
1

Cryptographic

software engineering,

part 2

Daniel J. Bernstein

Previous part:

• General software engineering.

• Using const-time instructions.

2

Software optimization

Almost all software is

much slower than it could be.

1

Cryptographic

software engineering,

part 2

Daniel J. Bernstein

Previous part:

• General software engineering.

• Using const-time instructions.

2

Software optimization

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

1

Cryptographic

software engineering,

part 2

Daniel J. Bernstein

Previous part:

• General software engineering.

• Using const-time instructions.

2

Software optimization

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

But crypto software should be

applied to all communication.

Crypto that’s too slow

⇒ fewer users

⇒ fewer cryptanalysts

⇒ less attractive for everybody.

1

Cryptographic

software engineering,

part 2

Daniel J. Bernstein

Previous part:

• General software engineering.

• Using const-time instructions.

2

Software optimization

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

But crypto software should be

applied to all communication.

Crypto that’s too slow

⇒ fewer users

⇒ fewer cryptanalysts

⇒ less attractive for everybody.

3

Typical situation:

X is a cryptographic system.

You have written a (const-time)

reference implementation of X.

You want (const-time)

software that computes X

as efficiently as possible.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

1

Cryptographic

software engineering,

part 2

Daniel J. Bernstein

Previous part:

• General software engineering.

• Using const-time instructions.

2

Software optimization

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

But crypto software should be

applied to all communication.

Crypto that’s too slow

⇒ fewer users

⇒ fewer cryptanalysts

⇒ less attractive for everybody.

3

Typical situation:

X is a cryptographic system.

You have written a (const-time)

reference implementation of X.

You want (const-time)

software that computes X

as efficiently as possible.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

1

Cryptographic

software engineering,

part 2

Daniel J. Bernstein

Previous part:

• General software engineering.

• Using const-time instructions.

2

Software optimization

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

But crypto software should be

applied to all communication.

Crypto that’s too slow

⇒ fewer users

⇒ fewer cryptanalysts

⇒ less attractive for everybody.

3

Typical situation:

X is a cryptographic system.

You have written a (const-time)

reference implementation of X.

You want (const-time)

software that computes X

as efficiently as possible.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

2

Software optimization

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

But crypto software should be

applied to all communication.

Crypto that’s too slow

⇒ fewer users

⇒ fewer cryptanalysts

⇒ less attractive for everybody.

3

Typical situation:

X is a cryptographic system.

You have written a (const-time)

reference implementation of X.

You want (const-time)

software that computes X

as efficiently as possible.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

2

Software optimization

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

But crypto software should be

applied to all communication.

Crypto that’s too slow

⇒ fewer users

⇒ fewer cryptanalysts

⇒ less attractive for everybody.

3

Typical situation:

X is a cryptographic system.

You have written a (const-time)

reference implementation of X.

You want (const-time)

software that computes X

as efficiently as possible.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

4

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

2

Software optimization

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

But crypto software should be

applied to all communication.

Crypto that’s too slow

⇒ fewer users

⇒ fewer cryptanalysts

⇒ less attractive for everybody.

3

Typical situation:

X is a cryptographic system.

You have written a (const-time)

reference implementation of X.

You want (const-time)

software that computes X

as efficiently as possible.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

4

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

2

Software optimization

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

But crypto software should be

applied to all communication.

Crypto that’s too slow

⇒ fewer users

⇒ fewer cryptanalysts

⇒ less attractive for everybody.

3

Typical situation:

X is a cryptographic system.

You have written a (const-time)

reference implementation of X.

You want (const-time)

software that computes X

as efficiently as possible.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

4

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

3

Typical situation:

X is a cryptographic system.

You have written a (const-time)

reference implementation of X.

You want (const-time)

software that computes X

as efficiently as possible.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

4

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

3

Typical situation:

X is a cryptographic system.

You have written a (const-time)

reference implementation of X.

You want (const-time)

software that computes X

as efficiently as possible.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

4

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

5

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

3

Typical situation:

X is a cryptographic system.

You have written a (const-time)

reference implementation of X.

You want (const-time)

software that computes X

as efficiently as possible.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

4

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

5

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

3

Typical situation:

X is a cryptographic system.

You have written a (const-time)

reference implementation of X.

You want (const-time)

software that computes X

as efficiently as possible.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

4

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

5

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

5

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

5

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

6

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

4

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

5

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

6

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

4

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

5

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

6

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

5

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

6

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

5

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

6

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

5

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

6

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Try -Os: 8012 cycles.

5

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

6

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

5

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

6

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

5

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

6

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

5

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

6

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

7

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

5

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

6

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

7

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

5

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

6

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

7

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

6

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

7

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

6

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

7

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

6

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

7

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

8

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

6

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

7

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

8

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

6

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

7

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

8

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

7

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

8

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

7

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

8

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

7

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

8

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

9

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

7

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

8

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

9

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

7

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

8

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

9

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

9

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

9

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

8

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

9

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

10

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

8

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

9

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

10

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

8

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

9

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

10

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

9

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

10

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

9

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

10

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

9

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

10

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

11

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

9

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

10

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

11

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

9

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

10

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

11

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

11

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

11

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

4016 cycles. “Are we done yet?”

10

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

11

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

4016 cycles. “Are we done yet?”

12

“Why is this bad practice?

Didn’t we succeed

in making code twice as fast?”

10

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

11

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

4016 cycles. “Are we done yet?”

12

“Why is this bad practice?

Didn’t we succeed

in making code twice as fast?”

10

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

11

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

4016 cycles. “Are we done yet?”

12

“Why is this bad practice?

Didn’t we succeed

in making code twice as fast?”

11

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

4016 cycles. “Are we done yet?”

12

“Why is this bad practice?

Didn’t we succeed

in making code twice as fast?”

11

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

4016 cycles. “Are we done yet?”

12

“Why is this bad practice?

Didn’t we succeed

in making code twice as fast?”

Yes, but CPU time is still

nowhere near optimal,

and human time was wasted.

11

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

4016 cycles. “Are we done yet?”

12

“Why is this bad practice?

Didn’t we succeed

in making code twice as fast?”

Yes, but CPU time is still

nowhere near optimal,

and human time was wasted.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

11

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

4016 cycles. “Are we done yet?”

12

“Why is this bad practice?

Didn’t we succeed

in making code twice as fast?”

Yes, but CPU time is still

nowhere near optimal,

and human time was wasted.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

13

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

11

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

4016 cycles. “Are we done yet?”

12

“Why is this bad practice?

Didn’t we succeed

in making code twice as fast?”

Yes, but CPU time is still

nowhere near optimal,

and human time was wasted.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

13

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

11

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

4016 cycles. “Are we done yet?”

12

“Why is this bad practice?

Didn’t we succeed

in making code twice as fast?”

Yes, but CPU time is still

nowhere near optimal,

and human time was wasted.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

13

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

12

“Why is this bad practice?

Didn’t we succeed

in making code twice as fast?”

Yes, but CPU time is still

nowhere near optimal,

and human time was wasted.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

13

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

12

“Why is this bad practice?

Didn’t we succeed

in making code twice as fast?”

Yes, but CPU time is still

nowhere near optimal,

and human time was wasted.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

13

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

12

“Why is this bad practice?

Didn’t we succeed

in making code twice as fast?”

Yes, but CPU time is still

nowhere near optimal,

and human time was wasted.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

13

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

12

“Why is this bad practice?

Didn’t we succeed

in making code twice as fast?”

Yes, but CPU time is still

nowhere near optimal,

and human time was wasted.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

13

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

14

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

12

“Why is this bad practice?

Didn’t we succeed

in making code twice as fast?”

Yes, but CPU time is still

nowhere near optimal,

and human time was wasted.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

13

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

14

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

12

“Why is this bad practice?

Didn’t we succeed

in making code twice as fast?”

Yes, but CPU time is still

nowhere near optimal,

and human time was wasted.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

13

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

14

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

13

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

14

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

13

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

14

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

13

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

14

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

13

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

14

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

15

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

13

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

14

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

15

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

13

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

14

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

15

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

14

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

15

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

14

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

15

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

16

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

14

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

15

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

16

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

14

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

15

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

16

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

15

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

16

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

15

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

16

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

17

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

15

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

16

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

17

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

15

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

16

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

17

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

16

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

17

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

16

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

17

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

18

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

16

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

17

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

18

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

16

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

17

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

18

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

17

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

18

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

17

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

18

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

19

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

17

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

18

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

19

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

17

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

18

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

19

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

18

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

19

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

18

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

19

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

18

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

19

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

18

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

19

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— [citation needed]

18

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

19

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— [citation needed]

20

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

Also many rotations, but

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

18

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

19

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— [citation needed]

20

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

Also many rotations, but

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

18

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

19

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— [citation needed]

20

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

Also many rotations, but

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

19

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— [citation needed]

20

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

Also many rotations, but

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

19

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— [citation needed]

20

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

Also many rotations, but

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

21

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

19

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— [citation needed]

20

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

Also many rotations, but

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

21

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

19

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— [citation needed]

20

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

Also many rotations, but

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

21

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

20

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

Also many rotations, but

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

21

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

20

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

Also many rotations, but

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

21

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

20

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

Also many rotations, but

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

21

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

22

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

20

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

Also many rotations, but

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

21

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

22

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

20

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

Also many rotations, but

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

21

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

22

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

21

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

22

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

21

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

22

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

21

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

22

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

21

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

22

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

21

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

22

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

23

https://bench.cr.yp.to

includes 2392 implementations

of 614 cryptographic primitives.

>20 implementations of Salsa20.

Haswell: Reasonably simple ref

implementation compiled with

gcc -O3 -fomit-frame-pointer

is 6:15× slower than fastest

Salsa20 implementation.

21

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

22

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

23

https://bench.cr.yp.to

includes 2392 implementations

of 614 cryptographic primitives.

>20 implementations of Salsa20.

Haswell: Reasonably simple ref

implementation compiled with

gcc -O3 -fomit-frame-pointer

is 6:15× slower than fastest

Salsa20 implementation.

21

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

22

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

23

https://bench.cr.yp.to

includes 2392 implementations

of 614 cryptographic primitives.

>20 implementations of Salsa20.

Haswell: Reasonably simple ref

implementation compiled with

gcc -O3 -fomit-frame-pointer

is 6:15× slower than fastest

Salsa20 implementation.

22

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

23

https://bench.cr.yp.to

includes 2392 implementations

of 614 cryptographic primitives.

>20 implementations of Salsa20.

Haswell: Reasonably simple ref

implementation compiled with

gcc -O3 -fomit-frame-pointer

is 6:15× slower than fastest

Salsa20 implementation.

22

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

23

https://bench.cr.yp.to

includes 2392 implementations

of 614 cryptographic primitives.

>20 implementations of Salsa20.

Haswell: Reasonably simple ref

implementation compiled with

gcc -O3 -fomit-frame-pointer

is 6:15× slower than fastest

Salsa20 implementation.

merged implementation

with “machine-independent”

optimizations and best of 121

compiler options: 4:52× slower.

22

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

23

https://bench.cr.yp.to

includes 2392 implementations

of 614 cryptographic primitives.

>20 implementations of Salsa20.

Haswell: Reasonably simple ref

implementation compiled with

gcc -O3 -fomit-frame-pointer

is 6:15× slower than fastest

Salsa20 implementation.

merged implementation

with “machine-independent”

optimizations and best of 121

compiler options: 4:52× slower.

24

Fast random permutations

Goal: Put list (x1; : : : ; xn)

into a random order.

22

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

23

https://bench.cr.yp.to

includes 2392 implementations

of 614 cryptographic primitives.

>20 implementations of Salsa20.

Haswell: Reasonably simple ref

implementation compiled with

gcc -O3 -fomit-frame-pointer

is 6:15× slower than fastest

Salsa20 implementation.

merged implementation

with “machine-independent”

optimizations and best of 121

compiler options: 4:52× slower.

24

Fast random permutations

Goal: Put list (x1; : : : ; xn)

into a random order.

22

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

23

https://bench.cr.yp.to

includes 2392 implementations

of 614 cryptographic primitives.

>20 implementations of Salsa20.

Haswell: Reasonably simple ref

implementation compiled with

gcc -O3 -fomit-frame-pointer

is 6:15× slower than fastest

Salsa20 implementation.

merged implementation

with “machine-independent”

optimizations and best of 121

compiler options: 4:52× slower.

24

Fast random permutations

Goal: Put list (x1; : : : ; xn)

into a random order.

23

https://bench.cr.yp.to

includes 2392 implementations

of 614 cryptographic primitives.

>20 implementations of Salsa20.

Haswell: Reasonably simple ref

implementation compiled with

gcc -O3 -fomit-frame-pointer

is 6:15× slower than fastest

Salsa20 implementation.

merged implementation

with “machine-independent”

optimizations and best of 121

compiler options: 4:52× slower.

24

Fast random permutations

Goal: Put list (x1; : : : ; xn)

into a random order.

23

https://bench.cr.yp.to

includes 2392 implementations

of 614 cryptographic primitives.

>20 implementations of Salsa20.

Haswell: Reasonably simple ref

implementation compiled with

gcc -O3 -fomit-frame-pointer

is 6:15× slower than fastest

Salsa20 implementation.

merged implementation

with “machine-independent”

optimizations and best of 121

compiler options: 4:52× slower.

24

Fast random permutations

Goal: Put list (x1; : : : ; xn)

into a random order.

One textbook strategy:

Sort (Mr1 + x1; : : : ;Mrn + xn) for

random (r1; : : : ; rn), suitable M.

23

https://bench.cr.yp.to

includes 2392 implementations

of 614 cryptographic primitives.

>20 implementations of Salsa20.

Haswell: Reasonably simple ref

implementation compiled with

gcc -O3 -fomit-frame-pointer

is 6:15× slower than fastest

Salsa20 implementation.

merged implementation

with “machine-independent”

optimizations and best of 121

compiler options: 4:52× slower.

24

Fast random permutations

Goal: Put list (x1; : : : ; xn)

into a random order.

One textbook strategy:

Sort (Mr1 + x1; : : : ;Mrn + xn) for

random (r1; : : : ; rn), suitable M.

McEliece encryption example:

Randomly order 6960 bits

(1; : : : ; 1; 0; : : : ; 0), weight 119.

23

https://bench.cr.yp.to

includes 2392 implementations

of 614 cryptographic primitives.

>20 implementations of Salsa20.

Haswell: Reasonably simple ref

implementation compiled with

gcc -O3 -fomit-frame-pointer

is 6:15× slower than fastest

Salsa20 implementation.

merged implementation

with “machine-independent”

optimizations and best of 121

compiler options: 4:52× slower.

24

Fast random permutations

Goal: Put list (x1; : : : ; xn)

into a random order.

One textbook strategy:

Sort (Mr1 + x1; : : : ;Mrn + xn) for

random (r1; : : : ; rn), suitable M.

McEliece encryption example:

Randomly order 6960 bits

(1; : : : ; 1; 0; : : : ; 0), weight 119.

NTRU encryption example:

Randomly order 761 trits

(±1; : : : ;±1; 0; : : : ; 0), wt 286.

23

https://bench.cr.yp.to

includes 2392 implementations

of 614 cryptographic primitives.

>20 implementations of Salsa20.

Haswell: Reasonably simple ref

implementation compiled with

gcc -O3 -fomit-frame-pointer

is 6:15× slower than fastest

Salsa20 implementation.

merged implementation

with “machine-independent”

optimizations and best of 121

compiler options: 4:52× slower.

24

Fast random permutations

Goal: Put list (x1; : : : ; xn)

into a random order.

One textbook strategy:

Sort (Mr1 + x1; : : : ;Mrn + xn) for

random (r1; : : : ; rn), suitable M.

McEliece encryption example:

Randomly order 6960 bits

(1; : : : ; 1; 0; : : : ; 0), weight 119.

NTRU encryption example:

Randomly order 761 trits

(±1; : : : ;±1; 0; : : : ; 0), wt 286.

25

Simulate uniform random ri
using RNG: e.g., stream cipher.

23

https://bench.cr.yp.to

includes 2392 implementations

of 614 cryptographic primitives.

>20 implementations of Salsa20.

Haswell: Reasonably simple ref

implementation compiled with

gcc -O3 -fomit-frame-pointer

is 6:15× slower than fastest

Salsa20 implementation.

merged implementation

with “machine-independent”

optimizations and best of 121

compiler options: 4:52× slower.

24

Fast random permutations

Goal: Put list (x1; : : : ; xn)

into a random order.

One textbook strategy:

Sort (Mr1 + x1; : : : ;Mrn + xn) for

random (r1; : : : ; rn), suitable M.

McEliece encryption example:

Randomly order 6960 bits

(1; : : : ; 1; 0; : : : ; 0), weight 119.

NTRU encryption example:

Randomly order 761 trits

(±1; : : : ;±1; 0; : : : ; 0), wt 286.

25

Simulate uniform random ri
using RNG: e.g., stream cipher.

23

https://bench.cr.yp.to

includes 2392 implementations

of 614 cryptographic primitives.

>20 implementations of Salsa20.

Haswell: Reasonably simple ref

implementation compiled with

gcc -O3 -fomit-frame-pointer

is 6:15× slower than fastest

Salsa20 implementation.

merged implementation

with “machine-independent”

optimizations and best of 121

compiler options: 4:52× slower.

24

Fast random permutations

Goal: Put list (x1; : : : ; xn)

into a random order.

One textbook strategy:

Sort (Mr1 + x1; : : : ;Mrn + xn) for

random (r1; : : : ; rn), suitable M.

McEliece encryption example:

Randomly order 6960 bits

(1; : : : ; 1; 0; : : : ; 0), weight 119.

NTRU encryption example:

Randomly order 761 trits

(±1; : : : ;±1; 0; : : : ; 0), wt 286.

25

Simulate uniform random ri
using RNG: e.g., stream cipher.

24

Fast random permutations

Goal: Put list (x1; : : : ; xn)

into a random order.

One textbook strategy:

Sort (Mr1 + x1; : : : ;Mrn + xn) for

random (r1; : : : ; rn), suitable M.

McEliece encryption example:

Randomly order 6960 bits

(1; : : : ; 1; 0; : : : ; 0), weight 119.

NTRU encryption example:

Randomly order 761 trits

(±1; : : : ;±1; 0; : : : ; 0), wt 286.

25

Simulate uniform random ri
using RNG: e.g., stream cipher.

24

Fast random permutations

Goal: Put list (x1; : : : ; xn)

into a random order.

One textbook strategy:

Sort (Mr1 + x1; : : : ;Mrn + xn) for

random (r1; : : : ; rn), suitable M.

McEliece encryption example:

Randomly order 6960 bits

(1; : : : ; 1; 0; : : : ; 0), weight 119.

NTRU encryption example:

Randomly order 761 trits

(±1; : : : ;±1; 0; : : : ; 0), wt 286.

25

Simulate uniform random ri
using RNG: e.g., stream cipher.

How many bits in ri? Negligible

collisions? Occasional collisions?

24

Fast random permutations

Goal: Put list (x1; : : : ; xn)

into a random order.

One textbook strategy:

Sort (Mr1 + x1; : : : ;Mrn + xn) for

random (r1; : : : ; rn), suitable M.

McEliece encryption example:

Randomly order 6960 bits

(1; : : : ; 1; 0; : : : ; 0), weight 119.

NTRU encryption example:

Randomly order 761 trits

(±1; : : : ;±1; 0; : : : ; 0), wt 286.

25

Simulate uniform random ri
using RNG: e.g., stream cipher.

How many bits in ri? Negligible

collisions? Occasional collisions?

Restart on collision?

Uniform distribution; some cost.

24

Fast random permutations

Goal: Put list (x1; : : : ; xn)

into a random order.

One textbook strategy:

Sort (Mr1 + x1; : : : ;Mrn + xn) for

random (r1; : : : ; rn), suitable M.

McEliece encryption example:

Randomly order 6960 bits

(1; : : : ; 1; 0; : : : ; 0), weight 119.

NTRU encryption example:

Randomly order 761 trits

(±1; : : : ;±1; 0; : : : ; 0), wt 286.

25

Simulate uniform random ri
using RNG: e.g., stream cipher.

How many bits in ri? Negligible

collisions? Occasional collisions?

Restart on collision?

Uniform distribution; some cost.

Example: n = 6960 bits;

weight 119; 31-bit ri ; no restart.

Any output is produced in

≤ 119!(n − 119)!
`231+n−1

n

´
ways;

i.e., < 1:02 · 231n=
` n

119

´
ways.

Factor <1:02 increase in

attacker’s chance of winning.

24

Fast random permutations

Goal: Put list (x1; : : : ; xn)

into a random order.

One textbook strategy:

Sort (Mr1 + x1; : : : ;Mrn + xn) for

random (r1; : : : ; rn), suitable M.

McEliece encryption example:

Randomly order 6960 bits

(1; : : : ; 1; 0; : : : ; 0), weight 119.

NTRU encryption example:

Randomly order 761 trits

(±1; : : : ;±1; 0; : : : ; 0), wt 286.

25

Simulate uniform random ri
using RNG: e.g., stream cipher.

How many bits in ri? Negligible

collisions? Occasional collisions?

Restart on collision?

Uniform distribution; some cost.

Example: n = 6960 bits;

weight 119; 31-bit ri ; no restart.

Any output is produced in

≤ 119!(n − 119)!
`231+n−1

n

´
ways;

i.e., < 1:02 · 231n=
` n

119

´
ways.

Factor <1:02 increase in

attacker’s chance of winning.

26

Which sorting algorithm?

Reference bubblesort code does

n(n − 1)=2 minmax operations.

24

Fast random permutations

Goal: Put list (x1; : : : ; xn)

into a random order.

One textbook strategy:

Sort (Mr1 + x1; : : : ;Mrn + xn) for

random (r1; : : : ; rn), suitable M.

McEliece encryption example:

Randomly order 6960 bits

(1; : : : ; 1; 0; : : : ; 0), weight 119.

NTRU encryption example:

Randomly order 761 trits

(±1; : : : ;±1; 0; : : : ; 0), wt 286.

25

Simulate uniform random ri
using RNG: e.g., stream cipher.

How many bits in ri? Negligible

collisions? Occasional collisions?

Restart on collision?

Uniform distribution; some cost.

Example: n = 6960 bits;

weight 119; 31-bit ri ; no restart.

Any output is produced in

≤ 119!(n − 119)!
`231+n−1

n

´
ways;

i.e., < 1:02 · 231n=
` n

119

´
ways.

Factor <1:02 increase in

attacker’s chance of winning.

26

Which sorting algorithm?

Reference bubblesort code does

n(n − 1)=2 minmax operations.

24

Fast random permutations

Goal: Put list (x1; : : : ; xn)

into a random order.

One textbook strategy:

Sort (Mr1 + x1; : : : ;Mrn + xn) for

random (r1; : : : ; rn), suitable M.

McEliece encryption example:

Randomly order 6960 bits

(1; : : : ; 1; 0; : : : ; 0), weight 119.

NTRU encryption example:

Randomly order 761 trits

(±1; : : : ;±1; 0; : : : ; 0), wt 286.

25

Simulate uniform random ri
using RNG: e.g., stream cipher.

How many bits in ri? Negligible

collisions? Occasional collisions?

Restart on collision?

Uniform distribution; some cost.

Example: n = 6960 bits;

weight 119; 31-bit ri ; no restart.

Any output is produced in

≤ 119!(n − 119)!
`231+n−1

n

´
ways;

i.e., < 1:02 · 231n=
` n

119

´
ways.

Factor <1:02 increase in

attacker’s chance of winning.

26

Which sorting algorithm?

Reference bubblesort code does

n(n − 1)=2 minmax operations.

25

Simulate uniform random ri
using RNG: e.g., stream cipher.

How many bits in ri? Negligible

collisions? Occasional collisions?

Restart on collision?

Uniform distribution; some cost.

Example: n = 6960 bits;

weight 119; 31-bit ri ; no restart.

Any output is produced in

≤ 119!(n − 119)!
`231+n−1

n

´
ways;

i.e., < 1:02 · 231n=
` n

119

´
ways.

Factor <1:02 increase in

attacker’s chance of winning.

26

Which sorting algorithm?

Reference bubblesort code does

n(n − 1)=2 minmax operations.

25

Simulate uniform random ri
using RNG: e.g., stream cipher.

How many bits in ri? Negligible

collisions? Occasional collisions?

Restart on collision?

Uniform distribution; some cost.

Example: n = 6960 bits;

weight 119; 31-bit ri ; no restart.

Any output is produced in

≤ 119!(n − 119)!
`231+n−1

n

´
ways;

i.e., < 1:02 · 231n=
` n

119

´
ways.

Factor <1:02 increase in

attacker’s chance of winning.

26

Which sorting algorithm?

Reference bubblesort code does

n(n − 1)=2 minmax operations.

Many standard algorithms use

fewer operations: mergesort,

quicksort, heapsort, radixsort, etc.

But these algorithms rely on

secret branches and secret indices.

25

Simulate uniform random ri
using RNG: e.g., stream cipher.

How many bits in ri? Negligible

collisions? Occasional collisions?

Restart on collision?

Uniform distribution; some cost.

Example: n = 6960 bits;

weight 119; 31-bit ri ; no restart.

Any output is produced in

≤ 119!(n − 119)!
`231+n−1

n

´
ways;

i.e., < 1:02 · 231n=
` n

119

´
ways.

Factor <1:02 increase in

attacker’s chance of winning.

26

Which sorting algorithm?

Reference bubblesort code does

n(n − 1)=2 minmax operations.

Many standard algorithms use

fewer operations: mergesort,

quicksort, heapsort, radixsort, etc.

But these algorithms rely on

secret branches and secret indices.

Exercise: convert mergesort

into constant-time mergesort

using Θ(n2) operations.

25

Simulate uniform random ri
using RNG: e.g., stream cipher.

How many bits in ri? Negligible

collisions? Occasional collisions?

Restart on collision?

Uniform distribution; some cost.

Example: n = 6960 bits;

weight 119; 31-bit ri ; no restart.

Any output is produced in

≤ 119!(n − 119)!
`231+n−1

n

´
ways;

i.e., < 1:02 · 231n=
` n

119

´
ways.

Factor <1:02 increase in

attacker’s chance of winning.

26

Which sorting algorithm?

Reference bubblesort code does

n(n − 1)=2 minmax operations.

Many standard algorithms use

fewer operations: mergesort,

quicksort, heapsort, radixsort, etc.

But these algorithms rely on

secret branches and secret indices.

Exercise: convert mergesort

into constant-time mergesort

using Θ(n2) operations.

27

Converting bubblesort into

constant-time bubblesort

loses only a constant factor:

cost of constant-time minmax.

25

Simulate uniform random ri
using RNG: e.g., stream cipher.

How many bits in ri? Negligible

collisions? Occasional collisions?

Restart on collision?

Uniform distribution; some cost.

Example: n = 6960 bits;

weight 119; 31-bit ri ; no restart.

Any output is produced in

≤ 119!(n − 119)!
`231+n−1

n

´
ways;

i.e., < 1:02 · 231n=
` n

119

´
ways.

Factor <1:02 increase in

attacker’s chance of winning.

26

Which sorting algorithm?

Reference bubblesort code does

n(n − 1)=2 minmax operations.

Many standard algorithms use

fewer operations: mergesort,

quicksort, heapsort, radixsort, etc.

But these algorithms rely on

secret branches and secret indices.

Exercise: convert mergesort

into constant-time mergesort

using Θ(n2) operations.

27

Converting bubblesort into

constant-time bubblesort

loses only a constant factor:

cost of constant-time minmax.

25

Simulate uniform random ri
using RNG: e.g., stream cipher.

How many bits in ri? Negligible

collisions? Occasional collisions?

Restart on collision?

Uniform distribution; some cost.

Example: n = 6960 bits;

weight 119; 31-bit ri ; no restart.

Any output is produced in

≤ 119!(n − 119)!
`231+n−1

n

´
ways;

i.e., < 1:02 · 231n=
` n

119

´
ways.

Factor <1:02 increase in

attacker’s chance of winning.

26

Which sorting algorithm?

Reference bubblesort code does

n(n − 1)=2 minmax operations.

Many standard algorithms use

fewer operations: mergesort,

quicksort, heapsort, radixsort, etc.

But these algorithms rely on

secret branches and secret indices.

Exercise: convert mergesort

into constant-time mergesort

using Θ(n2) operations.

27

Converting bubblesort into

constant-time bubblesort

loses only a constant factor:

cost of constant-time minmax.

26

Which sorting algorithm?

Reference bubblesort code does

n(n − 1)=2 minmax operations.

Many standard algorithms use

fewer operations: mergesort,

quicksort, heapsort, radixsort, etc.

But these algorithms rely on

secret branches and secret indices.

Exercise: convert mergesort

into constant-time mergesort

using Θ(n2) operations.

27

Converting bubblesort into

constant-time bubblesort

loses only a constant factor:

cost of constant-time minmax.

26

Which sorting algorithm?

Reference bubblesort code does

n(n − 1)=2 minmax operations.

Many standard algorithms use

fewer operations: mergesort,

quicksort, heapsort, radixsort, etc.

But these algorithms rely on

secret branches and secret indices.

Exercise: convert mergesort

into constant-time mergesort

using Θ(n2) operations.

27

Converting bubblesort into

constant-time bubblesort

loses only a constant factor:

cost of constant-time minmax.

“Sorting network”:

sorting algorithm built as

constant sequence of minmax

operations (“comparators”).

26

Which sorting algorithm?

Reference bubblesort code does

n(n − 1)=2 minmax operations.

Many standard algorithms use

fewer operations: mergesort,

quicksort, heapsort, radixsort, etc.

But these algorithms rely on

secret branches and secret indices.

Exercise: convert mergesort

into constant-time mergesort

using Θ(n2) operations.

27

Converting bubblesort into

constant-time bubblesort

loses only a constant factor:

cost of constant-time minmax.

“Sorting network”:

sorting algorithm built as

constant sequence of minmax

operations (“comparators”).

Sorting network on next slide:

Batcher’s merge-exchange sort.

Θ(n(log n)2) minmax operations;

(1=4)(e2 − e + 4)n− 1 for n = 2e .

26

Which sorting algorithm?

Reference bubblesort code does

n(n − 1)=2 minmax operations.

Many standard algorithms use

fewer operations: mergesort,

quicksort, heapsort, radixsort, etc.

But these algorithms rely on

secret branches and secret indices.

Exercise: convert mergesort

into constant-time mergesort

using Θ(n2) operations.

27

Converting bubblesort into

constant-time bubblesort

loses only a constant factor:

cost of constant-time minmax.

“Sorting network”:

sorting algorithm built as

constant sequence of minmax

operations (“comparators”).

Sorting network on next slide:

Batcher’s merge-exchange sort.

Θ(n(log n)2) minmax operations;

(1=4)(e2 − e + 4)n− 1 for n = 2e .

28

void sort(int32 *x,long long n)

{ long long t,p,q,i;

t = 1; if (n < 2) return;

while (t < n-t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n-p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n-q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

26

Which sorting algorithm?

Reference bubblesort code does

n(n − 1)=2 minmax operations.

Many standard algorithms use

fewer operations: mergesort,

quicksort, heapsort, radixsort, etc.

But these algorithms rely on

secret branches and secret indices.

Exercise: convert mergesort

into constant-time mergesort

using Θ(n2) operations.

27

Converting bubblesort into

constant-time bubblesort

loses only a constant factor:

cost of constant-time minmax.

“Sorting network”:

sorting algorithm built as

constant sequence of minmax

operations (“comparators”).

Sorting network on next slide:

Batcher’s merge-exchange sort.

Θ(n(log n)2) minmax operations;

(1=4)(e2 − e + 4)n− 1 for n = 2e .

28

void sort(int32 *x,long long n)

{ long long t,p,q,i;

t = 1; if (n < 2) return;

while (t < n-t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n-p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n-q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

26

Which sorting algorithm?

Reference bubblesort code does

n(n − 1)=2 minmax operations.

Many standard algorithms use

fewer operations: mergesort,

quicksort, heapsort, radixsort, etc.

But these algorithms rely on

secret branches and secret indices.

Exercise: convert mergesort

into constant-time mergesort

using Θ(n2) operations.

27

Converting bubblesort into

constant-time bubblesort

loses only a constant factor:

cost of constant-time minmax.

“Sorting network”:

sorting algorithm built as

constant sequence of minmax

operations (“comparators”).

Sorting network on next slide:

Batcher’s merge-exchange sort.

Θ(n(log n)2) minmax operations;

(1=4)(e2 − e + 4)n− 1 for n = 2e .

28

void sort(int32 *x,long long n)

{ long long t,p,q,i;

t = 1; if (n < 2) return;

while (t < n-t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n-p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n-q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

27

Converting bubblesort into

constant-time bubblesort

loses only a constant factor:

cost of constant-time minmax.

“Sorting network”:

sorting algorithm built as

constant sequence of minmax

operations (“comparators”).

Sorting network on next slide:

Batcher’s merge-exchange sort.

Θ(n(log n)2) minmax operations;

(1=4)(e2 − e + 4)n− 1 for n = 2e .

28

void sort(int32 *x,long long n)

{ long long t,p,q,i;

t = 1; if (n < 2) return;

while (t < n-t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n-p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n-q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

27

Converting bubblesort into

constant-time bubblesort

loses only a constant factor:

cost of constant-time minmax.

“Sorting network”:

sorting algorithm built as

constant sequence of minmax

operations (“comparators”).

Sorting network on next slide:

Batcher’s merge-exchange sort.

Θ(n(log n)2) minmax operations;

(1=4)(e2 − e + 4)n− 1 for n = 2e .

28

void sort(int32 *x,long long n)

{ long long t,p,q,i;

t = 1; if (n < 2) return;

while (t < n-t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n-p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n-q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

29

How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit

“min” operations and a vector of

8 32-bit “max” operations.

27

Converting bubblesort into

constant-time bubblesort

loses only a constant factor:

cost of constant-time minmax.

“Sorting network”:

sorting algorithm built as

constant sequence of minmax

operations (“comparators”).

Sorting network on next slide:

Batcher’s merge-exchange sort.

Θ(n(log n)2) minmax operations;

(1=4)(e2 − e + 4)n− 1 for n = 2e .

28

void sort(int32 *x,long long n)

{ long long t,p,q,i;

t = 1; if (n < 2) return;

while (t < n-t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n-p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n-q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

29

How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit

“min” operations and a vector of

8 32-bit “max” operations.

27

Converting bubblesort into

constant-time bubblesort

loses only a constant factor:

cost of constant-time minmax.

“Sorting network”:

sorting algorithm built as

constant sequence of minmax

operations (“comparators”).

Sorting network on next slide:

Batcher’s merge-exchange sort.

Θ(n(log n)2) minmax operations;

(1=4)(e2 − e + 4)n− 1 for n = 2e .

28

void sort(int32 *x,long long n)

{ long long t,p,q,i;

t = 1; if (n < 2) return;

while (t < n-t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n-p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n-q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

29

How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit

“min” operations and a vector of

8 32-bit “max” operations.

28

void sort(int32 *x,long long n)

{ long long t,p,q,i;

t = 1; if (n < 2) return;

while (t < n-t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n-p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n-q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

29

How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit

“min” operations and a vector of

8 32-bit “max” operations.

28

void sort(int32 *x,long long n)

{ long long t,p,q,i;

t = 1; if (n < 2) return;

while (t < n-t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n-p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n-q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

29

How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit

“min” operations and a vector of

8 32-bit “max” operations.

≥3008 cycles for n = 1024.

Current software: 7328 cycles.

28

void sort(int32 *x,long long n)

{ long long t,p,q,i;

t = 1; if (n < 2) return;

while (t < n-t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n-p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n-q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

29

How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit

“min” operations and a vector of

8 32-bit “max” operations.

≥3008 cycles for n = 1024.

Current software: 7328 cycles.

(Can gap be narrowed?)

28

void sort(int32 *x,long long n)

{ long long t,p,q,i;

t = 1; if (n < 2) return;

while (t < n-t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n-p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n-q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

29

How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit

“min” operations and a vector of

8 32-bit “max” operations.

≥3008 cycles for n = 1024.

Current software: 7328 cycles.

(Can gap be narrowed?)

This is fastest available sorting

software. Much faster than, e.g.,

Intel’s “Integrated Performance

Primitives” software library.

28

void sort(int32 *x,long long n)

{ long long t,p,q,i;

t = 1; if (n < 2) return;

while (t < n-t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n-p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n-q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

29

How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit

“min” operations and a vector of

8 32-bit “max” operations.

≥3008 cycles for n = 1024.

Current software: 7328 cycles.

(Can gap be narrowed?)

This is fastest available sorting

software. Much faster than, e.g.,

Intel’s “Integrated Performance

Primitives” software library.

30

Constant-time code faster than

“optimized” non-constant-time

code? How is this possible?

28

void sort(int32 *x,long long n)

{ long long t,p,q,i;

t = 1; if (n < 2) return;

while (t < n-t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n-p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n-q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

29

How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit

“min” operations and a vector of

8 32-bit “max” operations.

≥3008 cycles for n = 1024.

Current software: 7328 cycles.

(Can gap be narrowed?)

This is fastest available sorting

software. Much faster than, e.g.,

Intel’s “Integrated Performance

Primitives” software library.

30

Constant-time code faster than

“optimized” non-constant-time

code? How is this possible?

28

void sort(int32 *x,long long n)

{ long long t,p,q,i;

t = 1; if (n < 2) return;

while (t < n-t) t += t;

for (p = t;p > 0;p >>= 1) {

for (i = 0;i < n-p;++i)

if (!(i & p))

minmax(x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n-q;++i)

if (!(i & p))

minmax(x+i+p,x+i+q);

}

}

29

How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit

“min” operations and a vector of

8 32-bit “max” operations.

≥3008 cycles for n = 1024.

Current software: 7328 cycles.

(Can gap be narrowed?)

This is fastest available sorting

software. Much faster than, e.g.,

Intel’s “Integrated Performance

Primitives” software library.

30

Constant-time code faster than

“optimized” non-constant-time

code? How is this possible?

29

How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit

“min” operations and a vector of

8 32-bit “max” operations.

≥3008 cycles for n = 1024.

Current software: 7328 cycles.

(Can gap be narrowed?)

This is fastest available sorting

software. Much faster than, e.g.,

Intel’s “Integrated Performance

Primitives” software library.

30

Constant-time code faster than

“optimized” non-constant-time

code? How is this possible?

29

How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit

“min” operations and a vector of

8 32-bit “max” operations.

≥3008 cycles for n = 1024.

Current software: 7328 cycles.

(Can gap be narrowed?)

This is fastest available sorting

software. Much faster than, e.g.,

Intel’s “Integrated Performance

Primitives” software library.

30

Constant-time code faster than

“optimized” non-constant-time

code? How is this possible?

People optimize algorithms

for a naive model of CPUs:

• Branches are fast.

• Random access is fast.

29

How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit

“min” operations and a vector of

8 32-bit “max” operations.

≥3008 cycles for n = 1024.

Current software: 7328 cycles.

(Can gap be narrowed?)

This is fastest available sorting

software. Much faster than, e.g.,

Intel’s “Integrated Performance

Primitives” software library.

30

Constant-time code faster than

“optimized” non-constant-time

code? How is this possible?

People optimize algorithms

for a naive model of CPUs:

• Branches are fast.

• Random access is fast.

CPUs are evolving

farther and farther away

from this naive model.

Fundamental hardware costs

of constant-time arithmetic are

much lower than random access.

29

How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit

“min” operations and a vector of

8 32-bit “max” operations.

≥3008 cycles for n = 1024.

Current software: 7328 cycles.

(Can gap be narrowed?)

This is fastest available sorting

software. Much faster than, e.g.,

Intel’s “Integrated Performance

Primitives” software library.

30

Constant-time code faster than

“optimized” non-constant-time

code? How is this possible?

People optimize algorithms

for a naive model of CPUs:

• Branches are fast.

• Random access is fast.

CPUs are evolving

farther and farther away

from this naive model.

Fundamental hardware costs

of constant-time arithmetic are

much lower than random access.

31

Modular arithmetic

Basic ECC operations:

add, sub, mul of, e.g.,

integers mod 2255 − 19.

(Basic NTRU operations:

add, sub, mul of, e.g.,

polynomials mod x761 − x − 1.)

29

How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit

“min” operations and a vector of

8 32-bit “max” operations.

≥3008 cycles for n = 1024.

Current software: 7328 cycles.

(Can gap be narrowed?)

This is fastest available sorting

software. Much faster than, e.g.,

Intel’s “Integrated Performance

Primitives” software library.

30

Constant-time code faster than

“optimized” non-constant-time

code? How is this possible?

People optimize algorithms

for a naive model of CPUs:

• Branches are fast.

• Random access is fast.

CPUs are evolving

farther and farther away

from this naive model.

Fundamental hardware costs

of constant-time arithmetic are

much lower than random access.

31

Modular arithmetic

Basic ECC operations:

add, sub, mul of, e.g.,

integers mod 2255 − 19.

(Basic NTRU operations:

add, sub, mul of, e.g.,

polynomials mod x761 − x − 1.)

29

How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit

“min” operations and a vector of

8 32-bit “max” operations.

≥3008 cycles for n = 1024.

Current software: 7328 cycles.

(Can gap be narrowed?)

This is fastest available sorting

software. Much faster than, e.g.,

Intel’s “Integrated Performance

Primitives” software library.

30

Constant-time code faster than

“optimized” non-constant-time

code? How is this possible?

People optimize algorithms

for a naive model of CPUs:

• Branches are fast.

• Random access is fast.

CPUs are evolving

farther and farther away

from this naive model.

Fundamental hardware costs

of constant-time arithmetic are

much lower than random access.

31

Modular arithmetic

Basic ECC operations:

add, sub, mul of, e.g.,

integers mod 2255 − 19.

(Basic NTRU operations:

add, sub, mul of, e.g.,

polynomials mod x761 − x − 1.)

30

Constant-time code faster than

“optimized” non-constant-time

code? How is this possible?

People optimize algorithms

for a naive model of CPUs:

• Branches are fast.

• Random access is fast.

CPUs are evolving

farther and farther away

from this naive model.

Fundamental hardware costs

of constant-time arithmetic are

much lower than random access.

31

Modular arithmetic

Basic ECC operations:

add, sub, mul of, e.g.,

integers mod 2255 − 19.

(Basic NTRU operations:

add, sub, mul of, e.g.,

polynomials mod x761 − x − 1.)

30

Constant-time code faster than

“optimized” non-constant-time

code? How is this possible?

People optimize algorithms

for a naive model of CPUs:

• Branches are fast.

• Random access is fast.

CPUs are evolving

farther and farther away

from this naive model.

Fundamental hardware costs

of constant-time arithmetic are

much lower than random access.

31

Modular arithmetic

Basic ECC operations:

add, sub, mul of, e.g.,

integers mod 2255 − 19.

(Basic NTRU operations:

add, sub, mul of, e.g.,

polynomials mod x761 − x − 1.)

Typical “big-integer library”:

a variable-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Uniqueness: ‘ = 0 or f‘−1 6= 0.

30

Constant-time code faster than

“optimized” non-constant-time

code? How is this possible?

People optimize algorithms

for a naive model of CPUs:

• Branches are fast.

• Random access is fast.

CPUs are evolving

farther and farther away

from this naive model.

Fundamental hardware costs

of constant-time arithmetic are

much lower than random access.

31

Modular arithmetic

Basic ECC operations:

add, sub, mul of, e.g.,

integers mod 2255 − 19.

(Basic NTRU operations:

add, sub, mul of, e.g.,

polynomials mod x761 − x − 1.)

Typical “big-integer library”:

a variable-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Uniqueness: ‘ = 0 or f‘−1 6= 0.

32

Library provides functions acting

on this representation: (1) f ; g 7→
f g ; (2) f ; g 7→ f mod g ; etc.

30

Constant-time code faster than

“optimized” non-constant-time

code? How is this possible?

People optimize algorithms

for a naive model of CPUs:

• Branches are fast.

• Random access is fast.

CPUs are evolving

farther and farther away

from this naive model.

Fundamental hardware costs

of constant-time arithmetic are

much lower than random access.

31

Modular arithmetic

Basic ECC operations:

add, sub, mul of, e.g.,

integers mod 2255 − 19.

(Basic NTRU operations:

add, sub, mul of, e.g.,

polynomials mod x761 − x − 1.)

Typical “big-integer library”:

a variable-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Uniqueness: ‘ = 0 or f‘−1 6= 0.

32

Library provides functions acting

on this representation: (1) f ; g 7→
f g ; (2) f ; g 7→ f mod g ; etc.

30

Constant-time code faster than

“optimized” non-constant-time

code? How is this possible?

People optimize algorithms

for a naive model of CPUs:

• Branches are fast.

• Random access is fast.

CPUs are evolving

farther and farther away

from this naive model.

Fundamental hardware costs

of constant-time arithmetic are

much lower than random access.

31

Modular arithmetic

Basic ECC operations:

add, sub, mul of, e.g.,

integers mod 2255 − 19.

(Basic NTRU operations:

add, sub, mul of, e.g.,

polynomials mod x761 − x − 1.)

Typical “big-integer library”:

a variable-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Uniqueness: ‘ = 0 or f‘−1 6= 0.

32

Library provides functions acting

on this representation: (1) f ; g 7→
f g ; (2) f ; g 7→ f mod g ; etc.

31

Modular arithmetic

Basic ECC operations:

add, sub, mul of, e.g.,

integers mod 2255 − 19.

(Basic NTRU operations:

add, sub, mul of, e.g.,

polynomials mod x761 − x − 1.)

Typical “big-integer library”:

a variable-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Uniqueness: ‘ = 0 or f‘−1 6= 0.

32

Library provides functions acting

on this representation: (1) f ; g 7→
f g ; (2) f ; g 7→ f mod g ; etc.

31

Modular arithmetic

Basic ECC operations:

add, sub, mul of, e.g.,

integers mod 2255 − 19.

(Basic NTRU operations:

add, sub, mul of, e.g.,

polynomials mod x761 − x − 1.)

Typical “big-integer library”:

a variable-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Uniqueness: ‘ = 0 or f‘−1 6= 0.

32

Library provides functions acting

on this representation: (1) f ; g 7→
f g ; (2) f ; g 7→ f mod g ; etc.

ECC implementor using library:

multiply f ; g mod 2255 − 19

by (1) multiplying f by g ;

(2) reducing mod 2255 − 19.

31

Modular arithmetic

Basic ECC operations:

add, sub, mul of, e.g.,

integers mod 2255 − 19.

(Basic NTRU operations:

add, sub, mul of, e.g.,

polynomials mod x761 − x − 1.)

Typical “big-integer library”:

a variable-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Uniqueness: ‘ = 0 or f‘−1 6= 0.

32

Library provides functions acting

on this representation: (1) f ; g 7→
f g ; (2) f ; g 7→ f mod g ; etc.

ECC implementor using library:

multiply f ; g mod 2255 − 19

by (1) multiplying f by g ;

(2) reducing mod 2255 − 19.

But these functions take variable

time to ensure uniqueness!

31

Modular arithmetic

Basic ECC operations:

add, sub, mul of, e.g.,

integers mod 2255 − 19.

(Basic NTRU operations:

add, sub, mul of, e.g.,

polynomials mod x761 − x − 1.)

Typical “big-integer library”:

a variable-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Uniqueness: ‘ = 0 or f‘−1 6= 0.

32

Library provides functions acting

on this representation: (1) f ; g 7→
f g ; (2) f ; g 7→ f mod g ; etc.

ECC implementor using library:

multiply f ; g mod 2255 − 19

by (1) multiplying f by g ;

(2) reducing mod 2255 − 19.

But these functions take variable

time to ensure uniqueness!

Need a different representation

for constant-time arithmetic.

Can also gain speed this way.

31

Modular arithmetic

Basic ECC operations:

add, sub, mul of, e.g.,

integers mod 2255 − 19.

(Basic NTRU operations:

add, sub, mul of, e.g.,

polynomials mod x761 − x − 1.)

Typical “big-integer library”:

a variable-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Uniqueness: ‘ = 0 or f‘−1 6= 0.

32

Library provides functions acting

on this representation: (1) f ; g 7→
f g ; (2) f ; g 7→ f mod g ; etc.

ECC implementor using library:

multiply f ; g mod 2255 − 19

by (1) multiplying f by g ;

(2) reducing mod 2255 − 19.

But these functions take variable

time to ensure uniqueness!

Need a different representation

for constant-time arithmetic.

Can also gain speed this way.

33

Constant-time bigint library:

a constant-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Adding two ‘-limb integers:

always allocate ‘ + 1 limbs.

Don’t remove top zero limb.

31

Modular arithmetic

Basic ECC operations:

add, sub, mul of, e.g.,

integers mod 2255 − 19.

(Basic NTRU operations:

add, sub, mul of, e.g.,

polynomials mod x761 − x − 1.)

Typical “big-integer library”:

a variable-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Uniqueness: ‘ = 0 or f‘−1 6= 0.

32

Library provides functions acting

on this representation: (1) f ; g 7→
f g ; (2) f ; g 7→ f mod g ; etc.

ECC implementor using library:

multiply f ; g mod 2255 − 19

by (1) multiplying f by g ;

(2) reducing mod 2255 − 19.

But these functions take variable

time to ensure uniqueness!

Need a different representation

for constant-time arithmetic.

Can also gain speed this way.

33

Constant-time bigint library:

a constant-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Adding two ‘-limb integers:

always allocate ‘ + 1 limbs.

Don’t remove top zero limb.

31

Modular arithmetic

Basic ECC operations:

add, sub, mul of, e.g.,

integers mod 2255 − 19.

(Basic NTRU operations:

add, sub, mul of, e.g.,

polynomials mod x761 − x − 1.)

Typical “big-integer library”:

a variable-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Uniqueness: ‘ = 0 or f‘−1 6= 0.

32

Library provides functions acting

on this representation: (1) f ; g 7→
f g ; (2) f ; g 7→ f mod g ; etc.

ECC implementor using library:

multiply f ; g mod 2255 − 19

by (1) multiplying f by g ;

(2) reducing mod 2255 − 19.

But these functions take variable

time to ensure uniqueness!

Need a different representation

for constant-time arithmetic.

Can also gain speed this way.

33

Constant-time bigint library:

a constant-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Adding two ‘-limb integers:

always allocate ‘ + 1 limbs.

Don’t remove top zero limb.

32

Library provides functions acting

on this representation: (1) f ; g 7→
f g ; (2) f ; g 7→ f mod g ; etc.

ECC implementor using library:

multiply f ; g mod 2255 − 19

by (1) multiplying f by g ;

(2) reducing mod 2255 − 19.

But these functions take variable

time to ensure uniqueness!

Need a different representation

for constant-time arithmetic.

Can also gain speed this way.

33

Constant-time bigint library:

a constant-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Adding two ‘-limb integers:

always allocate ‘ + 1 limbs.

Don’t remove top zero limb.

32

Library provides functions acting

on this representation: (1) f ; g 7→
f g ; (2) f ; g 7→ f mod g ; etc.

ECC implementor using library:

multiply f ; g mod 2255 − 19

by (1) multiplying f by g ;

(2) reducing mod 2255 − 19.

But these functions take variable

time to ensure uniqueness!

Need a different representation

for constant-time arithmetic.

Can also gain speed this way.

33

Constant-time bigint library:

a constant-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Adding two ‘-limb integers:

always allocate ‘ + 1 limbs.

Don’t remove top zero limb.

Can also track bounds more

refined than 20; 232; 264; 296; : : :;

but no limbs→bounds data flow.

32

Library provides functions acting

on this representation: (1) f ; g 7→
f g ; (2) f ; g 7→ f mod g ; etc.

ECC implementor using library:

multiply f ; g mod 2255 − 19

by (1) multiplying f by g ;

(2) reducing mod 2255 − 19.

But these functions take variable

time to ensure uniqueness!

Need a different representation

for constant-time arithmetic.

Can also gain speed this way.

33

Constant-time bigint library:

a constant-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Adding two ‘-limb integers:

always allocate ‘ + 1 limbs.

Don’t remove top zero limb.

Can also track bounds more

refined than 20; 232; 264; 296; : : :;

but no limbs→bounds data flow.

f mod p is as short as p.

32

Library provides functions acting

on this representation: (1) f ; g 7→
f g ; (2) f ; g 7→ f mod g ; etc.

ECC implementor using library:

multiply f ; g mod 2255 − 19

by (1) multiplying f by g ;

(2) reducing mod 2255 − 19.

But these functions take variable

time to ensure uniqueness!

Need a different representation

for constant-time arithmetic.

Can also gain speed this way.

33

Constant-time bigint library:

a constant-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Adding two ‘-limb integers:

always allocate ‘ + 1 limbs.

Don’t remove top zero limb.

Can also track bounds more

refined than 20; 232; 264; 296; : : :;

but no limbs→bounds data flow.

f mod p is as short as p.

34

Usually faster representation:

uint32 string (f0; f1; : : : ; f9)

represents f0 + 226f1 + 251f2 +

277f3 + 2102f4 + 2128f5 + 2153f6 +

2179f7 + 2204f8 + 2230f9.

Constant bound on each fi .

More limbs than before,

but save time by avoiding

overflows and delaying carries.

After multiplication,

replace 2255 with 19.

32

Library provides functions acting

on this representation: (1) f ; g 7→
f g ; (2) f ; g 7→ f mod g ; etc.

ECC implementor using library:

multiply f ; g mod 2255 − 19

by (1) multiplying f by g ;

(2) reducing mod 2255 − 19.

But these functions take variable

time to ensure uniqueness!

Need a different representation

for constant-time arithmetic.

Can also gain speed this way.

33

Constant-time bigint library:

a constant-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Adding two ‘-limb integers:

always allocate ‘ + 1 limbs.

Don’t remove top zero limb.

Can also track bounds more

refined than 20; 232; 264; 296; : : :;

but no limbs→bounds data flow.

f mod p is as short as p.

34

Usually faster representation:

uint32 string (f0; f1; : : : ; f9)

represents f0 + 226f1 + 251f2 +

277f3 + 2102f4 + 2128f5 + 2153f6 +

2179f7 + 2204f8 + 2230f9.

Constant bound on each fi .

More limbs than before,

but save time by avoiding

overflows and delaying carries.

After multiplication,

replace 2255 with 19.

32

Library provides functions acting

on this representation: (1) f ; g 7→
f g ; (2) f ; g 7→ f mod g ; etc.

ECC implementor using library:

multiply f ; g mod 2255 − 19

by (1) multiplying f by g ;

(2) reducing mod 2255 − 19.

But these functions take variable

time to ensure uniqueness!

Need a different representation

for constant-time arithmetic.

Can also gain speed this way.

33

Constant-time bigint library:

a constant-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Adding two ‘-limb integers:

always allocate ‘ + 1 limbs.

Don’t remove top zero limb.

Can also track bounds more

refined than 20; 232; 264; 296; : : :;

but no limbs→bounds data flow.

f mod p is as short as p.

34

Usually faster representation:

uint32 string (f0; f1; : : : ; f9)

represents f0 + 226f1 + 251f2 +

277f3 + 2102f4 + 2128f5 + 2153f6 +

2179f7 + 2204f8 + 2230f9.

Constant bound on each fi .

More limbs than before,

but save time by avoiding

overflows and delaying carries.

After multiplication,

replace 2255 with 19.

33

Constant-time bigint library:

a constant-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Adding two ‘-limb integers:

always allocate ‘ + 1 limbs.

Don’t remove top zero limb.

Can also track bounds more

refined than 20; 232; 264; 296; : : :;

but no limbs→bounds data flow.

f mod p is as short as p.

34

Usually faster representation:

uint32 string (f0; f1; : : : ; f9)

represents f0 + 226f1 + 251f2 +

277f3 + 2102f4 + 2128f5 + 2153f6 +

2179f7 + 2204f8 + 2230f9.

Constant bound on each fi .

More limbs than before,

but save time by avoiding

overflows and delaying carries.

After multiplication,

replace 2255 with 19.

33

Constant-time bigint library:

a constant-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Adding two ‘-limb integers:

always allocate ‘ + 1 limbs.

Don’t remove top zero limb.

Can also track bounds more

refined than 20; 232; 264; 296; : : :;

but no limbs→bounds data flow.

f mod p is as short as p.

34

Usually faster representation:

uint32 string (f0; f1; : : : ; f9)

represents f0 + 226f1 + 251f2 +

277f3 + 2102f4 + 2128f5 + 2153f6 +

2179f7 + 2204f8 + 2230f9.

Constant bound on each fi .

More limbs than before,

but save time by avoiding

overflows and delaying carries.

After multiplication,

replace 2255 with 19.

Slightly faster on some CPUs:

int32 string (f0; f1; : : : ; f9).

33

Constant-time bigint library:

a constant-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Adding two ‘-limb integers:

always allocate ‘ + 1 limbs.

Don’t remove top zero limb.

Can also track bounds more

refined than 20; 232; 264; 296; : : :;

but no limbs→bounds data flow.

f mod p is as short as p.

34

Usually faster representation:

uint32 string (f0; f1; : : : ; f9)

represents f0 + 226f1 + 251f2 +

277f3 + 2102f4 + 2128f5 + 2153f6 +

2179f7 + 2204f8 + 2230f9.

Constant bound on each fi .

More limbs than before,

but save time by avoiding

overflows and delaying carries.

After multiplication,

replace 2255 with 19.

Slightly faster on some CPUs:

int32 string (f0; f1; : : : ; f9).

35

int32 f7_2 = 2 * f7;

int32 g7_19 = 19 * g7;

...

int64 f0g4 = f0 * (int64) g4;

int64 f7g7_38 =

f7_2 * (int64) g7_19;

...

int64 h4 = f0g4 + f1g3_2

+ f2g2 + f3g1_2

+ f4g0 + f5g9_38

+ f6g8_19 + f7g7_38

+ f8g6_19 + f9g5_38;

...

c4 = (h4 + (int64)(1<<25)) >> 26;

h5 += c4; h4 -= c4 << 26;

33

Constant-time bigint library:

a constant-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Adding two ‘-limb integers:

always allocate ‘ + 1 limbs.

Don’t remove top zero limb.

Can also track bounds more

refined than 20; 232; 264; 296; : : :;

but no limbs→bounds data flow.

f mod p is as short as p.

34

Usually faster representation:

uint32 string (f0; f1; : : : ; f9)

represents f0 + 226f1 + 251f2 +

277f3 + 2102f4 + 2128f5 + 2153f6 +

2179f7 + 2204f8 + 2230f9.

Constant bound on each fi .

More limbs than before,

but save time by avoiding

overflows and delaying carries.

After multiplication,

replace 2255 with 19.

Slightly faster on some CPUs:

int32 string (f0; f1; : : : ; f9).

35

int32 f7_2 = 2 * f7;

int32 g7_19 = 19 * g7;

...

int64 f0g4 = f0 * (int64) g4;

int64 f7g7_38 =

f7_2 * (int64) g7_19;

...

int64 h4 = f0g4 + f1g3_2

+ f2g2 + f3g1_2

+ f4g0 + f5g9_38

+ f6g8_19 + f7g7_38

+ f8g6_19 + f9g5_38;

...

c4 = (h4 + (int64)(1<<25)) >> 26;

h5 += c4; h4 -= c4 << 26;

33

Constant-time bigint library:

a constant-length uint32 string

(f0; f1; : : : ; f‘−1) represents

the nonnegative integer

f0 + 232f1 + · · ·+ 232(‘−1)f‘−1.

Adding two ‘-limb integers:

always allocate ‘ + 1 limbs.

Don’t remove top zero limb.

Can also track bounds more

refined than 20; 232; 264; 296; : : :;

but no limbs→bounds data flow.

f mod p is as short as p.

34

Usually faster representation:

uint32 string (f0; f1; : : : ; f9)

represents f0 + 226f1 + 251f2 +

277f3 + 2102f4 + 2128f5 + 2153f6 +

2179f7 + 2204f8 + 2230f9.

Constant bound on each fi .

More limbs than before,

but save time by avoiding

overflows and delaying carries.

After multiplication,

replace 2255 with 19.

Slightly faster on some CPUs:

int32 string (f0; f1; : : : ; f9).

35

int32 f7_2 = 2 * f7;

int32 g7_19 = 19 * g7;

...

int64 f0g4 = f0 * (int64) g4;

int64 f7g7_38 =

f7_2 * (int64) g7_19;

...

int64 h4 = f0g4 + f1g3_2

+ f2g2 + f3g1_2

+ f4g0 + f5g9_38

+ f6g8_19 + f7g7_38

+ f8g6_19 + f9g5_38;

...

c4 = (h4 + (int64)(1<<25)) >> 26;

h5 += c4; h4 -= c4 << 26;

34

Usually faster representation:

uint32 string (f0; f1; : : : ; f9)

represents f0 + 226f1 + 251f2 +

277f3 + 2102f4 + 2128f5 + 2153f6 +

2179f7 + 2204f8 + 2230f9.

Constant bound on each fi .

More limbs than before,

but save time by avoiding

overflows and delaying carries.

After multiplication,

replace 2255 with 19.

Slightly faster on some CPUs:

int32 string (f0; f1; : : : ; f9).

35

int32 f7_2 = 2 * f7;

int32 g7_19 = 19 * g7;

...

int64 f0g4 = f0 * (int64) g4;

int64 f7g7_38 =

f7_2 * (int64) g7_19;

...

int64 h4 = f0g4 + f1g3_2

+ f2g2 + f3g1_2

+ f4g0 + f5g9_38

+ f6g8_19 + f7g7_38

+ f8g6_19 + f9g5_38;

...

c4 = (h4 + (int64)(1<<25)) >> 26;

h5 += c4; h4 -= c4 << 26;

34

Usually faster representation:

uint32 string (f0; f1; : : : ; f9)

represents f0 + 226f1 + 251f2 +

277f3 + 2102f4 + 2128f5 + 2153f6 +

2179f7 + 2204f8 + 2230f9.

Constant bound on each fi .

More limbs than before,

but save time by avoiding

overflows and delaying carries.

After multiplication,

replace 2255 with 19.

Slightly faster on some CPUs:

int32 string (f0; f1; : : : ; f9).

35

int32 f7_2 = 2 * f7;

int32 g7_19 = 19 * g7;

...

int64 f0g4 = f0 * (int64) g4;

int64 f7g7_38 =

f7_2 * (int64) g7_19;

...

int64 h4 = f0g4 + f1g3_2

+ f2g2 + f3g1_2

+ f4g0 + f5g9_38

+ f6g8_19 + f7g7_38

+ f8g6_19 + f9g5_38;

...

c4 = (h4 + (int64)(1<<25)) >> 26;

h5 += c4; h4 -= c4 << 26;

36

Initial computation of h0, : : : , h9

is polynomial multiplication

modulo x10 − 19.

Exercise: Which polynomials

are being multiplied?

34

Usually faster representation:

uint32 string (f0; f1; : : : ; f9)

represents f0 + 226f1 + 251f2 +

277f3 + 2102f4 + 2128f5 + 2153f6 +

2179f7 + 2204f8 + 2230f9.

Constant bound on each fi .

More limbs than before,

but save time by avoiding

overflows and delaying carries.

After multiplication,

replace 2255 with 19.

Slightly faster on some CPUs:

int32 string (f0; f1; : : : ; f9).

35

int32 f7_2 = 2 * f7;

int32 g7_19 = 19 * g7;

...

int64 f0g4 = f0 * (int64) g4;

int64 f7g7_38 =

f7_2 * (int64) g7_19;

...

int64 h4 = f0g4 + f1g3_2

+ f2g2 + f3g1_2

+ f4g0 + f5g9_38

+ f6g8_19 + f7g7_38

+ f8g6_19 + f9g5_38;

...

c4 = (h4 + (int64)(1<<25)) >> 26;

h5 += c4; h4 -= c4 << 26;

36

Initial computation of h0, : : : , h9

is polynomial multiplication

modulo x10 − 19.

Exercise: Which polynomials

are being multiplied?

34

Usually faster representation:

uint32 string (f0; f1; : : : ; f9)

represents f0 + 226f1 + 251f2 +

277f3 + 2102f4 + 2128f5 + 2153f6 +

2179f7 + 2204f8 + 2230f9.

Constant bound on each fi .

More limbs than before,

but save time by avoiding

overflows and delaying carries.

After multiplication,

replace 2255 with 19.

Slightly faster on some CPUs:

int32 string (f0; f1; : : : ; f9).

35

int32 f7_2 = 2 * f7;

int32 g7_19 = 19 * g7;

...

int64 f0g4 = f0 * (int64) g4;

int64 f7g7_38 =

f7_2 * (int64) g7_19;

...

int64 h4 = f0g4 + f1g3_2

+ f2g2 + f3g1_2

+ f4g0 + f5g9_38

+ f6g8_19 + f7g7_38

+ f8g6_19 + f9g5_38;

...

c4 = (h4 + (int64)(1<<25)) >> 26;

h5 += c4; h4 -= c4 << 26;

36

Initial computation of h0, : : : , h9

is polynomial multiplication

modulo x10 − 19.

Exercise: Which polynomials

are being multiplied?

35

int32 f7_2 = 2 * f7;

int32 g7_19 = 19 * g7;

...

int64 f0g4 = f0 * (int64) g4;

int64 f7g7_38 =

f7_2 * (int64) g7_19;

...

int64 h4 = f0g4 + f1g3_2

+ f2g2 + f3g1_2

+ f4g0 + f5g9_38

+ f6g8_19 + f7g7_38

+ f8g6_19 + f9g5_38;

...

c4 = (h4 + (int64)(1<<25)) >> 26;

h5 += c4; h4 -= c4 << 26;

36

Initial computation of h0, : : : , h9

is polynomial multiplication

modulo x10 − 19.

Exercise: Which polynomials

are being multiplied?

35

int32 f7_2 = 2 * f7;

int32 g7_19 = 19 * g7;

...

int64 f0g4 = f0 * (int64) g4;

int64 f7g7_38 =

f7_2 * (int64) g7_19;

...

int64 h4 = f0g4 + f1g3_2

+ f2g2 + f3g1_2

+ f4g0 + f5g9_38

+ f6g8_19 + f7g7_38

+ f8g6_19 + f9g5_38;

...

c4 = (h4 + (int64)(1<<25)) >> 26;

h5 += c4; h4 -= c4 << 26;

36

Initial computation of h0, : : : , h9

is polynomial multiplication

modulo x10 − 19.

Exercise: Which polynomials

are being multiplied?

Reduction modulo x10 − 19

and carries such as h4→h5

squeeze the product

into limited-size representation

suitable for next multiplication.

35

int32 f7_2 = 2 * f7;

int32 g7_19 = 19 * g7;

...

int64 f0g4 = f0 * (int64) g4;

int64 f7g7_38 =

f7_2 * (int64) g7_19;

...

int64 h4 = f0g4 + f1g3_2

+ f2g2 + f3g1_2

+ f4g0 + f5g9_38

+ f6g8_19 + f7g7_38

+ f8g6_19 + f9g5_38;

...

c4 = (h4 + (int64)(1<<25)) >> 26;

h5 += c4; h4 -= c4 << 26;

36

Initial computation of h0, : : : , h9

is polynomial multiplication

modulo x10 − 19.

Exercise: Which polynomials

are being multiplied?

Reduction modulo x10 − 19

and carries such as h4→h5

squeeze the product

into limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

into unique representation

suitable for network transmission.

35

int32 f7_2 = 2 * f7;

int32 g7_19 = 19 * g7;

...

int64 f0g4 = f0 * (int64) g4;

int64 f7g7_38 =

f7_2 * (int64) g7_19;

...

int64 h4 = f0g4 + f1g3_2

+ f2g2 + f3g1_2

+ f4g0 + f5g9_38

+ f6g8_19 + f7g7_38

+ f8g6_19 + f9g5_38;

...

c4 = (h4 + (int64)(1<<25)) >> 26;

h5 += c4; h4 -= c4 << 26;

36

Initial computation of h0, : : : , h9

is polynomial multiplication

modulo x10 − 19.

Exercise: Which polynomials

are being multiplied?

Reduction modulo x10 − 19

and carries such as h4→h5

squeeze the product

into limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

into unique representation

suitable for network transmission.

37

Much more about ECC speed:

see, e.g., 2015 Chou.

35

int32 f7_2 = 2 * f7;

int32 g7_19 = 19 * g7;

...

int64 f0g4 = f0 * (int64) g4;

int64 f7g7_38 =

f7_2 * (int64) g7_19;

...

int64 h4 = f0g4 + f1g3_2

+ f2g2 + f3g1_2

+ f4g0 + f5g9_38

+ f6g8_19 + f7g7_38

+ f8g6_19 + f9g5_38;

...

c4 = (h4 + (int64)(1<<25)) >> 26;

h5 += c4; h4 -= c4 << 26;

36

Initial computation of h0, : : : , h9

is polynomial multiplication

modulo x10 − 19.

Exercise: Which polynomials

are being multiplied?

Reduction modulo x10 − 19

and carries such as h4→h5

squeeze the product

into limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

into unique representation

suitable for network transmission.

37

Much more about ECC speed:

see, e.g., 2015 Chou.

35

int32 f7_2 = 2 * f7;

int32 g7_19 = 19 * g7;

...

int64 f0g4 = f0 * (int64) g4;

int64 f7g7_38 =

f7_2 * (int64) g7_19;

...

int64 h4 = f0g4 + f1g3_2

+ f2g2 + f3g1_2

+ f4g0 + f5g9_38

+ f6g8_19 + f7g7_38

+ f8g6_19 + f9g5_38;

...

c4 = (h4 + (int64)(1<<25)) >> 26;

h5 += c4; h4 -= c4 << 26;

36

Initial computation of h0, : : : , h9

is polynomial multiplication

modulo x10 − 19.

Exercise: Which polynomials

are being multiplied?

Reduction modulo x10 − 19

and carries such as h4→h5

squeeze the product

into limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

into unique representation

suitable for network transmission.

37

Much more about ECC speed:

see, e.g., 2015 Chou.

36

Initial computation of h0, : : : , h9

is polynomial multiplication

modulo x10 − 19.

Exercise: Which polynomials

are being multiplied?

Reduction modulo x10 − 19

and carries such as h4→h5

squeeze the product

into limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

into unique representation

suitable for network transmission.

37

Much more about ECC speed:

see, e.g., 2015 Chou.

36

Initial computation of h0, : : : , h9

is polynomial multiplication

modulo x10 − 19.

Exercise: Which polynomials

are being multiplied?

Reduction modulo x10 − 19

and carries such as h4→h5

squeeze the product

into limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

into unique representation

suitable for network transmission.

37

Much more about ECC speed:

see, e.g., 2015 Chou.

Verifying constant time:

increasingly automated.

36

Initial computation of h0, : : : , h9

is polynomial multiplication

modulo x10 − 19.

Exercise: Which polynomials

are being multiplied?

Reduction modulo x10 − 19

and carries such as h4→h5

squeeze the product

into limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

into unique representation

suitable for network transmission.

37

Much more about ECC speed:

see, e.g., 2015 Chou.

Verifying constant time:

increasingly automated.

Testing can miss rare bugs

that attacker might trigger.

Fix: prove that software

matches mathematical spec;

have computer check proofs.

36

Initial computation of h0, : : : , h9

is polynomial multiplication

modulo x10 − 19.

Exercise: Which polynomials

are being multiplied?

Reduction modulo x10 − 19

and carries such as h4→h5

squeeze the product

into limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

into unique representation

suitable for network transmission.

37

Much more about ECC speed:

see, e.g., 2015 Chou.

Verifying constant time:

increasingly automated.

Testing can miss rare bugs

that attacker might trigger.

Fix: prove that software

matches mathematical spec;

have computer check proofs.

Progress in deploying proven

fast software: see, e.g., 2015

Bernstein–Schwabe “gfverif”;

2017 HACL* X25519 in Firefox.

36

Initial computation of h0, : : : , h9

is polynomial multiplication

modulo x10 − 19.

Exercise: Which polynomials

are being multiplied?

Reduction modulo x10 − 19

and carries such as h4→h5

squeeze the product

into limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

into unique representation

suitable for network transmission.

37

Much more about ECC speed:

see, e.g., 2015 Chou.

Verifying constant time:

increasingly automated.

Testing can miss rare bugs

that attacker might trigger.

Fix: prove that software

matches mathematical spec;

have computer check proofs.

Progress in deploying proven

fast software: see, e.g., 2015

Bernstein–Schwabe “gfverif”;

2017 HACL* X25519 in Firefox.

38

gfverif has verified ref10

implementation of X25519,

plus occasional annotations,

against the following specification:

p = 2**255-19

A = 486662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

ni = bit(n,i)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

x3,z3 = (4*(x2*x3-z2*z3)**2,

4*x1*(x2*z3-z2*x3)**2)

x2,z2 = ((x2**2-z2**2)**2,

4*x2*z2*(x2**2+A*x2*z2+z2**2))

36

Initial computation of h0, : : : , h9

is polynomial multiplication

modulo x10 − 19.

Exercise: Which polynomials

are being multiplied?

Reduction modulo x10 − 19

and carries such as h4→h5

squeeze the product

into limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

into unique representation

suitable for network transmission.

37

Much more about ECC speed:

see, e.g., 2015 Chou.

Verifying constant time:

increasingly automated.

Testing can miss rare bugs

that attacker might trigger.

Fix: prove that software

matches mathematical spec;

have computer check proofs.

Progress in deploying proven

fast software: see, e.g., 2015

Bernstein–Schwabe “gfverif”;

2017 HACL* X25519 in Firefox.

38

gfverif has verified ref10

implementation of X25519,

plus occasional annotations,

against the following specification:

p = 2**255-19

A = 486662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

ni = bit(n,i)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

x3,z3 = (4*(x2*x3-z2*z3)**2,

4*x1*(x2*z3-z2*x3)**2)

x2,z2 = ((x2**2-z2**2)**2,

4*x2*z2*(x2**2+A*x2*z2+z2**2))

36

Initial computation of h0, : : : , h9

is polynomial multiplication

modulo x10 − 19.

Exercise: Which polynomials

are being multiplied?

Reduction modulo x10 − 19

and carries such as h4→h5

squeeze the product

into limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

into unique representation

suitable for network transmission.

37

Much more about ECC speed:

see, e.g., 2015 Chou.

Verifying constant time:

increasingly automated.

Testing can miss rare bugs

that attacker might trigger.

Fix: prove that software

matches mathematical spec;

have computer check proofs.

Progress in deploying proven

fast software: see, e.g., 2015

Bernstein–Schwabe “gfverif”;

2017 HACL* X25519 in Firefox.

38

gfverif has verified ref10

implementation of X25519,

plus occasional annotations,

against the following specification:

p = 2**255-19

A = 486662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

ni = bit(n,i)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

x3,z3 = (4*(x2*x3-z2*z3)**2,

4*x1*(x2*z3-z2*x3)**2)

x2,z2 = ((x2**2-z2**2)**2,

4*x2*z2*(x2**2+A*x2*z2+z2**2))

37

Much more about ECC speed:

see, e.g., 2015 Chou.

Verifying constant time:

increasingly automated.

Testing can miss rare bugs

that attacker might trigger.

Fix: prove that software

matches mathematical spec;

have computer check proofs.

Progress in deploying proven

fast software: see, e.g., 2015

Bernstein–Schwabe “gfverif”;

2017 HACL* X25519 in Firefox.

38

gfverif has verified ref10

implementation of X25519,

plus occasional annotations,

against the following specification:

p = 2**255-19

A = 486662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

ni = bit(n,i)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

x3,z3 = (4*(x2*x3-z2*z3)**2,

4*x1*(x2*z3-z2*x3)**2)

x2,z2 = ((x2**2-z2**2)**2,

4*x2*z2*(x2**2+A*x2*z2+z2**2))

37

Much more about ECC speed:

see, e.g., 2015 Chou.

Verifying constant time:

increasingly automated.

Testing can miss rare bugs

that attacker might trigger.

Fix: prove that software

matches mathematical spec;

have computer check proofs.

Progress in deploying proven

fast software: see, e.g., 2015

Bernstein–Schwabe “gfverif”;

2017 HACL* X25519 in Firefox.

38

gfverif has verified ref10

implementation of X25519,

plus occasional annotations,

against the following specification:

p = 2**255-19

A = 486662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

ni = bit(n,i)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

x3,z3 = (4*(x2*x3-z2*z3)**2,

4*x1*(x2*z3-z2*x3)**2)

x2,z2 = ((x2**2-z2**2)**2,

4*x2*z2*(x2**2+A*x2*z2+z2**2))

39

x3,z3 = (x3%p,z3%p)

x2,z2 = (x2%p,z2%p)

cut(x2)

cut(x3)

cut(z2)

cut(z3)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

cut(x2)

cut(z2)

return x2*pow(z2,p-2,p)

What’s verified: output of ref10

is the same as spec mod p,

and is between 0 and p − 1.

37

Much more about ECC speed:

see, e.g., 2015 Chou.

Verifying constant time:

increasingly automated.

Testing can miss rare bugs

that attacker might trigger.

Fix: prove that software

matches mathematical spec;

have computer check proofs.

Progress in deploying proven

fast software: see, e.g., 2015

Bernstein–Schwabe “gfverif”;

2017 HACL* X25519 in Firefox.

38

gfverif has verified ref10

implementation of X25519,

plus occasional annotations,

against the following specification:

p = 2**255-19

A = 486662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

ni = bit(n,i)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

x3,z3 = (4*(x2*x3-z2*z3)**2,

4*x1*(x2*z3-z2*x3)**2)

x2,z2 = ((x2**2-z2**2)**2,

4*x2*z2*(x2**2+A*x2*z2+z2**2))

39

x3,z3 = (x3%p,z3%p)

x2,z2 = (x2%p,z2%p)

cut(x2)

cut(x3)

cut(z2)

cut(z3)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

cut(x2)

cut(z2)

return x2*pow(z2,p-2,p)

What’s verified: output of ref10

is the same as spec mod p,

and is between 0 and p − 1.

37

Much more about ECC speed:

see, e.g., 2015 Chou.

Verifying constant time:

increasingly automated.

Testing can miss rare bugs

that attacker might trigger.

Fix: prove that software

matches mathematical spec;

have computer check proofs.

Progress in deploying proven

fast software: see, e.g., 2015

Bernstein–Schwabe “gfverif”;

2017 HACL* X25519 in Firefox.

38

gfverif has verified ref10

implementation of X25519,

plus occasional annotations,

against the following specification:

p = 2**255-19

A = 486662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

ni = bit(n,i)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

x3,z3 = (4*(x2*x3-z2*z3)**2,

4*x1*(x2*z3-z2*x3)**2)

x2,z2 = ((x2**2-z2**2)**2,

4*x2*z2*(x2**2+A*x2*z2+z2**2))

39

x3,z3 = (x3%p,z3%p)

x2,z2 = (x2%p,z2%p)

cut(x2)

cut(x3)

cut(z2)

cut(z3)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

cut(x2)

cut(z2)

return x2*pow(z2,p-2,p)

What’s verified: output of ref10

is the same as spec mod p,

and is between 0 and p − 1.

38

gfverif has verified ref10

implementation of X25519,

plus occasional annotations,

against the following specification:

p = 2**255-19

A = 486662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

ni = bit(n,i)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

x3,z3 = (4*(x2*x3-z2*z3)**2,

4*x1*(x2*z3-z2*x3)**2)

x2,z2 = ((x2**2-z2**2)**2,

4*x2*z2*(x2**2+A*x2*z2+z2**2))

39

x3,z3 = (x3%p,z3%p)

x2,z2 = (x2%p,z2%p)

cut(x2)

cut(x3)

cut(z2)

cut(z3)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

cut(x2)

cut(z2)

return x2*pow(z2,p-2,p)

What’s verified: output of ref10

is the same as spec mod p,

and is between 0 and p − 1.

38

gfverif has verified ref10

implementation of X25519,

plus occasional annotations,

against the following specification:

p = 2**255-19

A = 486662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

ni = bit(n,i)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

x3,z3 = (4*(x2*x3-z2*z3)**2,

4*x1*(x2*z3-z2*x3)**2)

x2,z2 = ((x2**2-z2**2)**2,

4*x2*z2*(x2**2+A*x2*z2+z2**2))

39

x3,z3 = (x3%p,z3%p)

x2,z2 = (x2%p,z2%p)

cut(x2)

cut(x3)

cut(z2)

cut(z3)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

cut(x2)

cut(z2)

return x2*pow(z2,p-2,p)

What’s verified: output of ref10

is the same as spec mod p,

and is between 0 and p − 1.

40

“What a difference a prime makes”

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

38

gfverif has verified ref10

implementation of X25519,

plus occasional annotations,

against the following specification:

p = 2**255-19

A = 486662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

ni = bit(n,i)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

x3,z3 = (4*(x2*x3-z2*z3)**2,

4*x1*(x2*z3-z2*x3)**2)

x2,z2 = ((x2**2-z2**2)**2,

4*x2*z2*(x2**2+A*x2*z2+z2**2))

39

x3,z3 = (x3%p,z3%p)

x2,z2 = (x2%p,z2%p)

cut(x2)

cut(x3)

cut(z2)

cut(z3)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

cut(x2)

cut(z2)

return x2*pow(z2,p-2,p)

What’s verified: output of ref10

is the same as spec mod p,

and is between 0 and p − 1.

40

“What a difference a prime makes”

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

38

gfverif has verified ref10

implementation of X25519,

plus occasional annotations,

against the following specification:

p = 2**255-19

A = 486662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

ni = bit(n,i)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

x3,z3 = (4*(x2*x3-z2*z3)**2,

4*x1*(x2*z3-z2*x3)**2)

x2,z2 = ((x2**2-z2**2)**2,

4*x2*z2*(x2**2+A*x2*z2+z2**2))

39

x3,z3 = (x3%p,z3%p)

x2,z2 = (x2%p,z2%p)

cut(x2)

cut(x3)

cut(z2)

cut(z3)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

cut(x2)

cut(z2)

return x2*pow(z2,p-2,p)

What’s verified: output of ref10

is the same as spec mod p,

and is between 0 and p − 1.

40

“What a difference a prime makes”

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

39

x3,z3 = (x3%p,z3%p)

x2,z2 = (x2%p,z2%p)

cut(x2)

cut(x3)

cut(z2)

cut(z3)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

cut(x2)

cut(z2)

return x2*pow(z2,p-2,p)

What’s verified: output of ref10

is the same as spec mod p,

and is between 0 and p − 1.

40

“What a difference a prime makes”

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

39

x3,z3 = (x3%p,z3%p)

x2,z2 = (x2%p,z2%p)

cut(x2)

cut(x3)

cut(z2)

cut(z3)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

cut(x2)

cut(z2)

return x2*pow(z2,p-2,p)

What’s verified: output of ref10

is the same as spec mod p,

and is between 0 and p − 1.

40

“What a difference a prime makes”

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

41

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

39

x3,z3 = (x3%p,z3%p)

x2,z2 = (x2%p,z2%p)

cut(x2)

cut(x3)

cut(z2)

cut(z3)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

cut(x2)

cut(z2)

return x2*pow(z2,p-2,p)

What’s verified: output of ref10

is the same as spec mod p,

and is between 0 and p − 1.

40

“What a difference a prime makes”

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

41

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

39

x3,z3 = (x3%p,z3%p)

x2,z2 = (x2%p,z2%p)

cut(x2)

cut(x3)

cut(z2)

cut(z3)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

cut(x2)

cut(z2)

return x2*pow(z2,p-2,p)

What’s verified: output of ref10

is the same as spec mod p,

and is between 0 and p − 1.

40

“What a difference a prime makes”

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

41

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

40

“What a difference a prime makes”

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

41

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

40

“What a difference a prime makes”

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

41

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

42

What is “a few copies”?

Variable-time loop is unsafe.

40

“What a difference a prime makes”

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

41

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

42

What is “a few copies”?

Variable-time loop is unsafe.

40

“What a difference a prime makes”

NIST P-256 prime p is

2256 − 2224 + 2192 + 296 − 1.

ECDSA standard specifies

reduction procedure given

an integer “A less than p2”:

Write A as

(A15; A14; A13; A12; A11; A10; A9;

A8; A7; A6; A5; A4; A3; A2; A1; A0),

meaning
P

i Ai2
32i .

Define

T ;S1;S2;S3;S4;D1;D2;D3;D4

as

41

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

42

What is “a few copies”?

Variable-time loop is unsafe.

41

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

42

What is “a few copies”?

Variable-time loop is unsafe.

41

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

42

What is “a few copies”?

Variable-time loop is unsafe.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

41

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

42

What is “a few copies”?

Variable-time loop is unsafe.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

41

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

42

What is “a few copies”?

Variable-time loop is unsafe.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

41

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

42

What is “a few copies”?

Variable-time loop is unsafe.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

43

There are many more ways that

cryptographic design choices

affect difficulty of building fast

correct constant-time software.

e.g. ECDSA needs divisions

of scalars. EdDSA doesn’t.

e.g. ECDSA splits elliptic-curve

additions into several cases.

EdDSA uses complete formulas.

41

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

42

What is “a few copies”?

Variable-time loop is unsafe.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

43

There are many more ways that

cryptographic design choices

affect difficulty of building fast

correct constant-time software.

e.g. ECDSA needs divisions

of scalars. EdDSA doesn’t.

e.g. ECDSA splits elliptic-curve

additions into several cases.

EdDSA uses complete formulas.

41

(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

42

What is “a few copies”?

Variable-time loop is unsafe.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

43

There are many more ways that

cryptographic design choices

affect difficulty of building fast

correct constant-time software.

e.g. ECDSA needs divisions

of scalars. EdDSA doesn’t.

e.g. ECDSA splits elliptic-curve

additions into several cases.

EdDSA uses complete formulas.

42

What is “a few copies”?

Variable-time loop is unsafe.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

43

There are many more ways that

cryptographic design choices

affect difficulty of building fast

correct constant-time software.

e.g. ECDSA needs divisions

of scalars. EdDSA doesn’t.

e.g. ECDSA splits elliptic-curve

additions into several cases.

EdDSA uses complete formulas.

42

What is “a few copies”?

Variable-time loop is unsafe.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?

43

There are many more ways that

cryptographic design choices

affect difficulty of building fast

correct constant-time software.

e.g. ECDSA needs divisions

of scalars. EdDSA doesn’t.

e.g. ECDSA splits elliptic-curve

additions into several cases.

EdDSA uses complete formulas.

What’s better use of time:

implementing ECDSA, or

upgrading protocol to EdDSA?

