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sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage:



5

Let’s try NTRU on the computer.

Debian: apt install sagemath

Fedora: yum install sagemath

Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage:
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sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage:



6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage:



6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage:



6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage:



6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage:



6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:



6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage:
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sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage:



6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage:
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sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage:



7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage:



7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage:



7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage:



7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:



7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage:
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sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage:
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sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage:
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sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage:



8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage:
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sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage:
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sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage:



8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage: randompoly()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:



8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage: randompoly()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.
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sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage: randompoly()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.
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sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage: randompoly()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:
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LLL algorithm runs in poly time,

computes a vector whose length

is at most 2n=2 times
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1997 Coppersmith–Shamir

balancing: e.g., set up lattice

to contain (10a; d)

if d is chosen 10× larger than a.
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