Can cryptographic software
be fixed?

D. J. Bernstein

Bob's laptop screen:

From: Alice

Thank you for your
submission. We received

many 1lnteresting papers,

and unfortunately your

Bob assumes this message is
something Alice actually sent.

But today's “security’ systems
fail to guarantee this property.
Attacker could have modified
or forged the message.

tographic software
?

rnstein

Bob's laptop screen:

From: Alice

Thank you for your
submission. We received

many 1interesting papers,

and unfortunately your

Bob assumes this message is
something Alice actually sent.

But today's “security’ systems
fail to guarantee this property.
Attacker could have modified
or forged the message.

Systems
e.g. Fire
4582680
3093398
2623454

software

Bob's laptop screen:

From: Alice

Thank you for your
submission. We received
many 1lnteresting papers,

and unfortunately your

Bob assumes this message is
something Alice actually sent.

But today's “security’ systems
fail to guarantee this property.
Attacker could have modified
or forged the message.

Systems are too c
e.g. Firefox 60 (M
4582680 lines in ¢
3093398 lines in h
2623454 lines In c

Bob's laptop screen:

From: Alice

Thank you for your
submission. We received
many 1lnteresting papers,

and unfortunately your

Bob assumes this message is
something Alice actually sent.

But today's “security’ systems
fail to guarantee this property.
Attacker could have modified
or forged the message.

Systems are too complex.
e.g. Firefox 60 (May 2018)
4582680 lines in cpp files,
3093398 lines in h files,
2623454 lines in c files, etc.

Bob's laptop screen:

From: Alice

Thank you for your
submission. We received

many 1lnteresting papers,

and unfortunately your

Bob assumes this message is
something Alice actually sent.

But today's “security’ systems
fail to guarantee this property.
Attacker could have modified
or forged the message.

Systems are too complex.

e.g. Firefox 60 (May 2018) code:
4582680 lines in cpp files,

3093393
2623454

ines in h fi

Ines in c fi

€S,
es, etc.

Bob's laptop screen:

From: Alice

Thank you for your
submission. We received
many 1lnteresting papers,

and unfortunately your

Bob assumes this message is
something Alice actually sent.

But today's “security’ systems
fail to guarantee this property.
Attacker could have modified
or forged the message.

Systems are too complex.
e.g. Firefox 60 (May 2018) code:

4582680 lines in cpp files,

3093393
2623454

ines in h fi

Ines in c fi

€S,
es, etc.

Every line in this code has

full control over user messages.

Bob's laptop screen: Systems are too complex.

e.g. Firefox 60 (May 2018) code:
4582680 lines in cpp files,
3093398 lines in h files,

2623454 lines in c files, etc.

From: Alice

Thank you for your

submission. We received

. . Every line in this code has
many 1lnteresting papers,

full control over user messages.

and unfortunately your

Critical vulnerabilities fixed in 61:

Bob assumes this message is CVE-2018-12359 “Buffer

something Alice actually sent. overflow using computed size

But today's “security” systems of canvas element”; CVE-2018-
fail to guarantee this property. 12360, “Use-after-free when
Attacker could have modified using focus()"; CVE-2018-12361,

or forged the message. “Integer overflow in SwizzleData" .

ptop screen: Systems are too complex. Trusted
e.g. Firefox 60 (May 2018) code:

. Alice | | | TCB: pc
4582680 lines in cpp files, that is
3093398 lines in h files, the user
k you for your 2623454 lines in c files, etc. .

i1ssion. We received

. . Every line in this code has
1nteresting papers,

full control over user messages.

unfortunately your

Critical vulnerabilities fixed in 61:

imes this message Is CVE-2018-12359 “Buffer

1g Alice actually sent. overflow using computed size

y's “security” systems of canvas element”; CVE-2018-
1arantee this property. 12360, “Use-after-free when
- could have modified using focus()"; CVE-2018-12361,

| the message. “Integer overflow in SwizzleData" .

- your
le received
ing papers,

tely your

message IS
“tually sent.

rity’ systems
his property.
/e modified
age.

Systems are too complex.

e.g. Firefox 60 (May 2018) code:
4582680 lines in cpp files,
3093398 lines in h files,

2623454 lines in c files, etc.

Every line in this code has
full control over user messages.

Critical vulnerabilities fixed in 61:
CVE-2018-12359, “Buffer
overflow using computed size

of canvas element”: CVE-2018-
12360, “Use-after-free when
using focus()"; CVE-2018-12361,

“Integer overflow in SwizzleData" .

Trusted computing

TCB: portion of ¢
that Is responsible
the users’ security

Systems are too complex.

e.g. Firefox 60 (May 2018) code:

4582680 lines in cpp files,
3093398 lines in h files,
2623454 lines in c files, etc.

Every line in this code has
full control over user messages.

Critical vulnerabilities fixed in 61:

CVE-2018-12359, “Buffer
overflow using computed size
of canvas element”: CVE-2018-
12360, “Use-after-free when

using focus()"; CVE-2018-12361,
“Integer overflow in SwizzleData" .

Trusted computing base (T¢

TCB: portion of computer s
that is responsible for enforc
the users’ security policy.

Systems are too complex.

e.g. Firefox 60 (May 2018) code:
4582680 lines in cpp files,
3093398 lines in h files,

2623454 lines in c files, etc.

Every line in this code has
full control over user messages.

Critical vulnerabilities fixed in 61:
CVE-2018-12359, “Buffer
overflow using computed size

of canvas element”: CVE-2018-
12360, “Use-after-free when
using focus()"; CVE-2018-12361,

“Integer overflow in SwizzleData" .

Trusted computing base (TCB)

TCB: portion of computer system
that is responsible for enforcing
the users’ security policy.

Systems are too complex. Trusted computing base (TCB)
e.g. Firefox 60 (May 2018) code:
4582680 lines in cpp files,
3093398 lines in h files,

2623454 lines in c files, etc.

TCB: portion of computer system
that is responsible for enforcing
the users’ security policy.

Security policy for this talk:

E |. . h- h . .
very line in this code has If message is displayed on

full control over user messages. |) o
Bob's screen as “From: Alice
Critical vulnerabilities fixed in 61: then message is from Alice.
CVE-2018-12359, “Buffer
overflow using computed size
of canvas element”: CVE-2018-
12360, “Use-after-free when
using focus()"; CVE-2018-12361,

“Integer overflow in SwizzleData" .

Systems are too complex.

e.g. Firefox 60 (May 2018) code:
4582680 lines in cpp files,
3093398 lines in h files,

2623454 lines in c files, etc.

Every line in this code has
full control over user messages.

Critical vulnerabilities fixed in 61:
CVE-2018-12359, “Buffer
overflow using computed size

of canvas element”: CVE-2018-
12360, “Use-after-free when
using focus()"; CVE-2018-12361,

“Integer overflow in SwizzleData" .

Trusted computing base (TCB)

TCB: portion of computer system
that is responsible for enforcing
the users’ security policy.

Security policy for this talk:
If message is displayed on
Bob's screen as “From: Alice’

then message is from Alice.

If TCB works correctly,

then message Is guaranteed

to be from Alice, no matter what
the rest of the system does.

are too complex.

fox 60 (May 2018) code:
lines in cpp files,

lines in h files,

lines in c files, etc.

1e in this code has

rol over user messages.

vulnerabilities fixed in 61:
18-12359, “Buffer

using computed size
s element”; CVE-2018-
‘Use-after-free when
cus()"; CVE-2018-12361,

overflow in SwizzleData" .

Trusted computing base (TCB)

TCB: portion of computer system
that is responsible for enforcing
the users’ security policy.

Security policy for this talk:
If message is displayed on
Bob's screen as “From: Alice”

then message is from Alice.

If TCB works correctly,

then message Is guaranteed

to be from Alice, no matter what
the rest of the system does.

Example

1. Attac
IN A C

Linux

omplex.
ay 2018) code:

pp files,
files,

files, etc.

ode has
Ser messages.

ties fixed in 61:
“Buffer
nputed size

" CVE-2018-
free when
/E-2018-12361,

n SwizzleData”.

Trusted computing base (TCB)

TCB: portion of computer system
that is responsible for enforcing
the users’ security policy.

Security policy for this talk:

If message is displayed on
Bob's screen as “From: Alice’
then message is from Alice.

If TCB works correctly,

then message Is guaranteed

to be from Alice, no matter what
the rest of the system does.

Examples of attac

1. Attacker uses k
In a device driv
Linux kernel on

~ode:

es.

n 01:

18-

2361,

Data’ .

Trusted computing base (TCB)

TCB: portion of computer system
that is responsible for enforcing
the users’ security policy.

Security policy for this talk:

If message is displayed on
Bob's screen as “From: Alice”
then message is from Alice.

If TCB works correctly,

then message Is guaranteed

to be from Alice, no matter what
the rest of the system does.

Examples of attack strategie

1. Attacker uses buffer over
In a device driver to cont
Linux kernel on Alice’s |a

Trusted computing base (TCB)

TCB: portion of computer system
that is responsible for enforcing
the users’ security policy.

Security policy for this talk:

If message is displayed on
Bob's screen as “From: Alice’
then message is from Alice.

If TCB works correctly,

then message Is guaranteed

to be from Alice, no matter what
the rest of the system does.

Examples of attack strategies:

1. Attacker uses buffer overflow
In a device driver to control
Linux kernel on Alice’s laptop.

Trusted computing base (TCB)

TCB: portion of computer system
that is responsible for enforcing
the users’ security policy.

Security policy for this talk:

If message is displayed on
Bob's screen as “From: Alice’
then message is from Alice.

If TCB works correctly,

then message Is guaranteed

to be from Alice, no matter what
the rest of the system does.

Examples of attack strategies:

1. Attacker uses buffer overflow
In a device driver to control
Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow
In a web browser to control
disk files on Bob's laptop.

Trusted computing base (TCB)

TCB: portion of computer system
that is responsible for enforcing
the users’ security policy.

Security policy for this talk:

If message is displayed on
Bob's screen as “From: Alice’
then message is from Alice.

If TCB works correctly,

then message Is guaranteed

to be from Alice, no matter what
the rest of the system does.

Examples of attack

strategies:

1. Attacker uses buffer overtlow

In a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

In a web browser to control

disk files on Bob's laptop.

Device driver is in t
Web browser is in t

CPU is in the TCB.

ne TCB.

ne TCB.
Etc.

Trusted computing base (TCB)

TCB: portion of computer system
that is responsible for enforcing
the users’ security policy.

Security policy for this talk:
If message is displayed on
Bob's screen as “From: Alice’

then message is from Alice.

If TCB works correctly,

then message Is guaranteed

to be from Alice, no matter what
the rest of the system does.

Examples of attack

strategies:

1. Attacker uses buffer overtlow

In a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

In a web browser to control

disk files on Bob's laptop.

Device driver is in t
Web browser is in t

CPU is in the TCB.

ne TCB.

ne TCB.
Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

computing base (TCB)

rtion of computer system
esponsible for enforcing
s' security policy.

policy for this talk:

ge Is displayed on
reen as From: Alice’
ssage is from Alice.

vorks correctly,

ssage Is guaranteed

ym Alice, no matter what
of the system does.

Examples of attack

strategies:

1. Attacker uses buffer overftlow

In a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

In a web browser to control

disk files on Bob's laptop.

Device driver is In t
Web browser is in t

CPU is in the TCB.

ne TCB.

ne TCB.
Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

Classic s

Rearchit
to have

r base (TCB)

omputer system
for enforcing

policy.

this talk:
ayed on
'rom: Alice’

om Alice.

ectly,

jaranteed

no matter what
tem does.

Examples of attack

strategies:

1. Attacker uses buffer overtlow

In a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow

In a web browser to control

disk files on Bob's laptop.

Device driver is in t
Web browser is in t

CPU is in the TCB.

ne TCB.

ne TCB.
Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

Classic security stt

Rearchitect compt
to have a much sr

what

Examples of attack strategies:

1. Attacker uses buffer overflow
In a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow
In a web browser to control
disk files on Bob's laptop.

Device driver is in the TCB.
Web browser is in the TCB.
CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.
Any hope of fixing this?

Classic security strategy:

Rearchitect computer systen
to have a much smaller TCE

Examples of attack strategies:

1. Attacker uses buffer overflow
In a device driver to control
Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow
In a web browser to control
disk files on Bob's laptop.

Device driver is in the TCB.
Web browser is in the TCB.
CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.
Any hope of fixing this?

Classic security strategy:

Rearchitect computer systems
to have a much smaller TCB.

Examples of attack strategies:

1. Attacker uses buffer overflow
In a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow
In a web browser to control
disk files on Bob's laptop.

Device driver is in the TCB.
Web browser is in the TCB.
CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.
Any hope of fixing this?

Classic security strategy:

Rearchitect computer systems
to have a much smaller TCB.

Carefully audit the TCB.

Examples of attack strategies:

1. Attacker uses buffer overflow
In a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow
In a web browser to control
disk files on Bob's laptop.

Device driver is in the TCB.
Web browser is in the TCB.
CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.
Any hope of fixing this?

Classic security strategy:

Rearchitect computer systems
to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A VM C

Alice data| | Charlie data

TCB stops each VM from
touching data in other VMs.

Examples of attack strategies:

1. Attacker uses buffer overflow
In a device driver to control

Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow
In a web browser to control
disk files on Bob's laptop.

Device driver is in the TCB.
Web browser is in the TCB.
CPU is in the TCB. Etc.

Massive TCB has many bugs,

including many security holes.
Any hope of fixing this?

Classic security strategy:

Rearchitect computer systems
to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A VM C
Alice data| | Charlie data

TCB stops each VM from
touching data in other VMs.

Browser in VM C isn't in TCB.
Can't touch data in VM A,
if TCB works correctly.

Examples of attack

1. Attacker uses buffer overflow
In a device driver to control
Linux kernel on Alice’s laptop.

2. Attacker uses buffer overflow
In a2 web browser to control

strategies:

disk files on Bob's laptop.

Device driver is in t
Web browser is in t

CPU is in the TCB.

ne TCB.

ne TCB.
Etc.

Massive TCB has many bugs,

including many security holes.

Any hope of fixing this?

Classic security strategy:

Rearchitect computer systems
to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A VM C

Alice data| | Charlie data

TCB stops each VM from
touching data in other VMs.

Browser in VM C isn't in TCB.

Can't touch data in VM A,
if TCB works correctly.

Alice also runs many VMs.

s of attack strategies:

ker uses buffer overflow
levice driver to control

. kernel on Alice's laptop.

ker uses buffer overflow
veb browser to control
1les on Bob's laptop.

Iriver I1s In the TCB.

wser i1s In the TCB.
n the TCB. Etc.

TCB has many bugs,

r many security holes.
e of fixing this?

Classic security strategy:

Rearchitect computer systems
to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A VM C

Alice data| | Charlie data

TCB stops each VM from
touching data in other VMs.

Browser in VM C isn't in TCB.

Can't touch data in VM A,
if TCB works correctly.

Alice also runs many VMs.

Focus of

How doc
that ince
Is from

Cryptog
Message

Alic

authent

authent

Alic

k strategies:

yuffer overflow
er to control

- Alice's laptop.

ywuffer overflow
er to control
b's laptop.

the TCB.
the TCB.
3. Etc.

many bugs,

curity holes.
- this?

Classic security strategy:

Rearchitect computer systems
to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A VM C

Alice data| | Charlie data

TCB stops each VM from
touching data in other VMs.

Browser in VM C isn't in TCB.

Can't touch data in VM A,
if TCB works correctly.

Alice also runs many VMs.

Focus of this talk:

How does Bob's I:
that incoming net
s from Alice's lap

Cryptographic solt
Message-authentic

Alice’'s messag

i

authenticated me

Vuntru

authenticated me

i

Alice’'s messag

S.

flow
rol

ptop.

flow

rol

S.

Classic security strategy:

Rearchitect computer systems
to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A VM C

Alice data| | Charlie data

TCB stops each VM from
touching data in other VMs.

Browser in VM C isn't in TCB.

Can't touch data in VM A,
if TCB works correctly.

Alice also runs many VMs.

Focus of this talk: Cryptogr

How does Bob's laptop kno
that incoming network data
is from Alice’s laptop?

Cryptographic solution:
Message-authentication cod

Alice’'s message

: -

authenticated message

vu ntrusted netw

authenticated message

i

Alice’'s message <

Classic security strategy:

Rearchitect computer systems
to have a much smaller TCB.

Carefully audit the TCB.

e.g. Bob runs many VMs:

VM A VM C
Alice data| | Charlie data

TCB stops each VM from
touching data in other VMs.

Browser in VM C isn't in TCB.

Can't touch data in VM A,
if TCB works correctly.

Alice also runs many VMs.

Focus of this talk: Cryptography

How does Bob's laptop know
that incoming network data
is from Alice’s laptop?

Cryptographic solution:
Message-authentication codes.

Alice’'s message k

—_—

authenticated message

vu ntrusted network

authenticated message

i

Alice’'s message i< k

Classic security strategy: Focus of this talk: Cryptography
Rearchitect computer systems How does Bob's laptop know
to have a much smaller TCB. that incoming network data

. o 7
Carefully audit the TCB. is from Alice’s laptop?

e.g. Bob runs many VMs: Cryptographic SO.|ut|<.)n:
Message-authentication codes.

VM A VM C
Alice data| | Charlie data| Alice's message e
TCB stops each VM from i /
touching data in other VMs. authenticated message
Browser in VM C isn't in TCB. Vuntrusted NEtWork
Can't touch data in VM A, modified message
if TCB works correctly. ¢

“Alert: forgery!” i< k

Alice also runs many VMs.

ecurity strategy:

ect computer systems
a much smaller TCB.

/ audit the TCB.

 runs many VMs:

\ VM C
ta Charlie data

ps each VM from
- data in other VMs.

in VM Cisn't in TCB.

uch data in VM A,
vorks correctly.

o runs many VMs.

Focus of this talk: Cryptography

How does Bob's laptop know
that incoming network data
is from Alice’s laptop?

Cryptographic solution:
Message-authentication codes.

Alice’'s message K

—_—

authenticated message

vu ntrusted network

modified message

i

“Alert: forgery!” i< k

Importal
to share

What it
on their

‘ategy:

Iter systems
naller TCB.

» TCB.

y VMs:

‘M C

lie data
M from
ther VMs.

isn't in TCB.
n VM A,
ectly.

ny VMs.

Focus of this talk: Cryptography

How does Bob's laptop know
that incoming network data
is from Alice’s laptop?

Cryptographic solution:
Message-authentication codes.

Alice’'s message k

—_—

authenticated message

vu ntrusted network

modified message

i

“Alert: forgery!” i< k

Important for Alic
to share the same

What if attacker v

on thelr communic

1S

«)
W

Focus of this talk: Cryptography

How does Bob's laptop

know

that incoming network data

is from Alice’s laptop?

Cryptographic solution:

Message-authentication codes.

Alice’'s message

¢

k

authenticated message

S

Y
modified message

i

untrusted network

“Alert: forgery!” i<

Important for Alice and Bok
to share the same secret k.

What if attacker was spying
on their communication of /

Focus of this talk: Cryptography

How does Bob's laptop know

that incoming network data
is from Alice’s laptop?

Cryptographic solution:
Message-authentication codes.

Alice’'s message k

authenticated message /

untrusted network

Y
modified message

i

“Alert: forgery!” i< k

Important for Alice and Bob
to share the same secret k.

What if attacker was spying
on their communication of k7?7

Focus of this talk: Cryptography Important for Alice and Bob

| to share the same secret k.
How does Bob's laptop know

that incoming network data What if attacker was spying
Is from Alice's laptop? on their communication of k7
Cryptographic solution: Solution 1:
Message-authentication codes. Public-key encryption.
Alice’'s message k k =< private key a
authenticated message / ciphertext public key aG
Vuntrusted network Tnetwork Vnetwork
modified message ciphertext < public key aG

i T

“Alert: forgery!” i< k K

- this talk: Cryptography Important for Alice and Bob Solution
s Bob's laptop know to share the same secret k. Public-k
oming network data What if attacker was spying p
Alice's laptop? on their communication of k7 \
raphic solution: Solution 1: signed |
-authentication codes. Public-key encryption. |
. signed t
e's message k k =< private key a '
T] | z
icated message ciphertext public key aG

Vuntrusted network Tnetwork Vnetwork

fled message ciphertext < public key aG

i T

rt: forgery!” < k k

_Cryptography

ptop know
nvork data
top?

1tion:
ation codes.

e K

7

ssage

sted network

ge

Important for Alice and Bob
to share the same secret k.

What if attacker was spying
on their communication of k7?7

Solution 1
Public-key encryption.

k 1< private key a
ciphertext public key aG
Tnetwork Vnetwork

ciphertext < public key aG

T

K

Solution 2:
Public-key signatu

m

i

sighed message

Ve

inetwork

sighed message

L

m

.

aphy

CS.

Important for Alice and Bob
to share the same secret k.

What if attacker was spying
on their communication of k7

Solution 1:
Public-key encryption.

k 1< private key a
ciphertext public key aG
Tnetwork Vnetwork

ciphertext < public key aG

T

k

Solution 2:
Public-key signatures.

m

L

sighed message

inetwork

sighed message

1

Important for Alice and Bob

to share the same secret k.

What if attacker was spying

on their communication of k?

Solution 1:

Public-key encryption.

k 1< private key a
ciphertext public key aG

Tnetwork Vnetwork
ciphertext < public key aG

T

K

Solution 2:
Public-key signatures.

m

i

sighed message

d

e

aG

inetwork

sighed message

lnetwork

aG

L

m

i

Important for Alice and Bob
to share the same secret k.

What if attacker was spying
on their communication of k7?7

Solution 1
Public-key encryption.

k 1< private key a
ciphertext public key aG
Tnetwork Vnetwork

ciphertext < public key aG

T

K

Solution 2:
Public-key signatures.

m a
sighed message /aG

i network L network
sighed message aG

I

Fantasy world: software for

authentication/encryption /sigs
is small and carefully audited =
no cryptographic security failures.

1t for Alice and Bob
the same secret k.

attacker was spying
communication of k?

1:
ey encryption.

private key a

¢

Xt public key aG

twork v network

Xt < public key aG

Solution 2:
Public-key signatures.

m

d

L

sighed message

aG

inetwork

lnetwork

sighed message

aG

1

Fantasy world: software for

authentication/encryption /sigs

is small and carefully audited =

no cryptographic security failures.

Real wol

Cryptog
s huge.
of many

Most co

e and Bob
secret k.

vas spying
“ation of k7?7

on.

private key a

i

oublic key aG

v network

oublic key aG

Solution 2:
Public-key signatures.

m

i

sighed message

d

e

aG

inetwork

sighed message

lnetwork

aG

L

m

i

Fantasy world: software for

authentication/encryption /sigs

is small and carefully audited =

no cryptographic security failures.

Real world:

Cryptographic par
is huge. Many im|
of many cryptogra

Most complicatior

» Solution 2: Real world:

Public-key signatures. Cryptographic part of the T

m 3 Is huge. Many implementati
7 i / i of many cryptographic primi
signed message aG Most complications are for <
i network l network
- sighed message aG
ya 0
m
aG
'_ Fantasy world: software for
work o | |
- authentication/encryption /sigs

— is small and carefully audited =
no cryptographic security failures.

Solution 2:
Public-key signatures.

m

d

L

sighed message

aG

inetwork

lnetwork

sighed message

aG

I

Fantasy world: software for
authentication/encryption /sigs
is small and carefully audited =

no cryptographic security failures.

10
Real world:

Cryptographic part of the TCB
Is huge. Many implementations
of many cryptographic primitives.

Most complications are for speed.

Solution 2:
Public-key signatures.

m a
sighed message /aG

i network L network
sighed message aG

I

Fantasy world: software for

authentication/encryption /sigs
is small and carefully audited =

no cryptographic security failures.

10
Real world:

Cryptographic part of the TCB
Is huge. Many implementations
of many cryptographic primitives.

Most complications are for speed.

e.g. February 2018: Google adds
NSA’s Speck cipher to Linux
kernel using hand-written asm
for ARM Cortex-A7 processors.

Solution 2:
Public-key signatures.

m a
sighed message /aG

i network L network
sighed message aG

I

Fantasy world: software for

authentication/encryption /sigs
is small and carefully audited =

no cryptographic security failures.

10
Real world:

Cryptographic part of the TCB
Is huge. Many implementations
of many cryptographic primitives.

Most complications are for speed.

e.g. February 2018: Google adds
NSA’s Speck cipher to Linux
kernel using hand-written asm
for ARM Cortex-A7 processors.

August 2018: Google switches
from Speck to ChaChal2, again
using hand-written assembly:.
Why not ChaCha20? Speed.

2:
ey signatures.

n a
-
nessage aG
Lnetwork lnetwork
nessage aG

"

world: software for
cation/encryption/sigs
and carefully audited =

ographic security failures.

Real world:

Cryptographic part of the TCB
Is huge. Many implementations

of many cryptographic primitives.

Most complications are for speed.

e.g. February 2018: Google adds
NSA's Speck cipher to Linux
kernel using hand-written asm
for ARM Cortex-A7 processors.

August 2018: Google switches
from Speck to ChaChal2, again

using hand-written assembly.
Why not ChaCha20? Speed.

10

Keccak
"Keccak
>20 opt
of Kecc:
Includes
many fu

res.

d

A

aG
lnetwork

aG
e

"tware for

cryption /sigs
lly audited =

ecurity failures.

Real world:

Cryptographic part of the TCB
Is huge. Many implementations

of many cryptographic primitives.

Most complications are for speed.

e.g. February 2018: Google adds
NSA's Speck cipher to Linux
kernel using hand-written asm
for ARM Cortex-A7 processors.

August 2018: Google switches
from Speck to ChaChal2, again
using hand-written assembly:.
Why not ChaCha20? Speed.

10

Keccak (SHA-3) t
“Keccak Code Pa
>20 optimized im
of Keccak: AVX2,
Includes “parallel
many further impl

work

IgS
] =

lures.

Real world:

Cryptographic part of the TCB
Is huge. Many implementations

of many cryptographic primitives.

Most complications are for speed.

e.g. February 2018: Google adds
NSA's Speck cipher to Linux
kernel using hand-written asm
for ARM Cortex-A7 processors.

August 2018: Google switches
from Speck to ChaChal2, again

using hand-written assembly.
Why not ChaCha20? Speed.

10

Keccak (SHA-3) team main
"Keccak Code Package” wit
>20 optimized implementat
of Keccak: AVX2, NEON, e
Includes “parallel Keccak™:

many further implementatio

Real world:

Cryptographic part of the TCB
Is huge. Many implementations

of many cryptographic primitives.

Most complications are for speed.

e.g. February 2018: Google adds
NSA's Speck cipher to Linux
kernel using hand-written asm
for ARM Cortex-A7 processors.

August 2018: Google switches
from Speck to ChaChal2, again
using hand-written assembly:.
Why not ChaCha20? Speed.

10

Keccak (SHA-3) team maintains
"Keccak Code Package” with
>20 optimized implementations
of Keccak: AVX2, NEON, etc.
Includes “parallel Keccak™:
many further implementations.

11

Real world:

Cryptographic part of the TCB
Is huge. Many implementations

of many cryptographic primitives.

Most complications are for speed.

e.g. February 2018: Google adds
NSA's Speck cipher to Linux
kernel using hand-written asm
for ARM Cortex-A7 processors.

August 2018: Google switches
from Speck to ChaChal2, again
using hand-written assembly:.
Why not ChaCha20? Speed.

10

Keccak (SHA-3) team maintains
"Keccak Code Package” with
>20 optimized implementations
of Keccak: AVX2, NEON, etc.
Includes “parallel Keccak™:
many further implementations.

Why not portable C code using
“optimizing” compiler? Slower.

11

Real world:

Cryptographic part of the TCB
Is huge. Many implementations

of many cryptographic primitives.

Most complications are for speed.

e.g. February 2018: Google adds
NSA's Speck cipher to Linux
kernel using hand-written asm
for ARM Cortex-A7 processors.

August 2018: Google switches
from Speck to ChaChal2, again
using hand-written assembly:.

Why not ChaCha20? Speed.

10

Keccak (SHA-3) team maintains
"Keccak Code Package” with
>20 optimized implementations
of Keccak: AVX2, NEON, etc.
Includes “parallel Keccak™:
many further implementations.

Why not portable C code using
“optimizing” compiler? Slower.

Another example: many different
primitives in NIST competition
for post-quantum public-key
cryptography. (See next talk.)

Some overlap in implementations,

but still huge volume of code.

11

|d:

raphic part of the TCB
Many implementations

cryptographic primitives.

mplications are for speed.

ruary 2018: Google adds
peck cipher to Linux
sing hand-written asm

| Cortex-A7 processors.

2018: Google switches
eck to ChaChal2, again

nd-written assembly.
= ChaCha20? Speed.

10

Keccak (SHA-3) team maintains
"Keccak Code Package” with
>20 optimized implementations
of Keccak: AVX2, NEON, etc.
Includes “parallel Keccak™:
many further implementations.

Why not portable C code using
“optimizing” compiler? Slower.

Another example: many different
primitives in NIST competition
for post-quantum public-key
cryptography. (See next talk.)

Some overlap in implementations,
but still huge volume of code.

11

Often pe
cryptogr
e.g. NIS
really lik
optimize
= More

t of the TCB
blementations

phic primitives.

s are for speed.

. Google adds
or to Linux
written asm

[Processors.

gle switches
1Chal2, again
1 assembly.
07 Speed.

10

Keccak (SHA-3) team maintains
"Keccak Code Package” with
>20 optimized implementations
of Keccak: AVX2, NEON, etc.
Includes “parallel Keccak™:
many further implementations.

Why not portable C code using
“optimizing’ compiler? Slower.

Another example: many different
primitives in NIST competition
for post-quantum public-key
cryptography. (See next talk.)

Some overlap in implementations,
but still huge volume of code.

11

Often people still
cryptographic perf
e.g. NIST, May 2(
really like to see n
optimized impleme
= More and more

CB

ons

tives.

peed.

adds
X
m

DI'S.

es
oaln

10

Keccak (SHA-3) team maintains
"Keccak Code Package” with
>20 optimized implementations
of Keccak: AVX2, NEON, etc.
Includes “parallel Keccak™:
many further implementations.

Why not portable C code using
“optimizing” compiler? Slower.

Another example: many different
primitives in NIST competition
for post-quantum public-key
cryptography. (See next talk.)

Some overlap in implementations,
but still huge volume of code.

11

Often people still complain
cryptographic performance.
e.g. NIST, May 2018: “we'c
really like to see more platfc
optimized implementations”
= More and more software.

11 12

Keccak (SHA-3) team maintains Often people still complain about
"Keccak Code Package” with cryptographic performance.

>20 optimized implementations e.g. NIST, May 2018: “we'd

of Keccak: AVX2, NEON, etc. really like to see more platform-
Includes “parallel Keccak™: optimized implementations’ .
many further implementations. = More and more software.

Why not portable C code using

“optimizing’ compiler? Slower.

Another example: many different
primitives in NIST competition
for post-quantum public-key
cryptography. (See next talk.)

Some overlap in implementations,
but still huge volume of code.

11 12

Keccak (SHA-3) team maintains Often people still complain about
"Keccak Code Package” with cryptographic performance.

>20 optimized implementations e.g. NIST, May 2018: “we'd

of Keccak: AVX2, NEON, etc. really like to see more platform-
Includes “parallel Keccak™: optimized implementations’ .
many further implementations. = More and more software.
Why not portable C code using Many security failures from
“optimizing’ compiler? Slower. Incorrect computations: e.g.,

CVE-2017-3732, CVE-2017-3736,

Another example: many different |
CVE-2017-3738 in OpenSSL.

primitives in NIST competition
for post-quantum public-key
cryptography. (See next talk.)

Some overlap in implementations,
but still huge volume of code.

Keccak (SHA-3) team maintains
"Keccak Code Package” with
>20 optimized implementations
of Keccak: AVX2, NEON, etc.
Includes “parallel Keccak™:
many further implementations.

Why not portable C code using
“optimizing’ compiler? Slower.

Another example: many different
primitives in NIST competition
for post-quantum public-key
cryptography. (See next talk.)

Some overlap in implementations,

but still huge volume of code.

11

12
Often people still complain about

cryptographic performance.

e.g. NIST, May 2018: “"we'd
really like to see more platform-
optimized implementations’ .

= More and more software.

Many security failures from

Incorrect computations: e.g.,
CVE-2017-3732, CVE-2017-3736,

CVE-2017-3738 in OpenSSL.

Many security failures from

variable-time computations: e.g.
CVE-2018-0495, CVE-2018-0737,
CVE-2018-5407 in OpenSSL.

(SHA-3) team maintains
- Code Package” with
Imized implementations
k: AVX2, NEON, etc.
“parallel Keccak™:

rther implementations.

= portable C code using
ing” compiler? Slower.

example: many different
s in NIST competition
quantum public-key
aphy. (See next talk.)

rerlap In implementations,
huge volume of code.

11

Often people still complain about
cryptographic performance.

e.g. NIST, May 2018: “"we'd
really like to see more platform-
optimized implementations” .

= More and more software.

Many security failures from

Incorrect computations: e.g.,
CVE-2017-3732, CVE-2017-3736,
CVE-2017-3738 in OpenSSL.

Many security failures from
variable-time computations: e.g.
CVE-2018-0495, CVE-2018-0737,
CVE-2018-5407 in OpenSSL.

12

Timing .

Large pc¢
optimizea
addresse

Considel
Instructi
parallel «
store-to-
branch ¢

eam maintains
“kage” with
plementations
NEON, etc.
Keccak'™ :
ementations.

C code using
siler? Slower.

many different
“competition
public-key

e next talk.)

nplementations,
me of code.

11

Often people still complain about
cryptographic performance.

e.g. NIST, May 2018: “"we'd
really like to see more platform-
optimized implementations’ .

= More and more software.

Many security failures from

Incorrect computations: e.g.,
CVE-2017-3732, CVE-2017-3736,
CVE-2017-3738 in OpenSSL.

Many security failures from

variable-time computations: e.g.
CVE-2018-0495, CVE-2018-0737,
CVE-2018-5407 in OpenSSL.

12

Timing attacks

Large portion of C
optimizations dep
addresses of memc

Consider data cacl
Instruction caching
parallel cache ban
store-to-load forw:
branch prediction,

tains

loNns
tC.

ns.

ing
ver.

erent
lon

)

tions,
e.

11

Often people still complain about
cryptographic performance.

e.g. NIST, May 2018: “"we'd
really like to see more platform-
optimized implementations” .

= More and more software.

Many security failures from

Incorrect computations: e.g.,
CVE-2017-3732, CVE-2017-3736,
CVE-2017-3738 in OpenSSL.

Many security failures from

variable-time computations: e.g.
CVE-2018-0495, CVE-2018-0737,
CVE-2018-5407 in OpenSSL.

12

Timing attacks

Large portion of CPU hardw
optimizations depending on
addresses of memory locatio

Consider data caching,
instruction caching,
parallel cache banks,
store-to-load forwarding,
branch prediction, etc.

Often people still complain about
cryptographic performance.

e.g. NIST, May 2018: “"we'd
really like to see more platform-
optimized implementations’ .

= More and more software.

Many security failures from

Incorrect computations: e.g.,
CVE-2017-3732, CVE-2017-3736,
CVE-2017-3738 in OpenSSL.

Many security failures from

variable-time computations: e.g.
CVE-2018-0495, CVE-2018-0737,
CVE-2018-5407 in OpenSSL.

12

Timing attacks

Large portion of CPU hardware:

optimizations depending on
addresses of memory locations.

Consider data caching,
Instruction caching,
parallel cache banks,
store-to-load forwarding,
branch prediction, etc.

13

Often people still complain about
cryptographic performance.

e.g. NIST, May 2018: “"we'd
really like to see more platform-
optimized implementations’ .

= More and more software.

Many security failures from
Incorrect computations: e.g.,

CVE-2017-3732, CVE-2017-3736,
CVE-2017-3738 in OpenSSL.

Many security failures from
variable-time computations: e.g.
CVE-2018-0495, CVE-2018-0737,
CVE-2018-5407 in OpenSSL.

12

13

Timing attacks

Large portion of CPU hardware:
optimizations depending on
addresses of memory locations.

Consider data caching,
Instruction caching,
parallel cache banks,
store-to-load forwarding,
branch prediction, etc.

Many attacks (e.g. TLBleed from
2018 Gras—Razavi—Bos—Giuffrida)
show that this portion of the CPU
has trouble keeping secrets.

ople still complain about
aphic performance.

T, May 2018: “we'd

e to see more platform-
d iImplementations” .
“and more software.

curity failures from

- computations: e.g.,
7-3732, CVE-2017-3736,
| 7-3738 in OpenSSL.

curity failures from

time computations: e.g.
18-0495, CVE-2018-0737,
18-5407 in OpenSSL.

12

Timing attacks

Large portion of CPU hardware:
optimizations depending on
addresses of memory locations.

Consider data caching,
instruction caching,
parallel cache banks,
store-to-load forwarding,
branch prediction, etc.

Many attacks (e.g. TLBleed from

2018 Gras—Razavi—Bos—Giuffrida)
show that this portion of the CPU
has trouble keeping secrets.

13

Typical |

Underst:
But det:
not expc

Try to p
This bec

Tweak t
to try tc

complain about
ormance.

)18: “we'd

ore platform-
ntations' .

' software.

ires from

tions: e.g.,

VE-2017-3736,
OpenSSL.

ires from

outations: e.g.
VE-2018-0737,
OpenSSL.

12

Timing attacks

Large portion of CPU hardware:

optimizations depending on

addresses of memory locations.

Consider data caching,

instruction caching,

parallel cache banks,

store-to-load forwarding,

branch prediction, etc.

Many attacks (e.g. TLBleed from
2018 Gras—Razavi—Bos—Giuffrida)

show that this
has trouble kee

hortion of the CPU

ning secrets.

13

Typical literature

Understand this p
But details are oft
not exposed to se

Try to push attacl
This becomes ven

Tweak the attacke
to try to stop the

ybout

m-

3736,

e.g.
0737,

12

Timing attacks

Large portion of CPU hardware:
optimizations depending on
addresses of memory locations.

Consider data caching,
instruction caching,
parallel cache banks,
store-to-load forwarding,
branch prediction, etc.

Many attacks (e.g. TLBleed from

2018 Gras—Razavi—Bos—Giuffrida)
show that this portion of the CPU
has trouble keeping secrets.

13

Typical literature on this toy

Understand this portion of (
But details are often proprie
not exposed to security revie

Try to push attacks further.
This becomes very complica

Tweak the attacked softwar:
to try to stop the known att

Timing attacks

Large portion of CPU hardware:
optimizations depending on
addresses of memory locations.

Consider data caching,
Instruction caching,
parallel cache banks,
store-to-load forwarding,
branch prediction, etc.

Many attacks (e.g. TLBleed from
2018 Gras—Razavi—Bos—Giuffrida)
show that this portion of the CPU
has trouble keeping secrets.

13

Typical literature on this topic:

Understand this portion of CPU.
But details are often proprietary,
not exposed to security review.

Try to push attacks further.
This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.

14

Timing attacks

Large portion of CPU hardware:
optimizations depending on
addresses of memory locations.

Consider data caching,
Instruction caching,
parallel cache banks,
store-to-load forwarding,
branch prediction, etc.

Many attacks (e.g. TLBleed from
2018 Gras—Razavi—Bos—Giuffrida)
show that this portion of the CPU
has trouble keeping secrets.

13

Typical literature on this topic:

Understand this portion of CPU.
But details are often proprietary,
not exposed to security review.

Try to push attacks further.
This becomes very complicated.

Tweak the attacked software

to try to stop the known attacks.

For researchers: This is great!

14

13
Timing attacks

Large portion of CPU hardware:
optimizations depending on
addresses of memory locations.

Consider data caching,
Instruction caching,
parallel cache banks,
store-to-load forwarding,
branch prediction, etc.

Many attacks (e.g. TLBleed from
2018 Gras—Razavi—Bos—Giuffrida)
show that this portion of the CPU
has trouble keeping secrets.

Typical literature on this topic:

Understand this portion of CPU.
But details are often proprietary,
not exposed to security review.

Try to push attacks further.
This becomes very complicated.

Tweak the attacked software
to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.
Many years of security failures.
No confidence in future security.

13
attacks

ortion of CPU hardware:
tions depending on
s of memory locations.

- data caching,
on caching,
~ache banks,
load forwarding,
rediction, etc.

tacks (e.g. TLBleed from

as—Razavi—Bos—Giuffrida)
at this portion of the CPU
ble keeping secrets.

Typical literature on this topic:

Understand this portion of CPU.
But details are often proprietary,
not exposed to security review.

Try to push attacks further.
This becomes very complicated.

Tweak the attacked software
to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.

Many years of security failures.
No confidence in future security.

14

The “co
Don't gi
to this
(1987 G

Obliviou
domain-

PU hardware:
ending on
ory locations.

ning,

)
>

kS,
arding,
etc.

. TLBleed from
-Bos—Giuffrida)
tion of the CPU
g secrets.

13

Typical literature on this topic:

Understand this portion of CPU.
But details are often proprietary,
not exposed to security review.

Try to push attacks further.
This becomes very complicated.

Tweak the attacked software
to try to stop the known attacks.

For researchers: This Is great!

For auditors: This is a nightmare.

Many years of security failures.
No confidence in future security.

14

The “constant-tin
Don't give any sec
to this portion of -

(1987 Goldreich, 1
Oblivious RAM: 2

domain-specific fo

‘are.

from
frida)
> CPU

13

14
Typical literature on this topic:

Understand this portion of CPU.
But details are often proprietary,
not exposed to security review.

Try to push attacks further.
This becomes very complicated.

Tweak the attacked software
to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.
Many years of security failures.
No confidence in future security.

The “constant-time” solutio
Don't give any secrets

to this portion of the CPU.
(1987 Goldreich, 1990 Ostrc

Oblivious RAM: 2004 Berns
domain-specific for better sy

Typical literature on this topic:

Understand this portion of CPU.
But details are often proprietary,
not exposed to security review.

Try to push attacks further.
This becomes very complicated.

Tweak the attacked software
to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.
Many years of security failures.
No confidence in future security.

14

The “constant-time” solution:
Don't give any secrets
to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM: 2004 Bernstein:
domain-specific for better speed)

15

Typical literature on this topic:

Understand this portion of CPU.
But details are often proprietary,
not exposed to security review.

Try to push attacks further.
This becomes very complicated.

Tweak the attacked software
to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.
Many years of security failures.
No confidence in future security.

14

The “constant-time” solution:
Don't give any secrets
to this portion of the CPU.

(1987 Goldreich, 1990 Ostrovsky:

Oblivious RAM: 2004 Bernstein:
domain-specific for better speed)

TCB analysis:
of the CPU to be correct, but
it to keep secrets.

Need this portion

don't neec

Makes auditing much easier.

15

Typical literature on this topic:

Understand this portion of CPU.
But details are often proprietary,
not exposed to security review.

Try to push attacks further.
This becomes very complicated.

Tweak the attacked software
to try to stop the known attacks.

For researchers: This is great!

For auditors: This is a nightmare.

Many years of security failures.
No confidence in future security.

14

The “constant-time” solution:
Don't give any secrets

to this portion of the CPU.
(1987 Goldreich, 1990 Ostrovsky:
Oblivious RAM: 2004 Bernstein:

domain-specific for better speed)

TCB analysis: Need this portion
of the CPU to be correct, but
don't need It to keep secrets.

Makes auditing much easier.

Good match for attitude and
experience of CPU designers: e.g.,
Intel issues errata for correctness
bugs, not for information leaks.

15

Iterature on this topic:

and this portion of CPU.
ils are often proprietary,
sed to security review.

ush attacks further.
omes very complicated.

he attacked software
 stop the known attacks.

archers: This Is great!

tors: This is a nightmare.

ars of security failures.
dence in future security.

14

The “constant-time” solution:
Don't give any secrets

to this portion of the CPU.
(1987 Goldreich, 1990 Ostrovsky:
Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)

TCB analysis: Need this portion

of the CPU to
don't neec

he correct, but
It to keep secrets.

Makes auditing much easier.

Good match for attitude and
experience of CPU designers: e.g.,
Intel issues errata for correctness
bugs, not for information leaks.

15

Case stu

Subrout;
Classic |
Gravity-.
LEDApk
sort arra
e.g. sort

Typical :
merge S
choose |
based or
also brai

How to
without

on this topic:

ortion of CPU.
en proprietary,

—urity review.

s further.
 complicated.

d software
known attacks.

his Is great!

Is a nightmare.

urity failures.
uture security.

14

The “constant-time’ solution:

Don't give any secrets

to this portion
(1987 Goldreic

of the CPU.
n, 1990 Ostrovsky:

Oblivious RAM: 2004 Bernstein:
domain-specific for better speed)

TCB analysis:

of the CPU to
don't neec

Need this portion

ne correct, but

it to keep secrets.

Makes auditing much easier.

Good match for attitude and

experience of CPU designers: e.g.,

Intel issues errata for correctness

bugs, not for information leaks.

15

Case study: Const

Subroutine in (e.g
Classic McEliece,

Gravity-SPHINCS,
LEDApkc, NTRU
sort array of secre

e.g. sort 768 32-bi

Typical sorting alg
merge sort, quicks
choose load/store
based on secret d:
also branch based

How to sort secret
without any secret

)IC:

PU.
tary,

W.

ted.

(v

acks.

mare.

€s.
Irity.

14

The “constant-time” solution:
Don't give any secrets

to this portion of the CPU.
(1987 Goldreich, 1990 Ostrovsky:
Oblivious RAM; 2004 Bernstein:

domain-specific for better speed)

TCB analysis:

of the CPU to
don't neec

Need this portion

he correct, but
It to keep secrets.

Makes auditing much easier.

Good match for attitude and
experience of CPU designers: e.g.,
Intel issues errata for correctness
bugs, not for information leaks.

15

Case study: Constant-time :

Subroutine in (e.g.) BIG QLU
Classic McEliece, GeMSS,

Gravity-SPHINCS, LEDAker
LEDApkec, NTRU Prime, Ro
sort array of secret integers.
e.g. sort 768 32-bit integers.

Typical sorting algorithms—
merge sort, quicksort, etc.—
choose load/store addresses
based on secret data. Usual
also branch based on secret

How to sort secret data
without any secret addresse:

The “constant-time” solution:
Don't give any secrets

to this portion of the CPU.
(1987 Goldreich, 1990 Ostrovsky:
Oblivious RAM: 2004 Bernstein:

domain-specific for better speed)

TCB analysis:

of the CPU to
don't neec

Need this portion

ne correct, but
it to keep secrets.

Makes auditing much easier.

Good match for attitude and
experience of CPU designers: e.g.,
Intel issues errata for correctness
bugs, not for information leaks.

15

16
Case study: Constant-time sorting

Subroutine in (e.g.) BIG QUAKE,
Classic McEliece, GeMSS,
Gravity-SPHINCS, LEDAkem,
LEDApkc, NTRU Prime, Round?2:
sort array of secret integers.

e.g. sort 768 32-bit integers.

Typical sorting algorithms—
merge sort, quicksort, etc.—
choose load/store addresses
based on secret data. Usually
also branch based on secret data.

How to sort secret data
without any secret addresses?

nstant-time” solution:

Ve any secrets

ortion of the CPU.
oldreich, 1990 Ostrovsky:
s RAM; 2004 Bernstein:
specific for better speed)

alysis: Need this portion

PU to be correct, but
ed It to keep secrets.

uditing much easier.

atch for attitude and

ce of CPU designers: e.g.,
les errata for correctness
t for information leaks.

15

Case study: Constant-time sorting

Subroutine in (e.g.) BIG QUAKE,
Classic McEliece, GeMSS,
Gravity-SPHINCS, LEDAkem,
LEDApkc, NTRU Prime, Round?2:
sort array of secret integers.

e.g. sort 768 32-bit integers.

Typical sorting algorithms—
merge sort, quicksort, etc.—
choose load/store addresses
based on secret data. Usually
also branch based on secret data.

How to sort secret data
without any secret addresses?

16

Foundat
a comp:

X

min{x,

Easy cor
Warning
compiler

Even ea:

e’ solution:
rets

the CPU.

990 Ostrovsky:
004 Bernstein:

r better speed)

2d this portion
correct, but
ep secrets.
uch easier.

'titude and

| designers: e.g.,
for correctness
mation leaks.

15

Case study: Constant-time sorting

Subroutine in (e.g.) BIG QUAKE,
Classic McEliece, GeMSS,
Gravity-SPHINCS, LEDAkem,
LEDApkc, NTRU Prime, Round?2:
sort array of secret integers.

e.g. sort 768 32-bit integers.

Typical sorting algorithms—
merge sort, quicksort, etc.—
choose load/store addresses
based on secret data. Usually
also branch based on secret data.

How to sort secret data
without any secret addresses?

16

Foundation of solt
a comparator sor

X

min{x, y} |

Easy constant-tim
Warning: C stand.
compiler to break

Even easier exercis

VSKy:
tein:
eed)

tion
Ut

‘ness
ks.

15

16
Case study: Constant-time sorting

Subroutine in (e.g.) BIG QUAKE,
Classic McEliece, GeMSS,
Gravity-SPHINCS, LEDAkem,
LEDApkc, NTRU Prime, Round?2:
sort array of secret integers.

e.g. sort 768 32-bit integers.

Typical sorting algorithms—
merge sort, quicksort, etc.—
choose load/store addresses
based on secret data. Usually
also branch based on secret data.

How to sort secret data
without any secret addresses?

Foundation of solution:
a comparator sorting 2 inte

X Y
min{x, y} max{x, y}

Easy constant-time exercise
Warning: C standard allows
compiler to break the solutic

Even easier exercise in asm.

Case study: Constant-time sorting

Subroutine in (e.g.) BIG QUAKE,
Classic McEliece, GeMSS,
Gravity-SPHINCS, LEDAkem,
LEDApkc, NTRU Prime, Round?2:
sort array of secret integers.

e.g. sort 768 32-bit integers.

Typical sorting algorithms—
merge sort, quicksort, etc.—
choose load/store addresses
based on secret data. Usually
also branch based on secret data.

How to sort secret data
without any secret addresses?

16

Foundation of solution:
a comparator sorting 2 integers.

X Y
min{x, y} max{x, y}

Easy constant-time exercise in C.
Warning: C standard allows
compiler to break the solution.

Even easier exercise in asm.

17

dy: Constant-time sorting

ne in (e.g.) BIG QUAKE,
VIcEliece, GeMSS,
SPHINCS, LEDAkem,

c, NTRU Prime, Round2:
y of secret integers.

(68 32-bit integers.

sorting algorithms—

ort, quicksort, etc.—

oad /store addresses

1 secret data. Usually
1ch based on secret data.

sort secret data
any secret addresses?

16

Foundation of solution:

a comparator sorting 2 integers.

X Y
min{x, y} max{x, y}

Easy constant-time exercise in C.

Warning: C standard allows
compiler to break the solution.

Even easier exercise in asm.

17

Combine
sorting

Example

ant-time sorting

.) BIG QUAKE,
GeMSS,
LEDAkem,
Prime, Round?2:
L Integers.

t integers.

orithms—

ort, etc.—
addresses

ita. Usually

on secret data.

- data
- addresses?

16

Foundation of solution:

a comparator sorting 2 integers.

X Y
min{x, y} max{x, y}

Easy constant-time exercise in C.

Warning: C standard allows
compiler to break the solution.

Even easier exercise in asm.

17

Combine compara
sorting network f

Example of a sorti

® @
o—
®
o—
® @

sorting

AKE,

n’
und?2:

16

Foundation of solution:

a comparator sorting 2 integers.

X Y
min{x, y} max{x, y}

Easy constant-time exercise in C.

Warning: C standard allows
compiler to break the solution.

Even easier exercise in asm.

17

Combine comparators into 2
sorting network for more ir

Example of a sorting networ

Foundation of solution:
a comparator sorting 2 integers.

X Y
min{x, y} max{x, y}

Easy constant-time exercise in C.
Warning: C standard allows
compiler to break the solution.

Even easier exercise in asm.

17

Combine comparators into a
sorting network for more inputs.

Example of a sorting network:

18

lon of solution:
arator sorting 2 integers.

Y

v} max{x, y }

1stant-time exercise in C.
- C standard allows
- to break the solution.

sler exercise In asm.

17

Combine comparators into a
sorting network for more inputs.

Example of a sorting network:

18

Position:
In a sort
indepenc
Naturall

ition:
ting 2 Integers.

y

max{x, y}

e exercise in C.
ard allows
the solution.

e 1IN asm.

17

Combine comparators into a
sorting network for more inputs.

Example of a sorting network:

18

Positions of comp.
In a sorting netwo
independent of the
Naturally constant

gers.

in C.

on.

17

Combine comparators into a
sorting network for more inputs.

Example of a sorting network:

18

Positions of comparators
In a sorting network are
independent of the input.
Naturally constant-time.

Combine comparators into a
sorting network for more inputs.

Example of a sorting network:

18

Positions of comparators
In a sorting network are
independent of the input.
Naturally constant-time.

19

Combine comparators into a

sorting network for more inputs.

Example of a sorting network:

18

Positions of comparators
In a sorting network are
independent of the input.
Naturally constant-time.

But remember all the people
complaining about speed: e.g.,
“We would be happy to hear that
fixed weight sampling is efficient
on a variety of platforms ...

We have not yet been convinced
that this 1s the case.”

19

Combine comparators into a

sorting network for more inputs.

Example of a sorting network:

18

Positions of comparators
In a sorting network are
independent of the input.
Naturally constant-time.

But remember all the people
complaining about speed: e.g.,
“We would be happy to hear that
fixed weight sampling is efficient
on a variety of platforms ...

We have not yet been convinced
that this 1s the case.”

(n® — n)/2 comparators in bubble
sort produce complaints about
performance as n increases.

19

> comparators Iinto a

network for more inputs.

 of a sorting network:

18

Positions of comparators
In a sorting network are
independent of the input.
Naturally constant-time.

But remember all the people
complaining about speed: e.g.,
“We would be happy to hear that
fixed weight sampling is efficient
on a variety of platforms ...

We have not yet been convinced
that this is the case.”

(n® — n)/2 comparators in bubble
sort produce complaints about
performance as n increases.

19

volid 1in
{ int64
if (n

t =1
while
for (;
for

1:

for

f

tors Into a

or more inputs.

ng network:
—9

® @
— 9

18

Positions of comparators
In a sorting network are
independent of the input.
Naturally constant-time.

But remember all the people
complaining about speed: e.g.,
“We would be happy to hear that
fixed weight sampling is efficient
on a variety of platforms ...

We have not yet been convinced
that this 1s the case.”

(n® — n)/2 comparators in bubble
sort produce complaints about
performance as n increases.

19

void int32 sort(

{ int64 t,p,q,i;

if (n < 2) ret
t = 1;

while (t < n -
for (p = t;p >
for (1 = 0;1
if (11 &
minmax (X
for (q = t;q
for (i = 0O

if (1 (1

minmax

\puUts.

18

Positions of comparators
In a sorting network are
independent of the input.
Naturally constant-time.

But remember all the people
complaining about speed: e.g.,
“We would be happy to hear that
fixed weight sampling is efficient
on a variety of platforms ...

We have not yet been convinced
that this is the case.”

(n® — n)/2 comparators in bubble
sort produce complaints about
performance as n increases.

19

void int32_sort(int32 *x,
{ int64 t,p,q,1i;
if (n < 2) return;
t = 1;
while (t < n - t) t +=
for (p = t;p > 0;p >>=
for (i = 0;i < n - p;
if (M1 & p))
minmax (x+i,x+i+p)
for (q = t;q > p;q >>
for (1 = 0;1 < n -
if (M(i & p))

minmax (x+i+p,x+

Positions of comparators
In a sorting network are
independent of the input.
Naturally constant-time.

But remember all the people
complaining about speed: e.g.,
“We would be happy to hear that
fixed weight sampling is efficient
on a variety of platforms ...

We have not yet been convinced
that this 1s the case.”

(n® — n)/2 comparators in bubble
sort produce complaints about
performance as n increases.

19

20
void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,i;

if (n < 2) return;

t = 1;

while (t < n - t) t += t;
1) |
for (i = 0;i < n - p;++i)

if (V14 & p))

minmax (x+i,x+i+p) ;

for (p = t;p > O0;p >>=

for (q = t;q > p;q >>= 1)
for (i = 0;1i < n - q;++i)
if (M1 & p))

minmax (x+i+p,x+i+q) ;

s of comparators
ing network are
lent of the input.
y constant-time.

ember all the people

1Ing about speed: e.g.,
uld be happy to hear that
ight sampling is efficient
lety of platforms ...

 not yet been convinced
IS the case.”

/2 comparators in bubble
Juce complaints about
ANCE asS N INCreases.

19

20
void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,1i;
if (n < 2) return;
t = 1;
while (t < n - t) t += t;
for (p = t;p > O;p >>= 1) {
for (i = 0;i < n - p;++i)
if (M1 & p))
minmax (x+i,x+i+p) ;
for (q = t;q > p;q >>= 1)
for (i = 0;1i < n - q;++i)
if (M(i & p))

minmax (x+i+p,x+i+q);

Previous
1973 Kn
which is
1968 Ba
sorting r

%n(logz
Much fa

Warning
of Batct
require |
Also, W
network:
handling

arators
rk are
> Input.

—time.

the people

- speed: e.g.,
py to hear that
ling is efficient
tforms . ..

een convinced

>€E.

rators in bubble
laints about
INCreases.

19

20
void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,i;
if (n < 2) return;
t = 1;
while (t < n - t) t += t;
for (p = t;p > O;p >>= 1) {
for (i = 0;i < n - p;++i)
if (M4 & p))
minmax (x+i,x+i+p);
for (q = t;q > p;q >>= 1)
for (i = 0;1i < n - q;++i)
if (M1 & p))

minmax (x+i+p,x+i+q) ;

Previous slide: C 1
1973 Knuth "mer;
which i1s a simplifi
1968 Batcher “od
sorting networks.

~n(log, n)?/4 con
Much faster than

Warning: many ot
of Batcher's sortin
require n to be a |
Also, Wikipedia sz
networks ... arer

handling arbitraril

v

r that
“lent

nced

yubble

ut

19

20
void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,1i;
if (n < 2) return;
t = 1;
while (t < n - t) t += t;
for (p = t;p > O;p >>= 1) {
for (i = 0;i < n - p;++i)
if (M1 & p))
minmax (x+i,x+i+p);
for (q = t;q > p;q >>= 1)
for (i = 0;1i < n - q;++i)
if (M(1i & p))

minmax (x+i+p,x+i+q);

Previous slide: C translation
1973 Knuth “merge exchang
which is a simplified version

1968 Batcher “odd-even me
sorting networks.

~n(log, n)?/4 comparators.
Much faster than bubble sor

Warning: many other descri
of Batcher's sorting network
require n to be a power of 2
Also, Wikipedia says “Sortir
networks ... are not capabl
handling arbitrarily large inp

20
void int32_sort(int32 *x,int64 n)

{ int64 t,p,q,i;
if (n < 2) return;
t = 1;
while (t < n - t) t += t;
for (p = t;p > O;p >>= 1) {
for (i = 0;i < n - p;++i)
if (V4 & p))
minmax (x+i,x+i+p);
for (q = t;q > p;q >>= 1)
for (i = 0;1i < n - q;++i)
if (M1 & p))

minmax (x+i+p,x+i+q) ;

Previous slide: C translation of
1973 Knuth “merge exchange”,
which is a simplified version of

1968 Batcher “odd-even merge”
sorting networks.

~n(log, n)?/4 comparators.
Much faster than bubble sort.

Warning: many other descriptions
of Batcher's sorting networks
require n to be a power of 2.
Also, Wikipedia says “Sorting
networks ... are not capable of
handling arbitrarily large inputs.”

21

20

t32_sort(int32 *x,int64 n)

t,p,q,1;

< 2) return;

(t <n-1t) t +=t;
0 = t;p > O0;p >>= 1) {
(i = 0;i <n - p;++i)
f ('(i & p))

minmax (x+i,x+i+p);

(@ = t;q > p;q >>= 1)
or (i = 0;1i < n - q;++i)
if (M(1 & p))

minmax (x+i+p,x+i+q);

Previous slide: C translation of
1973 Knuth “"merge exchange”,
which is a simplified version of

1968 Batcher “odd-even merge”
sorting networks.

~n(log, n)?/4 comparators.
Much faster than bubble sort.

Warning: many other descriptions
of Batcher's sorting networks
require n to be a power of 2.
Also, Wikipedia says “Sorting
networks ... are not capable of
handling arbitrarily large inputs.”

21

This co

Cons

Berns
La
"NTRU

consit

20

int32 *x,int64 n)

urn;
t) t += t;
O;p >>= 1) {

< n - p;++i)
p))
+i,x+i+p) ;

> p;q >>= 1)
;i < n - q;++i)
& p))

(x+it+p,x+i+q);

Previous slide: C translation of
1973 Knuth “merge exchange”,
which is a simplified version of

1968 Batcher “odd-even merge”
sorting networks.

~n(log, n)?/4 comparators.
Much faster than bubble sort.

Warning: many other descriptions
of Batcher's sorting networks
require n to be a power of 2.
Also, Wikipedia says “Sorting
networks ... are not capable of

handling arbitrarily large inputs.”

21

This constant-tin

\

(

Y

Constant-time
included |
Bernstein—Chue

Lange—van V
"NTRU Prime” s

r

Vo
New: “dj
constant-time

20 01
int64 n) | Previous slide: C translation of

This constant-time sorting

1973 Knuth “merge exchange”, —

which is a simplified version of vectorizati

)) (for Haswe

1968 Batcher “odd-even merge \ .

t; sorting networks. Constant-time sorting co

~n(log, n)?/4 comparators. ncluded in 2017

++7 . :
1) Much faster than bubble sort. Bernstein—Chuengsatianst

Lange—van Vredendaal

: Warning: many other descriptions “NTRU Prime” software re
= 1) of Batcher's sorting networks '
q;++i) require n to be a power of 2. revamped.
’ L . . higher spe
Also, Wikipedia says “Sorting v
i+q) ; networks ... are not capable of New: “djbsort”

handling arbitrarily large inputs.” constant-time sorting co

Previous slide: C translation of
1973 Knuth “merge exchange”,
which is a simplified version of

1968 Batcher “odd-even merge”
sorting networks.

~n(log, n)?/4 comparators.
Much faster than bubble sort.

Warning: many other descriptions
of Batcher's sorting networks
require n to be a power of 2.
Also, Wikipedia says “Sorting
networks ... are not capable of
handling arbitrarily large inputs.”

21

This constant-time sorting code

vectorization
(for Haswell)

Y

Constant-time sorting code
included in 2017
Bernstein—Chuengsatiansup—
Lange—van Vredendaal
"NTRU Prime” software release

revamped for
higher speed

Y
New: “djbsort”
constant-time sorting code

22

slide: C translation of
uth “merge exchange”,
a simplified version of

tcher “odd-even merge”
1etworks.

n)?/4 comparators.
ster than bubble sort.

: many other descriptions
ler's sorting networks

1 to be a power of 2.
kipedia says “Sorting

5 ... are not capable of
arbitrarily large inputs.”

21

This constant-time sorting code

vectorization
(for Haswell)

Y

Constant-time sorting code
included in 2017
Bernstein—Chuengsatiansup—
Lange—van Vredendaal
"NTRU Prime" software release

revamped for
higher speed

Y
New: “djbsort”

constant-time sorting code

22

T he slov

Massive
Includes
sorting 1
on mode
2015 Gu

Haswell

25608 s
21844 h

15136 k

‘ranslation of
re exchange',
od version of

d-even merge”

1parators.
bubble sort.

her descriptions
g networks
yower of 2.

ys “Sorting

ot capable of

/ large inputs.”

21

This constant-time sorting code

vectorization
(for Haswell)

Y

Constant-time sorting code
included in 2017
Bernstein—Chuengsatiansup—
Lange—van Vredendaal
"NTRU Prime” software release

revamped for
higher speed

Y
New: “djbsort”

constant-time sorting code

22

The slowdown for

Massive fast-sortir
Includes several ef
sorting using AVX
on modern Intel C
2015 Gueron—Kras

Haswell (titanO)
25608 stdsort
21344 herf

15136 krasnov

This constant-time sorting code

vectorization
(for Haswell)

Y

Constant-time sorting code
included in 2017
Bernstein—Chuengsatiansup—
Lange—van Vredendaal
"NTRU Prime" software release

revamped for
higher speed

Y
New: “djbsort”

constant-time sorting code

22

The slowdown for constant

Massive fast-sorting literatus
Includes several efforts to of
sorting using AV X2 instructi
on modern Intel CPUs: e.g.
2015 Gueron—Krasnov quick

Haswell (titan0) cycles, n:
25608 stdsort
21344 herf

15136 krasnov

22 23

This constant-time sorting code The slowdown for constant time

vectorization Massive fast-sorting literature.

(for Haswell) Includes several efforts to optimize

Y

_ _ sorting using AVX2 instructions
Constant-time sorting code

included In 2017
Bernstein—Chuengsatiansup—

on modern Intel CPUs: e.g.
2015 Gueron—Krasnov quicksort.

Lange—van Vredendaal Haswell (titan0) cycles, n = 768:
"NTRU Prime” software release 25008 stdsort
21344 herf

revamped for

high d
\ BNET SPEC 15136 krasnov

New: “djbsort”
constant-time sorting code

22 23

This constant-time sorting code The slowdown for constant time

vectorization Massive fast-sorting literature.

(for Haswell) Includes several efforts to optimize

Y

_ _ sorting using AVX2 instructions
Constant-time sorting code

included In 2017
Bernstein—Chuengsatiansup—

on modern Intel CPUs: e.g.
2015 Gueron—Krasnov quicksort.

Lange—van Vredendaal Haswell (titan0) cycles, n = 768:
"NTRU Prime” software release 256008 stdsort
21344 herf
revamped for 18548 oldavx2 (2017 BCLvV)
higher speed
v 15136 krasnov

New: “djbsort”
constant-time sorting code

This constant-time sorting code

vectorization
(for Haswell)

Y

Constant-time sorting code
included in 2017
Bernstein—Chuengsatiansup—
Lange—van Vredendaal
"NTRU Prime” software release

revamped for
higher speed

Y
New: “djbsort”

constant-time sorting code

22

23
The slowdown for constant time

Massive fast-sorting literature.
Includes several efforts to optimize
sorting using AV X2 instructions
on modern Intel CPUs: e.g.

2015 Gueron—Krasnov quicksort.

Haswell (titan0) cycles, n = 768:
25608 stdsort
21344 herf

18548 oldavx2 (2017 BCLvV)
15136 krasnov

6596 avx2 (2018 djbsort)

This constant-time sorting code

vectorization
(for Haswell)

Y

Constant-time sorting code
included in 2017
Bernstein—Chuengsatiansup—
Lange—van Vredendaal
"NTRU Prime” software release

revamped for
higher speed

Y
New: “djbsort”

constant-time sorting code

22

23
The slowdown for constant time

Massive fast-sorting literature.
Includes several efforts to optimize
sorting using AV X2 instructions
on modern Intel CPUs: e.g.

2015 Gueron—Krasnov quicksort.

Haswell (titan0) cycles, n = 768:
25608 stdsort
21344 herf

18548 oldavx2 (2017 BCLvV)
15136 krasnov

6596 avx2 (2018 djbsort)

No slowdown. New speed records!

nstant-time sorting code

vectorization
(for Haswell)

Y

tant-time sorting code
included in 2017
tein—Chuengsatiansup—
nge—van Vredendaal
Prime" software release

revamped for
higher speed

. Y
New: “djbsort”

ant-time sorting code

22

23
The slowdown for constant time

Massive fast-sorting literature.
Includes several efforts to optimize
sorting using AV X2 instructions
on modern Intel CPUs: e.g.

2015 Gueron—Krasnov quicksort.

Haswell (titan0) cycles, n = 768:
25608 stdsort
21344 herf
18548 oldavx2 (2017 BCLvV)
15136 krasnov

6596 avx2 (2018 djbsort)

No slowdown. New speed records!

How car
beat sta

le sorting code

/ectorization
for Haswell)

sorting code

n 2017
ngsatiansup—
'redendaal
oftware release

evamped for
igher speed

bsort”
sorting code

22

23
The slowdown for constant time

Massive fast-sorting literature.
Includes several efforts to optimize
sorting using AV X2 instructions
on modern Intel CPUs: e.g.

2015 Gueron—Krasnov quicksort.

Haswell (titan0) cycles, n = 768:
25608 stdsort
21344 herf

18548 oldavx2 (2017 BCLvV)
15136 krasnov

6596 avx2 (2018 djbsort)

No slowdown. New speed records!

How can an n(log
beat standard nlo

code

on

1)

de
Ip—

lease

for

22

23
The slowdown for constant time

Massive fast-sorting literature.
Includes several efforts to optimize
sorting using AV X2 Instructions
on modern Intel CPUs: e.g.

2015 Gueron—Krasnov quicksort.

Haswell (titan0) cycles, n = 768:
25608 stdsort
21344 herf
18548 oldavx2 (2017 BCLvV)
15136 krasnov

6596 avx2 (2018 djbsort)

No slowdown. New speed records!

How can an n(log n)? algori
beat standard nlog n algorit

The slowdown for constant time

Massive fast-sorting literature.
Includes several efforts to optimize
sorting using AV X2 instructions
on modern Intel CPUs: e.g.

2015 Gueron—Krasnov quicksort.

Haswell (titan0) cycles, n = 768:
25608 stdsort
21344 herf

18548 oldavx2 (2017 BCLvV)
15136 krasnov

6596 avx2 (2018 djbsort)

No slowdown. New speed records!

23

How can an n(log n)? algorithm
beat standard nlog n algorithms?

24

The slowdown for constant time

Massive fast-sorting literature.
Includes several efforts to optimize
sorting using AV X2 instructions
on modern Intel CPUs: e.g.

2015 Gueron—Krasnov quicksort.

Haswell (titan0) cycles, n = 768:
25608 stdsort
21344 herf
18548 oldavx2 (2017 BCLvV)
15136 krasnov

6596 avx2 (2018 djbsort)

No slowdown. New speed records!

23

24
How can an n(log n)? algorithm

beat standard nlog n algorithms?

Answer: well-known trends
in CPU design, reflecting
fundamental hardware costs
of various operations.

23 24
The slowdown for constant time How can an n(log n)? algorithm

. L beat standard nlog n algorithms?
Massive fast-sorting literature.

Includes several efforts to optimize Answer: well-known trends
sorting using AVX2 instructions in CPU design, reflecting

on modern Intel CPUs: e.g. fundamental hardware costs
2015 Gueron—Krasnov quicksort. of various operations.

Haswell (titan0) cycles, n = 768: Every cycle, Haswell core can do
25608 stdsort 8 “min” ops on 32-bit integers +
21844 herf 8 “max’ ops on 32-bit integers.

18548 oldavx2 (2017 BCLvV)
15136 krasnov
6596 avx2 (2018 djbsort)

No slowdown. New speed records!

23 24
The slowdown for constant time How can an n(log n)? algorithm

. L beat standard nlog n algorithms?
Massive fast-sorting literature.

Includes several efforts to optimize Answer: well-known trends
sorting using AVX2 instructions in CPU design, reflecting

on modern Intel CPUs: e.g. fundamental hardware costs
2015 Gueron—Krasnov quicksort. of various operations.

Haswell (titan0) cycles, n = 768: Every cycle, Haswell core can do
25608 stdsort 8 “min” ops on 32-bit integers +
21844 herf 8 “max’ ops on 32-bit integers.

18548 oldavx2 (2017 BCLvV)
15136 krasnov
6596 avx2 (2018 djbsort)

Loading a 32-bit integer from a
random address: much slower.

Conditional branch: much slower.
No slowdown. New speed records!

vdown for constant time

fast-sorting literature.
several efforts to optimize
Ising AV X2 instructions
rn Intel CPUs: e.g.
eron—Krasnov quicksort.

(titan0) cycles, n = 768:
tdsort

erf

ldavx2 (2017 BCLvV)

rasnov

vx2 (2018 djbsort)

down. New speed records!

23

How can an n(log n)? algorithm
beat standard nlog n algorithms?

Answer: well-known trends
in CPU design, reflecting
fundamental hardware costs
of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +
8 “max’ ops on 32-bit integers.

Loading a 32-bit integer from a
random address: much slower.

Conditional branch: much slower.

24

Verificat

Sorting
Does it

Test the
random
decreasi

constant time

\g literature.
forts to optimize
2 Instructions

PUs: e.g.
nov quicksort.

cycles, n = 768:
017 BCLvV)
- djbsort)

v speed records!

23

How can an n(log n)? algorithm
beat standard nlog n algorithms?

Answer: well-known trends
in CPU design, reflecting
fundamental hardware costs
of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +
8 “max’ ops on 32-bit integers.

Loading a 32-bit integer from a
random address: much slower.

Conditional branch: much slower.

24

Verification

Sorting software s
Does it work corre

Test the sorting sc
random inputs, inc
decreasing inputs.

ytimize

ons

sort.

— 7068:

cords!

23

How can an n(log n)? algorithm
beat standard nlog n algorithms?

Answer: well-known trends
in CPU design, reflecting
fundamental hardware costs
of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +
8 “max’ ops on 32-bit integers.

Loading a 32-bit integer from a
random address: much slower.

Conditional branch: much slower.

24

Verification

Sorting software is in the T(
Does it work correctly?

Test the sorting software on
random Inputs, Increasing In
decreasing inputs. Seems to

How can an n(log n)? algorithm
beat standard nlog n algorithms?

Answer: well-known trends
in CPU design, reflecting
fundamental hardware costs
of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +
8 “max’ ops on 32-bit integers.

Loading a 32-bit integer from a
random address: much slower.

Conditional branch: much slower.

24

05
Verification

Sorting software is in the TCB.
Does it work correctly?

Test the sorting software on many
random inputs, increasing inputs,
decreasing inputs. Seems to work.

How can an n(log n)? algorithm
beat standard nlog n algorithms?

Answer: well-known trends
in CPU design, reflecting
fundamental hardware costs
of various operations.

Every cycle, Haswell core can do

8 “min” ops on 32-bit integers +
8 “max’ ops on 32-bit integers.

Loading a 32-bit integer from a
random address: much slower.

Conditional branch: much slower.

24

Verification

Sorting software is in the TCB.
Does it work correctly?

Test the sorting software on many
random inputs, increasing inputs,
decreasing inputs. Seems to work.

But are there occasional inputs
where this sorting software
fails to sort correctly?

History: Many security problems
iInvolve occasional inputs
where TCB works incorrectly.

25

v an n(log n)? algorithm
ndard nlog n algorithms?

well-known trends
design, reflecting
ntal hardware costs
IS operations.

cle, Haswell core can do

ops on 32-bit integers +
ops on 32-bit integers.

a 32-bit integer from a
address: much slower.

nal branch: much slower.

24

Verification

Sorting software is in the TCB.
Does it work correctly?

Test the sorting software on many
random inputs, increasing inputs,
decreasing inputs. Seems to work.

But are there occasional inputs
where this sorting software
fails to sort correctly?

History: Many security problems
involve occasional inputs
where TCB works incorrectly.

25

For eackh

fully

unrollec

yes,

n)? algorithm
o n algorithms?

/n trends
lecting
vare costs

ns.

ell core can do

-bit Integers +
2-bit Integers.

nteger from a
nuch slower.

1: much slower.

24

05
Verification

Sorting software is in the TCB.
Does it work correctly?

Test the sorting software on many
random inputs, increasing inputs,
decreasing inputs. Seems to work.

But are there occasional inputs
where this sorting software
fails to sort correctly?

History: Many security problems
Involve occasional inputs
where TCB works incorrectly.

For each used n (¢

C code

norm

Y .
machine cod

symb
Y .
fully unrolled c

new |

Y

unrolled min-max

NEW ¢
Y

yes, code wor

n do

ars +
ers.

N 4

er.

lower.

24

Verification

Sorting software is in the TCB.
Does it work correctly?

Test the sorting software on many
random inputs, increasing inputs,

decreasing inputs. Seems to work.

But are there occasional inputs
where this sorting software
fails to sort correctly?

History: Many security problems
involve occasional inputs
where TCB works incorrectly.

25

For each used n (e.g., 768):

C code

normal compile
Y

machine code

symbolic execu
Y

fully unrolled code

new peephole ¢

Y

unrolled min-max code

new sorting ver
Y

yes, code works

Verification

Sorting software is in the TCB.
Does it work correctly?

Test the sorting software on many
random inputs, increasing inputs,

decreasing inputs. Seems to work.

But are there occasional inputs
where this sorting software
fails to sort correctly?

History: Many security problems
Involve occasional inputs
where TCB works incorrectly.

25

26
For each used n (e.g., 768):

C code

normal compiler
Y

machine code

symbolic execution
Y

fully unrolled code

new peephole optimizer

Y

unrolled min-max code

new sorting verifier
Y

yes, code works

on

software i1s in the TCB.
work correctly?

sorting software on many
Inputs, Increasing inputs,
g inputs. Seems to work.

there occasional inputs
s sorting software
ort correctly?

Many security problems
yccasional inputs
CB works incorrectly.

25

For each used n (e.g., 768):

C code

normal compiler

Y
machine code

symbolic execution
Y

fully unrolled code

Y

unrolled min-max code

new sorting verifier
Y

yes, code works

26

new peephole optimizer

Symboli
use exist
with tin
eliminat;

a few m

1in the TCB.
ctly?

ftware on many
“reasing Inputs,
Seems to work.

1sional inputs
software
tly?

urity problems
Inputs
iIncorrectly.

25

For each used n (e.g., 768):

C code

normal compiler
Y

machine code

symbolic execution
Y

fully unrolled code

Y

unrolled min-max code

new sorting verifier
Y

yes, code works

26

new peephole optimizer

Symbolic executio
use existing “angr
with tiny new patc
eliminating byte s
a few missing vect

many
puts,
-work.

Uts

lems

25

For each used n (e.g., 768):

C code

normal compiler
Y

machine code

symbolic execution
Y

fully unrolled code

Y

unrolled min-max code

new sorting verifier
Y

yes, code works

26

new peephole optimizer

Symbolic execution:

use existing “angr’ library,
with tiny new patches for
eliminating byte splitting, ac
a few missing vector instruc

26

For each used n (e.g., 768):

C code

Y

normal compiler

machine code

Y

symbolic execution

fully unrolled code

Y

new peephole optimizer

unrolled min-max code

Y

new sorting verifier

yes, code works

Symbolic execution:

use existing “angr’ library,

with tiny new patches for
eliminating byte splitting, adding
a few missing vector instructions.

27

26
For each used n (e.g., 768): Symbolic execution:

use existing “angr’ library,

C code

with tiny new patches for
normal compiler eliminating byte splitting, adding

V
machine code a few missing vector instructions.
symbolic execution Peephole optimizer:
Y

recognize Instruction patterns
fully unrolled code

equivalent to min, max.

new peephole optimizer
Y

unrolled min-max code

new sorting verifier
Y

yes, code works

26
For each used n (e.g., 768):

C code

normal compiler
Y

machine code

symbolic execution
Y

fully unrolled code

new peephole optimizer

Y

unrolled min-max code

new sorting verifier
Y

yes, code works

27
Symbolic execution:

use existing “angr’ library,
with tiny new patches for
eliminating byte splitting, adding
a few missing vector instructions.

Peephole optimizer:
recognize Instruction patterns

equivalent to min, max.

Sorting verifier: decompose
DAG into merging networks.
Verity each merging network
using generalization of 2007

Even—Levi—Litman, correction of
1990 Chung—Ravikumar.

26
 used n (e.g., 768):

C code

normal compiler
Y

chine code

symbolic execution
Y

unrolled code

new peephole optimizer

Y
| min-max code

new sorting verifier
Y

code works

Symbolic execution:

use existing “angr” library,

with tiny new patches for
eliminating byte splitting, adding
a few missing vector instructions.

Peephole optimizer:
recognize instruction patterns
equivalent to min, max.

Sorting verifier: decompose
DAG into merging networks.
Verify each merging network
using generalization of 2007
Even—Levi—-Litman, correction of

1990 Chung—Ravikumar.

27

Current
verified .

verified
https:,

Includes
automat
simple b
verificati

Web site
use the

Next rel
verified .

26

.g., 7168):

al compiler

a
-

olic execution

de

byeephole optimizer

code

orting verifier

KS

Symbolic execution:

use existing “angr’ library,

with tiny new patches for
eliminating byte splitting, adding
a few missing vector instructions.

Peephole optimizer:
recognize Instruction patterns
equivalent to min, max.

Sorting verifier: decompose
DAG into merging networks.
Verify each merging network
using generalization of 2007
Even—Levi—Litman, correction of

1990 Chung—Ravikumar.

21

Current djbsort re
verified AVX2 cod
verified portable c

https://sorting

Includes the sortin
automatic build-ti
simple benchmark
verification tools.

Web site shows hc
use the verificatiot

Next release plann
verified ARM NEC

26

Lion

ptimizer

ifler

Symbolic execution:

use existing “angr’ library,

with tiny new patches for
eliminating byte splitting, adding
a few missing vector instructions.

Peephole optimizer:
recognize Instruction patterns

equivalent to min, max.

Sorting verifier: decompose
DAG into merging networks.
Verify each merging network
using generalization of 2007

Even—Levi—Litman, correction of
1990 Chung—Ravikumar.

27

Current djbsort release,
verified AVX2 code and
verified portable code:

https://sorting.cr.yp.-

Includes the sorting code;
automatic build-time tests:
simple benchmarking progra
verification tools.

Web site shows how to
use the verification tools.

Next release planned:
verified ARM NEON code.

Symbolic execution:

use existing “angr’ library,

with tiny new patches for
eliminating byte splitting, adding

a few missing vector instructions.

Peephole optimizer:
recognize Instruction patterns

equivalent to min, max.

Sorting verifier: decompose
DAG into merging networks.
Verify each merging network
using generalization of 2007
Even—Levi—Litman, correction of

1990 Chung—Ravikumar.

21

28
Current djbsort release,

verified AV X2 code and
portable code:

verifiec
https://sorting.cr.yp.to

Includes the sorting code;
automatic build-time tests:
simple benchmarking program:;
verification tools.

Web site shows how to
use the verification tools.

Next release planned:
verified ARM NEON code.

C execution:

Ing “angr’ library,

/ new patches for

ng byte splitting, adding

Issing vector instructions.

> optimizer:
e Instruction patterns

nt to min, max.

verifier: decompose

0 merging networks.

1ch merging network
neralization of 2007
vi—Litman, correction of
ung—Ravikumar.

27

Current djbsort release,
verified AVX2 code and
verified portable code:

https://sorting.cr.yp.to

Includes the sorting code;
automatic build-time tests:
simple benchmarking program:;
verification tools.

Web site shows how to
use the verification tools.

Next release planned:
verified ARM NEON code.

28

The futt

| don't t
fundame
® Crypto

e stoppl
O makin;
See the

Firefox |

verified
Curve2b

I'm worl

post-qus

n:
" library,
“hes for
olitting, adding

or Instructions.

I
on patterns

MmaxX.

2COMpPOSe
networks.

1g network

n of 2007

, correction of

caumatr.

21

Current djbsort release,
verified AVX2 code and
verified portable code:

https://sorting.cr.yp.to

Includes the sorting code;
automatic build-time tests:
simple benchmarking program:;
verification tools.

Web site shows how to
use the verification tools.

Next release planned:
verified ARM NEON code.

23

The future

| don't think there
fundamental tensi
e crypto performa

e stopping timing
e making sure soft
See the sorting ex

Firefox has alread

verified constant-t
Curve25519-+Chaf

I'm working on ea
post-quantum cod

Iding

1S

11 Of

'10NS.

27

Current djbsort release,
verified AVX2 code and
verified portable code:

https://sorting.cr.yp.to

Includes the sorting code;
automatic build-time tests:
simple benchmarking program:;
verification tools.

Web site shows how to
use the verification tools.

Next release planned:
verified ARM NEON code.

28

The future

| don't think there is a
fundamental tension betwee
e crypto performance,

e stopping timing attacks,
e making sure software worl
See the sorting example.

Firefox has already deployed
verified constant-time softw:

Curve255194-ChaCha20+4Pc

I'm working on easier verific
post-quantum code, faster c

28 29
Current djbsort release, The future

verified AVX2 code and
verified portable code:

| don’t think there is a
fundamental tension between

https://sorting.cr.yp.to e crypto performance,

- e stopping timing attacks,
Includes the sorting code; PINg 5

. _— e making sure software works.
automatic build-time tests:

. | . o
simple benchmarking program; See the sorting example
verification tools. Firefox has already deployed

verified constant-time software for
Curve255194+-ChaCha20-+Poly1305.

Web site shows how to
use the verification tools.

I'm working on easier verification,
Next release planned:

verified ARM NEON code. post-quantum code, faster code.

