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Current djbsort release, The future

verified AVX2 code and
verified portable code:

| don’t think there is a
fundamental tension between

https://sorting.cr.yp.to e crypto performance,

- e stopping timing attacks,
Includes the sorting code; PINg 5

. _— e making sure software works.
automatic build-time tests:

. | . o
simple benchmarking program; See the sorting example
verification tools. Firefox has already deployed

verified constant-time software for
Curve255194+-ChaCha20-+Poly1305.

Web site shows how to
use the verification tools.

I'm working on easier verification,
Next release planned:

verified ARM NEON code. post-quantum code, faster code.




