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“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction Is
In a quantum computer’s
supported instruction set.

How do we know which
instructions a quantum
computer will support?
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Quantum computer type 1 (QC1):
contains many ‘qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions
to compute “Toffoli gate”;
. “Simon’s algorithm”;

. “Shor’s algorithm” ; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.



Quantum computer type 2 (QC2):
stores a simulated universe;
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of
quantum computers introduced
oy 1982 Feynman “Simulating
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Quantum computer type 2 (QC2):
stores a simulated universe;
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of
quantum computers introduced
oy 1982 Feynman “Simulating

ohysics with computers’.

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories” .


http://tinyurl.com/y8bwr3ht
https://arxiv.org/abs/1111.3633
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Quantum computer type 3 (QC3):
efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QC3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QCI.
Argument for belief:

look, we're building a QC1.
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A note on D-Wave

Apparent scientific consensus:
Current “quantum computers”
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?
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The state of a computer

Data ( “state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
eg.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
1,0,10,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).
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The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

e.g.: (—2,7,-1,8,1,-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9, 3).

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 niymbers, not all zero.
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Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(ag, a1, ..., axn_1) then
measurement produces g

with probability |ag|%/ Y, |ar|?.

State is then all zeros
except 1 at position q.
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(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 wit
001 =1 wit
010 = 2 wit
011 = 3 wit
100 = 4 wit
101 =5 wit
110 = 6 wit
111 =7 wit
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011 = 3 with probability 1/8;
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e.g.. Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probability 1/8;
001 = 1 with probability 1/8;
010 = 2 with probability 1/8;
011 = 3 with probability 1/8;
100 = 4 with probability 1/8;
101 = 5 with probability 1/8;
110 = 6 with probability 1/8;
111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold
today are measurably biased.



e.g.. Say 3 qubits have state
(3,1,4,1,5,9,2,6).
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(3,1,4,1,5,9,2,6).

Measurement produces

000 = 0 with probability 9/173;
001 = 1 with probability 1/173;
010 = 2 with probability 16/173;
011 = 3 with probability 1/173;
100 = 4 with probability 25/173;
101 = 5 with probability 81/173;
110 = 6 with probability 4/173;
111 = 7 with probability 36/173.
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e.g.. Say 3 qubits have state

(3,1,4,1,5,9,2,6).

Measurement produces

000 = 0 with probability 9/173;
001 = 1 with probability 1/173;
010 = 2 with probability 16/173;
011 = 3 with probability 1/173;
100 = 4 with probability 25/173;
101 = 5 with probability 81/173;
110 = 6 with probability 4/173;
111 = 7 with probability 36/173.

5 1s most likely outcome.



e.g.. Say 3 qubits have state
(0,0,0,0,0,1,0,0).
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e.g.. Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;
011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;

111 = 7 with probability 0.



e.g.. Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;
011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;

111 = 7 with probability 0.

5 Is guaranteed outcome.



NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).
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NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTg gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

12



state measurement
(1,0,0,0,0,0,0,0) 000 —
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 —
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 —
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 —
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTp, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output Is not input.

13



Controlled-NOT gates

eg.CNOTL@
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).
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Operation after measurement:
flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) — (92.91, 90 ® q1).




Controlled-NOT gates

eg.CNOTL@
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) — (92,91, G0 ® q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).
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Controlled-NOT gates

eg.CNOTL@
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

O
fli

beration after measurement:

oping bit 0 /if bit 1 is set; i.e.,
(92, g1, 90) — (g2, 91, G0 ® q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3.9,4,6,5,1,2,1).

14



Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).
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Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:
(92,91, 90) = (92, 91, 90 ® G192).
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Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6)
(3,1,4,6,5,9,2,1).

15



More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.
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More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

31415926

CCNOTO,LQ
314659 21

CNOTO,]_ >< ><

36415129

NOTo >< >< >< ><

6 314159 2



Hadamard gates

Hadamardp:

(a,b) — (a+ b,a— b).

K M

14 —4

5 0 2 6
X IX
;

4
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Hadamard gates

Hadamardp:

(a,b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
X IXT XX
4 2 5 3 14 -4 8 4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

3 1 4 T T 9 26‘3
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Simon’s algorithm

Step 1. Set up pure zero state:

1,0,0,0,0,0,0,0,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0.



Simon’s algorithm

Step 2. Hadamardp:

1,1,0,0,0,0,0,0,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0.
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Simon’s algorithm

Step 3. Hadamard;:

1,1,1,1,0,0,0,0,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0.
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Simon’s algorithm

Step 4. Hadamardo:

1,1,1,1,1,1,1,1,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0.

Each column is a parallel universe.
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Simon’s algorithm

Step 5. CNOTy 3:
1,0, 1,0, 1,
0,1,
0, 0,
0, 0,
0, 0,
0,0,
0, 0,
0, 0,

O O O O O O O =
O O O O O O = O
o O O O O O O
O O O O O O = O
O O O O O O O
O O O O O O = O

Each column is a parallel universe
performing its own computations.
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Simon’s algorithm

Step 5b. More shuffling:

1,0,0,0,1,0,0,0,
0,1,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,10,0,0,1,0,
0,0010,0,0,1,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0.

Each column is a parallel universe
performing its own computations.
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Simon’s algorithm

Step 5c. More shuffling:

1,0,0,0,0,0,0,0,
0,1,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,
0,0,000,1,0,0,
0,0,1,0,0,0,0,0,
0,0,0,1,0,0,0,0,
0,0,0,0,0,0,1,0,
0,0,00,0,0,0,1.

Each column is a parallel universe
performing its own computations.
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Simon’s algorithm

Step 5d. More shuffling:

1,0,0,0,0,0,0,0,
0,0,0,0,0,1,0,0,
0,0,0,0,1,0,0,0,
0,1,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,
0,0,00,0,0,0,1,
0,0,0,0,0,0,1,0,
0,0,0,1,0,0,0,0.

Each column is a parallel universe
performing its own computations.
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Simon’s algorithm

Step 5e. More shuffling:

1,0,0,0,0,0,0,0,
0,0,0,0,0,1,0,0,
0,0,0,0,1,0,0,0,
0,1,0,0,0,0,0,0,
0,010,0,0,0,1,
0,0,0,0,0,0,0,0,
0,0,0,1,0,0,1,0,
0,0,0,0,0,0,0,0.

Each column is a parallel universe
performing its own computations.
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Simon’s algorithm

Step 5f. More shuffling:
0,0,
1,0,
0,1,
0,0,
0,0,
0,0,
0,0,
0,0,

o O = O O O O O

Each column is a parallel universe
performing its own computations.
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Simon’s algorithm

Step 5g. More shuffling:

0,1,0,0,0,0,0,0,
0,0,00,1,0,0,0,
0,0,000,1,0,0,
1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,010,0,1,0,
0,0,0,0,0,0,0,0,
0,010,0,0,0, 1.

Each column is a parallel universe
performing its own computations.
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Simon’s algorithm

Step 5h. More shuffling:
0,0,0,0,
0,0,
0,0,
0,0,
0,1,
0,0,
0,0,
1,0,

OO O O O = O O O
O O O O O O =
o O B O O O O O

Each column is a parallel universe
performing its own computations.
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Simon’s algorithm

Step 5i. More shuffling:
0,0, ,0,1,0,

0,0,
0,0,
0,0,
0,1,
0,0,
0,0,
1,0,

OO O O O r O O O
O O O O O O = O
O O kR O O O O O
o = O O O O O
O O O O O O O =
o O O O O = O

Each column is a parallel universe
performing its own computations.
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Simon’s algorithm

Step 5j. Final shuffling:

0,0,0,0,0,0,0,0,
0,0,010,0,1,0,
0,0,0,0,0,0,0,0,
0,010,0,0,0,1,
0,1,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
10,0,0,0,1,0,0.

Each column is a parallel universe
performing its own computations.

18



Simon’s algorithm

Step 5j. Final shuffling:

0,0,0,0,0,0,0,0,
0,0,0,1,0,0,1,0,
0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,1,
0,1,0,0,1,0,0,0,
0,0,00,0,0,0,0,
0,0,00,0,0,0,0,
10,0,0,0,1,0,0.

Each column is a parallel universe
performing its own computations.
Surprise: u and u @ 101 match.
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Simon’s algorithm

Step 6. Hadamardp:

0,0,0,0,0,0,0,0,
0,0,1,1,0,0,1,1,
0,0,0,0,0,0,0,0,
0,0,1,1,0,0,1,1,
1,1,0,0,1,1,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
1,1,0,0,1,1,0,0.

18



Simon’s algorithm

Step 7. Hadamardjs:

0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
0,0,00,0,0,0,0,
0,0,00,0,0,0,0,
1,1,1,1,1,1,1,1.
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Simon’s algorithm

Step 8. Hadamard»:

0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0, 2.
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Simon’s algorithm

Step 8. Hadamardy:

0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,00,0,0,0,0,
0,0,00,0,0,0,0,
2,0,2,0,0,2,0, 2.

Step 9: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.
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