
1

Lattice-based

public-key cryptosystems

D. J. Bernstein

NIST post-quantum competition:

82 submissions in first round,

from hundreds of people.

− 13 submissions that NIST

declared incomplete or improper.

− 5 withdrawn submissions.

− 3 merged submissions.

22 signature-system submissions.

5 lattice-based: Dilithium;

DRS (broken); FALCONj;

pqNTRUSignj; qTESLA.

2

47 encryption-system submissions.

20 lattice-based:

Compact LWEj (broken);

Dingj; EMBLEM; Frodo;

HILA5 (CCA broken); KCLj;

KINDI; Kyber; LAC; LIMA;

Lizardj; LOTUS; NewHope;

NTRUEncrypt; NTRU HRSS;

NTRU Prime; Odd Manhattan;

Round2j; SABER; Titanium.

1

Lattice-based

public-key cryptosystems

D. J. Bernstein

NIST post-quantum competition:

82 submissions in first round,

from hundreds of people.

− 13 submissions that NIST

declared incomplete or improper.

− 5 withdrawn submissions.

− 3 merged submissions.

22 signature-system submissions.

5 lattice-based: Dilithium;

DRS (broken); FALCONj;

pqNTRUSignj; qTESLA.

2

47 encryption-system submissions.

20 lattice-based:

Compact LWEj (broken);

Dingj; EMBLEM; Frodo;

HILA5 (CCA broken); KCLj;

KINDI; Kyber; LAC; LIMA;

Lizardj; LOTUS; NewHope;

NTRUEncrypt; NTRU HRSS;

NTRU Prime; Odd Manhattan;

Round2j; SABER; Titanium.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

1

Lattice-based

public-key cryptosystems

D. J. Bernstein

NIST post-quantum competition:

82 submissions in first round,

from hundreds of people.

− 13 submissions that NIST

declared incomplete or improper.

− 5 withdrawn submissions.

− 3 merged submissions.

22 signature-system submissions.

5 lattice-based: Dilithium;

DRS (broken); FALCONj;

pqNTRUSignj; qTESLA.

2

47 encryption-system submissions.

20 lattice-based:

Compact LWEj (broken);

Dingj; EMBLEM; Frodo;

HILA5 (CCA broken); KCLj;

KINDI; Kyber; LAC; LIMA;

Lizardj; LOTUS; NewHope;

NTRUEncrypt; NTRU HRSS;

NTRU Prime; Odd Manhattan;

Round2j; SABER; Titanium.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

3

First serious lattice-based

encryption system: NTRU from

Hoffstein–Pipher–Silverman.

Announced 20 August 1996

at Crypto 1996 rump session.

Patented until 2017.

1

Lattice-based

public-key cryptosystems

D. J. Bernstein

NIST post-quantum competition:

82 submissions in first round,

from hundreds of people.

− 13 submissions that NIST

declared incomplete or improper.

− 5 withdrawn submissions.

− 3 merged submissions.

22 signature-system submissions.

5 lattice-based: Dilithium;

DRS (broken); FALCONj;

pqNTRUSignj; qTESLA.

2

47 encryption-system submissions.

20 lattice-based:

Compact LWEj (broken);

Dingj; EMBLEM; Frodo;

HILA5 (CCA broken); KCLj;

KINDI; Kyber; LAC; LIMA;

Lizardj; LOTUS; NewHope;

NTRUEncrypt; NTRU HRSS;

NTRU Prime; Odd Manhattan;

Round2j; SABER; Titanium.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

3

First serious lattice-based

encryption system: NTRU from

Hoffstein–Pipher–Silverman.

Announced 20 August 1996

at Crypto 1996 rump session.

Patented until 2017.

1

Lattice-based

public-key cryptosystems

D. J. Bernstein

NIST post-quantum competition:

82 submissions in first round,

from hundreds of people.

− 13 submissions that NIST

declared incomplete or improper.

− 5 withdrawn submissions.

− 3 merged submissions.

22 signature-system submissions.

5 lattice-based: Dilithium;

DRS (broken); FALCONj;

pqNTRUSignj; qTESLA.

2

47 encryption-system submissions.

20 lattice-based:

Compact LWEj (broken);

Dingj; EMBLEM; Frodo;

HILA5 (CCA broken); KCLj;

KINDI; Kyber; LAC; LIMA;

Lizardj; LOTUS; NewHope;

NTRUEncrypt; NTRU HRSS;

NTRU Prime; Odd Manhattan;

Round2j; SABER; Titanium.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

3

First serious lattice-based

encryption system: NTRU from

Hoffstein–Pipher–Silverman.

Announced 20 August 1996

at Crypto 1996 rump session.

Patented until 2017.

2

47 encryption-system submissions.

20 lattice-based:

Compact LWEj (broken);

Dingj; EMBLEM; Frodo;

HILA5 (CCA broken); KCLj;

KINDI; Kyber; LAC; LIMA;

Lizardj; LOTUS; NewHope;

NTRUEncrypt; NTRU HRSS;

NTRU Prime; Odd Manhattan;

Round2j; SABER; Titanium.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

3

First serious lattice-based

encryption system: NTRU from

Hoffstein–Pipher–Silverman.

Announced 20 August 1996

at Crypto 1996 rump session.

Patented until 2017.

2

47 encryption-system submissions.

20 lattice-based:

Compact LWEj (broken);

Dingj; EMBLEM; Frodo;

HILA5 (CCA broken); KCLj;

KINDI; Kyber; LAC; LIMA;

Lizardj; LOTUS; NewHope;

NTRUEncrypt; NTRU HRSS;

NTRU Prime; Odd Manhattan;

Round2j; SABER; Titanium.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

3

First serious lattice-based

encryption system: NTRU from

Hoffstein–Pipher–Silverman.

Announced 20 August 1996

at Crypto 1996 rump session.

Patented until 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

web.securityinnovation.com

/hubfs/files/ntru-orig.pdf

2

47 encryption-system submissions.

20 lattice-based:

Compact LWEj (broken);

Dingj; EMBLEM; Frodo;

HILA5 (CCA broken); KCLj;

KINDI; Kyber; LAC; LIMA;

Lizardj; LOTUS; NewHope;

NTRUEncrypt; NTRU HRSS;

NTRU Prime; Odd Manhattan;

Round2j; SABER; Titanium.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

3

First serious lattice-based

encryption system: NTRU from

Hoffstein–Pipher–Silverman.

Announced 20 August 1996

at Crypto 1996 rump session.

Patented until 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

web.securityinnovation.com

/hubfs/files/ntru-orig.pdf

Proposed 104-byte public keys

for 280 security.

2

47 encryption-system submissions.

20 lattice-based:

Compact LWEj (broken);

Dingj; EMBLEM; Frodo;

HILA5 (CCA broken); KCLj;

KINDI; Kyber; LAC; LIMA;

Lizardj; LOTUS; NewHope;

NTRUEncrypt; NTRU HRSS;

NTRU Prime; Odd Manhattan;

Round2j; SABER; Titanium.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

3

First serious lattice-based

encryption system: NTRU from

Hoffstein–Pipher–Silverman.

Announced 20 August 1996

at Crypto 1996 rump session.

Patented until 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

web.securityinnovation.com

/hubfs/files/ntru-orig.pdf

Proposed 104-byte public keys

for 280 security.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

2

47 encryption-system submissions.

20 lattice-based:

Compact LWEj (broken);

Dingj; EMBLEM; Frodo;

HILA5 (CCA broken); KCLj;

KINDI; Kyber; LAC; LIMA;

Lizardj; LOTUS; NewHope;

NTRUEncrypt; NTRU HRSS;

NTRU Prime; Odd Manhattan;

Round2j; SABER; Titanium.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

3

First serious lattice-based

encryption system: NTRU from

Hoffstein–Pipher–Silverman.

Announced 20 August 1996

at Crypto 1996 rump session.

Patented until 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

web.securityinnovation.com

/hubfs/files/ntru-orig.pdf

Proposed 104-byte public keys

for 280 security.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

2

47 encryption-system submissions.

20 lattice-based:

Compact LWEj (broken);

Dingj; EMBLEM; Frodo;

HILA5 (CCA broken); KCLj;

KINDI; Kyber; LAC; LIMA;

Lizardj; LOTUS; NewHope;

NTRUEncrypt; NTRU HRSS;

NTRU Prime; Odd Manhattan;

Round2j; SABER; Titanium.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

3

First serious lattice-based

encryption system: NTRU from

Hoffstein–Pipher–Silverman.

Announced 20 August 1996

at Crypto 1996 rump session.

Patented until 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

web.securityinnovation.com

/hubfs/files/ntru-orig.pdf

Proposed 104-byte public keys

for 280 security.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

3

First serious lattice-based

encryption system: NTRU from

Hoffstein–Pipher–Silverman.

Announced 20 August 1996

at Crypto 1996 rump session.

Patented until 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

web.securityinnovation.com

/hubfs/files/ntru-orig.pdf

Proposed 104-byte public keys

for 280 security.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

3

First serious lattice-based

encryption system: NTRU from

Hoffstein–Pipher–Silverman.

Announced 20 August 1996

at Crypto 1996 rump session.

Patented until 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

web.securityinnovation.com

/hubfs/files/ntru-orig.pdf

Proposed 104-byte public keys

for 280 security.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

Coppersmith–Shamir, Eurocrypt

1997: better conversion +

better attacks than LLL.

Quantitative impact? Unclear.

3

First serious lattice-based

encryption system: NTRU from

Hoffstein–Pipher–Silverman.

Announced 20 August 1996

at Crypto 1996 rump session.

Patented until 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

web.securityinnovation.com

/hubfs/files/ntru-orig.pdf

Proposed 104-byte public keys

for 280 security.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

Coppersmith–Shamir, Eurocrypt

1997: better conversion +

better attacks than LLL.

Quantitative impact? Unclear.

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

3

First serious lattice-based

encryption system: NTRU from

Hoffstein–Pipher–Silverman.

Announced 20 August 1996

at Crypto 1996 rump session.

Patented until 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

web.securityinnovation.com

/hubfs/files/ntru-orig.pdf

Proposed 104-byte public keys

for 280 security.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

Coppersmith–Shamir, Eurocrypt

1997: better conversion +

better attacks than LLL.

Quantitative impact? Unclear.

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

5

Let’s try NTRU on the computer.

Debian: apt install sagemath

Fedora: yum install sagemath

Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

3

First serious lattice-based

encryption system: NTRU from

Hoffstein–Pipher–Silverman.

Announced 20 August 1996

at Crypto 1996 rump session.

Patented until 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

web.securityinnovation.com

/hubfs/files/ntru-orig.pdf

Proposed 104-byte public keys

for 280 security.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

Coppersmith–Shamir, Eurocrypt

1997: better conversion +

better attacks than LLL.

Quantitative impact? Unclear.

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

5

Let’s try NTRU on the computer.

Debian: apt install sagemath

Fedora: yum install sagemath

Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

3

First serious lattice-based

encryption system: NTRU from

Hoffstein–Pipher–Silverman.

Announced 20 August 1996

at Crypto 1996 rump session.

Patented until 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

web.securityinnovation.com

/hubfs/files/ntru-orig.pdf

Proposed 104-byte public keys

for 280 security.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

Coppersmith–Shamir, Eurocrypt

1997: better conversion +

better attacks than LLL.

Quantitative impact? Unclear.

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

5

Let’s try NTRU on the computer.

Debian: apt install sagemath

Fedora: yum install sagemath

Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

Coppersmith–Shamir, Eurocrypt

1997: better conversion +

better attacks than LLL.

Quantitative impact? Unclear.

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

5

Let’s try NTRU on the computer.

Debian: apt install sagemath

Fedora: yum install sagemath

Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

Coppersmith–Shamir, Eurocrypt

1997: better conversion +

better attacks than LLL.

Quantitative impact? Unclear.

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

5

Let’s try NTRU on the computer.

Debian: apt install sagemath

Fedora: yum install sagemath

Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage:

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

Coppersmith–Shamir, Eurocrypt

1997: better conversion +

better attacks than LLL.

Quantitative impact? Unclear.

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

5

Let’s try NTRU on the computer.

Debian: apt install sagemath

Fedora: yum install sagemath

Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage:

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

Coppersmith–Shamir, Eurocrypt

1997: better conversion +

better attacks than LLL.

Quantitative impact? Unclear.

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

5

Let’s try NTRU on the computer.

Debian: apt install sagemath

Fedora: yum install sagemath

Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage:

5

Let’s try NTRU on the computer.

Debian: apt install sagemath

Fedora: yum install sagemath

Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage:

5

Let’s try NTRU on the computer.

Debian: apt install sagemath

Fedora: yum install sagemath

Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage:

5

Let’s try NTRU on the computer.

Debian: apt install sagemath

Fedora: yum install sagemath

Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage:

5

Let’s try NTRU on the computer.

Debian: apt install sagemath

Fedora: yum install sagemath

Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage:

5

Let’s try NTRU on the computer.

Debian: apt install sagemath

Fedora: yum install sagemath

Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage:

5

Let’s try NTRU on the computer.

Debian: apt install sagemath

Fedora: yum install sagemath

Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

5

Let’s try NTRU on the computer.

Debian: apt install sagemath

Fedora: yum install sagemath

Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage:

5

Let’s try NTRU on the computer.

Debian: apt install sagemath

Fedora: yum install sagemath

Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage:

5

Let’s try NTRU on the computer.

Debian: apt install sagemath

Fedora: yum install sagemath

Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage: randompoly()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage: randompoly()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage: randompoly()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage: randompoly()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage: randompoly()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage: randompoly()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage: randompoly()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Can we find better algorithms?

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage: randompoly()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage: randompoly()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage: randompoly()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage: randompoly()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so

nonzero output leaks input sign.

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials u,

Sage can make the same mistake.

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials u,

Sage can make the same mistake.

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage:

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials u,

Sage can make the same mistake.

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage:

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials u,

Sage can make the same mistake.

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage:

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials u,

Sage can make the same mistake.

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage:

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials u,

Sage can make the same mistake.

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage:

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials u,

Sage can make the same mistake.

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage:

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials u,

Sage can make the same mistake.

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage:

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials u,

Sage can make the same mistake.

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials u,

Sage can make the same mistake.

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage:

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials u,

Sage can make the same mistake.

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage:

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials u,

Sage can make the same mistake.

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage:

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage:

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage: n = 7

sage:

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage: n = 7

sage: f = randompoly()

sage:

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage: n = 7

sage: f = randompoly()

sage: f3 = invertmodprime(f,3)

sage:

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage: n = 7

sage: f = randompoly()

sage: f3 = invertmodprime(f,3)

sage: convolution(f,f3)

6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +

3*x^2 + 3*x + 4

sage:

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage: n = 7

sage: f = randompoly()

sage: f3 = invertmodprime(f,3)

sage: convolution(f,f3)

6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +

3*x^2 + 3*x + 4

sage:

14

def invertmodpowerof2(f,q):

assert q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

C = convolution

while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: Compare r to previous r.

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage: n = 7

sage: f = randompoly()

sage: f3 = invertmodprime(f,3)

sage: convolution(f,f3)

6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +

3*x^2 + 3*x + 4

sage:

14

def invertmodpowerof2(f,q):

assert q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

C = convolution

while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: Compare r to previous r.

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage: n = 7

sage: f = randompoly()

sage: f3 = invertmodprime(f,3)

sage: convolution(f,f3)

6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +

3*x^2 + 3*x + 4

sage:

14

def invertmodpowerof2(f,q):

assert q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

C = convolution

while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: Compare r to previous r.

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage: n = 7

sage: f = randompoly()

sage: f3 = invertmodprime(f,3)

sage: convolution(f,f3)

6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +

3*x^2 + 3*x + 4

sage:

14

def invertmodpowerof2(f,q):

assert q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

C = convolution

while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: Compare r to previous r.

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage: n = 7

sage: f = randompoly()

sage: f3 = invertmodprime(f,3)

sage: convolution(f,f3)

6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +

3*x^2 + 3*x + 4

sage:

14

def invertmodpowerof2(f,q):

assert q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

C = convolution

while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: Compare r to previous r.

15

sage: n = 7

sage: q = 256

sage:

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage: n = 7

sage: f = randompoly()

sage: f3 = invertmodprime(f,3)

sage: convolution(f,f3)

6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +

3*x^2 + 3*x + 4

sage:

14

def invertmodpowerof2(f,q):

assert q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

C = convolution

while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: Compare r to previous r.

15

sage: n = 7

sage: q = 256

sage:

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage: n = 7

sage: f = randompoly()

sage: f3 = invertmodprime(f,3)

sage: convolution(f,f3)

6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +

3*x^2 + 3*x + 4

sage:

14

def invertmodpowerof2(f,q):

assert q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

C = convolution

while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: Compare r to previous r.

15

sage: n = 7

sage: q = 256

sage:

14

def invertmodpowerof2(f,q):

assert q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

C = convolution

while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: Compare r to previous r.

15

sage: n = 7

sage: q = 256

sage:

14

def invertmodpowerof2(f,q):

assert q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

C = convolution

while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: Compare r to previous r.

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage:

14

def invertmodpowerof2(f,q):

assert q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

C = convolution

while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: Compare r to previous r.

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage:

14

def invertmodpowerof2(f,q):

assert q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

C = convolution

while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: Compare r to previous r.

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,q)

sage:

14

def invertmodpowerof2(f,q):

assert q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

C = convolution

while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: Compare r to previous r.

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage:

14

def invertmodpowerof2(f,q):

assert q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

C = convolution

while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: Compare r to previous r.

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage:

14

def invertmodpowerof2(f,q):

assert q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

C = convolution

while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: Compare r to previous r.

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,q)

1

sage:

14

def invertmodpowerof2(f,q):

assert q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

C = convolution

while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: Compare r to previous r.

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,q)

1

sage:

16

NTRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

14

def invertmodpowerof2(f,q):

assert q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

C = convolution

while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: Compare r to previous r.

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,q)

1

sage:

16

NTRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

14

def invertmodpowerof2(f,q):

assert q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

C = convolution

while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: Compare r to previous r.

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,q)

1

sage:

16

NTRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,q)

1

sage:

16

NTRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,q)

1

sage:

16

NTRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

Secret key:

random n-coeff polynomial a;

random n-coeff polynomial d ;

all coefficients in {−1; 0; 1}.

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,q)

1

sage:

16

NTRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

Secret key:

random n-coeff polynomial a;

random n-coeff polynomial d ;

all coefficients in {−1; 0; 1}.

Require d invertible mod q.

Require d invertible mod 3.

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,q)

1

sage:

16

NTRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

Secret key:

random n-coeff polynomial a;

random n-coeff polynomial d ;

all coefficients in {−1; 0; 1}.

Require d invertible mod q.

Require d invertible mod 3.

Public key: A = 3a=d in the ring

Rq = (Z=q)[x]=(xn − 1).

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,q)

1

sage:

16

NTRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

Secret key:

random n-coeff polynomial a;

random n-coeff polynomial d ;

all coefficients in {−1; 0; 1}.

Require d invertible mod q.

Require d invertible mod 3.

Public key: A = 3a=d in the ring

Rq = (Z=q)[x]=(xn − 1).

17

def keypair():

while True:

try:

d = randompoly()

d3 = invertmodprime(d,3)

dq = invertmodpowerof2(d,q)

break

except:

pass

a = randompoly()

publickey = balancedmod(3 *

convolution(a,dq),q)

secretkey = d,d3

return publickey,secretkey

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,q)

1

sage:

16

NTRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

Secret key:

random n-coeff polynomial a;

random n-coeff polynomial d ;

all coefficients in {−1; 0; 1}.

Require d invertible mod q.

Require d invertible mod 3.

Public key: A = 3a=d in the ring

Rq = (Z=q)[x]=(xn − 1).

17

def keypair():

while True:

try:

d = randompoly()

d3 = invertmodprime(d,3)

dq = invertmodpowerof2(d,q)

break

except:

pass

a = randompoly()

publickey = balancedmod(3 *

convolution(a,dq),q)

secretkey = d,d3

return publickey,secretkey

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,q)

1

sage:

16

NTRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

Secret key:

random n-coeff polynomial a;

random n-coeff polynomial d ;

all coefficients in {−1; 0; 1}.

Require d invertible mod q.

Require d invertible mod 3.

Public key: A = 3a=d in the ring

Rq = (Z=q)[x]=(xn − 1).

17

def keypair():

while True:

try:

d = randompoly()

d3 = invertmodprime(d,3)

dq = invertmodpowerof2(d,q)

break

except:

pass

a = randompoly()

publickey = balancedmod(3 *

convolution(a,dq),q)

secretkey = d,d3

return publickey,secretkey

16

NTRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

Secret key:

random n-coeff polynomial a;

random n-coeff polynomial d ;

all coefficients in {−1; 0; 1}.

Require d invertible mod q.

Require d invertible mod 3.

Public key: A = 3a=d in the ring

Rq = (Z=q)[x]=(xn − 1).

17

def keypair():

while True:

try:

d = randompoly()

d3 = invertmodprime(d,3)

dq = invertmodpowerof2(d,q)

break

except:

pass

a = randompoly()

publickey = balancedmod(3 *

convolution(a,dq),q)

secretkey = d,d3

return publickey,secretkey

16

NTRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

Secret key:

random n-coeff polynomial a;

random n-coeff polynomial d ;

all coefficients in {−1; 0; 1}.

Require d invertible mod q.

Require d invertible mod 3.

Public key: A = 3a=d in the ring

Rq = (Z=q)[x]=(xn − 1).

17

def keypair():

while True:

try:

d = randompoly()

d3 = invertmodprime(d,3)

dq = invertmodpowerof2(d,q)

break

except:

pass

a = randompoly()

publickey = balancedmod(3 *

convolution(a,dq),q)

secretkey = d,d3

return publickey,secretkey

18

sage: A,secretkey = keypair()

sage:

16

NTRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

Secret key:

random n-coeff polynomial a;

random n-coeff polynomial d ;

all coefficients in {−1; 0; 1}.

Require d invertible mod q.

Require d invertible mod 3.

Public key: A = 3a=d in the ring

Rq = (Z=q)[x]=(xn − 1).

17

def keypair():

while True:

try:

d = randompoly()

d3 = invertmodprime(d,3)

dq = invertmodpowerof2(d,q)

break

except:

pass

a = randompoly()

publickey = balancedmod(3 *

convolution(a,dq),q)

secretkey = d,d3

return publickey,secretkey

18

sage: A,secretkey = keypair()

sage:

16

NTRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

Secret key:

random n-coeff polynomial a;

random n-coeff polynomial d ;

all coefficients in {−1; 0; 1}.

Require d invertible mod q.

Require d invertible mod 3.

Public key: A = 3a=d in the ring

Rq = (Z=q)[x]=(xn − 1).

17

def keypair():

while True:

try:

d = randompoly()

d3 = invertmodprime(d,3)

dq = invertmodpowerof2(d,q)

break

except:

pass

a = randompoly()

publickey = balancedmod(3 *

convolution(a,dq),q)

secretkey = d,d3

return publickey,secretkey

18

sage: A,secretkey = keypair()

sage:

17

def keypair():

while True:

try:

d = randompoly()

d3 = invertmodprime(d,3)

dq = invertmodpowerof2(d,q)

break

except:

pass

a = randompoly()

publickey = balancedmod(3 *

convolution(a,dq),q)

secretkey = d,d3

return publickey,secretkey

18

sage: A,secretkey = keypair()

sage:

17

def keypair():

while True:

try:

d = randompoly()

d3 = invertmodprime(d,3)

dq = invertmodpowerof2(d,q)

break

except:

pass

a = randompoly()

publickey = balancedmod(3 *

convolution(a,dq),q)

secretkey = d,d3

return publickey,secretkey

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage:

17

def keypair():

while True:

try:

d = randompoly()

d3 = invertmodprime(d,3)

dq = invertmodpowerof2(d,q)

break

except:

pass

a = randompoly()

publickey = balancedmod(3 *

convolution(a,dq),q)

secretkey = d,d3

return publickey,secretkey

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: d,d3 = secretkey

sage:

17

def keypair():

while True:

try:

d = randompoly()

d3 = invertmodprime(d,3)

dq = invertmodpowerof2(d,q)

break

except:

pass

a = randompoly()

publickey = balancedmod(3 *

convolution(a,dq),q)

secretkey = d,d3

return publickey,secretkey

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: d,d3 = secretkey

sage: d

-x^6 + x^5 - x^4 + x^3 - 1

sage:

17

def keypair():

while True:

try:

d = randompoly()

d3 = invertmodprime(d,3)

dq = invertmodpowerof2(d,q)

break

except:

pass

a = randompoly()

publickey = balancedmod(3 *

convolution(a,dq),q)

secretkey = d,d3

return publickey,secretkey

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: d,d3 = secretkey

sage: d

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(d,A)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage:

17

def keypair():

while True:

try:

d = randompoly()

d3 = invertmodprime(d,3)

dq = invertmodpowerof2(d,q)

break

except:

pass

a = randompoly()

publickey = balancedmod(3 *

convolution(a,dq),q)

secretkey = d,d3

return publickey,secretkey

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: d,d3 = secretkey

sage: d

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(d,A)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

17

def keypair():

while True:

try:

d = randompoly()

d3 = invertmodprime(d,3)

dq = invertmodpowerof2(d,q)

break

except:

pass

a = randompoly()

publickey = balancedmod(3 *

convolution(a,dq),q)

secretkey = d,d3

return publickey,secretkey

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: d,d3 = secretkey

sage: d

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(d,A)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

19

NTRU encryption

One more parameter:

w , positive integer (e.g., 467).

17

def keypair():

while True:

try:

d = randompoly()

d3 = invertmodprime(d,3)

dq = invertmodpowerof2(d,q)

break

except:

pass

a = randompoly()

publickey = balancedmod(3 *

convolution(a,dq),q)

secretkey = d,d3

return publickey,secretkey

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: d,d3 = secretkey

sage: d

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(d,A)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

19

NTRU encryption

One more parameter:

w , positive integer (e.g., 467).

17

def keypair():

while True:

try:

d = randompoly()

d3 = invertmodprime(d,3)

dq = invertmodpowerof2(d,q)

break

except:

pass

a = randompoly()

publickey = balancedmod(3 *

convolution(a,dq),q)

secretkey = d,d3

return publickey,secretkey

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: d,d3 = secretkey

sage: d

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(d,A)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

19

NTRU encryption

One more parameter:

w , positive integer (e.g., 467).

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: d,d3 = secretkey

sage: d

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(d,A)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

19

NTRU encryption

One more parameter:

w , positive integer (e.g., 467).

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: d,d3 = secretkey

sage: d

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(d,A)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

19

NTRU encryption

One more parameter:

w , positive integer (e.g., 467).

Message for encryption:

n-coeff weight-w polynomial c

with all coeffs in {−1; 0; 1}.

“Weight w”: w nonzero coeffs,

n − w zero coeffs.

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: d,d3 = secretkey

sage: d

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(d,A)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

19

NTRU encryption

One more parameter:

w , positive integer (e.g., 467).

Message for encryption:

n-coeff weight-w polynomial c

with all coeffs in {−1; 0; 1}.

“Weight w”: w nonzero coeffs,

n − w zero coeffs.

Ciphertext: C = Ab + c in Rq

where b is chosen randomly

from the set of messages.

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: d,d3 = secretkey

sage: d

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(d,A)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

19

NTRU encryption

One more parameter:

w , positive integer (e.g., 467).

Message for encryption:

n-coeff weight-w polynomial c

with all coeffs in {−1; 0; 1}.

“Weight w”: w nonzero coeffs,

n − w zero coeffs.

Ciphertext: C = Ab + c in Rq

where b is chosen randomly

from the set of messages.

20

sage: def randommessage():

....: R = randrange

....: assert w <= n

....: c = n*[0]

....: for j in range(w):

....: while True:

....: r = R(n)

....: if not c[r]: break

....: c[r] = 1-2*R(2)

....: return Zx(c)

....:

sage: w = 5

sage: randommessage()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: d,d3 = secretkey

sage: d

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(d,A)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

19

NTRU encryption

One more parameter:

w , positive integer (e.g., 467).

Message for encryption:

n-coeff weight-w polynomial c

with all coeffs in {−1; 0; 1}.

“Weight w”: w nonzero coeffs,

n − w zero coeffs.

Ciphertext: C = Ab + c in Rq

where b is chosen randomly

from the set of messages.

20

sage: def randommessage():

....: R = randrange

....: assert w <= n

....: c = n*[0]

....: for j in range(w):

....: while True:

....: r = R(n)

....: if not c[r]: break

....: c[r] = 1-2*R(2)

....: return Zx(c)

....:

sage: w = 5

sage: randommessage()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: d,d3 = secretkey

sage: d

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(d,A)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

19

NTRU encryption

One more parameter:

w , positive integer (e.g., 467).

Message for encryption:

n-coeff weight-w polynomial c

with all coeffs in {−1; 0; 1}.

“Weight w”: w nonzero coeffs,

n − w zero coeffs.

Ciphertext: C = Ab + c in Rq

where b is chosen randomly

from the set of messages.

20

sage: def randommessage():

....: R = randrange

....: assert w <= n

....: c = n*[0]

....: for j in range(w):

....: while True:

....: r = R(n)

....: if not c[r]: break

....: c[r] = 1-2*R(2)

....: return Zx(c)

....:

sage: w = 5

sage: randommessage()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

19

NTRU encryption

One more parameter:

w , positive integer (e.g., 467).

Message for encryption:

n-coeff weight-w polynomial c

with all coeffs in {−1; 0; 1}.

“Weight w”: w nonzero coeffs,

n − w zero coeffs.

Ciphertext: C = Ab + c in Rq

where b is chosen randomly

from the set of messages.

20

sage: def randommessage():

....: R = randrange

....: assert w <= n

....: c = n*[0]

....: for j in range(w):

....: while True:

....: r = R(n)

....: if not c[r]: break

....: c[r] = 1-2*R(2)

....: return Zx(c)

....:

sage: w = 5

sage: randommessage()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

19

NTRU encryption

One more parameter:

w , positive integer (e.g., 467).

Message for encryption:

n-coeff weight-w polynomial c

with all coeffs in {−1; 0; 1}.

“Weight w”: w nonzero coeffs,

n − w zero coeffs.

Ciphertext: C = Ab + c in Rq

where b is chosen randomly

from the set of messages.

20

sage: def randommessage():

....: R = randrange

....: assert w <= n

....: c = n*[0]

....: for j in range(w):

....: while True:

....: r = R(n)

....: if not c[r]: break

....: c[r] = 1-2*R(2)

....: return Zx(c)

....:

sage: w = 5

sage: randommessage()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage:

19

NTRU encryption

One more parameter:

w , positive integer (e.g., 467).

Message for encryption:

n-coeff weight-w polynomial c

with all coeffs in {−1; 0; 1}.

“Weight w”: w nonzero coeffs,

n − w zero coeffs.

Ciphertext: C = Ab + c in Rq

where b is chosen randomly

from the set of messages.

20

sage: def randommessage():

....: R = randrange

....: assert w <= n

....: c = n*[0]

....: for j in range(w):

....: while True:

....: r = R(n)

....: if not c[r]: break

....: c[r] = 1-2*R(2)

....: return Zx(c)

....:

sage: w = 5

sage: randommessage()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage:

19

NTRU encryption

One more parameter:

w , positive integer (e.g., 467).

Message for encryption:

n-coeff weight-w polynomial c

with all coeffs in {−1; 0; 1}.

“Weight w”: w nonzero coeffs,

n − w zero coeffs.

Ciphertext: C = Ab + c in Rq

where b is chosen randomly

from the set of messages.

20

sage: def randommessage():

....: R = randrange

....: assert w <= n

....: c = n*[0]

....: for j in range(w):

....: while True:

....: r = R(n)

....: if not c[r]: break

....: c[r] = 1-2*R(2)

....: return Zx(c)

....:

sage: w = 5

sage: randommessage()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage:

20

sage: def randommessage():

....: R = randrange

....: assert w <= n

....: c = n*[0]

....: for j in range(w):

....: while True:

....: r = R(n)

....: if not c[r]: break

....: c[r] = 1-2*R(2)

....: return Zx(c)

....:

sage: w = 5

sage: randommessage()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage:

20

sage: def randommessage():

....: R = randrange

....: assert w <= n

....: c = n*[0]

....: for j in range(w):

....: while True:

....: r = R(n)

....: if not c[r]: break

....: c[r] = 1-2*R(2)

....: return Zx(c)

....:

sage: w = 5

sage: randommessage()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage:

20

sage: def randommessage():

....: R = randrange

....: assert w <= n

....: c = n*[0]

....: for j in range(w):

....: while True:

....: r = R(n)

....: if not c[r]: break

....: c[r] = 1-2*R(2)

....: return Zx(c)

....:

sage: w = 5

sage: randommessage()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage:

20

sage: def randommessage():

....: R = randrange

....: assert w <= n

....: c = n*[0]

....: for j in range(w):

....: while True:

....: r = R(n)

....: if not c[r]: break

....: c[r] = 1-2*R(2)

....: return Zx(c)

....:

sage: w = 5

sage: randommessage()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage: C = encrypt(c,A)

sage:

20

sage: def randommessage():

....: R = randrange

....: assert w <= n

....: c = n*[0]

....: for j in range(w):

....: while True:

....: r = R(n)

....: if not c[r]: break

....: c[r] = 1-2*R(2)

....: return Zx(c)

....:

sage: w = 5

sage: randommessage()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage: C = encrypt(c,A)

sage: C

21*x^6 - 48*x^5 + 31*x^4 -

76*x^3 - 77*x^2 + 15*x - 113

sage:

20

sage: def randommessage():

....: R = randrange

....: assert w <= n

....: c = n*[0]

....: for j in range(w):

....: while True:

....: r = R(n)

....: if not c[r]: break

....: c[r] = 1-2*R(2)

....: return Zx(c)

....:

sage: w = 5

sage: randommessage()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage: C = encrypt(c,A)

sage: C

21*x^6 - 48*x^5 + 31*x^4 -

76*x^3 - 77*x^2 + 15*x - 113

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

20

sage: def randommessage():

....: R = randrange

....: assert w <= n

....: c = n*[0]

....: for j in range(w):

....: while True:

....: r = R(n)

....: if not c[r]: break

....: c[r] = 1-2*R(2)

....: return Zx(c)

....:

sage: w = 5

sage: randommessage()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage: C = encrypt(c,A)

sage: C

21*x^6 - 48*x^5 + 31*x^4 -

76*x^3 - 77*x^2 + 15*x - 113

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

20

sage: def randommessage():

....: R = randrange

....: assert w <= n

....: c = n*[0]

....: for j in range(w):

....: while True:

....: r = R(n)

....: if not c[r]: break

....: c[r] = 1-2*R(2)

....: return Zx(c)

....:

sage: w = 5

sage: randommessage()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage: C = encrypt(c,A)

sage: C

21*x^6 - 48*x^5 + 31*x^4 -

76*x^3 - 77*x^2 + 15*x - 113

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage: C = encrypt(c,A)

sage: C

21*x^6 - 48*x^5 + 31*x^4 -

76*x^3 - 77*x^2 + 15*x - 113

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage: C = encrypt(c,A)

sage: C

21*x^6 - 48*x^5 + 31*x^4 -

76*x^3 - 77*x^2 + 15*x - 113

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage: C = encrypt(c,A)

sage: C

21*x^6 - 48*x^5 + 31*x^4 -

76*x^3 - 77*x^2 + 15*x - 113

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage: C = encrypt(c,A)

sage: C

21*x^6 - 48*x^5 + 31*x^4 -

76*x^3 - 77*x^2 + 15*x - 113

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

Then 3ab + dc in Rq reveals

3ab + dc in R = Z[x]=(xn − 1).

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage: C = encrypt(c,A)

sage: C

21*x^6 - 48*x^5 + 31*x^4 -

76*x^3 - 77*x^2 + 15*x - 113

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

Then 3ab + dc in Rq reveals

3ab + dc in R = Z[x]=(xn − 1).

Reduce modulo 3: dc in R3.

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage: C = encrypt(c,A)

sage: C

21*x^6 - 48*x^5 + 31*x^4 -

76*x^3 - 77*x^2 + 15*x - 113

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

Then 3ab + dc in Rq reveals

3ab + dc in R = Z[x]=(xn − 1).

Reduce modulo 3: dc in R3.

Multiply by 1=d in R3

to recover message c in R3.

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage: C = encrypt(c,A)

sage: C

21*x^6 - 48*x^5 + 31*x^4 -

76*x^3 - 77*x^2 + 15*x - 113

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

Then 3ab + dc in Rq reveals

3ab + dc in R = Z[x]=(xn − 1).

Reduce modulo 3: dc in R3.

Multiply by 1=d in R3

to recover message c in R3.

Coeffs are between −1 and 1,

so recover c in R.

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage: C = encrypt(c,A)

sage: C

21*x^6 - 48*x^5 + 31*x^4 -

76*x^3 - 77*x^2 + 15*x - 113

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

Then 3ab + dc in Rq reveals

3ab + dc in R = Z[x]=(xn − 1).

Reduce modulo 3: dc in R3.

Multiply by 1=d in R3

to recover message c in R3.

Coeffs are between −1 and 1,

so recover c in R.

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage:

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage: C = encrypt(c,A)

sage: C

21*x^6 - 48*x^5 + 31*x^4 -

76*x^3 - 77*x^2 + 15*x - 113

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

Then 3ab + dc in Rq reveals

3ab + dc in R = Z[x]=(xn − 1).

Reduce modulo 3: dc in R3.

Multiply by 1=d in R3

to recover message c in R3.

Coeffs are between −1 and 1,

so recover c in R.

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage:

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage: C = encrypt(c,A)

sage: C

21*x^6 - 48*x^5 + 31*x^4 -

76*x^3 - 77*x^2 + 15*x - 113

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

Then 3ab + dc in Rq reveals

3ab + dc in R = Z[x]=(xn − 1).

Reduce modulo 3: dc in R3.

Multiply by 1=d in R3

to recover message c in R3.

Coeffs are between −1 and 1,

so recover c in R.

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

Then 3ab + dc in Rq reveals

3ab + dc in R = Z[x]=(xn − 1).

Reduce modulo 3: dc in R3.

Multiply by 1=d in R3

to recover message c in R3.

Coeffs are between −1 and 1,

so recover c in R.

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

Then 3ab + dc in Rq reveals

3ab + dc in R = Z[x]=(xn − 1).

Reduce modulo 3: dc in R3.

Multiply by 1=d in R3

to recover message c in R3.

Coeffs are between −1 and 1,

so recover c in R.

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

Then 3ab + dc in Rq reveals

3ab + dc in R = Z[x]=(xn − 1).

Reduce modulo 3: dc in R3.

Multiply by 1=d in R3

to recover message c in R3.

Coeffs are between −1 and 1,

so recover c in R.

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage: decrypt(C,secretkey)

x^5 + x^4 - x^3 + x + 1

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

Then 3ab + dc in Rq reveals

3ab + dc in R = Z[x]=(xn − 1).

Reduce modulo 3: dc in R3.

Multiply by 1=d in R3

to recover message c in R3.

Coeffs are between −1 and 1,

so recover c in R.

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage: decrypt(C,secretkey)

x^5 + x^4 - x^3 + x + 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

Then 3ab + dc in Rq reveals

3ab + dc in R = Z[x]=(xn − 1).

Reduce modulo 3: dc in R3.

Multiply by 1=d in R3

to recover message c in R3.

Coeffs are between −1 and 1,

so recover c in R.

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage: decrypt(C,secretkey)

x^5 + x^4 - x^3 + x + 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

Then 3ab + dc in Rq reveals

3ab + dc in R = Z[x]=(xn − 1).

Reduce modulo 3: dc in R3.

Multiply by 1=d in R3

to recover message c in R3.

Coeffs are between −1 and 1,

so recover c in R.

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage: decrypt(C,secretkey)

x^5 + x^4 - x^3 + x + 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage:

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage: decrypt(C,secretkey)

x^5 + x^4 - x^3 + x + 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage:

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage: decrypt(C,secretkey)

x^5 + x^4 - x^3 + x + 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage:

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage: decrypt(C,secretkey)

x^5 + x^4 - x^3 + x + 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage:

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage: decrypt(C,secretkey)

x^5 + x^4 - x^3 + x + 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage:

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage: decrypt(C,secretkey)

x^5 + x^4 - x^3 + x + 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage:

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage: decrypt(C,secretkey)

x^5 + x^4 - x^3 + x + 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage:

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage: decrypt(C,secretkey)

x^5 + x^4 - x^3 + x + 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage:

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage: decrypt(C,secretkey)

x^5 + x^4 - x^3 + x + 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage:

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage: decrypt(C,secretkey)

x^5 + x^4 - x^3 + x + 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*x^2 - 3*x

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage: decrypt(C,secretkey)

x^5 + x^4 - x^3 + x + 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*x^2 - 3*x

25

sage: c = randommessage()

sage:

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage: decrypt(C,secretkey)

x^5 + x^4 - x^3 + x + 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*x^2 - 3*x

25

sage: c = randommessage()

sage:

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage: decrypt(C,secretkey)

x^5 + x^4 - x^3 + x + 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*x^2 - 3*x

25

sage: c = randommessage()

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*x^2 - 3*x

25

sage: c = randommessage()

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*x^2 - 3*x

25

sage: c = randommessage()

sage: b = randommessage()

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*x^2 - 3*x

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*x^2 - 3*x

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*x^2 - 3*x

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage: u = M(conv(C,d),q)

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*x^2 - 3*x

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage: u = M(conv(C,d),q)

sage: u

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*x^2 - 3*x

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage: u = M(conv(C,d),q)

sage: u

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

sage: conv(a3,b)+conv(c,d)

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*x^2 - 3*x

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage: u = M(conv(C,d),q)

sage: u

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

sage: conv(a3,b)+conv(c,d)

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*x^2 - 3*x

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage: u = M(conv(C,d),q)

sage: u

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

sage: conv(a3,b)+conv(c,d)

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*x^2 - 3*x

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage: u = M(conv(C,d),q)

sage: u

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

sage: conv(a3,b)+conv(c,d)

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage:

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage: u = M(conv(C,d),q)

sage: u

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

sage: conv(a3,b)+conv(c,d)

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage:

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage: u = M(conv(C,d),q)

sage: u

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

sage: conv(a3,b)+conv(c,d)

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage:

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage: u = M(conv(C,d),q)

sage: u

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

sage: conv(a3,b)+conv(c,d)

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: conv(M(u,3),d3)

x^6 - x^5 - x^4 - 3*x^3 - x^2 +

x - 3

sage:

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage: u = M(conv(C,d),q)

sage: u

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

sage: conv(a3,b)+conv(c,d)

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: conv(M(u,3),d3)

x^6 - x^5 - x^4 - 3*x^3 - x^2 +

x - 3

sage: M(_,3)

x^6 - x^5 - x^4 - x^2 + x

sage:

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage: u = M(conv(C,d),q)

sage: u

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

sage: conv(a3,b)+conv(c,d)

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: conv(M(u,3),d3)

x^6 - x^5 - x^4 - 3*x^3 - x^2 +

x - 3

sage: M(_,3)

x^6 - x^5 - x^4 - x^2 + x

sage: c

x^6 - x^5 - x^4 - x^2 + x

sage:

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage: u = M(conv(C,d),q)

sage: u

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

sage: conv(a3,b)+conv(c,d)

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: conv(M(u,3),d3)

x^6 - x^5 - x^4 - 3*x^3 - x^2 +

x - 3

sage: M(_,3)

x^6 - x^5 - x^4 - x^2 + x

sage: c

x^6 - x^5 - x^4 - x^2 + x

sage:

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage: u = M(conv(C,d),q)

sage: u

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

sage: conv(a3,b)+conv(c,d)

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: conv(M(u,3),d3)

x^6 - x^5 - x^4 - 3*x^3 - x^2 +

x - 3

sage: M(_,3)

x^6 - x^5 - x^4 - x^2 + x

sage: c

x^6 - x^5 - x^4 - x^2 + x

sage:

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage: u = M(conv(C,d),q)

sage: u

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

sage: conv(a3,b)+conv(c,d)

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: conv(M(u,3),d3)

x^6 - x^5 - x^4 - 3*x^3 - x^2 +

x - 3

sage: M(_,3)

x^6 - x^5 - x^4 - x^2 + x

sage: c

x^6 - x^5 - x^4 - x^2 + x

sage:

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: conv(M(u,3),d3)

x^6 - x^5 - x^4 - 3*x^3 - x^2 +

x - 3

sage: M(_,3)

x^6 - x^5 - x^4 - x^2 + x

sage: c

x^6 - x^5 - x^4 - x^2 + x

sage:

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: conv(M(u,3),d3)

x^6 - x^5 - x^4 - 3*x^3 - x^2 +

x - 3

sage: M(_,3)

x^6 - x^5 - x^4 - x^2 + x

sage: c

x^6 - x^5 - x^4 - x^2 + x

sage:

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w .

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: conv(M(u,3),d3)

x^6 - x^5 - x^4 - 3*x^3 - x^2 +

x - 3

sage: M(_,3)

x^6 - x^5 - x^4 - x^2 + x

sage: c

x^6 - x^5 - x^4 - x^2 + x

sage:

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w .

(Same argument would work for

b of any weight, a of weight w .)

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: conv(M(u,3),d3)

x^6 - x^5 - x^4 - 3*x^3 - x^2 +

x - 3

sage: M(_,3)

x^6 - x^5 - x^4 - x^2 + x

sage: c

x^6 - x^5 - x^4 - x^2 + x

sage:

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w .

(Same argument would work for

b of any weight, a of weight w .)

Similar comments for d; c .

Each coeff of 3ab + dc in R

has absolute value at most 4w .

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: conv(M(u,3),d3)

x^6 - x^5 - x^4 - 3*x^3 - x^2 +

x - 3

sage: M(_,3)

x^6 - x^5 - x^4 - x^2 + x

sage: c

x^6 - x^5 - x^4 - x^2 + x

sage:

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w .

(Same argument would work for

b of any weight, a of weight w .)

Similar comments for d; c .

Each coeff of 3ab + dc in R

has absolute value at most 4w .

e.g. w = 467: at most 1868.

Decryption works for q = 4096.

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: conv(M(u,3),d3)

x^6 - x^5 - x^4 - 3*x^3 - x^2 +

x - 3

sage: M(_,3)

x^6 - x^5 - x^4 - x^2 + x

sage: c

x^6 - x^5 - x^4 - x^2 + x

sage:

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w .

(Same argument would work for

b of any weight, a of weight w .)

Similar comments for d; c .

Each coeff of 3ab + dc in R

has absolute value at most 4w .

e.g. w = 467: at most 1868.

Decryption works for q = 4096.

28

What about w = 467, q = 2048?

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: conv(M(u,3),d3)

x^6 - x^5 - x^4 - 3*x^3 - x^2 +

x - 3

sage: M(_,3)

x^6 - x^5 - x^4 - x^2 + x

sage: c

x^6 - x^5 - x^4 - x^2 + x

sage:

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w .

(Same argument would work for

b of any weight, a of weight w .)

Similar comments for d; c .

Each coeff of 3ab + dc in R

has absolute value at most 4w .

e.g. w = 467: at most 1868.

Decryption works for q = 4096.

28

What about w = 467, q = 2048?

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: conv(M(u,3),d3)

x^6 - x^5 - x^4 - 3*x^3 - x^2 +

x - 3

sage: M(_,3)

x^6 - x^5 - x^4 - x^2 + x

sage: c

x^6 - x^5 - x^4 - x^2 + x

sage:

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w .

(Same argument would work for

b of any weight, a of weight w .)

Similar comments for d; c .

Each coeff of 3ab + dc in R

has absolute value at most 4w .

e.g. w = 467: at most 1868.

Decryption works for q = 4096.

28

What about w = 467, q = 2048?

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w .

(Same argument would work for

b of any weight, a of weight w .)

Similar comments for d; c .

Each coeff of 3ab + dc in R

has absolute value at most 4w .

e.g. w = 467: at most 1868.

Decryption works for q = 4096.

28

What about w = 467, q = 2048?

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w .

(Same argument would work for

b of any weight, a of weight w .)

Similar comments for d; c .

Each coeff of 3ab + dc in R

has absolute value at most 4w .

e.g. w = 467: at most 1868.

Decryption works for q = 4096.

28

What about w = 467, q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xw−1:

3ab + dc has a coeff 4w > q=2.

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w .

(Same argument would work for

b of any weight, a of weight w .)

Similar comments for d; c .

Each coeff of 3ab + dc in R

has absolute value at most 4w .

e.g. w = 467: at most 1868.

Decryption works for q = 4096.

28

What about w = 467, q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xw−1:

3ab + dc has a coeff 4w > q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w .

(Same argument would work for

b of any weight, a of weight w .)

Similar comments for d; c .

Each coeff of 3ab + dc in R

has absolute value at most 4w .

e.g. w = 467: at most 1868.

Decryption works for q = 4096.

28

What about w = 467, q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xw−1:

3ab + dc has a coeff 4w > q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w .

(Same argument would work for

b of any weight, a of weight w .)

Similar comments for d; c .

Each coeff of 3ab + dc in R

has absolute value at most 4w .

e.g. w = 467: at most 1868.

Decryption works for q = 4096.

28

What about w = 467, q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xw−1:

3ab + dc has a coeff 4w > q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

29

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings may

not be valid after all”.

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w .

(Same argument would work for

b of any weight, a of weight w .)

Similar comments for d; c .

Each coeff of 3ab + dc in R

has absolute value at most 4w .

e.g. w = 467: at most 1868.

Decryption works for q = 4096.

28

What about w = 467, q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xw−1:

3ab + dc has a coeff 4w > q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

29

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings may

not be valid after all”.

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w .

(Same argument would work for

b of any weight, a of weight w .)

Similar comments for d; c .

Each coeff of 3ab + dc in R

has absolute value at most 4w .

e.g. w = 467: at most 1868.

Decryption works for q = 4096.

28

What about w = 467, q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xw−1:

3ab + dc has a coeff 4w > q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

29

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings may

not be valid after all”.

28

What about w = 467, q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xw−1:

3ab + dc has a coeff 4w > q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

29

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings may

not be valid after all”.

28

What about w = 467, q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xw−1:

3ab + dc has a coeff 4w > q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

29

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings may

not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

28

What about w = 467, q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xw−1:

3ab + dc has a coeff 4w > q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

29

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings may

not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

28

What about w = 467, q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xw−1:

3ab + dc has a coeff 4w > q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

29

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings may

not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

28

What about w = 467, q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xw−1:

3ab + dc has a coeff 4w > q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

29

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings may

not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

29

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings may

not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

29

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings may

not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

Some coeff is large ⇔
c0; c1; : : : ; cn−1 has high

correlation with some rotation

of dn−1; dn−2; : : : ; d0.

29

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings may

not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

Some coeff is large ⇔
c0; c1; : : : ; cn−1 has high

correlation with some rotation

of dn−1; dn−2; : : : ; d0.

i.e. c is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
n−1+· · ·+dn−1x .

29

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings may

not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

Some coeff is large ⇔
c0; c1; : : : ; cn−1 has high

correlation with some rotation

of dn−1; dn−2; : : : ; d0.

i.e. c is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
n−1+· · ·+dn−1x .

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

29

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings may

not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

Some coeff is large ⇔
c0; c1; : : : ; cn−1 has high

correlation with some rotation

of dn−1; dn−2; : : : ; d0.

i.e. c is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
n−1+· · ·+dn−1x .

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

29

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings may

not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

Some coeff is large ⇔
c0; c1; : : : ; cn−1 has high

correlation with some rotation

of dn−1; dn−2; : : : ; d0.

i.e. c is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
n−1+· · ·+dn−1x .

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

Some coeff is large ⇔
c0; c1; : : : ; cn−1 has high

correlation with some rotation

of dn−1; dn−2; : : : ; d0.

i.e. c is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
n−1+· · ·+dn−1x .

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

Some coeff is large ⇔
c0; c1; : : : ; cn−1 has high

correlation with some rotation

of dn−1; dn−2; : : : ; d0.

i.e. c is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
n−1+· · ·+dn−1x .

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

rev(c) correlated with x−id .

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

Some coeff is large ⇔
c0; c1; : : : ; cn−1 has high

correlation with some rotation

of dn−1; dn−2; : : : ; d0.

i.e. c is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
n−1+· · ·+dn−1x .

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

rev(c) correlated with x−id .

c rev(c) correlated with d rev(d).

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

Some coeff is large ⇔
c0; c1; : : : ; cn−1 has high

correlation with some rotation

of dn−1; dn−2; : : : ; d0.

i.e. c is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
n−1+· · ·+dn−1x .

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

rev(c) correlated with x−id .

c rev(c) correlated with d rev(d).

Experimentally confirmed:

Average of c rev(c)

over some decryption failures

is close to d rev(d).

Round to integers: d rev(d).

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

Some coeff is large ⇔
c0; c1; : : : ; cn−1 has high

correlation with some rotation

of dn−1; dn−2; : : : ; d0.

i.e. c is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
n−1+· · ·+dn−1x .

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

rev(c) correlated with x−id .

c rev(c) correlated with d rev(d).

Experimentally confirmed:

Average of c rev(c)

over some decryption failures

is close to d rev(d).

Round to integers: d rev(d).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds d .

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

Some coeff is large ⇔
c0; c1; : : : ; cn−1 has high

correlation with some rotation

of dn−1; dn−2; : : : ; d0.

i.e. c is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
n−1+· · ·+dn−1x .

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

rev(c) correlated with x−id .

c rev(c) correlated with d rev(d).

Experimentally confirmed:

Average of c rev(c)

over some decryption failures

is close to d rev(d).

Round to integers: d rev(d).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds d .

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

Some coeff is large ⇔
c0; c1; : : : ; cn−1 has high

correlation with some rotation

of dn−1; dn−2; : : : ; d0.

i.e. c is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
n−1+· · ·+dn−1x .

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

rev(c) correlated with x−id .

c rev(c) correlated with d rev(d).

Experimentally confirmed:

Average of c rev(c)

over some decryption failures

is close to d rev(d).

Round to integers: d rev(d).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds d .

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

Some coeff is large ⇔
c0; c1; : : : ; cn−1 has high

correlation with some rotation

of dn−1; dn−2; : : : ; d0.

i.e. c is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
n−1+· · ·+dn−1x .

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

rev(c) correlated with x−id .

c rev(c) correlated with d rev(d).

Experimentally confirmed:

Average of c rev(c)

over some decryption failures

is close to d rev(d).

Round to integers: d rev(d).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds d .

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

rev(c) correlated with x−id .

c rev(c) correlated with d rev(d).

Experimentally confirmed:

Average of c rev(c)

over some decryption failures

is close to d rev(d).

Round to integers: d rev(d).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds d .

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

rev(c) correlated with x−id .

c rev(c) correlated with d rev(d).

Experimentally confirmed:

Average of c rev(c)

over some decryption failures

is close to d rev(d).

Round to integers: d rev(d).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds d .

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

c ± 1, c ± x , : : : , c ± xn−1;

c ± 2, c ± 2x , : : : , c ± 2xn−1;

c ± 3, etc.

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

rev(c) correlated with x−id .

c rev(c) correlated with d rev(d).

Experimentally confirmed:

Average of c rev(c)

over some decryption failures

is close to d rev(d).

Round to integers: d rev(d).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds d .

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

c ± 1, c ± x , : : : , c ± xn−1;

c ± 2, c ± 2x , : : : , c ± 2xn−1;

c ± 3, etc.

This changes 3ab + dc: adds

±d , ±xd , : : : , ±xn−1d ;

±2d , ±2xd , : : : , ±2xn−1d ;

±3d , etc.

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

rev(c) correlated with x−id .

c rev(c) correlated with d rev(d).

Experimentally confirmed:

Average of c rev(c)

over some decryption failures

is close to d rev(d).

Round to integers: d rev(d).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds d .

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

c ± 1, c ± x , : : : , c ± xn−1;

c ± 2, c ± 2x , : : : , c ± 2xn−1;

c ± 3, etc.

This changes 3ab + dc: adds

±d , ±xd , : : : , ±xn−1d ;

±2d , ±2xd , : : : , ±2xn−1d ;

±3d , etc.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

rev(c) correlated with x−id .

c rev(c) correlated with d rev(d).

Experimentally confirmed:

Average of c rev(c)

over some decryption failures

is close to d rev(d).

Round to integers: d rev(d).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds d .

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

c ± 1, c ± x , : : : , c ± xn−1;

c ± 2, c ± 2x , : : : , c ± 2xn−1;

c ± 3, etc.

This changes 3ab + dc: adds

±d , ±xd , : : : , ±xn−1d ;

±2d , ±2xd , : : : , ±2xn−1d ;

±3d , etc.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

rev(c) correlated with x−id .

c rev(c) correlated with d rev(d).

Experimentally confirmed:

Average of c rev(c)

over some decryption failures

is close to d rev(d).

Round to integers: d rev(d).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds d .

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

c ± 1, c ± x , : : : , c ± xn−1;

c ± 2, c ± 2x , : : : , c ± 2xn−1;

c ± 3, etc.

This changes 3ab + dc: adds

±d , ±xd , : : : , ±xn−1d ;

±2d , ±2xd , : : : , ±2xn−1d ;

±3d , etc.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

c ± 1, c ± x , : : : , c ± xn−1;

c ± 2, c ± 2x , : : : , c ± 2xn−1;

c ± 3, etc.

This changes 3ab + dc: adds

±d , ±xd , : : : , ±xn−1d ;

±2d , ±2xd , : : : , ±2xn−1d ;

±3d , etc.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

c ± 1, c ± x , : : : , c ± xn−1;

c ± 2, c ± 2x , : : : , c ± 2xn−1;

c ± 3, etc.

This changes 3ab + dc: adds

±d , ±xd , : : : , ±xn−1d ;

±2d , ±2xd , : : : , ±2xn−1d ;

±3d , etc.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

Then 3ab + dc + kd =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

c ± 1, c ± x , : : : , c ± xn−1;

c ± 2, c ± 2x , : : : , c ± 2xn−1;

c ± 3, etc.

This changes 3ab + dc: adds

±d , ±xd , : : : , ±xn−1d ;

±2d , ±2xd , : : : , ±2xn−1d ;

±3d , etc.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

Then 3ab + dc + kd =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that falis.

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

c ± 1, c ± x , : : : , c ± xn−1;

c ± 2, c ± 2x , : : : , c ± 2xn−1;

c ± 3, etc.

This changes 3ab + dc: adds

±d , ±xd , : : : , ±xn−1d ;

±2d , ±2xd , : : : , ±2xn−1d ;

±3d , etc.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

Then 3ab + dc + kd =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?

Yes if xd = · · ·+ x478 + · · ·,
i.e., if d = · · ·+ x477 + · · ·.

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

c ± 1, c ± x , : : : , c ± xn−1;

c ± 2, c ± 2x , : : : , c ± 2xn−1;

c ± 3, etc.

This changes 3ab + dc: adds

±d , ±xd , : : : , ±xn−1d ;

±2d , ±2xd , : : : , ±2xn−1d ;

±3d , etc.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

Then 3ab + dc + kd =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?

Yes if xd = · · ·+ x478 + · · ·,
i.e., if d = · · ·+ x477 + · · ·.

Try x2kd , x3kd , etc.

See pattern of d coeffs.

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

c ± 1, c ± x , : : : , c ± xn−1;

c ± 2, c ± 2x , : : : , c ± 2xn−1;

c ± 3, etc.

This changes 3ab + dc: adds

±d , ±xd , : : : , ±xn−1d ;

±2d , ±2xd , : : : , ±2xn−1d ;

±3d , etc.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

Then 3ab + dc + kd =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?

Yes if xd = · · ·+ x478 + · · ·,
i.e., if d = · · ·+ x477 + · · ·.

Try x2kd , x3kd , etc.

See pattern of d coeffs.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

c ± 1, c ± x , : : : , c ± xn−1;

c ± 2, c ± 2x , : : : , c ± 2xn−1;

c ± 3, etc.

This changes 3ab + dc: adds

±d , ±xd , : : : , ±xn−1d ;

±2d , ±2xd , : : : , ±2xn−1d ;

±3d , etc.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

Then 3ab + dc + kd =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?

Yes if xd = · · ·+ x478 + · · ·,
i.e., if d = · · ·+ x477 + · · ·.

Try x2kd , x3kd , etc.

See pattern of d coeffs.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

c ± 1, c ± x , : : : , c ± xn−1;

c ± 2, c ± 2x , : : : , c ± 2xn−1;

c ± 3, etc.

This changes 3ab + dc: adds

±d , ±xd , : : : , ±xn−1d ;

±2d , ±2xd , : : : , ±2xn−1d ;

±3d , etc.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

Then 3ab + dc + kd =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?

Yes if xd = · · ·+ x478 + · · ·,
i.e., if d = · · ·+ x477 + · · ·.

Try x2kd , x3kd , etc.

See pattern of d coeffs.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

Then 3ab + dc + kd =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?

Yes if xd = · · ·+ x478 + · · ·,
i.e., if d = · · ·+ x477 + · · ·.

Try x2kd , x3kd , etc.

See pattern of d coeffs.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

Then 3ab + dc + kd =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?

Yes if xd = · · ·+ x478 + · · ·,
i.e., if d = · · ·+ x477 + · · ·.

Try x2kd , x3kd , etc.

See pattern of d coeffs.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA” version

of New Hope; Ding.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

Then 3ab + dc + kd =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?

Yes if xd = · · ·+ x478 + · · ·,
i.e., if d = · · ·+ x477 + · · ·.

Try x2kd , x3kd , etc.

See pattern of d coeffs.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA” version

of New Hope; Ding.

If user reuses a key:

Blame user for the attacks.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

Then 3ab + dc + kd =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?

Yes if xd = · · ·+ x478 + · · ·,
i.e., if d = · · ·+ x477 + · · ·.

Try x2kd , x3kd , etc.

See pattern of d coeffs.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA” version

of New Hope; Ding.

If user reuses a key:

Blame user for the attacks.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

Then 3ab + dc + kd =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?

Yes if xd = · · ·+ x478 + · · ·,
i.e., if d = · · ·+ x477 + · · ·.

Try x2kd , x3kd , etc.

See pattern of d coeffs.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA” version

of New Hope; Ding.

If user reuses a key:

Blame user for the attacks.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

Then 3ab + dc + kd =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?

Yes if xd = · · ·+ x478 + · · ·,
i.e., if d = · · ·+ x477 + · · ·.

Try x2kd , x3kd , etc.

See pattern of d coeffs.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA” version

of New Hope; Ding.

If user reuses a key:

Blame user for the attacks.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA” version

of New Hope; Ding.

If user reuses a key:

Blame user for the attacks.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA” version

of New Hope; Ding.

If user reuses a key:

Blame user for the attacks.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

e.g. “IND-CCA” New Hope

submission; most submissions.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA” version

of New Hope; Ding.

If user reuses a key:

Blame user for the attacks.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

e.g. “IND-CCA” New Hope

submission; most submissions.

Basic idea, from Crypto 1999

Fujisaki–Okamoto: After

decrypting message, check

whether (1) message is valid

and (2) ciphertext matches

reencryption of message.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA” version

of New Hope; Ding.

If user reuses a key:

Blame user for the attacks.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

e.g. “IND-CCA” New Hope

submission; most submissions.

Basic idea, from Crypto 1999

Fujisaki–Okamoto: After

decrypting message, check

whether (1) message is valid

and (2) ciphertext matches

reencryption of message.

But encryption is randomized!

Reencryption won’t match.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA” version

of New Hope; Ding.

If user reuses a key:

Blame user for the attacks.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

e.g. “IND-CCA” New Hope

submission; most submissions.

Basic idea, from Crypto 1999

Fujisaki–Okamoto: After

decrypting message, check

whether (1) message is valid

and (2) ciphertext matches

reencryption of message.

But encryption is randomized!

Reencryption won’t match.

36

Solution: In decryption, compute

all randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA” version

of New Hope; Ding.

If user reuses a key:

Blame user for the attacks.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

e.g. “IND-CCA” New Hope

submission; most submissions.

Basic idea, from Crypto 1999

Fujisaki–Okamoto: After

decrypting message, check

whether (1) message is valid

and (2) ciphertext matches

reencryption of message.

But encryption is randomized!

Reencryption won’t match.

36

Solution: In decryption, compute

all randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA” version

of New Hope; Ding.

If user reuses a key:

Blame user for the attacks.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

e.g. “IND-CCA” New Hope

submission; most submissions.

Basic idea, from Crypto 1999

Fujisaki–Okamoto: After

decrypting message, check

whether (1) message is valid

and (2) ciphertext matches

reencryption of message.

But encryption is randomized!

Reencryption won’t match.

36

Solution: In decryption, compute

all randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

e.g. “IND-CCA” New Hope

submission; most submissions.

Basic idea, from Crypto 1999

Fujisaki–Okamoto: After

decrypting message, check

whether (1) message is valid

and (2) ciphertext matches

reencryption of message.

But encryption is randomized!

Reencryption won’t match.

36

Solution: In decryption, compute

all randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

e.g. “IND-CCA” New Hope

submission; most submissions.

Basic idea, from Crypto 1999

Fujisaki–Okamoto: After

decrypting message, check

whether (1) message is valid

and (2) ciphertext matches

reencryption of message.

But encryption is randomized!

Reencryption won’t match.

36

Solution: In decryption, compute

all randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

Can view (b; c) as message,

no further randomness.

“Deterministic encryption.”

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

e.g. “IND-CCA” New Hope

submission; most submissions.

Basic idea, from Crypto 1999

Fujisaki–Okamoto: After

decrypting message, check

whether (1) message is valid

and (2) ciphertext matches

reencryption of message.

But encryption is randomized!

Reencryption won’t match.

36

Solution: In decryption, compute

all randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

Can view (b; c) as message,

no further randomness.

“Deterministic encryption.”

“Product NTRU” variant

is not naturally deterministic.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

e.g. “IND-CCA” New Hope

submission; most submissions.

Basic idea, from Crypto 1999

Fujisaki–Okamoto: After

decrypting message, check

whether (1) message is valid

and (2) ciphertext matches

reencryption of message.

But encryption is randomized!

Reencryption won’t match.

36

Solution: In decryption, compute

all randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

Can view (b; c) as message,

no further randomness.

“Deterministic encryption.”

“Product NTRU” variant

is not naturally deterministic.

Generic Fujisaki–Okamoto

solution: Require sender to

compute randomness as

standard hash of message.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

e.g. “IND-CCA” New Hope

submission; most submissions.

Basic idea, from Crypto 1999

Fujisaki–Okamoto: After

decrypting message, check

whether (1) message is valid

and (2) ciphertext matches

reencryption of message.

But encryption is randomized!

Reencryption won’t match.

36

Solution: In decryption, compute

all randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

Can view (b; c) as message,

no further randomness.

“Deterministic encryption.”

“Product NTRU” variant

is not naturally deterministic.

Generic Fujisaki–Okamoto

solution: Require sender to

compute randomness as

standard hash of message.

37

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

e.g. “IND-CCA” New Hope

submission; most submissions.

Basic idea, from Crypto 1999

Fujisaki–Okamoto: After

decrypting message, check

whether (1) message is valid

and (2) ciphertext matches

reencryption of message.

But encryption is randomized!

Reencryption won’t match.

36

Solution: In decryption, compute

all randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

Can view (b; c) as message,

no further randomness.

“Deterministic encryption.”

“Product NTRU” variant

is not naturally deterministic.

Generic Fujisaki–Okamoto

solution: Require sender to

compute randomness as

standard hash of message.

37

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

e.g. “IND-CCA” New Hope

submission; most submissions.

Basic idea, from Crypto 1999

Fujisaki–Okamoto: After

decrypting message, check

whether (1) message is valid

and (2) ciphertext matches

reencryption of message.

But encryption is randomized!

Reencryption won’t match.

36

Solution: In decryption, compute

all randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

Can view (b; c) as message,

no further randomness.

“Deterministic encryption.”

“Product NTRU” variant

is not naturally deterministic.

Generic Fujisaki–Okamoto

solution: Require sender to

compute randomness as

standard hash of message.

37

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

36

Solution: In decryption, compute

all randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

Can view (b; c) as message,

no further randomness.

“Deterministic encryption.”

“Product NTRU” variant

is not naturally deterministic.

Generic Fujisaki–Okamoto

solution: Require sender to

compute randomness as

standard hash of message.

37

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

36

Solution: In decryption, compute

all randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

Can view (b; c) as message,

no further randomness.

“Deterministic encryption.”

“Product NTRU” variant

is not naturally deterministic.

Generic Fujisaki–Okamoto

solution: Require sender to

compute randomness as

standard hash of message.

37

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NIST encryption submissions

vary in failure rates.

NTRU HRSS, NTRU Prime,

Odd Manhattan choose q to

eliminate decryption failures.

36

Solution: In decryption, compute

all randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

Can view (b; c) as message,

no further randomness.

“Deterministic encryption.”

“Product NTRU” variant

is not naturally deterministic.

Generic Fujisaki–Okamoto

solution: Require sender to

compute randomness as

standard hash of message.

37

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NIST encryption submissions

vary in failure rates.

NTRU HRSS, NTRU Prime,

Odd Manhattan choose q to

eliminate decryption failures.

LIMA tried to eliminate

decryption failures, but failed.

36

Solution: In decryption, compute

all randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

Can view (b; c) as message,

no further randomness.

“Deterministic encryption.”

“Product NTRU” variant

is not naturally deterministic.

Generic Fujisaki–Okamoto

solution: Require sender to

compute randomness as

standard hash of message.

37

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NIST encryption submissions

vary in failure rates.

NTRU HRSS, NTRU Prime,

Odd Manhattan choose q to

eliminate decryption failures.

LIMA tried to eliminate

decryption failures, but failed.

38

More claimed failure rates:

LOTUS: <2−256.

New Hope submission: <2−213.

KINDI: 2−165.
...

NTRUEncrypt: <2−80.

KCL: ≈2−60.

Ding: ≈2−60, only IND-CPA.

Current debates about

what decryption failure probability

is small enough; whether

decryption failure probabilities

were calculated correctly; etc.

36

Solution: In decryption, compute

all randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

Can view (b; c) as message,

no further randomness.

“Deterministic encryption.”

“Product NTRU” variant

is not naturally deterministic.

Generic Fujisaki–Okamoto

solution: Require sender to

compute randomness as

standard hash of message.

37

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NIST encryption submissions

vary in failure rates.

NTRU HRSS, NTRU Prime,

Odd Manhattan choose q to

eliminate decryption failures.

LIMA tried to eliminate

decryption failures, but failed.

38

More claimed failure rates:

LOTUS: <2−256.

New Hope submission: <2−213.

KINDI: 2−165.
...

NTRUEncrypt: <2−80.

KCL: ≈2−60.

Ding: ≈2−60, only IND-CPA.

Current debates about

what decryption failure probability

is small enough; whether

decryption failure probabilities

were calculated correctly; etc.

36

Solution: In decryption, compute

all randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

Can view (b; c) as message,

no further randomness.

“Deterministic encryption.”

“Product NTRU” variant

is not naturally deterministic.

Generic Fujisaki–Okamoto

solution: Require sender to

compute randomness as

standard hash of message.

37

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NIST encryption submissions

vary in failure rates.

NTRU HRSS, NTRU Prime,

Odd Manhattan choose q to

eliminate decryption failures.

LIMA tried to eliminate

decryption failures, but failed.

38

More claimed failure rates:

LOTUS: <2−256.

New Hope submission: <2−213.

KINDI: 2−165.
...

NTRUEncrypt: <2−80.

KCL: ≈2−60.

Ding: ≈2−60, only IND-CPA.

Current debates about

what decryption failure probability

is small enough; whether

decryption failure probabilities

were calculated correctly; etc.

37

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NIST encryption submissions

vary in failure rates.

NTRU HRSS, NTRU Prime,

Odd Manhattan choose q to

eliminate decryption failures.

LIMA tried to eliminate

decryption failures, but failed.

38

More claimed failure rates:

LOTUS: <2−256.

New Hope submission: <2−213.

KINDI: 2−165.
...

NTRUEncrypt: <2−80.

KCL: ≈2−60.

Ding: ≈2−60, only IND-CPA.

Current debates about

what decryption failure probability

is small enough; whether

decryption failure probabilities

were calculated correctly; etc.

37

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NIST encryption submissions

vary in failure rates.

NTRU HRSS, NTRU Prime,

Odd Manhattan choose q to

eliminate decryption failures.

LIMA tried to eliminate

decryption failures, but failed.

38

More claimed failure rates:

LOTUS: <2−256.

New Hope submission: <2−213.

KINDI: 2−165.
...

NTRUEncrypt: <2−80.

KCL: ≈2−60.

Ding: ≈2−60, only IND-CPA.

Current debates about

what decryption failure probability

is small enough; whether

decryption failure probabilities

were calculated correctly; etc.

39

How to randomize messages

If message is guessable:

Attacker can check whether

a guess matches a ciphertext.

37

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NIST encryption submissions

vary in failure rates.

NTRU HRSS, NTRU Prime,

Odd Manhattan choose q to

eliminate decryption failures.

LIMA tried to eliminate

decryption failures, but failed.

38

More claimed failure rates:

LOTUS: <2−256.

New Hope submission: <2−213.

KINDI: 2−165.
...

NTRUEncrypt: <2−80.

KCL: ≈2−60.

Ding: ≈2−60, only IND-CPA.

Current debates about

what decryption failure probability

is small enough; whether

decryption failure probabilities

were calculated correctly; etc.

39

How to randomize messages

If message is guessable:

Attacker can check whether

a guess matches a ciphertext.

37

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NIST encryption submissions

vary in failure rates.

NTRU HRSS, NTRU Prime,

Odd Manhattan choose q to

eliminate decryption failures.

LIMA tried to eliminate

decryption failures, but failed.

38

More claimed failure rates:

LOTUS: <2−256.

New Hope submission: <2−213.

KINDI: 2−165.
...

NTRUEncrypt: <2−80.

KCL: ≈2−60.

Ding: ≈2−60, only IND-CPA.

Current debates about

what decryption failure probability

is small enough; whether

decryption failure probabilities

were calculated correctly; etc.

39

How to randomize messages

If message is guessable:

Attacker can check whether

a guess matches a ciphertext.

38

More claimed failure rates:

LOTUS: <2−256.

New Hope submission: <2−213.

KINDI: 2−165.
...

NTRUEncrypt: <2−80.

KCL: ≈2−60.

Ding: ≈2−60, only IND-CPA.

Current debates about

what decryption failure probability

is small enough; whether

decryption failure probabilities

were calculated correctly; etc.

39

How to randomize messages

If message is guessable:

Attacker can check whether

a guess matches a ciphertext.

38

More claimed failure rates:

LOTUS: <2−256.

New Hope submission: <2−213.

KINDI: 2−165.
...

NTRUEncrypt: <2−80.

KCL: ≈2−60.

Ding: ≈2−60, only IND-CPA.

Current debates about

what decryption failure probability

is small enough; whether

decryption failure probabilities

were calculated correctly; etc.

39

How to randomize messages

If message is guessable:

Attacker can check whether

a guess matches a ciphertext.

Also various attacks using

guesses of portion of message.

38

More claimed failure rates:

LOTUS: <2−256.

New Hope submission: <2−213.

KINDI: 2−165.
...

NTRUEncrypt: <2−80.

KCL: ≈2−60.

Ding: ≈2−60, only IND-CPA.

Current debates about

what decryption failure probability

is small enough; whether

decryption failure probabilities

were calculated correctly; etc.

39

How to randomize messages

If message is guessable:

Attacker can check whether

a guess matches a ciphertext.

Also various attacks using

guesses of portion of message.

Modern “KEM-DEM” solution,

from Eurocrypt 2000 Shoup:

Choose random message.

Use hash of message as (e.g.)

AES-256-GCM key to encrypt

and authenticate user data.

38

More claimed failure rates:

LOTUS: <2−256.

New Hope submission: <2−213.

KINDI: 2−165.
...

NTRUEncrypt: <2−80.

KCL: ≈2−60.

Ding: ≈2−60, only IND-CPA.

Current debates about

what decryption failure probability

is small enough; whether

decryption failure probabilities

were calculated correctly; etc.

39

How to randomize messages

If message is guessable:

Attacker can check whether

a guess matches a ciphertext.

Also various attacks using

guesses of portion of message.

Modern “KEM-DEM” solution,

from Eurocrypt 2000 Shoup:

Choose random message.

Use hash of message as (e.g.)

AES-256-GCM key to encrypt

and authenticate user data.

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

38

More claimed failure rates:

LOTUS: <2−256.

New Hope submission: <2−213.

KINDI: 2−165.
...

NTRUEncrypt: <2−80.

KCL: ≈2−60.

Ding: ≈2−60, only IND-CPA.

Current debates about

what decryption failure probability

is small enough; whether

decryption failure probabilities

were calculated correctly; etc.

39

How to randomize messages

If message is guessable:

Attacker can check whether

a guess matches a ciphertext.

Also various attacks using

guesses of portion of message.

Modern “KEM-DEM” solution,

from Eurocrypt 2000 Shoup:

Choose random message.

Use hash of message as (e.g.)

AES-256-GCM key to encrypt

and authenticate user data.

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

38

More claimed failure rates:

LOTUS: <2−256.

New Hope submission: <2−213.

KINDI: 2−165.
...

NTRUEncrypt: <2−80.

KCL: ≈2−60.

Ding: ≈2−60, only IND-CPA.

Current debates about

what decryption failure probability

is small enough; whether

decryption failure probabilities

were calculated correctly; etc.

39

How to randomize messages

If message is guessable:

Attacker can check whether

a guess matches a ciphertext.

Also various attacks using

guesses of portion of message.

Modern “KEM-DEM” solution,

from Eurocrypt 2000 Shoup:

Choose random message.

Use hash of message as (e.g.)

AES-256-GCM key to encrypt

and authenticate user data.

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

39

How to randomize messages

If message is guessable:

Attacker can check whether

a guess matches a ciphertext.

Also various attacks using

guesses of portion of message.

Modern “KEM-DEM” solution,

from Eurocrypt 2000 Shoup:

Choose random message.

Use hash of message as (e.g.)

AES-256-GCM key to encrypt

and authenticate user data.

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

39

How to randomize messages

If message is guessable:

Attacker can check whether

a guess matches a ciphertext.

Also various attacks using

guesses of portion of message.

Modern “KEM-DEM” solution,

from Eurocrypt 2000 Shoup:

Choose random message.

Use hash of message as (e.g.)

AES-256-GCM key to encrypt

and authenticate user data.

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki–Okamoto and many

newer papers try to prove that all

chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as

difficult as breaking one-wayness.

39

How to randomize messages

If message is guessable:

Attacker can check whether

a guess matches a ciphertext.

Also various attacks using

guesses of portion of message.

Modern “KEM-DEM” solution,

from Eurocrypt 2000 Shoup:

Choose random message.

Use hash of message as (e.g.)

AES-256-GCM key to encrypt

and authenticate user data.

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki–Okamoto and many

newer papers try to prove that all

chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as

difficult as breaking one-wayness.

Many limitations to proofs: bugs;

looseness; assumptions of “ROM”

or “QROM” attacks; assumptions

on failure probability; etc.

39

How to randomize messages

If message is guessable:

Attacker can check whether

a guess matches a ciphertext.

Also various attacks using

guesses of portion of message.

Modern “KEM-DEM” solution,

from Eurocrypt 2000 Shoup:

Choose random message.

Use hash of message as (e.g.)

AES-256-GCM key to encrypt

and authenticate user data.

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki–Okamoto and many

newer papers try to prove that all

chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as

difficult as breaking one-wayness.

Many limitations to proofs: bugs;

looseness; assumptions of “ROM”

or “QROM” attacks; assumptions

on failure probability; etc.

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

39

How to randomize messages

If message is guessable:

Attacker can check whether

a guess matches a ciphertext.

Also various attacks using

guesses of portion of message.

Modern “KEM-DEM” solution,

from Eurocrypt 2000 Shoup:

Choose random message.

Use hash of message as (e.g.)

AES-256-GCM key to encrypt

and authenticate user data.

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki–Okamoto and many

newer papers try to prove that all

chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as

difficult as breaking one-wayness.

Many limitations to proofs: bugs;

looseness; assumptions of “ROM”

or “QROM” attacks; assumptions

on failure probability; etc.

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

39

How to randomize messages

If message is guessable:

Attacker can check whether

a guess matches a ciphertext.

Also various attacks using

guesses of portion of message.

Modern “KEM-DEM” solution,

from Eurocrypt 2000 Shoup:

Choose random message.

Use hash of message as (e.g.)

AES-256-GCM key to encrypt

and authenticate user data.

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki–Okamoto and many

newer papers try to prove that all

chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as

difficult as breaking one-wayness.

Many limitations to proofs: bugs;

looseness; assumptions of “ROM”

or “QROM” attacks; assumptions

on failure probability; etc.

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki–Okamoto and many

newer papers try to prove that all

chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as

difficult as breaking one-wayness.

Many limitations to proofs: bugs;

looseness; assumptions of “ROM”

or “QROM” attacks; assumptions

on failure probability; etc.

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki–Okamoto and many

newer papers try to prove that all

chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as

difficult as breaking one-wayness.

Many limitations to proofs: bugs;

looseness; assumptions of “ROM”

or “QROM” attacks; assumptions

on failure probability; etc.

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

Search
`n
w

´
2w choices of b.

If c = C − Ab is small: done!

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki–Okamoto and many

newer papers try to prove that all

chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as

difficult as breaking one-wayness.

Many limitations to proofs: bugs;

looseness; assumptions of “ROM”

or “QROM” attacks; assumptions

on failure probability; etc.

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

Search
`n
w

´
2w choices of b.

If c = C − Ab is small: done!

(Can this find two different

messages c? Unlikely. This would

also stop legitimate decryption.)

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki–Okamoto and many

newer papers try to prove that all

chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as

difficult as breaking one-wayness.

Many limitations to proofs: bugs;

looseness; assumptions of “ROM”

or “QROM” attacks; assumptions

on failure probability; etc.

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

Search
`n
w

´
2w choices of b.

If c = C − Ab is small: done!

(Can this find two different

messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3n choices of d .

If a = dA=3 is small, use (a; d) to

decrypt. Slightly slower but can

be reused for many ciphertexts.

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki–Okamoto and many

newer papers try to prove that all

chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as

difficult as breaking one-wayness.

Many limitations to proofs: bugs;

looseness; assumptions of “ROM”

or “QROM” attacks; assumptions

on failure probability; etc.

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

Search
`n
w

´
2w choices of b.

If c = C − Ab is small: done!

(Can this find two different

messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3n choices of d .

If a = dA=3 is small, use (a; d) to

decrypt. Slightly slower but can

be reused for many ciphertexts.

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki–Okamoto and many

newer papers try to prove that all

chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as

difficult as breaking one-wayness.

Many limitations to proofs: bugs;

looseness; assumptions of “ROM”

or “QROM” attacks; assumptions

on failure probability; etc.

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

Search
`n
w

´
2w choices of b.

If c = C − Ab is small: done!

(Can this find two different

messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3n choices of d .

If a = dA=3 is small, use (a; d) to

decrypt. Slightly slower but can

be reused for many ciphertexts.

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki–Okamoto and many

newer papers try to prove that all

chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as

difficult as breaking one-wayness.

Many limitations to proofs: bugs;

looseness; assumptions of “ROM”

or “QROM” attacks; assumptions

on failure probability; etc.

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

Search
`n
w

´
2w choices of b.

If c = C − Ab is small: done!

(Can this find two different

messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3n choices of d .

If a = dA=3 is small, use (a; d) to

decrypt. Slightly slower but can

be reused for many ciphertexts.

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

Search
`n
w

´
2w choices of b.

If c = C − Ab is small: done!

(Can this find two different

messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3n choices of d .

If a = dA=3 is small, use (a; d) to

decrypt. Slightly slower but can

be reused for many ciphertexts.

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

Search
`n
w

´
2w choices of b.

If c = C − Ab is small: done!

(Can this find two different

messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3n choices of d .

If a = dA=3 is small, use (a; d) to

decrypt. Slightly slower but can

be reused for many ciphertexts.

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

Search only about 3n=n choices.

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

Search
`n
w

´
2w choices of b.

If c = C − Ab is small: done!

(Can this find two different

messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3n choices of d .

If a = dA=3 is small, use (a; d) to

decrypt. Slightly slower but can

be reused for many ciphertexts.

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

Search only about 3n=n choices.

n = 701, w = 467:`n
w

´
2w ≈ 21106:09;

3n ≈ 21111:06;

3n=n ≈ 21101:61.

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

Search
`n
w

´
2w choices of b.

If c = C − Ab is small: done!

(Can this find two different

messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3n choices of d .

If a = dA=3 is small, use (a; d) to

decrypt. Slightly slower but can

be reused for many ciphertexts.

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

Search only about 3n=n choices.

n = 701, w = 467:`n
w

´
2w ≈ 21106:09;

3n ≈ 21111:06;

3n=n ≈ 21101:61.

Exercise: Find more equivalences!

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

Search
`n
w

´
2w choices of b.

If c = C − Ab is small: done!

(Can this find two different

messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3n choices of d .

If a = dA=3 is small, use (a; d) to

decrypt. Slightly slower but can

be reused for many ciphertexts.

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

Search only about 3n=n choices.

n = 701, w = 467:`n
w

´
2w ≈ 21106:09;

3n ≈ 21111:06;

3n=n ≈ 21101:61.

Exercise: Find more equivalences!

But if w is chosen smaller then`n
w

´
2w search will be faster.

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

Search
`n
w

´
2w choices of b.

If c = C − Ab is small: done!

(Can this find two different

messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3n choices of d .

If a = dA=3 is small, use (a; d) to

decrypt. Slightly slower but can

be reused for many ciphertexts.

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

Search only about 3n=n choices.

n = 701, w = 467:`n
w

´
2w ≈ 21106:09;

3n ≈ 21111:06;

3n=n ≈ 21101:61.

Exercise: Find more equivalences!

But if w is chosen smaller then`n
w

´
2w search will be faster.

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

Search
`n
w

´
2w choices of b.

If c = C − Ab is small: done!

(Can this find two different

messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3n choices of d .

If a = dA=3 is small, use (a; d) to

decrypt. Slightly slower but can

be reused for many ciphertexts.

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

Search only about 3n=n choices.

n = 701, w = 467:`n
w

´
2w ≈ 21106:09;

3n ≈ 21111:06;

3n=n ≈ 21101:61.

Exercise: Find more equivalences!

But if w is chosen smaller then`n
w

´
2w search will be faster.

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

Search
`n
w

´
2w choices of b.

If c = C − Ab is small: done!

(Can this find two different

messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3n choices of d .

If a = dA=3 is small, use (a; d) to

decrypt. Slightly slower but can

be reused for many ciphertexts.

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

Search only about 3n=n choices.

n = 701, w = 467:`n
w

´
2w ≈ 21106:09;

3n ≈ 21111:06;

3n=n ≈ 21101:61.

Exercise: Find more equivalences!

But if w is chosen smaller then`n
w

´
2w search will be faster.

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

Search only about 3n=n choices.

n = 701, w = 467:`n
w

´
2w ≈ 21106:09;

3n ≈ 21111:06;

3n=n ≈ 21101:61.

Exercise: Find more equivalences!

But if w is chosen smaller then`n
w

´
2w search will be faster.

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

Search only about 3n=n choices.

n = 701, w = 467:`n
w

´
2w ≈ 21106:09;

3n ≈ 21111:06;

3n=n ≈ 21101:61.

Exercise: Find more equivalences!

But if w is chosen smaller then`n
w

´
2w search will be faster.

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

a = (A=3)d = (A=3)d1 + (A=3)d2

so a− (A=3)d2 = (A=3)d1.

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

Search only about 3n=n choices.

n = 701, w = 467:`n
w

´
2w ≈ 21106:09;

3n ≈ 21111:06;

3n=n ≈ 21101:61.

Exercise: Find more equivalences!

But if w is chosen smaller then`n
w

´
2w search will be faster.

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

a = (A=3)d = (A=3)d1 + (A=3)d2

so a− (A=3)d2 = (A=3)d1.

Eliminate a: almost certainly

H(−(A=3)d2) = H((A=3)d1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

Search only about 3n=n choices.

n = 701, w = 467:`n
w

´
2w ≈ 21106:09;

3n ≈ 21111:06;

3n=n ≈ 21101:61.

Exercise: Find more equivalences!

But if w is chosen smaller then`n
w

´
2w search will be faster.

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

a = (A=3)d = (A=3)d1 + (A=3)d2

so a− (A=3)d2 = (A=3)d1.

Eliminate a: almost certainly

H(−(A=3)d2) = H((A=3)d1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(A=3)d2).

Enumerate all H((A=3)d1).

Search for collisions.

Only about 3n=2 computations;

but beware cost of memory.

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

Search only about 3n=n choices.

n = 701, w = 467:`n
w

´
2w ≈ 21106:09;

3n ≈ 21111:06;

3n=n ≈ 21101:61.

Exercise: Find more equivalences!

But if w is chosen smaller then`n
w

´
2w search will be faster.

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

a = (A=3)d = (A=3)d1 + (A=3)d2

so a− (A=3)d2 = (A=3)d1.

Eliminate a: almost certainly

H(−(A=3)d2) = H((A=3)d1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(A=3)d2).

Enumerate all H((A=3)d1).

Search for collisions.

Only about 3n=2 computations;

but beware cost of memory.

44

Lattices

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

Search only about 3n=n choices.

n = 701, w = 467:`n
w

´
2w ≈ 21106:09;

3n ≈ 21111:06;

3n=n ≈ 21101:61.

Exercise: Find more equivalences!

But if w is chosen smaller then`n
w

´
2w search will be faster.

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

a = (A=3)d = (A=3)d1 + (A=3)d2

so a− (A=3)d2 = (A=3)d1.

Eliminate a: almost certainly

H(−(A=3)d2) = H((A=3)d1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(A=3)d2).

Enumerate all H((A=3)d1).

Search for collisions.

Only about 3n=2 computations;

but beware cost of memory.

44

Lattices

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

Search only about 3n=n choices.

n = 701, w = 467:`n
w

´
2w ≈ 21106:09;

3n ≈ 21111:06;

3n=n ≈ 21101:61.

Exercise: Find more equivalences!

But if w is chosen smaller then`n
w

´
2w search will be faster.

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

a = (A=3)d = (A=3)d1 + (A=3)d2

so a− (A=3)d2 = (A=3)d1.

Eliminate a: almost certainly

H(−(A=3)d2) = H((A=3)d1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(A=3)d2).

Enumerate all H((A=3)d1).

Search for collisions.

Only about 3n=2 computations;

but beware cost of memory.

44

Lattices

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

a = (A=3)d = (A=3)d1 + (A=3)d2

so a− (A=3)d2 = (A=3)d1.

Eliminate a: almost certainly

H(−(A=3)d2) = H((A=3)d1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(A=3)d2).

Enumerate all H((A=3)d1).

Search for collisions.

Only about 3n=2 computations;

but beware cost of memory.

44

Lattices

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

a = (A=3)d = (A=3)d1 + (A=3)d2

so a− (A=3)d2 = (A=3)d1.

Eliminate a: almost certainly

H(−(A=3)d2) = H((A=3)d1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(A=3)d2).

Enumerate all H((A=3)d1).

Search for collisions.

Only about 3n=2 computations;

but beware cost of memory.

44

Lattices

This is a lettuce:

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

a = (A=3)d = (A=3)d1 + (A=3)d2

so a− (A=3)d2 = (A=3)d1.

Eliminate a: almost certainly

H(−(A=3)d2) = H((A=3)d1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(A=3)d2).

Enumerate all H((A=3)d1).

Search for collisions.

Only about 3n=2 computations;

but beware cost of memory.

44

Lattices

This is a lettuce:

This is a lattice:

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

a = (A=3)d = (A=3)d1 + (A=3)d2

so a− (A=3)d2 = (A=3)d1.

Eliminate a: almost certainly

H(−(A=3)d2) = H((A=3)d1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(A=3)d2).

Enumerate all H((A=3)d1).

Search for collisions.

Only about 3n=2 computations;

but beware cost of memory.

44

Lattices

This is a lettuce:

This is a lattice:

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

a = (A=3)d = (A=3)d1 + (A=3)d2

so a− (A=3)d2 = (A=3)d1.

Eliminate a: almost certainly

H(−(A=3)d2) = H((A=3)d1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(A=3)d2).

Enumerate all H((A=3)d1).

Search for collisions.

Only about 3n=2 computations;

but beware cost of memory.

44

Lattices

This is a lettuce:

This is a lattice:

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

a = (A=3)d = (A=3)d1 + (A=3)d2

so a− (A=3)d2 = (A=3)d1.

Eliminate a: almost certainly

H(−(A=3)d2) = H((A=3)d1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(A=3)d2).

Enumerate all H((A=3)d1).

Search for collisions.

Only about 3n=2 computations;

but beware cost of memory.

44

Lattices

This is a lettuce:

This is a lattice:

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

44

Lattices

This is a lettuce:

This is a lattice:

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

44

Lattices

This is a lettuce:

This is a lattice:

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

Zb1 + : : : + Zbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ Z}
is a rank-k length-n lattice.

44

Lattices

This is a lettuce:

This is a lattice:

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

Zb1 + : : : + Zbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ Z}
is a rank-k length-n lattice.

b1; : : : ; bk
is a basis of this lattice.

44

Lattices

This is a lettuce:

This is a lattice:

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

Zb1 + : : : + Zbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ Z}
is a rank-k length-n lattice.

b1; : : : ; bk
is a basis of this lattice.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

44

Lattices

This is a lettuce:

This is a lattice:

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

Zb1 + : : : + Zbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ Z}
is a rank-k length-n lattice.

b1; : : : ; bk
is a basis of this lattice.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

44

Lattices

This is a lettuce:

This is a lattice:

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

Zb1 + : : : + Zbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ Z}
is a rank-k length-n lattice.

b1; : : : ; bk
is a basis of this lattice.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

Zb1 + : : : + Zbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ Z}
is a rank-k length-n lattice.

b1; : : : ; bk
is a basis of this lattice.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

Zb1 + : : : + Zbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ Z}
is a rank-k length-n lattice.

b1; : : : ; bk
is a basis of this lattice.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

0.

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

Zb1 + : : : + Zbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ Z}
is a rank-k length-n lattice.

b1; : : : ; bk
is a basis of this lattice.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

0.

What is shortest nonzero vector?

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

Zb1 + : : : + Zbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ Z}
is a rank-k length-n lattice.

b1; : : : ; bk
is a basis of this lattice.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

0.

What is shortest nonzero vector?

LLL algorithm runs in poly time,

computes a vector whose length

is at most 2n=2 times

length of shortest nonzero vector.

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

Zb1 + : : : + Zbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ Z}
is a rank-k length-n lattice.

b1; : : : ; bk
is a basis of this lattice.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

0.

What is shortest nonzero vector?

LLL algorithm runs in poly time,

computes a vector whose length

is at most 2n=2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)

compute shorter vectors

at surprisingly high speed.

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

Zb1 + : : : + Zbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ Z}
is a rank-k length-n lattice.

b1; : : : ; bk
is a basis of this lattice.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

0.

What is shortest nonzero vector?

LLL algorithm runs in poly time,

computes a vector whose length

is at most 2n=2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)

compute shorter vectors

at surprisingly high speed.

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

Zb1 + : : : + Zbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ Z}
is a rank-k length-n lattice.

b1; : : : ; bk
is a basis of this lattice.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

0.

What is shortest nonzero vector?

LLL algorithm runs in poly time,

computes a vector whose length

is at most 2n=2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)

compute shorter vectors

at surprisingly high speed.

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

Zb1 + : : : + Zbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ Z}
is a rank-k length-n lattice.

b1; : : : ; bk
is a basis of this lattice.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

0.

What is shortest nonzero vector?

LLL algorithm runs in poly time,

computes a vector whose length

is at most 2n=2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)

compute shorter vectors

at surprisingly high speed.

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

0.

What is shortest nonzero vector?

LLL algorithm runs in poly time,

computes a vector whose length

is at most 2n=2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)

compute shorter vectors

at surprisingly high speed.

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

0.

What is shortest nonzero vector?

LLL algorithm runs in poly time,

computes a vector whose length

is at most 2n=2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)

compute shorter vectors

at surprisingly high speed.

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

d is obtained from

1; x; : : : ; xn−1

by a few additions, subtractions.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

0.

What is shortest nonzero vector?

LLL algorithm runs in poly time,

computes a vector whose length

is at most 2n=2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)

compute shorter vectors

at surprisingly high speed.

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

d is obtained from

1; x; : : : ; xn−1

by a few additions, subtractions.

d(A=3) is obtained from

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

0.

What is shortest nonzero vector?

LLL algorithm runs in poly time,

computes a vector whose length

is at most 2n=2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)

compute shorter vectors

at surprisingly high speed.

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

d is obtained from

1; x; : : : ; xn−1

by a few additions, subtractions.

d(A=3) is obtained from

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

a is obtained from

q; qx; qx2; : : : ; qxn−1,

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

0.

What is shortest nonzero vector?

LLL algorithm runs in poly time,

computes a vector whose length

is at most 2n=2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)

compute shorter vectors

at surprisingly high speed.

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

d is obtained from

1; x; : : : ; xn−1

by a few additions, subtractions.

d(A=3) is obtained from

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

a is obtained from

q; qx; qx2; : : : ; qxn−1,

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

48

(a; d) is obtained from

(q; 0),

(qx; 0),
...

(qxn−1; 0),

(A=3; 1),

(xA=3; x),
...

(xn−1A=3; xn−1)

by a few additions, subtractions.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

0.

What is shortest nonzero vector?

LLL algorithm runs in poly time,

computes a vector whose length

is at most 2n=2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)

compute shorter vectors

at surprisingly high speed.

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

d is obtained from

1; x; : : : ; xn−1

by a few additions, subtractions.

d(A=3) is obtained from

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

a is obtained from

q; qx; qx2; : : : ; qxn−1,

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

48

(a; d) is obtained from

(q; 0),

(qx; 0),
...

(qxn−1; 0),

(A=3; 1),

(xA=3; x),
...

(xn−1A=3; xn−1)

by a few additions, subtractions.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

0.

What is shortest nonzero vector?

LLL algorithm runs in poly time,

computes a vector whose length

is at most 2n=2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)

compute shorter vectors

at surprisingly high speed.

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

d is obtained from

1; x; : : : ; xn−1

by a few additions, subtractions.

d(A=3) is obtained from

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

a is obtained from

q; qx; qx2; : : : ; qxn−1,

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

48

(a; d) is obtained from

(q; 0),

(qx; 0),
...

(qxn−1; 0),

(A=3; 1),

(xA=3; x),
...

(xn−1A=3; xn−1)

by a few additions, subtractions.

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

d is obtained from

1; x; : : : ; xn−1

by a few additions, subtractions.

d(A=3) is obtained from

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

a is obtained from

q; qx; qx2; : : : ; qxn−1,

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

48

(a; d) is obtained from

(q; 0),

(qx; 0),
...

(qxn−1; 0),

(A=3; 1),

(xA=3; x),
...

(xn−1A=3; xn−1)

by a few additions, subtractions.

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

d is obtained from

1; x; : : : ; xn−1

by a few additions, subtractions.

d(A=3) is obtained from

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

a is obtained from

q; qx; qx2; : : : ; qxn−1,

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

48

(a; d) is obtained from

(q; 0),

(qx; 0),
...

(qxn−1; 0),

(A=3; 1),

(xA=3; x),
...

(xn−1A=3; xn−1)

by a few additions, subtractions.

Write A=3 as

H0 + H1x + : : : + Hn−1x
n−1.

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

d is obtained from

1; x; : : : ; xn−1

by a few additions, subtractions.

d(A=3) is obtained from

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

a is obtained from

q; qx; qx2; : : : ; qxn−1,

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

48

(a; d) is obtained from

(q; 0),

(qx; 0),
...

(qxn−1; 0),

(A=3; 1),

(xA=3; x),
...

(xn−1A=3; xn−1)

by a few additions, subtractions.

Write A=3 as

H0 + H1x + : : : + Hn−1x
n−1.

49

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is obtained from

(q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; q; 0; 0; : : : ; 0),

(H0; H1; : : : ; Hn−1; 1; 0; : : : ; 0),

(Hn−1; H0; : : : ; Hn−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

d is obtained from

1; x; : : : ; xn−1

by a few additions, subtractions.

d(A=3) is obtained from

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

a is obtained from

q; qx; qx2; : : : ; qxn−1,

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

48

(a; d) is obtained from

(q; 0),

(qx; 0),
...

(qxn−1; 0),

(A=3; 1),

(xA=3; x),
...

(xn−1A=3; xn−1)

by a few additions, subtractions.

Write A=3 as

H0 + H1x + : : : + Hn−1x
n−1.

49

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is obtained from

(q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; q; 0; 0; : : : ; 0),

(H0; H1; : : : ; Hn−1; 1; 0; : : : ; 0),

(Hn−1; H0; : : : ; Hn−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

d is obtained from

1; x; : : : ; xn−1

by a few additions, subtractions.

d(A=3) is obtained from

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

a is obtained from

q; qx; qx2; : : : ; qxn−1,

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

48

(a; d) is obtained from

(q; 0),

(qx; 0),
...

(qxn−1; 0),

(A=3; 1),

(xA=3; x),
...

(xn−1A=3; xn−1)

by a few additions, subtractions.

Write A=3 as

H0 + H1x + : : : + Hn−1x
n−1.

49

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is obtained from

(q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; q; 0; 0; : : : ; 0),

(H0; H1; : : : ; Hn−1; 1; 0; : : : ; 0),

(Hn−1; H0; : : : ; Hn−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

48

(a; d) is obtained from

(q; 0),

(qx; 0),
...

(qxn−1; 0),

(A=3; 1),

(xA=3; x),
...

(xn−1A=3; xn−1)

by a few additions, subtractions.

Write A=3 as

H0 + H1x + : : : + Hn−1x
n−1.

49

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is obtained from

(q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; q; 0; 0; : : : ; 0),

(H0; H1; : : : ; Hn−1; 1; 0; : : : ; 0),

(Hn−1; H0; : : : ; Hn−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

48

(a; d) is obtained from

(q; 0),

(qx; 0),
...

(qxn−1; 0),

(A=3; 1),

(xA=3; x),
...

(xn−1A=3; xn−1)

by a few additions, subtractions.

Write A=3 as

H0 + H1x + : : : + Hn−1x
n−1.

49

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is obtained from

(q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; q; 0; 0; : : : ; 0),

(H0; H1; : : : ; Hn−1; 1; 0; : : : ; 0),

(Hn−1; H0; : : : ; Hn−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

48

(a; d) is obtained from

(q; 0),

(qx; 0),
...

(qxn−1; 0),

(A=3; 1),

(xA=3; x),
...

(xn−1A=3; xn−1)

by a few additions, subtractions.

Write A=3 as

H0 + H1x + : : : + Hn−1x
n−1.

49

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is obtained from

(q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; q; 0; 0; : : : ; 0),

(H0; H1; : : : ; Hn−1; 1; 0; : : : ; 0),

(Hn−1; H0; : : : ; Hn−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

48

(a; d) is obtained from

(q; 0),

(qx; 0),
...

(qxn−1; 0),

(A=3; 1),

(xA=3; x),
...

(xn−1A=3; xn−1)

by a few additions, subtractions.

Write A=3 as

H0 + H1x + : : : + Hn−1x
n−1.

49

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is obtained from

(q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; q; 0; 0; : : : ; 0),

(H0; H1; : : : ; Hn−1; 1; 0; : : : ; 0),

(Hn−1; H0; : : : ; Hn−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

49

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is obtained from

(q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; q; 0; 0; : : : ; 0),

(H0; H1; : : : ; Hn−1; 1; 0; : : : ; 0),

(Hn−1; H0; : : : ; Hn−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

49

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is obtained from

(q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; q; 0; 0; : : : ; 0),

(H0; H1; : : : ; Hn−1; 1; 0; : : : ; 0),

(Hn−1; H0; : : : ; Hn−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using LLL etc.

49

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is obtained from

(q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; q; 0; 0; : : : ; 0),

(H0; H1; : : : ; Hn−1; 1; 0; : : : ; 0),

(Hn−1; H0; : : : ; Hn−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using LLL etc.

1997 Coppersmith–Shamir

balancing: e.g., set up lattice

to contain (10a; d)

if d is chosen 10× larger than a.

49

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is obtained from

(q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; q; 0; 0; : : : ; 0),

(H0; H1; : : : ; Hn−1; 1; 0; : : : ; 0),

(Hn−1; H0; : : : ; Hn−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using LLL etc.

1997 Coppersmith–Shamir

balancing: e.g., set up lattice

to contain (10a; d)

if d is chosen 10× larger than a.

Exercise: Describe search for

(b; c) as a problem of finding

a vector close to a lattice.

49

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is obtained from

(q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; q; 0; 0; : : : ; 0),

(H0; H1; : : : ; Hn−1; 1; 0; : : : ; 0),

(Hn−1; H0; : : : ; Hn−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using LLL etc.

1997 Coppersmith–Shamir

balancing: e.g., set up lattice

to contain (10a; d)

if d is chosen 10× larger than a.

Exercise: Describe search for

(b; c) as a problem of finding

a vector close to a lattice.

51

Quotient NTRU vs. product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates A = 3a=d in Rq

for small random a; d :

i.e., dA− 3a = 0 in Rq.

49

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is obtained from

(q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; q; 0; 0; : : : ; 0),

(H0; H1; : : : ; Hn−1; 1; 0; : : : ; 0),

(Hn−1; H0; : : : ; Hn−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using LLL etc.

1997 Coppersmith–Shamir

balancing: e.g., set up lattice

to contain (10a; d)

if d is chosen 10× larger than a.

Exercise: Describe search for

(b; c) as a problem of finding

a vector close to a lattice.

51

Quotient NTRU vs. product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates A = 3a=d in Rq

for small random a; d :

i.e., dA− 3a = 0 in Rq.

49

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is obtained from

(q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; q; 0; 0; : : : ; 0),

(H0; H1; : : : ; Hn−1; 1; 0; : : : ; 0),

(Hn−1; H0; : : : ; Hn−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using LLL etc.

1997 Coppersmith–Shamir

balancing: e.g., set up lattice

to contain (10a; d)

if d is chosen 10× larger than a.

Exercise: Describe search for

(b; c) as a problem of finding

a vector close to a lattice.

51

Quotient NTRU vs. product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates A = 3a=d in Rq

for small random a; d :

i.e., dA− 3a = 0 in Rq.

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using LLL etc.

1997 Coppersmith–Shamir

balancing: e.g., set up lattice

to contain (10a; d)

if d is chosen 10× larger than a.

Exercise: Describe search for

(b; c) as a problem of finding

a vector close to a lattice.

51

Quotient NTRU vs. product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates A = 3a=d in Rq

for small random a; d :

i.e., dA− 3a = 0 in Rq.

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using LLL etc.

1997 Coppersmith–Shamir

balancing: e.g., set up lattice

to contain (10a; d)

if d is chosen 10× larger than a.

Exercise: Describe search for

(b; c) as a problem of finding

a vector close to a lattice.

51

Quotient NTRU vs. product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates A = 3a=d in Rq

for small random a; d :

i.e., dA− 3a = 0 in Rq.

Bob sends C = Ab + c in Rq.

Alice computes dC in Rq ,

i.e., 3ab + dc in Rq.

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using LLL etc.

1997 Coppersmith–Shamir

balancing: e.g., set up lattice

to contain (10a; d)

if d is chosen 10× larger than a.

Exercise: Describe search for

(b; c) as a problem of finding

a vector close to a lattice.

51

Quotient NTRU vs. product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates A = 3a=d in Rq

for small random a; d :

i.e., dA− 3a = 0 in Rq.

Bob sends C = Ab + c in Rq.

Alice computes dC in Rq ,

i.e., 3ab + dc in Rq.

Alice reconstructs 3ab + dc in R,

using smallness of a; b; d; c .

Alice computes dc in R3,

deduces c , deduces b.

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using LLL etc.

1997 Coppersmith–Shamir

balancing: e.g., set up lattice

to contain (10a; d)

if d is chosen 10× larger than a.

Exercise: Describe search for

(b; c) as a problem of finding

a vector close to a lattice.

51

Quotient NTRU vs. product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates A = 3a=d in Rq

for small random a; d :

i.e., dA− 3a = 0 in Rq.

Bob sends C = Ab + c in Rq.

Alice computes dC in Rq ,

i.e., 3ab + dc in Rq.

Alice reconstructs 3ab + dc in R,

using smallness of a; b; d; c .

Alice computes dc in R3,

deduces c , deduces b.

52

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ Rq.

Alice generates A = aG + d in Rq

for small random a; d .

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using LLL etc.

1997 Coppersmith–Shamir

balancing: e.g., set up lattice

to contain (10a; d)

if d is chosen 10× larger than a.

Exercise: Describe search for

(b; c) as a problem of finding

a vector close to a lattice.

51

Quotient NTRU vs. product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates A = 3a=d in Rq

for small random a; d :

i.e., dA− 3a = 0 in Rq.

Bob sends C = Ab + c in Rq.

Alice computes dC in Rq ,

i.e., 3ab + dc in Rq.

Alice reconstructs 3ab + dc in R,

using smallness of a; b; d; c .

Alice computes dc in R3,

deduces c , deduces b.

52

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ Rq.

Alice generates A = aG + d in Rq

for small random a; d .

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using LLL etc.

1997 Coppersmith–Shamir

balancing: e.g., set up lattice

to contain (10a; d)

if d is chosen 10× larger than a.

Exercise: Describe search for

(b; c) as a problem of finding

a vector close to a lattice.

51

Quotient NTRU vs. product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates A = 3a=d in Rq

for small random a; d :

i.e., dA− 3a = 0 in Rq.

Bob sends C = Ab + c in Rq.

Alice computes dC in Rq ,

i.e., 3ab + dc in Rq.

Alice reconstructs 3ab + dc in R,

using smallness of a; b; d; c .

Alice computes dc in R3,

deduces c , deduces b.

52

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ Rq.

Alice generates A = aG + d in Rq

for small random a; d .

51

Quotient NTRU vs. product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates A = 3a=d in Rq

for small random a; d :

i.e., dA− 3a = 0 in Rq.

Bob sends C = Ab + c in Rq.

Alice computes dC in Rq ,

i.e., 3ab + dc in Rq.

Alice reconstructs 3ab + dc in R,

using smallness of a; b; d; c .

Alice computes dc in R3,

deduces c , deduces b.

52

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ Rq.

Alice generates A = aG + d in Rq

for small random a; d .

51

Quotient NTRU vs. product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates A = 3a=d in Rq

for small random a; d :

i.e., dA− 3a = 0 in Rq.

Bob sends C = Ab + c in Rq.

Alice computes dC in Rq ,

i.e., 3ab + dc in Rq.

Alice reconstructs 3ab + dc in R,

using smallness of a; b; d; c .

Alice computes dc in R3,

deduces c , deduces b.

52

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ Rq.

Alice generates A = aG + d in Rq

for small random a; d .

Bob sends B = Gb + e in Rq

and C = m + Ab + c in Rq

where b; c; e are small and

each coefficient of m is 0 or q=2.

51

Quotient NTRU vs. product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates A = 3a=d in Rq

for small random a; d :

i.e., dA− 3a = 0 in Rq.

Bob sends C = Ab + c in Rq.

Alice computes dC in Rq ,

i.e., 3ab + dc in Rq.

Alice reconstructs 3ab + dc in R,

using smallness of a; b; d; c .

Alice computes dc in R3,

deduces c , deduces b.

52

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ Rq.

Alice generates A = aG + d in Rq

for small random a; d .

Bob sends B = Gb + e in Rq

and C = m + Ab + c in Rq

where b; c; e are small and

each coefficient of m is 0 or q=2.

Alice computes C − aB in Rq,

i.e., m + db + c − ae in Rq.

Alice reconstructs m,

using smallness of d; b; c; a; e.

