^{\wedge} 3-$
$253 * x^{\wedge} 2-3 * x-3$
sage: balancedmod (_, q)
$-3 * x^{\wedge} 6-3 * x^{\wedge} 5-3 * x^{\wedge} 3+3 * x^{\wedge} 2$
$-3 * \mathrm{x}-3$
sage:

NTRU encryption
One more parameter:
w, positive integer (e.g., 467).

NTRU encryption

One more parameter:
w, positive integer (e.g., 467).
Message for encryption:
n-coeff weight-w polynomial c with all coeffs in $\{-1,0,1\}$.
"Weight w": w nonzero coeffs,
$n-w$ zero coeffs.

NTRU encryption

One more parameter:
w, positive integer (e.g., 467).
Message for encryption:
n-coeff weight-w polynomial c
with all coeffs in $\{-1,0,1\}$.
"Weight w": w nonzero coeffs,
$n-w$ zero coeffs.
Ciphertext: $C=A b+c$ in R_{q} where b is chosen randomly from the set of messages.
sage: def randommessage():
$R=$ randrange
....: assert $\mathrm{w}<=\mathrm{n}$
....: $\quad c=n *[0]$
....: for j in range(w): while True:
$r=R(n)$
if not c[r]: break

$$
c[r]=1-2 * R(2)
$$

....: return Zx (c)
sage: $\mathrm{w}=5$
sage: randommessage()
$-x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4+x^{\wedge} 3-x^{\wedge} 2$
sage:
sage: def encrypt(c,A):
....: b = randommessage()
....: $\mathrm{Ab}=$ convolution(A, b)
\ldots...: \quad = balancedmod $(A b+c, q)$
....: return C
sage:
sage: def encrypt(c,A):
....: b = randommessage()
....: $\mathrm{Ab}=$ convolution (A, b)
$\ldots: \quad C=b a l a n c e d m o d(A b+c, q)$
....: return C
sage: A,secretkey = keypair()
sage:
sage: def encrypt(c,A):
....: b = randommessage()
$\ldots: \quad \mathrm{Ab}=$ convolution (A, b)
$\ldots: \quad C=b a l a n c e d m o d(A b+c, q)$
....: return C
sage: A,secretkey = keypair()
sage: $c=$ randommessage()
sage:
sage: def encrypt(c,A):
....: b = randommessage()
....: $\mathrm{Ab}=$ convolution (A, b)
$\ldots: \quad C=b a l a n c e d m o d(A b+c, q)$
....: return C
sage: A,secretkey = keypair()
sage: $c=$ randommessage()
sage: $C=$ encrypt (c, A)
sage:
sage: def encrypt(c,A):
....: b = randommessage()
....: $\mathrm{Ab}=$ convolution (A, b)
$\ldots: \quad C=b a l a n c e d m o d(A b+c, q)$
....: return C
sage: A,secretkey = keypair()
sage: $c=$ randommessage()
sage: $C=$ encrypt (c, A)
sage: C
$21 * x^{\wedge} 6-48 * x^{\wedge} 5+31 * x^{\wedge} 4-$
$76 * x^{\wedge} 3-77 * x^{\wedge} 2+15 * x-113$
sage:

NTRU decryption
Compute $d C=3 a b+d c$ in R_{q}.

NTRU decryption
Compute $d C=3 a b+d c$ in R_{q}.
a, b, c, d have small coeffs, so $3 a b+d c$ is not very big.

NTRU decryption
Compute $d C=3 a b+d c$ in R_{q}.
a, b, c, d have small coeffs, so $3 a b+d c$ is not very big.
Assume that coeffs of $3 a b+d c$ are between $-q / 2$ and $q / 2-1$.

NTRU decryption

Compute $d C=3 a b+d c$ in R_{q}.
a, b, c, d have small coeffs, so $3 a b+d c$ is not very big.
Assume that coeffs of $3 a b+d c$ are between $-q / 2$ and $q / 2-1$.

Then $3 a b+d c$ in R_{q} reveals $3 a b+d c$ in $R=\mathbf{Z}[x] /\left(x^{n}-1\right)$.

NTRU decryption

Compute $d C=3 a b+d c$ in R_{q}.
a, b, c, d have small coeffs, so $3 a b+d c$ is not very big.
Assume that coeffs of $3 a b+d c$ are between $-q / 2$ and $q / 2-1$.

Then $3 a b+d c$ in R_{q} reveals $3 a b+d c$ in $R=\mathbf{Z}[x] /\left(x^{n}-1\right)$. Reduce modulo 3: $d c$ in R_{3}.

NTRU decryption

Compute $d C=3 a b+d c$ in R_{q}.
a, b, c, d have small coeffs, so $3 a b+d c$ is not very big.
Assume that coeffs of $3 a b+d c$ are between $-q / 2$ and $q / 2-1$.

Then $3 a b+d c$ in R_{q} reveals $3 a b+d c$ in $R=\mathbf{Z}[x] /\left(x^{n}-1\right)$. Reduce modulo 3: $d c$ in R_{3}.

Multiply by $1 / d$ in R_{3}
to recover message c in R_{3}.

NTRU decryption

Compute $d C=3 a b+d c$ in R_{q}.
a, b, c, d have small coeffs, so $3 a b+d c$ is not very big.
Assume that coeffs of $3 a b+d c$ are between $-q / 2$ and $q / 2-1$.

Then $3 a b+d c$ in R_{q} reveals $3 a b+d c$ in $R=\mathbf{Z}[x] /\left(x^{n}-1\right)$. Reduce modulo 3: $d c$ in R_{3}.

Multiply by $1 / d$ in R_{3}
to recover message c in R_{3}.
Coeffs are between -1 and 1 , so recover c in R.
sage: def decrypt(C,secretkey):
\ldots
\ldots

. . .
.... :
.... :
.... :
.... :
sage:

M = balancedmod
f,r = secretkey
$u=M$ (convolution(C,f), q) $c=M$ (convolution (u, r) , 3)
return c
sage: def decrypt(C,secretkey):
....: $\quad M=$ balancedmod
....: f,r = secretkey
. . . . :

$$
\begin{aligned}
& u=M(\text { convolution }(C, f), q) \\
& c=M(\operatorname{convolution}(u, r), 3)
\end{aligned}
$$

return c
sage: c
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x+1$
sage:
sage: def decrypt(C,secretkey):
....: $\quad M=$ balancedmod
.... :
. . . . :
f,r = secretkey

$$
\begin{aligned}
& u=M(\text { convolution }(C, f), q) \\
& c=M(\operatorname{convolution}(u, r), 3)
\end{aligned}
$$

return c
sage: c
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x+1$
sage: decrypt (C,secretkey)
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x+1$
sage:
sage: $\mathrm{n}=7$
sage: $\mathrm{w}=5$
sage: $q=256$
sage:
sage: $\mathrm{n}=7$
sage: $\mathrm{w}=5$
sage: $q=256$
sage: A,secretkey = keypair()
sage:
sage: $\mathrm{n}=7$
sage: $\mathrm{w}=5$
sage: $q=256$
sage: A,secretkey = keypair()
sage: A
$-101 * x^{\wedge} 6-76 * x^{\wedge} 5-90 * x \wedge 4-$ $83 * x^{\wedge} 3+40 * x^{\wedge} 2+108 * x-54$
sage:
sage: $\mathrm{n}=7$
sage: $\mathrm{w}=5$
sage: $q=256$
sage: A,secretkey = keypair()
sage: A
$-101 * x^{\wedge} 6-76 * x^{\wedge} 5-90 * x^{\wedge} 4-$ $83 * x^{\wedge} 3+40 * x^{\wedge} 2+108 * x-54$
sage: d,d3 = secretkey
sage:
sage: $\mathrm{n}=7$
sage: $\mathrm{w}=5$
sage: $q=256$
sage: A,secretkey = keypair()
sage: A
$-101 * x^{\wedge} 6-76 * x \wedge 5-90 * x \wedge 4-$ $83 * x^{\wedge} 3+40 * x^{\wedge} 2+108 * x-54$
sage: d,d3 = secretkey
sage: d
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x-1$
sage:
sage: $\mathrm{n}=7$
sage: $\mathrm{w}=5$
sage: $q=256$
sage: A,secretkey = keypair()
sage: A
$-101 * x^{\wedge} 6-76 * x \wedge 5-90 * x \wedge 4-$ $83 * x^{\wedge} 3+40 * x^{\wedge} 2+108 * x-54$
sage: d,d3 = secretkey
sage: d
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x-1$
sage: conv = convolution
sage:
sage: $\mathrm{n}=7$
sage: $\mathrm{w}=5$
sage: $q=256$
sage: A,secretkey = keypair()
sage: A
$-101 * x^{\wedge} 6-76 * x^{\wedge} 5-90 * x^{\wedge} 4-$ $83 * x^{\wedge} 3+40 * x^{\wedge} 2+108 * x-54$
sage: d,d3 = secretkey
sage: d
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x-1$
sage: conv = convolution
sage: $M=$ balancedmod
sage:
sage: $\mathrm{n}=7$
sage: $\mathrm{w}=5$
sage: $q=256$
sage: A,secretkey = keypair()
sage: A
$-101 * x^{\wedge} 6-76 * x^{\wedge} 5-90 * x^{\wedge} 4-$ $83 * x^{\wedge} 3+40 * x^{\wedge} 2+108 * x-54$
sage: d,d3 = secretkey
sage: d
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x-1$
sage: conv = convolution
sage: $M=$ balancedmod
sage: $a 3=M(\operatorname{conv}(d, A), q)$
sage:
sage: $\mathrm{n}=7$
sage: $\mathrm{w}=5$
sage: $q=256$
sage: A,secretkey = keypair()
sage: A
$-101 * x^{\wedge} 6-76 * x^{\wedge} 5-90 * x^{\wedge} 4-$ $83 * x^{\wedge} 3+40 * x^{\wedge} 2+108 * x-54$
sage: d,d3 = secretkey
sage: d
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x-1$
sage: conv = convolution
sage: $M=$ balancedmod
sage: $a 3=M(\operatorname{conv}(d, A), q)$
sage: a3
$3 * x^{\wedge} 2-3 * x$
sage: $c=$ randommessage()

sage:

sage: $c=$ randommessage()
sage: b = randommessage()
sage:
sage: $c=$ randommessage()
sage: $\mathrm{b}=$ randommessage()
sage: $C=M(\operatorname{conv}(A, b)+c, q)$
sage:
sage: $c=$ randommessage()
sage: $\mathrm{b}=$ randommessage()
sage: $C=M(\operatorname{conv}(A, b)+c, q)$
sage: C
$-57 * x^{\wedge} 6+28 * x^{\wedge} 5+114 * x^{\wedge} 4+$

$$
72 * x \wedge 3-37 * x \wedge 2+16 * x+119
$$

sage:
sage: $c=$ randommessage()
sage: b = randommessage()
sage: $C=M(\operatorname{conv}(A, b)+c, q)$
sage: C
$-57 * x^{\wedge} 6+28 * x^{\wedge} 5+114 * x^{\wedge} 4+$

$$
72 * x \wedge 3-37 * x \wedge 2+16 * x+119
$$

sage: $u=M(\operatorname{conv}(C, d), q)$
sage:
sage: $c=$ randommessage()
sage: $\mathrm{b}=$ randommessage()
sage: $C=M(\operatorname{conv}(A, b)+c, q)$
sage: C
$-57 * x^{\wedge} 6+28 * x^{\wedge} 5+114 * x^{\wedge} 4+$
$72 * x^{\wedge} 3-37 * x^{\wedge} 2+16 * x+119$
sage: $u=M(\operatorname{conv}(C, d), q)$
sage: u
$-8 * x^{\wedge} 6+2 * x^{\wedge} 5+4 * x^{\wedge} 4-x^{\wedge} 3-$ $4 * x^{\wedge} 2+5 * x+1$
sage:
sage: c = randommessage()
sage: $\mathrm{b}=$ randommessage()
sage: $C=M(\operatorname{conv}(A, b)+c, q)$
sage: C
$-57 * x^{\wedge} 6+28 * x^{\wedge} 5+114 * x^{\wedge} 4+$
$72 * x^{\wedge} 3-37 * x^{\wedge} 2+16 * x+119$
sage: $u=M(\operatorname{conv}(C, d), q)$
sage: u
$-8 * x^{\wedge} 6+2 * x^{\wedge} 5+4 * x^{\wedge} 4-x^{\wedge} 3-$ $4 * x^{\wedge} 2+5 * x+1$
sage: $\operatorname{conv}(a 3, b)+\operatorname{conv}(c, d)$
$-8 * x^{\wedge} 6+2 * x^{\wedge} 5+4 * x^{\wedge} 4-x^{\wedge} 3-$
$4 * x^{\wedge} 2+5 * x+1$
sage: $M(u, 3)$
$x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x$
$+1$
sage:
sage: $M(u, 3)$
$x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x$
$+1$
sage: $M(\operatorname{conv}(c, d), 3)$
$x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x$
$+1$
sage:
sage: M(u,3)
$x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x$
$+1$
sage: $M(\operatorname{conv}(c, d), 3)$
$x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x$ $+1$
sage: $\operatorname{conv}(M(u, 3), d 3)$
$x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-3 * x^{\wedge} 3-x^{\wedge} 2+$

$$
x-3
$$

sage:
sage: $M(u, 3)$
$x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x$
$+1$
sage: $M(\operatorname{conv}(c, d), 3)$
$x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x$ $+1$
sage: $\operatorname{conv}(M(u, 3), d 3)$
$x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-3 * x^{\wedge} 3-x^{\wedge} 2+$
$x-3$
sage: $M\left(_, 3\right)$
$x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x$
sage:
sage: $M(u, 3)$
$x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x$ $+1$
sage: $M(\operatorname{conv}(c, d), 3)$
$x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x$ $+1$
sage: $\operatorname{conv}(M(u, 3), d 3)$
$x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-3 * x^{\wedge} 3-x^{\wedge} 2+$
$x-3$
sage: $M\left(_, 3\right)$
$x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x$
sage: c
$x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x$
sage:

Does decryption always work?

All coeffs of a are in $\{-1,0,1\}$. All coeffs of b are in $\{-1,0,1\}$, and exactly w are nonzero.

Does decryption always work?

All coeffs of a are in $\{-1,0,1\}$. All coeffs of b are in $\{-1,0,1\}$, and exactly w are nonzero.

Each coeff of $a b$ in R
has absolute value at most w.

Does decryption always work?

All coeffs of a are in $\{-1,0,1\}$. All coeffs of b are in $\{-1,0,1\}$, and exactly w are nonzero.

Each coeff of $a b$ in R

has absolute value at most w.
(Same argument would work for b of any weight, a of weight w.)

Does decryption always work?

All coeffs of a are in $\{-1,0,1\}$. All coeffs of b are in $\{-1,0,1\}$, and exactly w are nonzero.

Each coeff of $a b$ in R

has absolute value at most w.
(Same argument would work for
b of any weight, a of weight w.)
Similar comments for d, c.
Each coeff of $3 a b+d c$ in R
has absolute value at most $4 w$.

Does decryption always work?

All coeffs of a are in $\{-1,0,1\}$.
All coeffs of b are in $\{-1,0,1\}$, and exactly w are nonzero.

Each coeff of $a b$ in R has absolute value at most w. (Same argument would work for b of any weight, a of weight w.)

Similar comments for d, c.
Each coeff of $3 a b+d c$ in R has absolute value at most $4 w$.
egg. $w=467$: at most 1868 .
Decryption works for $q=4096$.

What about $w=467, q=2048 ?$

What about $w=467, q=2048 ?$
Same argument doesn't work.
$a=b=c=d=$
$1+x+x^{2}+\cdots+x^{w-1}$:
$3 a b+d c$ has a coeff $4 w>q / 2$.

What about $w=467, q=2048 ?$
Same argument doesn't work.
$a=b=c=d=$
$1+x+x^{2}+\cdots+x^{w-1}:$
$3 a b+d c$ has a coeff $4 w>q / 2$.
But coeffs are usually <1024 when a, d are chosen randomly.

What about $w=467, q=2048 ?$
Same argument doesn't work.
$a=b=c=d=$
$1+x+x^{2}+\cdots+x^{w-1}:$
$3 a b+d c$ has a coeff $4 w>q / 2$.
But coeffs are usually <1024 when a, d are chosen randomly.

1996 NTRU handout mentioned no-decryption-failure option, but recommended smaller q with some chance of failures. 1998 NTRU paper: decryption failure "will occur so rarely that it can be ignored in practice".

Crypts 2003 Howgrave-Graham-Nguyen-Pointcheval-Proos-Silverman-Singer-Whyte "The impact of decryption failures on the security of NTRU encryption":

Decryption failures imply that "all the security proofs known ... for various NTRU paddings may not be valid after all".

Crypto 2003 Howgrave-Graham-Nguyen-Pointcheval-Proos-
Silverman-Singer-Whyte
"The impact of
decryption failures on the security of NTRU encryption":

Decryption failures imply that "all the security proofs known ... for various NTRU paddings may not be valid after all".

Even worse: Attacker who sees some random decryption failures can figure out the secret key!

Coeff of x^{n-1} in $c d$ is
$c_{0} d_{n-1}+c_{1} d_{n-2}+\ldots+c_{n-1} d_{0}$.
This coeff is large \Leftrightarrow
$c_{0}, c_{1}, \ldots, c_{n-1}$ has
high correlation with
$d_{n-1}, d_{n-2}, \ldots, d_{0}$.

Coeff of x^{n-1} in $c d$ is
$c_{0} d_{n-1}+c_{1} d_{n-2}+\ldots+c_{n-1} d_{0}$.
This coeff is large \Leftrightarrow
$c_{0}, c_{1}, \ldots, c_{n-1}$ has
high correlation with
$d_{n-1}, d_{n-2}, \ldots, d_{0}$.
Some coeff is large \Leftrightarrow
$c_{0}, c_{1}, \ldots, c_{n-1}$ has high
correlation with some rotation of $d_{n-1}, d_{n-2}, \ldots, d_{0}$.

Coeff of x^{n-1} in $c d$ is
$c_{0} d_{n-1}+c_{1} d_{n-2}+\ldots+c_{n-1} d_{0}$.
This coeff is large \Leftrightarrow
$c_{0}, c_{1}, \ldots, c_{n-1}$ has
high correlation with
$d_{n-1}, d_{n-2}, \ldots, d_{0}$.
Some coeff is large \Leftrightarrow
$c_{0}, c_{1}, \ldots, c_{n-1}$ has high
correlation with some rotation of $d_{n-1}, d_{n-2}, \ldots, d_{0}$.
ie. c is correlated with
$x^{i} \operatorname{rev}(d)$ for some i, where $\operatorname{rev}(d)=d_{0}+d_{1} x^{n-1}+\cdots+d_{n-1} x$.

Reasonable guesses given a random decryption failure:
c correlated with some $x^{i} \operatorname{rev}(d)$.

Reasonable guesses given a random decryption failure:
c correlated with some $x^{i} \operatorname{rev}(d)$. $\operatorname{rev}(c)$ correlated with $x^{-i} d$.

Reasonable guesses given a random decryption failure:
c correlated with some $x^{i} \operatorname{rev}(d)$. $\operatorname{rev}(c)$ correlated with $x^{-i} d$. $c \operatorname{rev}(c) \operatorname{correlated}$ with $d \operatorname{rev}(d)$.

Reasonable guesses given a random decryption failure: c correlated with some $x^{i} \operatorname{rev}(d)$. $\operatorname{rev}(c)$ correlated with $x^{-i} d$. $c \operatorname{rev}(c) \operatorname{correlated}$ with $d \operatorname{rev}(d)$.

Experimentally confirmed:
Average of $c \operatorname{rev}(c)$
over some decryption failures
is close to $d \operatorname{rev}(d)$.
Round to integers: $d \operatorname{rev}(d)$.

Reasonable guesses given a random decryption failure:
c correlated with some $x^{i} \operatorname{rev}(d)$. $\operatorname{rev}(c)$ correlated with $x^{-i} d$. $c \operatorname{rev}(c) \operatorname{correlated}$ with $d \operatorname{rev}(d)$.

Experimentally confirmed:
Average of $c \operatorname{rev}(c)$
over some decryption failures
is close to $d \operatorname{rev}(d)$.
Round to integers: $d \operatorname{rev}(d)$.
Eurocrypt 2002 Gentry-Szydlo algorithm then finds d.

1999 Hall-Goldberg-Schneier,
2000 Jaulmes-Joux, 2000 Hoffstein-Silverman, 2016
Fluhrer, etc.: Even easier attacks using invalid messages.

1999 Hall-Goldberg-Schneier,
2000 Jaulmes-Joux, 2000
Hoffstein-Silverman, 2016
Fluhrer, etc.: Even easier attacks using invalid messages.

Attacker changes c to $c \pm 1, c \pm x, \ldots, c \pm x^{n-1}$; $c \pm 2, c \pm 2 x, \ldots, c \pm 2 x^{n-1}$; $c \pm 3$, etc.

1999 Hall-Goldberg-Schneier,
2000 Jaulmes-Joux, 2000 Hoffstein-Silverman, 2016
Fluhrer, etc.: Even easier attacks using invalid messages.

Attacker changes c to
$c \pm 1, c \pm x, \ldots, c \pm x^{n-1}$;
$c \pm 2, c \pm 2 x, \ldots, c \pm 2 x^{n-1}$;
$c \pm 3$, etc.
This changes $3 a b+d c$: adds
$\pm d, \pm x d, \ldots, \pm x^{n-1} d$;
$\pm 2 d, \pm 2 x d, \ldots, \pm 2 x^{n-1} d$; $\pm 3 d$, etc.
e.g. $3 a b+d c=\cdots+390 x^{478}+\cdots$, all other coeffs in [-389, 389]; and $d=\cdots+x^{478}+\cdots$.
e.g. $3 a b+d c=\cdots+390 x^{478}+\cdots$, all other coeffs in [-389, 389]; and $d=\cdots+x^{478}+\cdots$.

Then $3 a b+d c+k d=$
$\cdots+(390+k) x^{478}+\cdots$.
Decryption fails for big k.
e.g. $3 a b+d c=\cdots+390 x^{478}+\cdots$, all other coeffs in $[-389,389]$; and $d=\cdots+x^{478}+\cdots$.

Then $3 a b+d c+k d=$
$\cdots+(390+k) x^{478}+\cdots$.
Decryption fails for big k.
Search for smallest k that falls.
e.g. $3 a b+d c=\cdots+390 x^{478}+\cdots$, all other coeffs in $[-389,389]$; and $d=\cdots+x^{478}+\cdots$.

Then $3 a b+d c+k d=$
$\cdots+(390+k) x^{478}+\cdots$.
Decryption fails for big k.
Search for smallest k that falls.
Does $3 a b+d c+k x d$ also fail?
Yes if $x d=\cdots+x^{478}+\cdots$,
i.e., if $d=\cdots+x^{477}+\cdots$.
e.g. $3 a b+d c=\cdots+390 x^{478}+\cdots$, all other coeffs in $[-389,389]$; and $d=\cdots+x^{478}+\cdots$.

Then $3 a b+d c+k d=$
$\cdots+(390+k) x^{478}+\cdots$.
Decryption fails for big k.
Search for smallest k that falls.
Does $3 a b+d c+k x d$ also fail?
Yes if $x d=\cdots+x^{478}+\cdots$,
i.e., if $d=\cdots+x^{477}+\cdots$.

Try $x^{2} k d, x^{3} k d$, etc.
See pattern of d coeffs.

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.
For each new sender, generate new public key.
Use signatures to ensure
that nobody else uses key.

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.
For each new sender, generate new public key. Use signatures to ensure that nobody else uses key.
e.g. original "IND-CPA" version of New Hope; Ding.

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.
For each new sender, generate new public key. Use signatures to ensure that nobody else uses key.
e.g. original "IND-CPA" version of New Hope; Ding.

If user reuses a key:
Blame user for the attacks.

Approach 2: Modify encryption and decryption to eliminate invalid messages.

Approach 2: Modify encryption and decryption to eliminate invalid messages.
e.g. "IND-CCA" New Hope
submission; most submissions.

Approach 2: Modify encryption and decryption to eliminate invalid messages.
e.g. "IND-CCA" New Hope submission; most submissions.

Basic idea, from Crypts 1999
Fujisaki-Okamoto: After decrypting message, check whether (1) message is valid and (2) ciphertext matches reencryption of message.

Approach 2: Modify encryption and decryption to eliminate invalid messages.
e.g. "IND-CCA" New Hope submission; most submissions.

Basic idea, from Crypts 1999
Fujisaki-Okamoto: After decrypting message, check whether (1) message is valid and (2) ciphertext matches reencryption of message.

But encryption is randomized!
Reencryption won't match.

Solution: In decryption, compute all randomness that was used.
e.g. after computing c in NTRU, compute b from $3 a b+d c$.

Solution: In decryption, compute all randomness that was used.
e.g. after computing c in NTRU, compute b from $3 a b+d c$.

Can view (b, c) as message, no further randomness. "Deterministic encryption."

Solution: In decryption, compute all randomness that was used.
e.g. after computing c in NTRU, compute b from $3 a b+d c$.

Can view (b, c) as message, no further randomness. "Deterministic encryption." "Product NTRU" variant is not naturally deterministic.

Solution: In decryption, compute all randomness that was used.
e.g. after computing c in NTRU, compute b from $3 a b+d c$.

Can view (b, c) as message, no further randomness. "Deterministic encryption."
"Product NTRU" variant is not naturally deterministic.

Generic Fujisaki-Okamoto
solution: Require sender to compute randomness as standard hash of message.

How to handle decryption failures

Eliminating invalid messages is not enough: remember attack using decryption failures for random valid messages.

How to handle decryption failures

Eliminating invalid messages is not enough: remember attack using decryption failures for random valid messages.

NIST encryption submissions vary in failure rates.

NTRU HRSS, NTRU Prime,
Odd Manhattan choose q to eliminate decryption failures.

How to handle decryption failures

Eliminating invalid messages is not enough: remember attack using decryption failures for random valid messages.

NIST encryption submissions vary in failure rates.

NTRU HRSS, NTRU Prime,
Odd Manhattan choose q to eliminate decryption failures.

LIMA tried to eliminate decryption failures, but failed.

More claimed failure rates: LOTUS: $<2^{-256}$.
New Hope submission: $<2^{-213}$. KIND: 2^{-165}.

NTRUEncrypt: $<2^{-80}$. $\mathrm{KCL}: \approx 2^{-60}$.
Ding: $\approx 2^{-60}$, only IND -CPA.
Current debates about what decryption failure probability is small enough; whether decryption failure probabilities were calculated correctly; etc.

How to randomize messages

If message is guessable:
Attacker can check whether a guess matches a ciphertext.

How to randomize messages

If message is guessable:
Attacker can check whether a guess matches a ciphertext.

Also various attacks using guesses of portion of message.

How to randomize messages

If message is guessable:
Attacker can check whether a guess matches a ciphertext.

Also various attacks using guesses of portion of message.

Modern "KEM-DEM" solution, from Eurocrypt 2000 Shoup:
Choose random message.
Use hash of message as (e.g.)
AES-256-GCM key to encrypt and authenticate user data.

Central "one-wayness" question: Can attacker figure out a random message given public key and ciphertext?

Central "one-wayness" question:
Can attacker figure out a random message given public key and ciphertext?

Fujisaki-Okamoto and many newer papers try to prove that all chosen-ciphertext distinguishers ("IND-CCA attacks") are as difficult as breaking one-wayness.

Central "one-wayness" question:
Can attacker figure out a random message given public key and ciphertext?

Fujisaki-Okamoto and many newer papers try to prove that all chosen-ciphertext distinguishers ("IND-CCA attacks") are as difficult as breaking one-wayness.

Many limitations to proofs: bugs; looseness; assumptions of "ROM" or "QROM" attacks; assumptions on failure probability; etc.

Brute-force search

Attacker is given public key
$A=3 a / d$, ciphertext $C=A b+c$. Can attacker find c ?

Brute-force search

Attacker is given public key
$A=3 a / d$, ciphertext $C=A b+c$. Can attacker find c ?

Search $\binom{n}{w} 2^{w}$ choices of b. If $c=C-A b$ is small: done!

Brute-force search

Attacker is given public key
$A=3 a / d$, ciphertext $C=A b+c$.
Can attacker find c ?
Search $\binom{n}{w} 2^{w}$ choices of b. If $c=C-A b$ is small: done!
(Can this find two different messages c? Unlikely. This would also stop legitimate decryption.)

Brute-force search

Attacker is given public key
$A=3 a / d$, ciphertext $C=A b+c$.
Can attacker find c ?
Search $\binom{n}{w} 2^{w}$ choices of b. If $c=C-A b$ is small: done!
(Can this find two different messages c? Unlikely. This would also stop legitimate decryption.)

Or search 3^{n} choices of d.
If $a=d A / 3$ is small, use (a, d) to
decrypt. Slightly slower but can be reused for many ciphertexts.

Equivalent keys

Secret key (a, d) is equivalent to secret key ($x a, x d$),
secret key $\left(x^{2} a, x^{2} d\right)$, etc.

Equivalent keys

Secret key (a, d) is equivalent to secret key ($x a, x d$),
secret key ($\left.x^{2} a, x^{2} d\right)$, etc.
Search only about $3^{n} / n$ choices.

Equivalent keys

Secret key (a, d) is equivalent to secret key ($x a, x d$),
secret key ($\left.x^{2} a, x^{2} d\right)$, etc.
Search only about $3^{n} / n$ choices.
$n=701, w=467$:

$$
\begin{aligned}
\binom{n}{w} 2^{w} & \approx 2^{1106.09} \\
3^{n} & \approx 2^{1111.06} \\
3^{n} / n & \approx 2^{1101.61}
\end{aligned}
$$

Equivalent keys

Secret key (a, d) is equivalent to secret key $(x a, x d)$,
secret key $\left(x^{2} a, x^{2} d\right)$, etc.
Search only about $3^{n} / n$ choices.
$n=701, w=467:$

$$
\begin{aligned}
\binom{n}{w} 2^{w} & \approx 2^{1106.09} \\
3^{n} & \approx 2^{1111.06} \\
3^{n} / n & \approx 2^{1101.61}
\end{aligned}
$$

Exercise: Find more equivalences!

Equivalent keys

Secret key (a, d) is equivalent to secret key $(x a, x d)$,
secret key $\left(x^{2} a, x^{2} d\right)$, etc.
Search only about $3^{n} / n$ choices.
$n=701, w=467:$

$$
\begin{aligned}
\binom{n}{w} 2^{w} & \approx 2^{1106.09} \\
3^{n} & \approx 2^{1111.06} \\
3^{n} / n & \approx 2^{1101.61}
\end{aligned}
$$

Exercise: Find more equivalences!
But if w is chosen smaller then $\binom{n}{w} 2^{w}$ search will be faster.

Collision attacks

Write d as $d_{1}+d_{2}$ where
$d_{1}=$ bottom $\lceil n / 2\rceil$ terms of d, $d_{2}=$ remaining terms of d.

Collision attacks

Write d as $d_{1}+d_{2}$ where $d_{1}=$ bottom $\lceil n / 2\rceil$ terms of d, $d_{2}=$ remaining terms of d.
$a=(A / 3) d=(A / 3) d_{1}+(A / 3) d_{2}$
so $a-(A / 3) d_{2}=(A / 3) d_{1}$.

Collision attacks

Write d as $d_{1}+d_{2}$ where $d_{1}=$ bottom $\lceil n / 2\rceil$ terms of d, $d_{2}=$ remaining terms of d.
$a=(A / 3) d=(A / 3) d_{1}+(A / 3) d_{2}$ so $a-(A / 3) d_{2}=(A / 3) d_{1}$.
Eliminate a: almost certainly $H\left(-(A / 3) d_{2}\right)=H\left((A / 3) d_{1}\right)$ for $H(f)=\left(\left[f_{0}<0\right], \ldots,\left[f_{k-1}<0\right]\right)$.

Collision attacks

Write d as $d_{1}+d_{2}$ where $d_{1}=$ bottom $\lceil n / 2\rceil$ terms of d, $d_{2}=$ remaining terms of d.
$a=(A / 3) d=(A / 3) d_{1}+(A / 3) d_{2}$
so $a-(A / 3) d_{2}=(A / 3) d_{1}$.
Eliminate a: almost certainly
$H\left(-(A / 3) d_{2}\right)=H\left((A / 3) d_{1}\right)$ for
$H(f)=\left(\left[f_{0}<0\right], \ldots,\left[f_{k-1}<0\right]\right)$.
Enumerate all $H\left(-(A / 3) d_{2}\right)$.
Enumerate all $H\left((A / 3) d_{1}\right)$.
Search for collisions.
Only about $3^{n / 2}$ computations; but beware cost of memory.

Lattices

This is a lettuce:

Lattices

This is a lettuce:

This is a lattice:

Lattices, mathematically

Assume that $b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{R}^{n}$ are \mathbf{R}-linearly independent, i.e., $\mathbf{R} b_{1}+\ldots+\mathbf{R} b_{k}=$
$\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{R}\right\}$ is a k-dimensional vector space.

Lattices, mathematically

Assume that $b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{R}^{n}$ are \mathbf{R}-linearly independent, i.e., $\mathbf{R} b_{1}+\ldots+\mathbf{R} b_{k}=$
$\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{R}\right\}$ is a k-dimensional vector space.
$\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}=$
$\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{Z}\right\}$ is a rank- k length- n lattice.

Lattices, mathematically

Assume that $b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{R}^{n}$ are \mathbf{R}-linearly independent,
i.e., $\mathbf{R} b_{1}+\ldots+\mathbf{R} b_{k}=$
$\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{R}\right\}$ is a k-dimensional vector space.
$\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}=$
$\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{Z}\right\}$ is a rank- k length- n lattice.
b_{1}, \ldots, b_{k}
is a basis of this lattice.

Short vectors in lattices

Given $b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{Z}^{n}$, what is shortest vector in $\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}$?

Short vectors in lattices

Given $b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{Z}^{n}$, what is shortest vector in $\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}$?

Short vectors in lattices
Given $b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{Z}^{n}$, what is shortest vector in $\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}$?
0.

What is shortest nonzero vector?

Short vectors in lattices

Given $b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{Z}^{n}$,
what is shortest vector
in $\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}$?
0.

What is shortest nonzero vector?
LLL algorithm runs in poly time, computes a vector whose length is at most $2^{n / 2}$ times length of shortest nonzero vector.

Short vectors in lattices

Given $b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{Z}^{n}$,
what is shortest vector
in $\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}$?
0.

What is shortest nonzero vector?
LLL algorithm runs in poly time, computes a vector whose length is at most $2^{n / 2}$ times length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ) compute shorter vectors at surprisingly high speed.

Lattice view of NTRU

Given public key $A=3 a / d$.
Compute $A / 3=a / d$.

Lattice view of NTRU

Given public key $A=3 a / d$.
Compute $A / 3=a / d$.
d is obtained from
$1, x, \ldots, x^{n-1}$
by a few additions, subtractions.

Lattice view of NTRU

Given public key $A=3 a / d$.
Compute $A / 3=a / d$.
d is obtained from
$1, x, \ldots, x^{n-1}$
by a few additions, subtractions.
$d(A / 3)$ is obtained from
$A / 3, x A / 3, \ldots, x^{n-1} A / 3$
by a few additions, subtractions.

Lattice view of NTRU

Given public key $A=3 a / d$.
Compute $A / 3=a / d$.
d is obtained from
$1, x, \ldots, x^{n-1}$
by a few additions, subtractions.
$d(A / 3)$ is obtained from
$A / 3, x A / 3, \ldots, x^{n-1} A / 3$
by a few additions, subtractions.
a is obtained from
$q, q x, q x^{2}, \ldots, q x^{n-1}$,
$A / 3, x A / 3, \ldots, x^{n-1} A / 3$
by a few additions, subtractions.
(a, d) is obtained from
$(q, 0)$,
$(q x, 0)$,
$\left(q x^{n-1}, 0\right)$,
$(A / 3,1)$,
$(x A / 3, x)$,
$\left(x^{n-1} A / 3, x^{n-1}\right)$
by a few additions, subtractions.
(a, d) is obtained from
$(q, 0)$,
$(q x, 0)$,
$\left(q x^{n-1}, 0\right)$,
$(A / 3,1)$,
$(x A / 3, x)$,
$\left(x^{n-1} A / 3, x^{n-1}\right)$
by a few additions, subtractions.
Write $A / 3$ as
$H_{0}+H_{1} x+\ldots+H_{n-1} x^{n-1}$.
$\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)$ is obtained from
$(q, 0, \ldots, 0,0,0, \ldots, 0)$,
$(0, q, \ldots, 0,0,0, \ldots, 0)$,
:
$(0,0, \ldots, q, 0,0, \ldots, 0)$,
$\left(H_{0}, H_{1}, \ldots, H_{n-1}, 1,0, \ldots, 0\right)$,
$\left(H_{n-1}, H_{0}, \ldots, H_{n-2}, 0,1, \ldots, 0\right)$,
:
$\left(H_{1}, H_{2}, \ldots, H_{0}, 0,0, \ldots, 1\right)$
by a few additions, subtractions.
$\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)$
is a surprisingly short vector
in lattice generated by
$(q, 0, \ldots, 0,0,0, \ldots, 0)$ etc.
$\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)$
is a surprisingly short vector in lattice generated by
$(q, 0, \ldots, 0,0,0, \ldots, 0)$ etc.
Attacker searches for short vector in this lattice using LLL etc.
$\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)$
is a surprisingly short vector
in lattice generated by
$(q, 0, \ldots, 0,0,0, \ldots, 0)$ etc.
Attacker searches for short vector in this lattice using LLL etc.

1997 Coppersmith-Shamir balancing: e.g., set up lattice to contain $(10 a, d)$
if d is chosen $10 \times$ larger than a.
$\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)$
is a surprisingly short vector
in lattice generated by
$(q, 0, \ldots, 0,0,0, \ldots, 0)$ etc.
Attacker searches for short vector in this lattice using LLL etc.

1997 Coppersmith-Shamir balancing: e.g., set up lattice to contain $(10 a, d)$ if d is chosen $10 \times$ larger than a.

Exercise: Describe search for (b, c) as a problem of finding a vector close to a lattice.

Quotient NTRU vs. product NTRU

"Quotient NTRU" (new name)
is the structure we've seen:
Alice generates $A=3 a / d$ in R_{q} for small random a, d :
i.e., $d A-3 a=0$ in R_{q}.

Quotient NTRU vs. product NTRU

"Quotient NTRU" (new name)
is the structure we've seen:
Alice generates $A=3 a / d$ in R_{q} for small random a, d :
i.e., $d A-3 a=0$ in R_{q}.

Bob sends $C=A b+c$ in R_{q}.
Alice computes $d C$ in R_{q}, i.e., $3 a b+d c$ in R_{q}.

Quotient NTRU vs. product NTRU

"Quotient NTRU" (new name)
is the structure we've seen:
Alice generates $A=3 a / d$ in R_{q} for small random a, d :
i.e., $d A-3 a=0$ in R_{q}.

Bob sends $C=A b+c$ in R_{q}.
Alice computes $d C$ in R_{q},
i.e., $3 a b+d c$ in R_{q}.

Alice reconstructs $3 a b+d c$ in R, using smallness of a, b, d, c.
Alice computes $d c$ in R_{3},
deduces c, deduces b.
"Product NTRU" (new name),
2010 Lyubashevsky-Peikert-Regev:
Everyone knows random $G \in R_{q}$.
Alice generates $A=a G+d$ in R_{q} for small random a, d.
"Product NTRU" (new name),
2010 Lyubashevsky-Peikert-Regev:
Everyone knows random $G \in R_{q}$.
Alice generates $A=a G+d$ in R_{q} for small random a, d.

Bob sends $B=G b+e$ in R_{q} and $C=m+A b+c$ in R_{q} where b, c, e are small and each coefficient of m is 0 or $q / 2$.
"Product NTRU" (new name),
2010 Lyubashevsky-Peikert-Regev:
Everyone knows random $G \in R_{q}$.
Alice generates $A=a G+d$ in R_{q} for small random a, d.

Bob sends $B=G b+e$ in R_{q} and $C=m+A b+c$ in R_{q} where b, c, e are small and each coefficient of m is 0 or $q / 2$.

Alice computes $C-a B$ in R_{q}, ie., $m+d b+c-a e$ in R_{q}. Alice reconstructs m, using smallness of d, b, c, a, e.

