
1

Can cryptographic software

be fixed?

D. J. Bernstein



2

Bob’s laptop screen:

From: Alice

Thank you for your

submission. We received

many interesting papers,

and unfortunately your

Bob assumes this message is

something Alice actually sent.

But today’s “security” systems

fail to guarantee this property.

Attacker could have modified

or forged the message.



3

Systems are too complex.

e.g. Firefox 60 (May 2018) code:

4582680 lines in cpp files,

3093398 lines in h files,

2623454 lines in c files, etc.



3

Systems are too complex.

e.g. Firefox 60 (May 2018) code:

4582680 lines in cpp files,

3093398 lines in h files,

2623454 lines in c files, etc.

Every line in this code has

full control over user messages.



3

Systems are too complex.

e.g. Firefox 60 (May 2018) code:

4582680 lines in cpp files,

3093398 lines in h files,

2623454 lines in c files, etc.

Every line in this code has

full control over user messages.

Critical vulnerabilities fixed in 61:

CVE-2018-12359, “Buffer

overflow using computed size

of canvas element”; CVE-2018-

12360, “Use-after-free when

using focus()”; CVE-2018-12361,

“Integer overflow in SwizzleData”.



4

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.



4

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.

Security policy for this talk:

If message is displayed on

Bob’s screen as “From: Alice”

then message is from Alice.



4

Trusted computing base (TCB)

TCB: portion of computer system

that is responsible for enforcing

the users’ security policy.

Security policy for this talk:

If message is displayed on

Bob’s screen as “From: Alice”

then message is from Alice.

If TCB works correctly,

then message is guaranteed

to be from Alice, no matter what

the rest of the system does.



5

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.



5

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

in a web browser to control

disk files on Bob’s laptop.



5

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

in a web browser to control

disk files on Bob’s laptop.

Device driver is in the TCB.

Web browser is in the TCB.

CPU is in the TCB. Etc.



5

Examples of attack strategies:

1. Attacker uses buffer overflow

in a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

in a web browser to control

disk files on Bob’s laptop.

Device driver is in the TCB.

Web browser is in the TCB.

CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?



6

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.



6

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.

Carefully audit the TCB.



6

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A
Alice data

VM C
Charlie data · · ·

TCB stops each VM from

touching data in other VMs.



6

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A
Alice data

VM C
Charlie data · · ·

TCB stops each VM from

touching data in other VMs.

Browser in VM C isn’t in TCB.

Can’t touch data in VM A,

if TCB works correctly.



6

Classic security strategy:

Rearchitect computer systems

to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A
Alice data

VM C
Charlie data · · ·

TCB stops each VM from

touching data in other VMs.

Browser in VM C isn’t in TCB.

Can’t touch data in VM A,

if TCB works correctly.

Alice also runs many VMs.



7

Focus of this talk: Cryptography

How does Bob’s laptop know

that incoming network data

is from Alice’s laptop?

Cryptographic solution:

Message-authentication codes.

Alice’s message

��

k

vvauthenticated message

untrusted network��
authenticated message

��
Alice’s message koo



7

Focus of this talk: Cryptography

How does Bob’s laptop know

that incoming network data

is from Alice’s laptop?

Cryptographic solution:

Message-authentication codes.

Alice’s message

��

k

vvauthenticated message

untrusted network��
modified message

��
“Alert: forgery!” koo



8

Important for Alice and Bob

to share the same secret k.

What if attacker was spying

on their communication of k?



8

Important for Alice and Bob

to share the same secret k.

What if attacker was spying

on their communication of k?

Solution 1:

Public-key encryption.

k private key a

��

oo

ciphertext

OO

public key aG

network��
ciphertext

network
OO

public key aGoo

k

OO



9

Solution 2:

Public-key signatures.

m

��

a

��ttsigned message

network��

aG

network
��

signed message

��

aG

oom



9

Solution 2:

Public-key signatures.

m

��

a

��ttsigned message

network��

aG

network
��

signed message

��

aG

oom

Fantasy world: software for

authentication/encryption/sigs

is small and carefully audited ⇒
no cryptographic security failures.



10

Real world:

Cryptographic part of the TCB

is huge. Many implementations

of many cryptographic primitives.

Most complications are for speed.



10

Real world:

Cryptographic part of the TCB

is huge. Many implementations

of many cryptographic primitives.

Most complications are for speed.

e.g. February 2018: Google adds

NSA’s Speck cipher to Linux

kernel using hand-written asm

for ARM Cortex-A7 processors.



10

Real world:

Cryptographic part of the TCB

is huge. Many implementations

of many cryptographic primitives.

Most complications are for speed.

e.g. February 2018: Google adds

NSA’s Speck cipher to Linux

kernel using hand-written asm

for ARM Cortex-A7 processors.

August 2018: Google switches

from Speck to ChaCha12, again

using hand-written assembly.

Why not ChaCha20? Speed.



11

Keccak (SHA-3) team maintains

“Keccak Code Package” with

>20 optimized implementations

of Keccak: AVX2, NEON, etc.

Includes “parallel Keccak”:

many further implementations.



11

Keccak (SHA-3) team maintains

“Keccak Code Package” with

>20 optimized implementations

of Keccak: AVX2, NEON, etc.

Includes “parallel Keccak”:

many further implementations.

Why not portable C code using

“optimizing” compiler? Slower.



11

Keccak (SHA-3) team maintains

“Keccak Code Package” with

>20 optimized implementations

of Keccak: AVX2, NEON, etc.

Includes “parallel Keccak”:

many further implementations.

Why not portable C code using

“optimizing” compiler? Slower.

Another example: many different

primitives in NIST competition

for post-quantum public-key

cryptography. (See next talk.)

Some overlap in implementations,

but still huge volume of code.



12

Often people still complain about

cryptographic performance.

e.g. NIST, May 2018: “we’d

really like to see more platform-

optimized implementations”.

⇒ More and more software.



12

Often people still complain about

cryptographic performance.

e.g. NIST, May 2018: “we’d

really like to see more platform-

optimized implementations”.

⇒ More and more software.

Many security failures from

incorrect computations: e.g.,

CVE-2017-3732, CVE-2017-3736,

CVE-2017-3738 in OpenSSL.



12

Often people still complain about

cryptographic performance.

e.g. NIST, May 2018: “we’d

really like to see more platform-

optimized implementations”.

⇒ More and more software.

Many security failures from

incorrect computations: e.g.,

CVE-2017-3732, CVE-2017-3736,

CVE-2017-3738 in OpenSSL.

Many security failures from

variable-time computations: e.g.

CVE-2018-0495, CVE-2018-0737,

CVE-2018-5407 in OpenSSL.



13

Timing attacks

Large portion of CPU hardware:

optimizations depending on

addresses of memory locations.

Consider data caching,

instruction caching,

parallel cache banks,

store-to-load forwarding,

branch prediction, etc.



13

Timing attacks

Large portion of CPU hardware:

optimizations depending on

addresses of memory locations.

Consider data caching,

instruction caching,

parallel cache banks,

store-to-load forwarding,

branch prediction, etc.

Many attacks (e.g. TLBleed from

2018 Gras–Razavi–Bos–Giuffrida)

show that this portion of the CPU

has trouble keeping secrets.



14

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.



14

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.

For researchers: This is great!



14

Typical literature on this topic:

Understand this portion of CPU.

But details are often proprietary,

not exposed to security review.

Try to push attacks further.

This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.

Many years of security failures.

No confidence in future security.



15

The “constant-time” solution:

Don’t give any secrets

to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)



15

The “constant-time” solution:

Don’t give any secrets

to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)

TCB analysis: Need this portion

of the CPU to be correct, but

don’t need it to keep secrets.

Makes auditing much easier.



15

The “constant-time” solution:

Don’t give any secrets

to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)

TCB analysis: Need this portion

of the CPU to be correct, but

don’t need it to keep secrets.

Makes auditing much easier.

Good match for attitude and

experience of CPU designers: e.g.,

Intel issues errata for correctness

bugs, not for information leaks.



16

Case study: Constant-time sorting

Subroutine in (e.g.) BIG QUAKE,

Classic McEliece, GeMSS,

Gravity-SPHINCS, LEDAkem,

LEDApkc, NTRU Prime, Round2:

sort array of secret integers.

e.g. sort 768 32-bit integers.

Typical sorting algorithms—

merge sort, quicksort, etc.—

choose load/store addresses

based on secret data. Usually

also branch based on secret data.

How to sort secret data

without any secret addresses?



17

Foundation of solution:

a comparator sorting 2 integers.

x y

• •

min{x; y} max{x; y}

Easy constant-time exercise in C.

Warning: C standard allows

compiler to break the solution.

Even easier exercise in asm.



18

Combine comparators into a

sorting network for more inputs.

Example of a sorting network:

• •

• •

• • • •

• •

• •



19

Positions of comparators

in a sorting network are

independent of the input.

Naturally constant-time.



19

Positions of comparators

in a sorting network are

independent of the input.

Naturally constant-time.

But remember all the people

complaining about speed: e.g.,

“We would be happy to hear that

fixed weight sampling is efficient

on a variety of platforms : : :

We have not yet been convinced

that this is the case.”



19

Positions of comparators

in a sorting network are

independent of the input.

Naturally constant-time.

But remember all the people

complaining about speed: e.g.,

“We would be happy to hear that

fixed weight sampling is efficient

on a variety of platforms : : :

We have not yet been convinced

that this is the case.”

(n2 − n)=2 comparators in bubble

sort produce complaints about

performance as n increases.



20

void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,i;

if (n < 2) return;

t = 1;

while (t < n - t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n - p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n - q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}



21

Previous slide: C translation of

1973 Knuth “merge exchange”,

which is a simplified version of

1968 Batcher “odd-even merge”

sorting networks.

≈n(log2 n)2=4 comparators.

Much faster than bubble sort.

Warning: many other descriptions

of Batcher’s sorting networks

require n to be a power of 2.

Also, Wikipedia says “Sorting

networks : : : are not capable of

handling arbitrarily large inputs.”



22

This constant-time sorting code

vectorization
(for Haswell)
��

Constant-time sorting code

included in 2017

Bernstein–Chuengsatiansup–

Lange–van Vredendaal

“NTRU Prime” software release

revamped for
higher speed
��

New: “djbsort”
constant-time sorting code



23

The slowdown for constant time

Massive fast-sorting literature.

Includes several efforts to optimize

sorting using AVX2 instructions

on modern Intel CPUs: e.g.

2015 Gueron–Krasnov quicksort.

Haswell (titan0) cycles, n = 768:

25608 stdsort

21844 herf

15136 krasnov



23

The slowdown for constant time

Massive fast-sorting literature.

Includes several efforts to optimize

sorting using AVX2 instructions

on modern Intel CPUs: e.g.

2015 Gueron–Krasnov quicksort.

Haswell (titan0) cycles, n = 768:

25608 stdsort

21844 herf

18548 oldavx2 (2017 BCLvV)

15136 krasnov



23

The slowdown for constant time

Massive fast-sorting literature.

Includes several efforts to optimize

sorting using AVX2 instructions

on modern Intel CPUs: e.g.

2015 Gueron–Krasnov quicksort.

Haswell (titan0) cycles, n = 768:

25608 stdsort

21844 herf

18548 oldavx2 (2017 BCLvV)

15136 krasnov

6596 avx2 (2018 djbsort)



23

The slowdown for constant time

Massive fast-sorting literature.

Includes several efforts to optimize

sorting using AVX2 instructions

on modern Intel CPUs: e.g.

2015 Gueron–Krasnov quicksort.

Haswell (titan0) cycles, n = 768:

25608 stdsort

21844 herf

18548 oldavx2 (2017 BCLvV)

15136 krasnov

6596 avx2 (2018 djbsort)

No slowdown. New speed records!



24

How can an n(log n)2 algorithm

beat standard n log n algorithms?



24

How can an n(log n)2 algorithm

beat standard n log n algorithms?

Answer: well-known trends

in CPU design, reflecting

fundamental hardware costs

of various operations.



24

How can an n(log n)2 algorithm

beat standard n log n algorithms?

Answer: well-known trends

in CPU design, reflecting

fundamental hardware costs

of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +

8 “max” ops on 32-bit integers.



24

How can an n(log n)2 algorithm

beat standard n log n algorithms?

Answer: well-known trends

in CPU design, reflecting

fundamental hardware costs

of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +

8 “max” ops on 32-bit integers.

Loading a 32-bit integer from a

random address: much slower.

Conditional branch: much slower.



25

Verification

Sorting software is in the TCB.

Does it work correctly?

Test the sorting software on many

random inputs, increasing inputs,

decreasing inputs. Seems to work.



25

Verification

Sorting software is in the TCB.

Does it work correctly?

Test the sorting software on many

random inputs, increasing inputs,

decreasing inputs. Seems to work.

But are there occasional inputs

where this sorting software

fails to sort correctly?

History: Many security problems

involve occasional inputs

where TCB works incorrectly.



26

For each used n (e.g., 768):

C code

normal compiler
��

machine code

symbolic execution
��

fully unrolled code

new peephole optimizer
��

unrolled min-max code

new sorting verifier
��

yes, code works



27

Symbolic execution:

use existing “angr” library,

with tiny new patches for

eliminating byte splitting, adding

a few missing vector instructions.



27

Symbolic execution:

use existing “angr” library,

with tiny new patches for

eliminating byte splitting, adding

a few missing vector instructions.

Peephole optimizer:

recognize instruction patterns

equivalent to min, max.



27

Symbolic execution:

use existing “angr” library,

with tiny new patches for

eliminating byte splitting, adding

a few missing vector instructions.

Peephole optimizer:

recognize instruction patterns

equivalent to min, max.

Sorting verifier: decompose

DAG into merging networks.

Verify each merging network

using generalization of 2007

Even–Levi–Litman, correction of

1990 Chung–Ravikumar.



28

Current djbsort release,

verified AVX2 code and

verified portable code:

https://sorting.cr.yp.to

Includes the sorting code;

automatic build-time tests;

simple benchmarking program;

verification tools.

Web site shows how to

use the verification tools.

Next release planned:

verified ARM NEON code.



29

The future

I don’t think there is a

fundamental tension between

• crypto performance,

• stopping timing attacks,

• making sure software works.

See the sorting example.

Firefox has already deployed

verified constant-time software for

Curve25519+ChaCha20+Poly1305.

I’m working on easier verification,

post-quantum code, faster code.


