Cryptographic Software optimization

software engineering, Almost all software is

art 2 |
P much slower than it could be.

Daniel J. Bernstein

Previous part:
e General software engineering.
e Using const-time instructions.

Cryptographic Software optimization

software engineering, Almost all software is

art 2 |
P much slower than it could be.

Daniel J. Bernstein .
|s software applied to much data?

Usually not. Usually the

Previous part: wasted CPU time is negligible.
e General software engineering.

e Using const-time instructions.

Cryptographic Software optimization

software engineering, Almost all software is

art 2 |
P much slower than it could be.

Daniel J. Bernstein .
|s software applied to much data?

Usually not. Usually the

Previous part: wasted CPU time is negligible.

e General software engineering.

e Using const-time instructions. But crypto software should be

applied to all communication.

Crypto that's too slow

= fewer users

— fewer cryptanalysts

= less attractive for everybody.

raphic

engineering,

. Bernstein

 part:
1| software engineering.
const-time instructions.

Software optimization

Almost all software is
much slower than it could be.

|s software applied to much data?
Usually not. Usually the
wasted CPU time is negligible.

But crypto software should be
applied to all communication.

Crypto that's too slow

= fewer users

— fewer cryptanalysts

= less attractive for everybody.

Typical :
Xisac

You hav
referenc

You war
software
as efficie

You hav
(Can ref

You me:

impleme

g,

Software optimization

' engineering.
> Instructions.

Almost all software is
much slower than it could be.

|s software applied to much data?
Usually not. Usually the
wasted CPU time is negligible.

But crypto software should be
applied to all communication.

Crypto that's too slow

= fewer users

— fewer cryptanalysts

= less attractive for everybody.

Typical situation:
X Is a cryptograpl

You have written .
reference impleme

You want (const-t
software that com
as efficiently as pc

You have chosen
(Can repeat for ot

You measure perfc
implementation. |

Software optimization

Ons.

Almost all software is
much slower than it could be.

|s software applied to much data?
Usually not. Usually the
wasted CPU time is negligible.

But crypto software should be
applied to all communication.

Crypto that's too slow

= fewer users

— fewer cryptanalysts

= less attractive for everybody.

Typical situation:
X Is a cryptographic system

You have written a (const-ti
reference implementation of

You want (const-time)
software that computes X
as efficiently as possible.

You have chosen a target Cl
(Can repeat for other CPUs

You measure performance o
implementation. Now what"

Software optimization

Almost all software is
much slower than it could be.

|s software applied to much data?
Usually not. Usually the
wasted CPU time is negligible.

But crypto software should be
applied to all communication.

Crypto that's too slow

= fewer users

— fewer cryptanalysts

= less attractive for everybody.

Typical situation:
X Is a cryptographic system.

You have written a (const-time)
reference implementation of X.

You want (const-time)
software that computes X
as efficiently as possible.

You have chosen a target CPU.
(Can repeat for other CPUs.)

You measure performance of the
implementation. Now what?

 optimization

11l software is
wer than 1t could be.

ire applied to much data?
not. Usually the
_PU time is negligible.

yto software should be
o all communication.

hat's too slow

- users

- cryptanalysts
ttractive for everybody.

Typical situation:
X Is a cryptographic system.

You have written a (const-time)
reference implementation of X.

You want (const-time)
software that computes X
as efficiently as possible.

You have chosen a target CPU.
(Can repeat for other CPUs.)

You measure performance of the
implementation. Now what?

A simpli

Target (

MICroco
one AR

Referenc

int sum
int
int 1
for (
res:

retur:

tion

e IS
it could be.
| to much data?

lly the
Is negligible.

re should be

munication.

slow

ysts
‘or everybody.

Typical situation:
X Is a cryptographic system.

You have written a (const-time)
reference implementation of X.

You want (const-time)
software that computes X
as efficiently as possible.

You have chosen a target CPU.
(Can repeat for other CPUs.)

You measure performance of the
implementation. Now what?

A simplified exam|

Target CPU: TI L
microcontroller co
one ARM Cortex-|

Reference impleme

int sum(int *x)
{
int result = 0O
int 1;
for (1 = 0;1 <
result += x|[

return result;

bdy.

Typical situation:
X Is a cryptographic system.

You have written a (const-time)
reference implementation of X.

You want (const-time)
software that computes X
as efficiently as possible.

You have chosen a target CPU.
(Can repeat for other CPUs.)

You measure performance of the
implementation. Now what?

A simplified example

Target CPU: TI LM4F120H!
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = 0O;
int 1;
for (i = 0;i < 1000;++i
result += x[i];

return result;

Typical situation:
X Is a cryptographic system.

You have written a (const-time)
reference implementation of X.

You want (const-time)
software that computes X
as efficiently as possible.

You have chosen a target CPU.
(Can repeat for other CPUs.)

You measure performance of the
implementation. Now what?

A simplified example

Target CPU: TI LM4F120H5QR
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = O;
int 1;
for (i = 0;i < 1000;++i)
result += x[i];

return result;

situation:
ryptographic system.

e written a (const-time)
> implementation of X.

t (const-time)
that computes X
ntly as possible.

e chosen a target CPU.
yeat for other CPUs.)

sure performance of the
ntation. Now what?

A simplified example

Target CPU: TI LM4F120H5QR
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = O;
int 1;
for (i = 0;i < 1000;++i)
result += x[i];

return result;

Countin;

static -
xcons:

= (vo.

int bef
int res:
int aft
UARTpri:

resul:

Output
Change

1IC system.

3 (const-time)
ntation of X.

ime)
putes X
ssible.

) target CPU.
her CPUs.)

yrmance of the
Now what?

A simplified example

Target CPU: TI LM4F120H5QR
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = O;
int 1;
for (i = 0;i < 1000;++i)
result += x[i];

return result;

Counting cycles:

static volatile
xconst DWT_CYC
= (void *) OxE

int beforesum =
int result = sum
int aftersum = *
UARTprintf ("sum

result,aftersu

Output shows 801
Change 1000 to 5

me)

°U.

f the

A simplified example

Target CPU: TI LM4F120H5QR
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = O;
int 1;
for (i = 0;i < 1000;++i)
result += x[i];

return result;

Counting cycles:

static volatile unsigned
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWT_CYCC
int result = sum(x);

int aftersum = *xDWT_CYCCN
UARTprintf ("sum %d %d\n",

result,aftersum-befores

Output shows 8012 cycles.
Change 1000 to 500: 4012.

A simplified example Counting cycles:

Target CPU: TI LM4F120H5QR static volatile unsigned int
microcontroller containing *const DWT_CYCCNT

one ARM Cortex-M4F core. = (void *) 0xE0001004;

Reference implementation:

int sum(int *x) int beforesum = *DWT_CYCCNT;
{ int result = sum(x);
int result = O; int aftersum = *DWT_CYCCNT;
int i; UARTprintf ("sum %d %d\n",
for (i = 0;1i < 1000;++i) result,aftersum-beforesum) ;

result += x[i];

Output shows 8012 cycles.
Change 1000 to 500: 4012.

return result;

fled example

PU: TI LM4F120H5QR
ntroller containing
VI Cortex-M4F core.

e Implementation:

(int *x)

osult = 0;
i = 0;1 < 1000;++1)
11t += x[i];

n result;

Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWI_CYCCNT;
int result = sum(x);

int aftersum = *xDWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, ¢
Um, are
really th

ole

M4F120H5QR
ntaining
VI4F core.

ntation:

1000 ;++1)
il;

Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, 8 cycles pe
Um, are microcon
really this slow at

Counting cycles: “Okay, 8 cycles per addition

. , , , Um, are microcontrollers
QR static volatile unsigned int

xconst DWT_CYCCNT
= (void *) 0xE0001004;

really this slow at addition?’

int beforesum = *DWI_CYCCNT;
int result = sum(x);

int aftersum = *xDWT_CYCCNT;
UARTprintf ("sum %d %d\n",

) result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

Counting cycles:

static volatile unsigned 1int

xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;

int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Counting cycles:

static volatile unsigned 1int

xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”
(and tweak compiler options)

until you get bored.
Keep the fastest results.

Counting cycles:

static volatile unsigned 1int

xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”
(and tweak compiler options)

until you get bored.
Keep the fastest results.

Try -0s: 8012 cycles.

Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, 8 cycles per addition.

Um,

are microcontrollers

really this slow at addition?”

Bad

App
(anc

unti

practice:
y random “optimizations”
tweak compiler options)
you get bored.

Keep the fastest results.

Try -0s: 8012 cycles.
Try -01: 8012 cycles.

Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, 8 cycles per addition.

Um,

are microcontrollers

really this slow at addition?”

Bad

App
(anc

unti

practice:
y random “optimizations”
tweak compiler options)
you get bored.

Keep the fastest results.

Try -0s: 8012 cycles.
Try -01: 8012 cycles.
Try —02: 8012 cycles.

Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, 8 cycles per addition.

Um,

are microcontrollers

really this slow at addition?”

Bad

App
(anc

unti

practice:
y random “optimizations”
tweak compiler options)
you get bored.

Keep the fastest results.

Try -0s: 8012 cycles.
Try -01: 8012 cycles.
Try —02: 8012 cycles.
Try -03: 8012 cycles.

r cycles:

volatile unsigned int
t DWIT_CYCCNT
id *) 0xE0001004;

oresum = *xDWT_CYCCNT;
11t = sum(x);

orsum = *DWIT_CYCCNT;
ntf ("sum %d %d\n",

t ,aftersum-beforesum) ;

shows 8012 cycles.
1000 to 500: 4012.

“Okay, 8 cycles per addition.

Um,

are microcontrollers

really this slow at addition?”

Bad

App
(anc

unti

practice:

y random “optimizations”

tweak compiler options)
you get bored.

Keep the fastest results.

Try —0s: 8012 cycles.
Try —01: 8012 cycles.
Try -02: 8012 cycles.
Try -03: 8012 cycles.

Try mov

int sum

int r
int 1
for (

res

retur:

unsigned int
CNT
0001004 ;

*DWT_CYCCNT;

(x);
DWT_CYCCNT;

/d hd\n",

m-beforesum) ;

2 cycles.
00: 4012.

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.
Keep the fastest results.

Try -0s: 8012 cycles.
Try -01: 8012 cycles.
Try -02: 8012 cycles.
Try -03: 8012 cycles.

Try moving the pc

int sum(int *x)
{
int result = 0
int 1;
for (i = 0;1 <
result += *x

return result;

int

NT;

um) ;

“Okay, 8 cycles per addition.

Um,

are microcontrollers

really this slow at addition?”

Bad

App
(anc

unti

practice:

y random “optimizations”

tweak compiler options)
you get bored.

Keep the fastest results.

Try —0s: 8012 cycles.
Try —01: 8012 cycles.
Try —02: 8012 cycles.
Try -03: 8012 cycles.

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int 1;

for (1 = 0;1 < 1000;++i
result += *xx++;

return result;

“Okay, 8 cycles per addition.

Um,

are microcontrollers

really this slow at addition?”

Bad

App
(anc

unti

practice:

y random “optimizations”

tweak compiler options)
you get bored.

Keep the fastest results.

Try -0s: 8012 cycles.
Try -01: 8012 cycles.
Try -02: 8012 cycles.
Try -03: 8012 cycles.

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int 1;

for (i = 0;1i < 1000;++1i)
result += *xx++;

return result;

“Okay, 8 cycles per addition. Try moving the pointer:

Um, are microcontrollers , ,
int sum(int *x)

really this slow at addition?”

{
Bad practice: int result = 0;
Apply random “optimizations” int i;
(and tweak compiler options) for (i = 0:;i < 1000;++i)
until you get bored. result += *x++;
Keep the fastest results. return result;
+

Try -0s: 8012 cycles.
Try -01: 8012 cycles. 8010 cycles.
Try -02: 8012 cycles.
Try -03: 8012 cycles.

3 cycles per addition.
microcontrollers

Is slow at addition?”

“tice:

ndom “optimizations”

2ak compiler options)
| get bored.
> fastest results.

- 8012 cycles.
- 8012 cycles.
- 8012 cycles.
- 8012 cycles.

Try moving the pointer:

int sum(int *x)
{
int result = 0;
int 1;
for (i = 0;i < 1000;++1)
result += *xx++;

return result;

+
8010 cycles.

Try cour

int sum
int
int 1
for (.
res:

retur:

r addition.
trollers

addition?”

timizations’

er options)
ol
esults.

1€S.

1€S.

|es.
les.

Try moving the pointer:

int sum(int *x)

{
int result = O;
int 1;
for (i = 0;i < 1000;++1i)
result += *xx++;
return result;
Iy
8010 cycles.

Try counting dowr

int sum(int *x)
{
int result = 0
int 1;
for (i = 1000;
result += *x

return result;

1S

Try moving the pointer: Try counting down:
int sum(int *x) int sum(int *x)
{ {
int result = 0; int result = 0;
int 1; int 1;
for (i = 0;i < 1000;++i) for (i = 1000;i > 0;--1
result += *xx++; result += *xx++;
return result; return result;
F F

8010 cycles.

Try moving the pointer: Try counting down:
int sum(int *x) int sum(int *x)
{ {
int result = 0; int result = 0;
int 1; int 1;
for (i = 0;i < 1000;++i) for (i = 1000;i > 0;--1)
result += *xx++; result += *xx++;
return result; return result;
¥ ¥

8010 cycles.

Try moving the pointer: Try counting down:
int sum(int *x) int sum(int *x)
{ {
int result = 0; int result = 0;
int 1; int 1;
for (i = 0;i < 1000;++i) for (i = 1000;i > 0;--1)
result += *xx++; result += *xx++;
return result; return result;
¥ ¥

8010 cycles. 8010 cycles.

Ing the pointer:

(int *x)

osult = 0;
i = 0;i < 1000;++1i)
11t += *xx++;

n result;

"les.

Try counting down:

int sum(int *x)
{
int result = 0;
int 1;
for (i = 1000;i > 0;--1)
result += *xx++;

return result;

+
8010 cycles.

Try usin

int sum
int
int
while
res:

retur:

inter:

1000 ;++1)

++

)

Try counting down:

int sum(int *x)
{
int result = O;
int 1;
for (i = 1000;i > 0;--1)
result += *xx++;

return result;

¥
8010 cycles.

Try using an end |

int sum(int *x)
{
int result = 0
int *y = x + 1
while (x != y)
result += *x

return result;

Try counting down: Try using an end pointer:
int sum(int *x) int sum(int *x)
{ {
int result = 0; int result = 0;
int 1; int *y = x + 1000;
for (i = 1000;i > 0;--1i) while (x !'= y)
result += *xx++; result += *xx++;
return result; return result;
F F

8010 cycles.

Try counting down:

int sum(int *x)
{
int result = 0;
int 1;
for (i = 1000;i > 0;--1)
result += *xx++;

return result;

¥
8010 cycles.

Try using an end pointer:

int sum(int *x)
{
int result = 0;
int *y = x + 1000;
while (x != y)
result += *xx++;

return result;

Try counting down:

int sum(int *x)
{
int result = 0;
int 1;
for (i = 1000;i > 0;--1)
result += *xx++;

return result;

¥
8010 cycles.

Try using an end pointer:

int sum(int *x)
{
int result = 0;
int *y = x + 1000;
while (x != y)
result += *xx++;

return result;

¥
8010 cycles.

1ting down:

(int *x)

osult = 0;
i = 1000;i > 0;--1)
11t += *xx++;

n result;

"les.

Try using an end pointer:

int sum(int *x)
{
int result = 0;
int *y = x + 1000;
while (x != y)
result += *xx++;

return result;

+
8010 cycles.

Back to

int sum

{

int r
int 1
for (
res
res

}

retur:

i > 0;--1)

ot

Try using an end pointer:

int sum(int *x)
{
int result = O;
int *y = x + 1000;
while (x != y)
result += *xx++;

return result;

¥
8010 cycles.

Back to original.

int sum(int *x)

{

int result = 0

int 1;

for (i = 0;1 <
result += x

result += x

¥

return result;

Try using an end pointer:

int sum(int *x)
{
int result = 0;
int *y = x + 1000;
while (x != y)
result += *xx++;

return result;

+
8010 cycles.

Back to original. Try unrolli

int sum(int *x)

{

int result = 0;
int 1;
for (1 = 0;1 < 1000;1i +

result += x[i];

result += x[i + 1];

}

return result;

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)
result += *xx++;

return result;

¥
8010 cycles.

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;
int 1;
for (i = 0;1i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

¥

return result;

10

Try using an end pointer:

int sum(int *x)
{
int result = 0;
int *y = x + 1000;
while (x != y)
result += *xx++;

return result;

¥
8010 cycles.

Back to original. Try unrolling:

int sum(int *x)

{
int result = 0;
int 1;
for (i = 0;i < 1000;i += 2) {
result += x[i];
result += x[i + 1];
F
return result;
¥

5016 cycles.

10

g an end pointer:

(int *x)

osult = 0;

y = x + 1000;
(x '= y)

11t += *xx++;

n result;

"les.

10
Back to original. Try unrolling:

int sum(int *x)
{
int result = 0;
int 1;
for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

+
5016 cycles.

int sum

{

int r
int 1
for (
res
res
res
res
res

}

retur:

bointer: Back to original. Try unrolling: int sum(int *x)
{

int result = O

int sum(int *x)

{
. int 1;
; int result = O;
S for (1 = 0;i <
000; 1nt 1; i
. _ . result += x|
for (i = 0;i < 1000;i += 2) {]
N result += x|
++: result += x[i]; -
N result += x|
result += x[i + 1];)
) result += x|
result += x[
return result;
}
}

return result;

5016 cycles. 1

10
Back to original. Try unrolling: int sum(int *x)

{

int result = O;

int sum(int *x)

{

. int 1;
int result = 0;

, , for (1 = 0;1 < 1000;1i +
int 1;

result += x[i];
for (i = 0;i < 1000;i += 2) { L

5 result += x[i + 1];
result += x[i];

result += x[i + 2];

result += x[i + 1];

}

return result;

¥

result += x[i + 3];

result += x[i + 4]

w o

}

return result;

5016 cycles. 1

10
Back to original. Try unrolling: int sum(int *x)

{

int result = O;

int sum(int *x)

{

. int 1;
int result = 0;

. . for (i = 0;i < 1000;i += 5) {
int 1;

result += x[i];
for (i = 0;i < 1000;i += 2) { =

5 result += x[i + 1];
result += x[i];

result += x[i + 2];

result += x[i + 1];

¥

return result;

¥

result += x[i + 3];
result += x[i + 4];

Iy

return result;

5016 cycles. 1

10
Back to original. Try unrolling: int sum(int *x)

{

int result = O;

int sum(int *x)

{

. int 1;
int result = 0;

. . for (i = 0;i < 1000;i += 5) {
int 1;

for (i = 0;1i < 1000;i += 2) {
result += x|1

- i+
result += x[i];
result += x|1 + 2];
+
+

result += x[i];

result += x[i + 1];

) result += x|[1 31;
result += x[i + 4];
return result;)
}
return result;
5016 cycles. 1

4016 cycles. “Are we done yet?”

original. Try unrolling:

(int *x)

osult = 0;
i = 0;1i < 1000;1i += 2) {

11t += x[1i];

11t += x[1 + 1];

n result;

“les.

10

int sum(int *x)

{
int result = O;
int 1;

for (i = 0;i < 1000;i += 5) {

result += x[i];
result += x[i + 1];
result += x[i + 2];
result += x[i + 3];
result += x[i + 4];
I
return result;

¥

4016 cycles. “Are we done yet?”

11

“Why s
Didn't w
In makir

Try unrolling:

1000;i += 2) {

i+ 1];

10

int sum(int *x)

{
int result = O;
int 1;
for (i = 0;i < 1000;i += 5) {
result += x[i];
result += x[1 + 1];
result += x[i + 2];
result += x[i + 3];
result += x[i + 4];
t
return result;
}

4016 cycles. “Are we done yet?”

11

“Why 1s this bad |
Didn’t we succeed
in making code tw

2) {

10

int sum(int *x)
{
1nt result =

int 1;

for (i = 0;i < 1000;i += 5) {

result += x
result += x
result += x

result += x

result += x[i + 4]

Iy

return result

Iy

4016 cycles. “Are we done yet?”

0;

i];

i+ 1]

i + 2]

i + 3]

)

w o

11

“"Why is this bad practice?
Didn't we succeed
in making code twice as fas

int sum(int *x)

{

1nt result

int 1;

for (i

¥

result
result
result
result

result

0;1i < 1000;i += 5) {

=O;

x[i];
x[1i + 1
x[1i + 2

xli + 3];

x[1i + 4];

return result;

¥

4016 cycles. “Are we done yet?”

11

“Why is this bad practice?
Didn't we succeed
in making code twice as fast?”

12

int sum(int *x)

{

1nt result

int 1;

for (i =
result
result
result
result

result

¥

0;1i < 1000;i += 5) {

+=

+=

4=

+=

+=

=O;

x[i];
x[1i + 1

Xli + 2]);:

xli + 3];

x[1i + 4];

return result;

¥

4016 cycles. “Are we done yet?”

11

“Why is this bad practice?
Didn't we succeed

in making code twice as fast?”

Yes, but CPU time is still
nowhere near optimal,
and human time was wasted.

12

int sum(int *x)

{

1nt result

int 1;

for (i =

¥

result
result
result
result

result

0;1i < 1000;i += 5) {

+=

=O;

x[i];

x[1i + 1]:;

x[1i + 2]:

x[1i + 3]:

x[1i + 4];

return result;

¥

4016 cycles. “Are we done yet?”

11

12
“Why is this bad practice?

Didn't we succeed
in making code twice as fast?”

Yes, but CPU time is still
nowhere near optimal,

and human time was wasted.

Good practice:

Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.

11 12

(int *x) “"Why is this bad practice? Find “A
Didn’'t we succeed Technic:
osult = 0; in making code twice as fast?” Rely on

Yes, but CPU time is still
nowhere near optimal,

; MAF = |

11t += x[1]; .
and human time was wasted.

11t += x|11 + 1];

11t += x[i + 2]; Good practice:

11t += x[i + 3]; Figure out lower bound for
11t += x[i + 4]; cycles spent on arithmetic etc.

Understand gap between
7 result; lower bound and observed time.

les. “Are we done yet?”

1000;i += 5) {
il ;

i+ 1];

i+ 2];

i + 3];

i+ 4];

we done yet?”

11

“Why is this bad practice?
Didn't we succeed
in making code twice as fast?”

Yes, but CPU time is still
nowhere near optimal,
and human time was wasted.

Good practice:

Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.

12

Find "ARM Corte:
Technical Referenc
Rely on Wikipedia
M4F = M4 + float

5) {

et ?”

11

“"Why is this bad practice?
Didn't we succeed
in making code twice as fast?”

Yes, but CPU time is still
nowhere near optimal,
and human time was wasted.

Good practice:

Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.

12

Find “ARM Cortex-M4 Proc
Technical Reference Manual
Rely on Wikipedia comment
M4F = M4 + tloating-point

12 13

“Why is this bad practice? Find “ARM Cortex-M4 Processor
Didn't we succeed Technical Reference Manual”.
in making code twice as fast?" Rely on Wikipedia comment that

Yes, but CPU time is still M4F = M4 + floating-point unit.

nowhere near optimal,
and human time was wasted.

Good practice:

Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.

12 13

“Why is this bad practice? Find “ARM Cortex-M4 Processor
Didn't we succeed Technical Reference Manual”.
in making code twice as fast?" Rely on Wikipedia comment that

Yes, but CPU time is still M4F = M4 + floating-point unit.

nowhere near optimal, Manual says that Cortex-M4
and human time was wasted. “Implements the ARMv7E-M

. architecture profile”.
Good practice: P

Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.

“Why is this bad practice?
Didn't we succeed
in making code twice as fast?”

Yes, but CPU time is still
nowhere near optimal,
and human time was wasted.

Good practice:

Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.

12

13
Find “ARM Cortex-M4 Processor

Technical Reference Manual”.
Rely on Wikipedia comment that
MA4F = M4 + tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M

architecture profile” .

Points to the "ARMv7-M

Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

this bad practice?
/e succeed
g code twice as fast?”

CPU time 1s still
near optimal,
1an time was wasted.

actice:

ut lower bound for
yent on arithmetic etc.
and gap between

und and observed time.

12

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 4 tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv/7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

13

Inputs a
“Integer
has 16 1
special-f
and “prec

yractice?

nce as fast?”

> 15 still
mal,

/as wasted.

ound for
thmetic etc.

etween

bserved time.

12

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 + tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

13

Inputs and output
“Integer registers”
has 16 integer reg
special-purpose ‘s
and “program cou

"

LC.

me.

12

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 4 tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv/7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

13

Inputs and output of ADD =
“Integer registers’. ARMvT-
has 16 integer registers, incl
special-purpose “stack point
and “program counter’ .

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 4 tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

13

14
Inputs and output of ADD are

“Integer registers’. ARMv7-M
has 16 integer registers, including
special-purpose ‘stack pointer”
and “program counter .

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 4 tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

13

14
Inputs and output of ADD are

“Integer registers’. ARMv7-M
has 16 integer registers, including
special-purpose ‘stack pointer”
and “program counter .

Each element of x array needs to
be “loaded” into a register.

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 4 tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

13

14
Inputs and output of ADD are

ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose ‘stack pointer”
and “program counter .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

RM Cortex-M4 Processor
| Reference Manual”.

Wikipedia comment that
M4 4 tloating-point unit.

says that Cortex-M4
ents the ARMv/7/E-M

ure profile” .

0 the "ARMv7-M

ture Reference Manual”,

>fines instructions:
DD" for 32-bit addition.

nual says that
es Jjust 1 cycle.

13

Inputs and output of ADD are
ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose “stack pointer”
and “program counter’ .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

14

n CONSEC
takes on
(“more |
pipelinec

Can ach
In other
but nott

Lower b
2n+1 c
including

Why ob:
non-con:
costs of

x-M4 Processor
e Manual”.

comment that
Ing-point unit.

Cortex-M4
\RMv7E-M

1
a

Mv7-M
ence Manual”,

‘uctions:
2-bit addition.

that
cycle.

13

Inputs and output of ADD are
ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose ‘stack pointer”
and “program counter .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

14

n consecutive LDF
takes only n+1 ¢
(“more multiple L
pipelined together

Can achieve this s
in other ways (LD
but nothing seems

Lower bound for r
2n + 1 cycles,
including n cycles

Why observed tim
non-consecutive L
costs of manipulat

_.E€SSOr

that

unit.

ual’,

1on.

13

Inputs and output of ADD are
ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose “stack pointer”
and “program counter’ .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

14

n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can &
pipelined together”).

Can achieve this speed
in other ways (LDRD, LDM
but nothing seems faster.

Lower bound for nLDR + n
2n + 1 cycles,
including n cycles of arithme

Why observed time is highel
non-consecutive LDRs;
costs of manipulating i.

Inputs and output of ADD are
“Integer registers’. ARMv7-M
has 16 integer registers, including
special-purpose ‘stack pointer”
and “program counter .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

14

15
n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together”).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR 4+ n ADD:
2n + 1 cycles,
including n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

nd output of ADD are
ARMv7-M

teger registers, including

registers’ .

yurpose stack pointer”
gram counter’ .

ment of x array needs to
led” Into a register.

ad instruction: LDR.
says 2 cycles but adds
bout “pipelining”.

ore explanation: if next
on is also LDR (with

not based on first LDR)
aves 1 cycle.

14

n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together”).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR + n ADD:

2n + 1 cycles,
including n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

15

int sum
{
int r
int
int x

X.

while
x0 -
x1 -
X2 -
X3 -
x4 -
X5 -
X6 :

of ADD are

. ARMv7-M
isters, including
tack pointer”
nter” .

“array needs to
) register.

sion: LDR.
les but adds
elining”™ .
ation: iIf next
LDR (with
on first LDR)
le.

14

n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together”).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR + n ADD:

2n + 1 cycles,
including n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

15

int sum(int *x)

{

int
int

int

result = 0

xy = x + 1

x0,x1,x2,x

x5,x6,x7,X

while (x != y)
O[(vola

x0
x1
X2
x3
x4
X5
X6

1[(vola

S O WD

(vola
(vola
(vola
(vola

(vola

14 15

re n consecutive LDRs int sum(int *x)

-M takes only n+ 1 cycles {

uding (“more multiple LDRs can be int result = O;
er" pipelined together”). int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

Can achieve this speed
ds to in other ways (LDRD, LDM)

but nothing seems faster.
while (x != y) {

Lower bound for nLDR 4+ n ADD: x0 = 0[(volatile int
ds 2n + 1 cycles, x1 = 1[(volatile int
including n cycles of arithmetic. x2 = 2[(volatile int

ext . L = 3T - -
Why observed time is higher: x3 = 3l(volatile int

g _ _ - . .
R non-consecutive LDRs; x4 = 4[(volatile int
) costs of manipulating 1. x5 = bl(volatile int
x6 = 6[(volatile int

n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together”).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR 4+ n ADD:
2n + 1 cycles,
including n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

15

int sum(int *x)

{

int result = O;
int *y = x + 1000;
int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = O0[(volatile
x1 = 1[(volatile
x2 = 2[(volatile
x3 = 3[(volatile
x4 = 4[(volatile
x5 = 5[(volatile
x6 = 6[(volatile

int
int
int
int
int
int

int

16

utive LDRs

ly n+ 1 cycles
nultiple LDRs can be
| together”).

leve this speed
ways (LDRD, LDM)
\ing seems faster.

ound for nLDR + n ADD:
ycles,
r n cycles of arithmetic.

served time Is higher:
secutive LDRs:
manipulating i.

15

int sum(int *x)

{
int
int

int

result = 0O;

xy = x + 1000;

x0,x1,x2,x3,x4,
x5,x6,x7,x8,x9;

while (x != y) {

x0
x1
X2
X3
x4
X5
X6

= 0[(volatile

=1

I
S 01 S W N

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

int
int
int
int
int
int

int

16

X7 -
X3
X9 :
res
res
res
res
res
res
res
res
res
res
x0 :
x1 :

S
ycles
DRs can be

N

peed
RD, LDM)
. faster.

LDR + nADD:

of arithmetic.

e is higher:
DRs:

ng i.

15

int sum(int *x)

{

int
int

int

whil
x0
x1
X2
x3
x4
X5
X6

result = 0O;

xy = x + 1000;
x0,x1,x2,x3,x4,
x5,x6,x7,x8,x9;

e (x !'=y) {
= 0[(volatile
= 1[(volatile

(volatile

(volatile

 (volatile

(volatile

Il
S O WD

(volatile

int
int
int
int
int
int

int

16

x7 = 7T[(vola
x8 = 8[(vola
x9 = 9[(vola
result += x0
result += x1
result += x2
result += x3
result += x4
result += x5
result += x6
result += x7
result += x8
result += x9

x0 = 10[(vol
x1 = 11[(vol

IS

ADD:

tic.

15

int sum(int *x)

{

int
int

int

result = O;

xy = x + 1000;

x0,x1,x2,x3,x4,
x5,x6,x7,x8,x9;

while (x != y) {

x0
x1
X2
X3
x4
X5
X6

O[(volatile
1[(volatile
(volatile
(volatile

(volatile

(volatile

S 01 S W N

(volatile

int
int
int
int
int
int

int

16

x7 =71
x8 = 8[
x9 = 9]

result

result
result
result
result
result
result
result
result
result
x0 = 10
x1l = 11

(volatile int

(volatile int

(volatile int
+= x0;
+= x1;
+= x2;
+= x3;
+= x4;
+= x5;
+= X6;
+= X7;
+= x8;
+= x9;

[(volatile int

[(volatile int

16

int sum(int *x) x7 = 7T[(volatile int *)x];

{ x8 = 8[(volatile int *)x];

int result = O; x9 = 9[(volatile int *)x];
int *y = x + 1000; result += x0;
int x0,x1,x2,x3,x4, result += x1;
x5,x6,x7,x8,x9; result += x2;

result += x3;

while (x !'= y) { result += x4;
x0 = O[(volatile int *)x]; result += x5;
x1 = 1[(volatile int *)x]; result += x6;
x2 = 2[(volatile int *)x]; result += x7;
x3 = 3[(volatile int *)x]; result += x8;
x4 = 4[(volatile int *)x]; result += x9;
x5 = 5[(volatile int *)x]; x0 = 10[(volatile int *)x];
x6 = 6[(volatile int *)x]; x1 = 11[(volatile int *)x];

(int *x)

osult = 0O;

y

0,x1,x2,x3,x4,
H,X6,x7,x8,%x9;

(x

x + 1000;

1= y) {

O[(volatile

1

S 01 S W N

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

int
int
int
int
int
int

int

16

Xl =7
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

‘(volatile int *)x];:

9[(volatile int *)x];

‘(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= X5;
+= X6;
+= X7 ;
+= X3;
+= x9;

17

X2 :
X3
x4 :
X5
X6 :
X7 -
X8 :
X9 :
X +;
res
res
res
res
res

resi

000;

3,x4,
8,x9;

tile
tile
tile
tile
tile
tile
tile

int
int
int
int
int
int

int

16

xl =7
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

(volatile int *)x];

9[(volatile int *)x];

(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= xX3;
+= x4;
+= x5;
+= X6;
+= X7 ;
+= X8;
+= x9;

17

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
x?7 = 17
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

(vol
(vol
(vol
(vol
(vol
(vol
(vol
(vol

+= x0
+= x1
+= X2
+= X3
+= x4

+= x5

16

Xl =71
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

‘(volatile int *)x];:

9[(volatile int *)x];

‘(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= X5;
+= X6;
+= X7 ;
+= X3;
+= x9;

17

(volatile

 (volatile
 (volatile
 (volatile
 (volatile
 (volatile

 (volatile

 (volatile

+= x0;
+= x1;
+= X2,
+= X3;

+= x4;

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
x7 = 17
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

+= x5;

int
int
int
int
int
int
int

1nt

xl =7
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

(volatile int *)x];

9[(volatile int *)x];

((volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= xX3;
+= x4;
+= Xx5;
+= X6;
+= X7 ;
+= X8;
+= x9;

17

(volatile

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

(volatile

+= x0;
+= x1;
+= X2;
+= X3;

+= x4;

x2 = 12
x3 = 13
x4 = 14
xb = 15
x6 = 16[
x7 = 17[
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

+= x5;

int
int
int
int
int
int
int

int

18

= 7
= 3

11t
11t
11t
11t
11t
11t
11t
11t
11t
11t

= 10[(volatile int *)x];

= 11[(volatile int *)x]:

‘(volatile int *)x];:

9[(volatile int *)x];

‘(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= X5;
+= X6;
+= X7 ;
+= X3;
+= x9;

17

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
x7 = 17
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile

 (volatile

)
+= x0;
+= x1;
+= x2;
+= x3;
+= x4,
+= xb;

int
int
int
int
int
int
int

int

18

rest

rest

rest

resi

retur:

tile int *)x];

tile int *)x];

tile int *)x];

)
J

)
b

)

)

atile int *)x]:

atile int *)x]:

17

12[(volatile
13[(volatile
14[(volatile
15[(volatile

16 [(volatile
17 [(volatile
18[(volatile
19[(volatile

X2 =

X3 =

x4 =

X5 =

X6 =

X7 =

X8 =

X9 =

x += 20;
result +=
result +=
result +=
result +=
result +=
result +=

x0 ;
x1;
X2 ;
X3
x4 ;
X5 ;

int
int
int
int
int
int
int

int

18

result += x6
result += x7
result += x8

result += x9

return result;

17

12[(volatile
13[(volatile
14[(volatile
15[(volatile
16 [(volatile
17 [(volatile
18[(volatile
19[(volatile

X2 =

X3 =

x4 =

X5 =

X6 =

X7 =

X8 =

X9 =

x += 20;
result +=
result +=
result +=
result +=
result +=
result +=

x0;
x1;
X2 ;
X3;
x4 ;
X0 ;

int
int
int
int
int
int
int

int

18

result +=
result +=
result +=

result +=

X6 ;
X7 ;
X3 ;
x9;

return result;

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
X7 = 17[
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

(volatile

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

(volatile
+= x0;
+= x1;
+= X2;
+= x3;
+= x4;

+= x5;

int
int
int
int
int
int
int

int

18

result +=
result +=
result +=

result +=

X6 ;
>
X3 ;
x9;

return result;

19

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
X7 = 17[
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

(volatile

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

(volatile
+= x0;
+= x1;
+= X2,
+= x3;
+= x4;

+= xb;

int
int
int
int
int
int
int

int

18

result +=
result +=
result +=

result +=

X6 ;
X7 ;
X3 ;
x9;

return result;

2526 cycles. Even better in asm.

19

18

x2 = 12[(volatile int *)x]; result += x6;

x3 = 13[(volatile int *)x]; result += x7;

x4 = 14[(volatile int *)x]; result += x8;

x5 = 15[(volatile int *)x]; result += x9;

x6 = 16[(volatile int *)x]; }

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x]; return result;

x9 = 19[(volatile int *)x]; }

x += 20;

result += x0: 2526 cycles. Even better in asm.
result += xi; Wikipedia: “By the late 1990s for

N .
result X2; even performance sensitive code,

result += x3; optimizing compilers exceeded the

result += x4; performance of human experts.”

result += xb5;

18

x2 = 12[(volatile int *)x]; result += x6;

x3 = 13[(volatile int *)x]; result += x7;

x4 = 14[(volatile int *)x]; result += x8;

x5 = 15[(volatile int *)x]; result += x9;

x6 = 16[(volatile int *)x]; }

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x]; return result;

x9 = 19[(volatile int *)x]; }

x += 20;

result += x0: 2526 cycles. Even better in asm.
result += xi; Wikipedia: “By the late 1990s for

N .
result X2; even performance sensitive code,

result += x3; optimizing compilers exceeded the

result += x4; performance of human experts.”

result += x5; — [citation needed]

12
13
14
15
16
17
18
19

11t
11t
11t
11t
11t
11t

 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile

20;

;
+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= xb;

int
int
int
int
int
int
int

int

18

result += x6;
result += x7;
result += x8;
result += x9;

return result;

2526 cycles. Even better in asm.

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”
— |citation needed]

19

A real e

Salsa20
30.25 cy

Lower b
64 bytes
21 -16 1

20-10 1
so at lea

Also ma
ARMvT-
includes
as part «
(Compils

atile
atile
atile
atile
atile
atile
atile

atile

int
int
int
int
int
int
int

int

18

result += x6;
result += x7;
result += x8;

result += x9;

return result;

2526 cycles. Even better in asm.

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”
— |citation needed]

19

A real example

Salsa20 reference
30.25 cycles/byte

Lower bound for a
64 bytes require

21 - 16 1-cycle AD
20 - 16 1-cycle XO
so at least 10.25 ¢

Also many rotatio
ARMv7-M instruc
includes free rotat

as part of XOR in:
(Compiler knows t

18

result += x6;
result += x7;
result += x8;

result += x9;

return result;

2526 cycles. Even better in asm.

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”
— |citation needed]

19

A real example

Salsa20 reference software:
30.25 cycles/byte on this CF

| ower bound for arithmetic:

64 bytes require

21 - 16 1-cyc
20 - 16 1-cyc

e ADDs,
e XORs,

so at least 10.25 cycles/byte

Also many rotations, but
ARMv7-M instruction set

includes free

rotation

as part of XOR instruction.

(Compiler knows this.)

result += x6;
result += x7;
result += x8;

result += x9;

return result;

2526 cycles. Even better in asm.

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”
— |citation needed]

19

20

A real example

Salsa20 reference software:
30.25 cycles/byte on this CPU.

| ower bound for arithmetic:

64 bytes require

21 - 16 1-cyc
20 - 16 1-cyc

e ADDs,
e XORs,

so at least 10.25 cycles/byte.

Also many rotations, but
ARMv7-M instruction set

includes free

rotation

as part of XOR instruction.

(Compiler knows this.)

11t += x6;
nlt += x7;
1lt += x8;
11t += x9;
n result;

“les. Even better in asm.

ia: "By the late 1990s for
formance sensitive code,
ng compilers exceeded the
ance of human experts.”
ion needed]

19

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require
21 - 16 1-cycle ADDs,

20 - 16 1-cycle XORs,
so at least 10.25 cycles/byte.

Also many rotations, but
ARMv7-M instruction set
includes free rotation

as part of XOR instruction.
(Compiler knows this.)

20

Detailed
several ¢
load 11i-

store 1.

Can repl
(Compils

Then ob
18 cycle

plus b ¢
Still far

better in asm.

e late 1990s for
sensitive code,
rs exceeded the
man experts.”

d]

19

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require

21 - 16 1-cycle ADDs,

20 - 16 1-cycle XORs,

so at least 10.25 cycles/byte.

Also many rotations, but
ARMv7-M instruction set
includes free rotation

as part of XOR instruction.
(Compiler knows this.)

20

Detailed benchma
several cycles/byte
load littleendia

store_littleendil

Can replace with |
(Compiler doesn't

Then observe 23 ¢
18 cycles/byte for

plus 5 cycles/byte
Still far above 10.;

dSm.

)Os for
ode,
ed the

rts.

19

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require

21 - 16 1-cycle ADDs,

20 - 16 1-cycle XORs,

so at least 10.25 cycles/byte.

Also many rotations, but
ARMv7-M instruction set
includes free rotation

as part of XOR instruction.
(Compiler knows this.)

20

Detailed benchmarks show

several cycles/byte spent on
load_littleendian and

store littleendian.

Can replace with LDR and ¢

(Compiler

doesn’t see this.)

Then observe 23 cycles/byte

18 cycles/
plus b cyc

oyte for rounds,

es/byte overhead.

Still far above 10.25 cycles/

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require
21 - 16 1-cycle ADDs,

20 - 16 1-cycle XORs,
so at least 10.25 cycles/byte.

Also many rotations, but
ARMv7-M instruction set
includes free rotation

as part of XOR instruction.
(Compiler knows this.)

20

Detailed benchmarks show
several cycles/byte spent on
load littleendian and

store littleendian.

Can replace with LDR and STR.

(Compiler doesn't see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds,
plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

21

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require

21 - 16 1-cycle ADDs,

20 - 16 1-cycle XORs,

so at least 10.25 cycles/byte.

Also many rotations, but
ARMv7-M instruction set
includes free rotation

as part of XOR instruction.
(Compiler knows this.)

20

Detailed benchmarks show
several cycles/byte spent on
load littleendian and

store littleendian.

Can replace with LDR and STR.

(Compiler doesn't see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds,
plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by

choosing “spills” carefully.

21

xample

reference software:

cles/byte on this CPU.

ound for arithmetic:
require

-cycle ADDs,

-cycle XORs,

st 10.25 cycles/byte.

ny rotations, but
M instruction set
free rotation

f XOR instruction.
ar knows this.)

20

Detailed benchmarks show
several cycles/byte spent on
load littleendian and

store littleendian.

Can replace with LDR and STR.

(Compiler doesn't see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by

choosing “spills” carefully.

21

Which o
should b
Don't tr
optimize

software:

on this CPU.

rithmetic:

Ds,
Rs,
ycles/byte.

ns, but
tion set
lon

struction.
his.)

20

Detailed benchmarks show
several cycles/byte spent on
load littleendian and

store littleendian.

Can replace with LDR and STR.

(Compiler doesn't see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds,
plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by

choosing “spills” carefully.

21

Which of the 16 S
should be In regist
Don't trust compi
optimize register ¢

°U.

20

Detailed benchmarks show : Which of the 16 Salsa20 wo
several cycles/byte spent on should be in registers?
load_littleendian and Don't trust compiler to
store_littleendian. optimize register allocation.

Can replace with LDR and STR.
(Compiler doesn't see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds,

plus 5 cycles/byte overhead.
Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by

choosing “spills” carefully.

Detailed benchmarks show
several cycles/byte spent on
load littleendian and

store littleendian.

Can replace with LDR and STR.
(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by

choosing “spills” carefully.

21

Which of the 16 Salsa20 words
should be in registers?

Don't trust compiler to
optimize register allocation.

22

Detailed benchmarks show
several cycles/byte spent on
load littleendian and

store littleendian.

Can replace with LDR and STR.
(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by

choosing “spills” carefully.

21

Which of the 16 Salsa20 words
should be in registers?

Don't trust compiler to
optimize register allocation.

Make loads consecutive?
Don't trust compiler to

optimize Instruction scheduling.

22

Detailed benchmarks show
several cycles/byte spent on
load littleendian and

store littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds,
plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by

choosing “spills” carefully.

21

Which of the 16 Salsa20 words
should be in registers?

Don't trust compiler to
optimize register allocation.

Make loads consecutive?
Don't trust compiler to

optimize Instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to
optimize instruction selection.

22

Detailed benchmarks show
several cycles/byte spent on
load littleendian and

store littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds,
plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by

choosing “spills” carefully.

21

Which of the 16 Salsa20 words
should be in registers?

Don't trust compiler to
optimize register allocation.

Make loads consecutive?
Don't trust compiler to

optimize Instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to

optimize instruction selection.

On bigger CPUs,
selecting vector instructions

s critical for performance.

22

benchmarks show
ycles/byte spent on
ttleendian and

1ttleendian.

ace with LDR and STR.

er doesn't see this.)

serve 23 cycles/byte:
s /byte for rounds,

ycles /byte overhead.

above 10.25 cycles/byte.

10stly loads, stores.
e load /store cost by

- “spills” carefully.

>

21

Which of the 16 Salsa20 words
should be in registers?

Don't trust compiler to
optimize register allocation.

Make loads consecutive?
Don't trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to
optimize instruction selection.

On bigger CPUs,
selecting vector instructions

s critical for performance.

22

https:/
includes
of 614 c
>20 1imy

Haswell:
impleme
gcc -03
1S 6.15 X%
Salsa20

rks show
> spent on
n and

all.

DR and STR.

see this.)

ycles /byte:
rounds,
overhead.

25 cycles/byte.

s, stores.
re cost by
arefully.

21

Which of the 16 Salsa20 words
should be in registers?

Don't trust compiler to
optimize register allocation.

Make loads consecutive?
Don't trust compiler to

optimize Instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to
optimize instruction selection.

On bigger CPUs,
selecting vector instructions

s critical for performance.

22

https://bench
iIncludes 2392 im

of 614 cryptogra

. (

D

o]

>20 implementati

Haswell: Reasonal

Implementation cc

gcc -03 —fomit-

Is 6.15 X% slower th

Salsa20 implemen

> TR.

byte.

21

Which of the 16 Salsa20 words
should be in registers?

Don't trust compiler to
optimize register allocation.

Make loads consecutive?
Don't trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to
optimize instruction selection.

On bigger CPUs,
selecting vector instructions

s critical for performance.

22

https://bench.cr.yp.to
includes 2392 implementatic
of 614 cryptographic primiti
>20 implementations of Sal

Haswell: Reasonably simple
implementation compiled wi
gcc —03 —fomit-frame-po
is 6.15x slower than fastest
Salsa20 implementation.

Which of the 16 Salsa20 words
should be in registers?

Don't trust compiler to
optimize register allocation.

Make loads consecutive?
Don't trust compiler to

optimize Instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to
optimize instruction selection.

On bigger CPUs,

selecting vector instructions
is critical for performance.

22

23

https://bench.cr.yp.to

includes 2392 im
of 614 cryptogra

D

D

ementations

niC primitives.

>20 implementations of Salsa20.

Haswell: Reasonably simple ref

Implementation compiled with

gcc —03 -fomit-frame-pointer

s 6.15x slower than fastest

Salsa20 implementation.

Which of the 16 Salsa20 words
should be in registers?

Don't trust compiler to
optimize register allocation.

Make loads consecutive?
Don't trust compiler to

optimize Instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to
optimize instruction selection.

On bigger CPUs,
selecting vector instructions

s critical for performance.

22

23
https://bench.cr.yp.to

includes 2392 implementations

of 614 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
Implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

f the 16 Salsa20 words
e in registers?

ust compiler to

' register allocation.

ads consecutive?
ust compiler to

Instruction scheduling.

FPU instead of stack?

ust compiler to
' Instruction selection.

er CPUs,
- vector Instructions

| for performance.

22

23
https://bench.cr.yp.to

includes 2392 implementations
of 614 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

Fast ran

Goal: P
INto a re

alsa20 words
ers?

ler to
llocation.

utive?
ler to

n scheduling.

ad of stack?
ler to
)n selection.

structions

FMance.

22

23
https://bench.cr.yp.to

includes 2392 implementations

of 614 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
Implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

Fast random perm

Goal: Put list (x,
iInto a random ord

rds

Ing.

K7

22

23
https://bench.cr.yp.to

includes 2392 implementations
of 614 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

Fast random permutations

Goal: Put list (xq,...,xn)
Into a random order.

https://bench.cr.yp.to
includes 2392 implementations

of 614 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
Implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

23

Fast random permutations

Goal: Put list (xq,...,xn)
Into a random order.

24

https://bench.cr.yp.to
includes 2392 implementations

of 614 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
Implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

23

24

Fast random permutations

Goal: Put list (xq,...,xn)
Into a random order.

One textbook strategy:
Sort (Mri + x1,..., Mr, + xp) for
random (ri,..., rp), suitable M.

https://bench.cr.yp.to
includes 2392 implementations

of 614 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
Implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

23

Fast random permutations

Goal: Put list (xq,...,xn)
Into a random order.

One textbook strategy:
Sort (Mri + x1,..., Mr, + xp) for
random (ri,..., rp), suitable M.

McEliece encryption example:
Randomly order 6960 bits
(1,...,1,0,...,0), weight 119.

24

https://bench.cr.yp.to
includes 2392 implementations

of 614 cryptographic primitives.
>20 implementations of Salsa20.

Haswell: Reasonably simple ref
Implementation compiled with
gcc —03 -fomit-frame-pointer
is 6.15x slower than fastest
Salsa20 implementation.

merged implementation

with “machine-independent”
optimizations and best of 121
compiler options: 4.52x slower.

23

24

Fast random permutations

McE

Ranc

Goal: Put list (xq,...,xn)
Into a random order.

One textbook strategy:
Sort (Mri + x1,..., Mr, + xp) for
random (ri,..., rp), suitable M.

lece encryption example:

omly

order 6960 bits

(1,...,1,0,...,0), weight 119.

N TRU encryption example:
Randomly order 761 trits
(::1,...

-1,0,...,0), wt 286.

'/bench.cr.yp.to
2392 implementations
ryptographic primitives.
ylementations of Salsa20.

Reasonably simple ref
ntation compiled with
—fomit-frame-pointer

slower than fastest
Implementation.

implementation
achine-independent”
tions and best of 121
~options: 4.52x slower.

24
Fast random permutations

Goal: Put list (xq,...,xn)
Into a random order.

One textbook strategy:
Sort (Mri + x1,..., Mr, + xp) for

random (ry,..., rp), suitable M.

McEliece encryption example:
Randomly order 6960 bits
(1,...,1,0,...,0), weight 119.

NTRU encryption example:
Randomly order 761 trits
(::1, ..,+1.0,..., O), wt 280.

Simulate
using RI

_r.yp.to
lementations
nic primitives.
ons of Salsa20.

oly simple ref
mpiled with
frame-pointer
an fastest
tation.

tation
ependent”

best of 121
4 .52 % slower.

23

24

Fast random permutations

McE

Goal:
Into a random order.

Put list (x1,...,Xxn)

One textbook strategy:
Sort (Mri + x1,..., Mr, + xp) for
random (ri,..., rp), suitable M.

lece encryption example:

Randomly order 6960 bits
(1, ..

N TRU encryption example:
Randomly order 761 trits
(::1,...

,1,0,...,0), weight 119.

,::1,0,...,0),wﬂ1286.

Simulate uniform
using RNG: e.g., s

NS

VES.
sa20.

ref
th

inter

1

WET .

24
Fast random permutations

Goal: Put list (xq,...,xn)
Into a random order.

One textbook strategy:
Sort (Mri + x1,..., Mr, + xp) for
random (ry, ..., rp), suitable M.

McEliece encryption example:
Randomly order 6960 bits
(1,...,1,0,...,0), weight 119.

NTRU encryption example:
Randomly order 761 trits
(::1, ..,+1.0,..., O), wt 280.

Simulate uniform random r;

using RNG: e.g., stream cipl

Fast random permutations

Goal: Put list (xq, ..., Xp)
Into a random order.

One textbook strategy:
Sort (Mry + x1,..., Mr, + xp) for
random (rq, ..., rn), suitable M.

McEliece encryption example:
Randomly order 6960 bits
(1,..., 1,0,..., 0), weight 119.

N TRU encryption example:
Randomly order 761 trits
(::1, ..,+1.0,..., O), wt 280.

24

Simulate uniform random r;
using RNG: e.g., stream cipher.

25

Fast random permutations

Goal: Put list (xq,...,xn)
Into a random order.

One textbook strategy:
Sort (Mry + x1,..., Mr, + xp) for
random (ri,..., rp), suitable M.

McEliece encryption example:
Randomly order 6960 bits
(1,...,1,0,...,0), weight 119.

N TRU encryption example:
Randomly order 761 trits
(::1, ..,+1.0,..., O), wt 280.

24

Simulate uniform random r;

using RNG: e.g., stream cipher.

How many bits in r;? Negligible
collisions? Occasional collisions?

25

Fast random permutations

Goal: Put list (xq,...,xn)
Into a random order.

One textbook strategy:
Sort (Mry + x1,..., Mr, + xp) for
random (ri,..., rp), suitable M.

McEliece encryption example:
Randomly order 6960 bits
(1,...,1,0,...,0), weight 119.

N TRU encryption example:
Randomly order 761 trits
(::1, ..,+1.0,..., O), wt 280.

24

Simulate uniform random r;

using RNG: e.g., stream cipher.

How many bits in r;? Negligible
collisions? Occasional collisions?

Restart on collision?
Uniform distribution: some cost.

25

Fast random permutations

Goal: Put list (xq,...,xn)
Into a random order.

One textbook strategy:
Sort (Mry + x1,..., Mr, + xp) for
random (ri,..., rp), suitable M.

McEliece encryption example:
Randomly order 6960 bits
(1,...,1,0,...,0), weight 119.

N TRU encryption example:
Randomly order 761 trits
(::1, ..,+1.0,..., O), wt 280.

24

Simulate uniform random r;

using RNG: e.g., stream cipher.

How many bits in r;? Negligible
collisions? Occasional collisions?

Restart on collision?
Uniform distribution: some cost.

Example: n = 6960 bits;
weight 119; 31-bit r;; no restart.
Any output Is produced In

2314 -1
< 119!(n — 119)!(“ ""7%) ways;
e, < 1.02-231/(10) ways.
Factor <1.02 increase In
attacker's chance of winning.

25

dom permutations

ut list (x1,...,Xn)
ndom order.

tbook strategy:
(ri,...,rn), suitable M.

2 encryption example:
ly order 6960 bits

,0,...,0), weight 119.

ncryption example:
ly order 761 trits
+1.0,..., O), wt 280.

24

Simulate uniform random r;
using RNG: e.g., stream cipher.

How many bits in r;? Negligible
collisions? Occasional collisions?

Restart on collision?

Uniform distribution; some cost.

Example: n = 6960 bits;

weight 119; 31-bit r;; no restart.
Any output Is produced In

< 119!(n — 119)!(2311”_1) ways;
e, < 1.02-2317 /(1) ways.
Factor <1.02 increase In
attacker’'s chance of winning.

25

Which s

Referenc
n(n—1

utations

.., Xn)

er.

tegy:
., Mr, + xp) for
), suitable M.

on example:
)60 bits

, weight 119.

example:
51 trits
,0), wt 286.

24

Simulate uniform random r;
using RNG: e.g., stream cipher.

How many bits in r;? Negligible
collisions? Occasional collisions?

Restart on collision?

Uniform distribution;: some cost.

Example: n = 6960 bits;
weight 119; 31-bit r;; no restart.
Any output Is produced In

2314 -1
< 119!(n — 119)!(“ ""7%) ways;
e, < 1.02-231/(.10) ways.
Factor <1.02 increase In
attacker's chance of winning.

25

Which sorting algc

Reference bubbles

n(n—1)/2 minma

xn,) for

19.

80.

24

Simulate uniform random r;
using RNG: e.g., stream cipher.

How many bits in r;? Negligible
collisions? Occasional collisions?

Restart on collision?

Uniform distribution; some cost.

Example: n = 6960 bits;

weight 119; 31-bit r;; no restart.
Any output Is produced In

< 119!(n — 119)!(2311”_1) ways;
e, < 1.02-2317 /(1) ways.
Factor <1.02 increase In
attacker’'s chance of winning.

25

Which sorting algorithm?

Reference bubblesort code d

n(n — 1)/2 minmax operatic

Simulate uniform random r;
using RNG: e.g., stream cipher.

How many bits in r;? Negligible
collisions? Occasional collisions?

Restart on collision?

Uniform distribution: some cost.

Example: n = 6960 bits;
weight 119; 31-bit r;; no restart.
Any output Is produced In

2314 p—1
< 119!(n — 119)!(“ ") ways;
e, < 1.02-231/(10) ways.
Factor <1.02 increase In
attacker's chance of winning.

25

Which sorting algorithm?

Reference bubblesort code does

n(n — 1)/2 minmax operations.

26

Simulate uniform random r;

using RNG: e.g., stream cipher.

How many bits in r;? Negligible
collisions? Occasional collisions?

Restart on collision?

Uniform distribution: some cost.

Example: n = 6960 bits;
weight 119; 31-bit r;; no restart.
Any output Is produced In

2314 p—1
< 119!(n — 119)!(“ ") ways;
e, < 1.02-231/(10) ways.
Factor <1.02 increase In
attacker's chance of winning.

25

26
Which sorting algorithm?

Reference bubblesort code does
n(n — 1)/2 minmax operations.

Many standard algorithms use
fewer operations: mergesort,
quicksort, heapsort, radixsort, etc.

But these algorithms rely on
secret branches and secret indices.

Simulate uniform random r;

using RNG: e.g., stream cipher.

How many bits in r;? Negligible
collisions? Occasional collisions?

Restart on collision?

Uniform distribution: some cost.

Example: n = 6960 bits;
weight 119; 31-bit r;; no restart.
Any output Is produced In

2314 p—1
< 119!(n — 119)!(“ ") ways;
e, < 1.02-231/(10) ways.
Factor <1.02 increase In
attacker's chance of winning.

25

26
Which sorting algorithm?

Reference bubblesort code does

n(n — 1)/2 minmax operations.

Many standard algorithms use
fewer operations: mergesort,
quicksort, heapsort, radixsort, etc.

But these algorithms rely on
secret branches and secret indices.

Exercise: convert mergesort
Into constant-time mergesort
using ©(n?) operations.

> uniform random r;

NG: e.g., stream cipher.

ny bits in r;? Negligible
57 Occasional collisions?

on collision?
distribution: some cost.

: n = 6960 bits;
19; 31-bit r;; no restart.
put Is produced In

21.02 Iincrease In
's chance of winning.

25

26
Which sorting algorithm?

Reference bubblesort code does
n(n —1)/2 minmax operations.

Many standard algorithms use
fewer operations: mergesort,
quicksort, heapsort, radixsort, etc.

But these algorithms rely on
secret branches and secret indices.

Exercise: convert mergesort
Into constant-time mergesort
using ©(n?) operations.

Converti
constant
loses on|
cost of ¢

random r;

tream cipher.

ri? Negligible
ynal collisions?

N’

ON; some Cost.

0 bits;
ri; no restart.

Juced In
'231+n—1
n

;(1l179) Ways.
2ase In

) ways;

of winning.

25

26
Which sorting algorithm?

Reference bubblesort code does
n(n — 1)/2 minmax operations.

Many standard algorithms use
fewer operations: mergesort,
quicksort, heapsort, radixsort, etc.

But these algorithms rely on
secret branches and secret indices.

Exercise: convert mergesort
Into constant-time mergesort
using ©(n?) operations.

Converting bubble
constant-time bub
loses only a const:
cost of constant-ti

ner.

rible
ons’?

~OsSt.

tart.

ways;

A2 |
n

25

26
Which sorting algorithm?

Reference bubblesort code does
n(n —1)/2 minmax operations.

Many standard algorithms use
fewer operations: mergesort,
quicksort, heapsort, radixsort, etc.

But these algorithms rely on
secret branches and secret indices.

Exercise: convert mergesort
Into constant-time mergesort
using ©(n?) operations.

Converting bubblesort into
constant-time bubblesort
loses only a constant factor:
cost of constant-time minma

Which sorting algorithm?

Reference bubblesort code does
n(n — 1)/2 minmax operations.

Many standard algorithms use
fewer operations: mergesort,
quicksort, heapsort, radixsort, etc.

But these algorithms rely on
secret branches and secret indices.

Exercise: convert mergesort
Into constant-time mergesort
using ©(n?) operations.

26

Converting bubblesort into
constant-time bubblesort
loses only a constant factor:
cost of constant-time minmax.

27

26 27
Which sorting algorithm? Converting bubblesort into

constant-time bubblesort
Reference bubblesort code does

. loses only a constant factor:
n(n — 1)/2 minmax operations. Y

cost of constant-time minmax.

Many standard algorithms use

. “Sorting network” :
fewer operations: mergesort,

. . sorting algorithm built as
quicksort, heapsort, radixsort, etc.
constant sequence of minmax

BUt these a|g0rithms rely on Operations (“Comparators”).
secret branches and secret indices.

Exercise: convert mergesort
Into constant-time mergesort
using ©(n?) operations.

Which sorting algorithm?

Reference bubblesort code does
n(n — 1)/2 minmax operations.

Many standard algorithms use

fewer operations: mergesort,

quicksort, heapsort, radixsort, etc.

But these algorithms rely on

secret branches and secret indices.

Exercise: convert mergesort
Into constant-time mergesort
using ©(n?) operations.

26

27
Converting bubblesort into

constant-time bubblesort
loses only a constant factor:
cost of constant-time minmax.

“Sorting network’:

sorting algorithm built as
constant sequence of minmax
operations (“comparators”).

Sorting network on next slide:
Batcher's merge-exchange sort.
©(n(log n)?) minmax operations;
(1/4)(e* — e+ 4)n— 1 for n = 2°.

orting algorithm?

e bubblesort code does
/2 minmax operations.

andard algorithms use
erations: mergesort,

t, heapsort, radixsort, etc.

e algorithms rely on

-anches and secret indices.

. convert mergesort

stant-time mergesort

rn2

‘n-) operations.

26

Converting bubblesort into
constant-time bubblesort
loses only a constant factor:
cost of constant-time minmax.

“Sorting network’ :

sorting algorithm built as
constant sequence of minmax
operations (“comparators”).

Sorting network on next slide:
Batcher's merge-exchange sort.
©(n(log n)?) minmax operations;
(1/4)(e* — e+ 4)n— 1 for n = 2°.

27

vold so:
{ long .
t =1
while
for (;
for

1:

for

f

rithm?

ort code does
x operations.

rorithms use
mergesort,

t, radixsort, etc.

ms rely on

d secret indices.

mergesort
- mergesort
tions.

26

Converting bubblesort into
constant-time bubblesort
loses only a constant factor:
cost of constant-time minmax.

“Sorting network’ :

sorting algorithm built as
constant sequence of minmax
operations (“comparators”).

Sorting network on next slide:
Batcher's merge-exchange sort.
©(n(log n)?) minmax operations;
(1/4)(e* — e+ 4)n— 1 for n = 2°.

21

void sort(int32
{ long long t,p,

t =1; if (n <
while (t < n-t
for (p = t;p >
for (1 = 031
if (' (1 &
minmax (X
for (g = t;q
for (i = 0O

if (1(4

minmax

26

Converting bubblesort into
constant-time bubblesort
loses only a constant factor:
cost of constant-time minmax.

“Sorting network’ :

sorting algorithm built as
constant sequence of minmax
operations (“comparators”).

Sorting network on next slide:
Batcher's merge-exchange sort.
©(n(log n)?) minmax operations;

(1/4)(e* — e+ 4)n— 1 for n = 2°.

27

void sort(int32 *x,long 1

{ long long t,p,q,i;
t = 1; if (n < 2) retur
while (t < n-t) t += t;
for (p = t;p > O;p >>=
for (i = 0;i < n-p;++

if (M4 & p))
minmax (x+i,x+i+p)
for (9 = t;q > p;q >>
for (i = 0;i < n—-q;

if (M1 & p))

minmax (x+i+p,x+

Converting bubblesort into
constant-time bubblesort
loses only a constant factor:
cost of constant-time minmax.

“Sorting network’:

sorting algorithm built as
constant sequence of minmax
operations (“comparators”).

Sorting network on next slide:
Batcher's merge-exchange sort.
©(n(log n)?) minmax operations;
(1/4)(e* — e+ 4)n— 1 for n = 2°.

21

void sort(int32 *x,long long n)
{ long long t,p,q,i;
t = 1; if (n < 2) return;
while (t < n-t) t += t;
t;p > 0;p >>= 1) {

for (p
for (i = 0;i < n-p;++i)
if ('(1 & p))
minmax (x+i,x+i+p);
for (q = t;q > p;q >>= 1)
for (i = 0;i < n—-q;++i)
if (M1 & p))

minmax (x+i+p,x+i+q) ;

23

ng bubblesort into
-time bubblesort
y a constant factor:

onstant-time minmax.

network’ :
gorithm built as
- sequence of minmax

ns (“comparators”).

network on next slide:

s merge-exchange sort.
n)?) minmax operations;
—e+4)n—1 for n = 2¢.

27

void sort(int32 *x,long long n)
{ long long t,p,q,i;
t =1; if (n < 2) return;
while (t < n-t) t += t;
for (p = t;p > O;p >>= 1) {
for (i = 0;i < n-p;++1i)
if (M4 & p))
minmax (x+i,x+i+p) ;
for (q = t;q > p;q >>= 1)
for (i = 0;i < n—-q;++i)
if (M1 & p))

minmax (x+i+p,x+i+q) ;

28

How ma
Intel Ha:

Every cy
“min” o

8 32-bit

sort Into
blesort
\nt factor:

me minmax.

ouilt as
of minmax

arators”).

1 next slide:
xchange sort.

ax operations;
1— 1 for n = 2°.

21

void sort(int32 *x,long long n)
{ long long t,p,q,i;
t = 1; if (n < 2) return;
while (t < n-t) t += t;
t;p > O;p >>= 1) {

for (p
for (i = 0;i < n-p;++i)
if (V4 & p))
minmax (x+i,x+i+p);
for (q = t;q > p;q >>= 1)
for (i = 0;i < n—-q;++i)
if (M1 & p))

minmax (x+i+p,x+i+q);

23

How many cycles
Intel Haswell CPU

Every cycle: a vec
“min” operations
8 32-bit "max’ of

27

1 X.

ort.

I0NS:
) = 2°€.

void sort(int32 *x,long long n)
{ long long t,p,q,i;
t =1; if (n < 2) return;
while (t < n-t) t += t;
for (p = t;p > O;p >>= 1) {
for (i = 0;i < n-p;++i)
if (M4 & p))
minmax (x+i,x+i+p);
for (q = t;q > p;q >>= 1)
for (i = 0;i < n—-q;++i)
if (M1 & p))

minmax (x+i+p,x+i+q) ;

28

How many cycles on, e.g.,
Intel Haswell CPU core?

¢

Every cycle: a vector of 8 3.
“min” operations and a veci
8 32-bit "max’ operations.

void sort(int32 *x,long long n)
{ long long t,p,q,i;

t = 1; if (n < 2) return;
while (t < n-t) t += t;

t;p > 0;p >>= 1) {

for (p
for (i = 0;i < n-p;++i)
if (M4 & p))

minmax (x+i,x+i+p);

for (q = t;q > p;q >>= 1)

for (i = 0;i < n—-q;++i)
if (M1 & p))

minmax (x+i+p,x+i+q);

23

How many cycles on, e.g.,
Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit
“min” operations and a vector of
8 32-bit "max’ operations.

29

void sort(int32 *x,long long n)
{ long long t,p,q,i;
t = 1; if (n < 2) return;
while (t < n-t) t += t;
t;p > O;p >>= 1) {

for (p
for (i = 0;i < n-p;++i)
if (M4 & p))
minmax (x+i,x+i+p);
for (q = t;q > p;q >>= 1)
for (i = 0;i < n—-q;++i)
if (M1 & p))

minmax (x+i+p,x+i+q);

23

29
How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit
“min” operations and a vector of
8 32-bit "max’ operations.

>3008 cycles for n = 1024.
Current software: 7328 cycles.

void sort(int32 *x,long long n)
{ long long t,p,q,i;
t = 1; if (n < 2) return;
while (t < n-t) t += t;
t;p > O;p >>= 1) {

for (p
for (i = 0;i < n-p;++i)
if (M4 & p))
minmax (x+i,x+i+p);
for (q = t;q > p;q >>= 1)
for (i = 0;i < n—-q;++i)
if (M1 & p))

minmax (x+i+p,x+i+q);

23

29
How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit
“min” operations and a vector of
8 32-bit "max’ operations.

>3008 cycles for n = 1024.
Current software: 7328 cycles.
(Can gap be narrowed?)

void sort(int32 *x,long long n)
{ long long t,p,q,i;
t = 1; if (n < 2) return;
while (t < n-t) t += t;
t;p > O;p >>= 1) {

for (p
for (i = 0;i < n-p;++i)
if (M4 & p))
minmax (x+i,x+i+p);
for (q = t;q > p;q >>= 1)
for (i = 0;i < n—-q;++i)
if (M1 & p))

minmax (x+i+p,x+i+q);

23

29
How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit
“min” operations and a vector of
8 32-bit "max’ operations.

>3008 cycles for n = 1024.
Current software: 7328 cycles.
(Can gap be narrowed?)

This is fastest available sorting
software. Much faster than, e.g.,
Intel’'s “Integrated Performance
Primitives” software library.

rt (int32 *x,long long n)
long t,p,q,1;
- if (n < 2) return;
(t < n-t) t += t;
t;p > 0;p >>= 1) {

D
(i = 0;i < n-p;++i)
f (1(i & p))
minmax (x+i,x+i+p) ;
(g = t;9 > p;q >>= 1)
or (i = 0;i < n—-q;++i)
if (M1 & p))

minmax (x+i+p,x+i+q) ;

28

29
How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit
“min” operations and a vector of
8 32-bit "max’ operations.

>3008 cycles for n = 1024.
Current software: 7328 cycles.
(Can gap be narrowed?)

This is fastest available sorting
software. Much faster than, e.g.,
Intel’'s “Integrated Performance
Primitives” software library.

Constan
“optimiz
code? |

*x,long long n)
q,1;

2) return;

) t 4=t

O;p >>= 1) {
< n-p;++i)
p))
+i,x+i+p);

> p;q >>= 1)
;1 < n-q;++i)
& p))

(x+i+p,x+i+q);

23

29
How many cycles on, e.g.,

Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit
“min” operations and a vector of
8 32-bit "max’ operations.

>3008 cycles for n = 1024.
Current software: 7328 cycles.
(Can gap be narrowed?)

This is fastest available sorting
software. Much faster than, e.g.,
Intel’'s “Integrated Performance
Primitives” software library.

Constant-time coc
“optimized” non-¢
code? How is this

ong n)

28

How many cycles on, e.g.,
Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit
“min” operations and a vector of
8 32-bit "max’ operations.

>3008 cycles for n = 1024.
Current software: 7328 cycles.
(Can gap be narrowed?)

This is fastest available sorting
software. Much faster than, e.g.,
Intel’'s “Integrated Performance
Primitives” software library.

29

Constant-time code faster tl
“optimized” non-constant-ti
code? How is this possible?

How many cycles on, e.g.,
Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit
“min” operations and a vector of
8 32-bit "max’ operations.

>3008 cycles for n = 1024.
Current software: 7328 cycles.
(Can gap be narrowed?)

This is fastest available sorting
software. Much faster than, e.g.,
Intel’'s “Integrated Performance
Primitives” software library.

29

Constant-time code faster than
“optimized”’ non-constant-time
code? How is this possible?

30

How many cycles on, e.g.,
Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit
“min” operations and a vector of
8 32-bit "max’ operations.

>3008 cycles for n = 1024.
Current software: 7328 cycles.
(Can gap be narrowed?)

This is fastest available sorting
software. Much faster than, e.g.,
Intel’'s “Integrated Performance
Primitives” software library.

29

Constant-time code faster than
“optimized”’ non-constant-time
code? How is this possible?

People optimize algorithms
for a naive model of CPUs:
e Branches are fast.

e Random access is fast.

30

29
How many cycles on, e.g., Constant-time code faster than

Intel Haswell CPU core? “optimized”’ non-constant-time

5 o o
Every cycle: a vector of 8 32-bit code? How is this possible:

“min” operations and a vector of People optimize algorithms
8 32-bit “max” operations. for a naive model of CPUs:

>3008 cycles for n = 1024 e Branches are fast.

e Random access is fast.
Current software: 7328 cycles.

(Can gap be narrowed?) CPUs are evolving

L . . farther and farther awa
This is fastest available sorting y

from this naive model.
software. Much faster than, e.g.,

D Fundamental hardware costs
Intel’'s “Integrated Performance

Lo . of constant-time arithmetic are
Primitives” software library.

much lower than random access.

ny cycles on, e.g.,
swell CPU core?

cle: a vector of 8 32-bit
perations and a vector of
"max’ operations.

ycles for n = 1024.
software: 7328 cycles.
p be narrowed?)

astest available sorting

. Much faster than, e.g.,
Integrated Performance
es” software library.

29

Constant-time code faster than
“optimized’ non-constant-time
code? How is this possible?

People optimize algorithms
for a naive model of CPUs:
e Branches are fast.

e Random access is fast.

CPUs are evolving

farther and farther away

from this naive model.
Fundamental hardware costs

of constant-time arithmetic are
much lower than random access.

30

Modular

Basic E(

add, suk
Integers

(Basic N
add, suk

polynom

on, e.g.,
core?

tor of 8 32-bit
and a vector of
erations.

1= 1024,
(328 cycles.
wed?)

ilable sorting
ster than, e.g.,
Performance
re library.

29

Constant-time code faster than
“optimized’ non-constant-time
code? How is this possible?

People optimize algorithms
for a naive model of CPUs:
e Branches are fast.

e Random access is fast.

CPUs are evolving

farther and farther away

from this naive model.
Fundamental hardware costs

of constant-time arithmetic are
much lower than random access.

30

Modular arithmeti

Basic ECC operati

add, sub, mul of,

integers mod 22°°

(Basic NTRU ope

add, sub, mul of,

polynomials mod .

ng
e.g.,
nce

29

Constant-time code faster than
“optimized’ non-constant-time
code? How is this possible?

People optimize algorithms
for a naive model of CPUs:
e Branches are fast.

e Random access is fast.

CPUs are evolving

farther and farther away

from this naive model.
Fundamental hardware costs

of constant-time arithmetic are
much lower than random access.

30

Modular arithmetic

Basic ECC operations:
add, sub, mul of, e.g.,
integers mod 22°° — 19.

(Basic NTRU operations:

add, sub, mul of, e.g.,
/61

polynomials mod x X —

Constant-time code faster than
“optimized”’ non-constant-time
code? How is this possible?

People optimize algorithms
for a naive model of CPUs:
e Branches are fast.

e Random access is fast.

CPUs are evolving

farther and farther away

from this naive model.
Fundamental hardware costs

of constant-time arithmetic are
much lower than random access.

30

Modular arithmetic

Basic ECC operations:
add, sub, mul of, e.g.,
integers mod 22°° — 19.

(Basic NTRU operations:
add, sub, mul of, e.g.,

polynomials mod x"®1 — x — 1.)

31

Constant-time code faster than
“optimized”’ non-constant-time
code? How is this possible?

People optimize algorithms
for a naive model of CPUs:
e Branches are fast.

e Random access is fast.

CPUs are evolving

farther and farther away

from this naive model.
Fundamental hardware costs
of constant-time arithmetic are

much lower than random access.

30

31
Modular arithmetic

Basic ECC operations:
add, sub, mul of, e.g.,
integers mod 22°° — 19.

(Basic NTRU operations:
add, sub, mul of, e.g.,

polynomials mod x"®1 — x — 1.)

Typical “big-integer library" :

a variable-length uint32 string
(fo, f1, ..., fy—_1) represents

the nonnegative integer

fy+ 232 4 ... 4+ 232¢-1)f,
Uniqueness: £ =0 or fy_1 # 0.

t-time code faster than
ed’ non-constant-time
low is this possible?

ptimize algorithms
ve model of CPUs:
nes are fast.

m access is fast.

e evolving

nd farther away

s naive model.

ental hardware costs
ant-time arithmetic are
wer than random access.

30

31

Modular arithmetic Library |
Basic ECC operations: on this r
fg; (2)

add, sub, mul of, e.g.,
integers mod 22°° — 19.

(Basic NTRU operations:
add, sub, mul of, e.g.,

polynomials mod x"®1 — x — 1.)

Typical “big-integer library":

a variable-length uint32 string
(fo, f1, ..., fy—_1) represents

the nonnegative integer

fy+ 232 4 ... 4 232¢-D)f,
Uniqueness: £ =0 or fy_1 # 0.

le faster than
onstant-time
possible?

gorithms
of CPUs:
t.

is fast.

- away
bdel.

ware costs
rithmetic are

andom access.

30

31

Modular arithmetic

Basic ECC operations:

add, sub, mul of, e.g.,
integers mod 22°° — 19.

(Basic NTRLU

add, sub, mu

operations:
of, e.g.,

polynomials mod x"®1 — x — 1.)

Typica

"big-integer library" :

a variable-length uint32 string

(fo, f1, ..

., fy_1) represents

the nonnegative integer

fo+2°%H + -

4 232(4—1);‘2_1_

Uniqueness: £ =0 or fy_1 # 0.

Library provides fL
on this representa
fg, (2) f,g— fr

1an

me

dre

CESS.

30

31
Modular arithmetic Library provides functions ac

on this representation: (1) 1

Basic ECC operations:
fg, (2) f,g— f mod g; etc

add, sub, mul of, e.g.,
integers mod 22°° — 19.

(Basic NTRU operations:
add, sub, mul of, e.g.,

polynomials mod x"®1 — x — 1.)

Typical “big-integer library":

a variable-length uint32 string
(fo, f1, ..., fy—_1) represents

the nonnegative integer

fy+ 232 4 ... 4 232¢-D)f,
Uniqueness: £ =0 or fy_1 # 0.

Modular arithmetic

Basic ECC operations:
add, sub, mul of, e.g.,
integers mod 22°° — 19.

(Basic NTRU operations:
add, sub, mul of, e.g.,

polynomials mod x"®1 — x — 1.)

Typical “big-integer library":

a variable-length uint32 string
(fo, f1, ..., fy—_1) represents

the nonnegative integer

fy 4+ 232 4 ... 4+ 232¢-D)f,
Uniqueness: £ =0 or fy_1 # 0.

31

Library provides functions acting
on this representation: (1) f, g —
fg, (2) f,g — f mod g; etc.

32

Modular arithmetic

Basic ECC operations:
add, sub, mul of, e.g.,
integers mod 22°° — 19.

(Basic NTRU operations:
add, sub, mul of, e.g.,

polynomials mod x"®1 — x — 1.)

Typical “big-integer library":

a variable-length uint32 string
(fo, f1, ..., fy—_1) represents

the nonnegative integer

fy 4+ 232 4 ... 4+ 232¢-D)f,
Uniqueness: £ =0 or fy_1 # 0.

31

Library provides functions acting
on this representation: (1) f, g —
fg, (2) f,g — f mod g; etc.

ECC implementor using library:
multiply f, g mod 22°° — 19

by (1) multiplying f by g;
(2) reducing mod 22> — 19.

32

Modular arithmetic

Basic ECC operations:
add, sub, mul of, e.g.,
integers mod 22°° — 19.

(Basic NTRU operations:
add, sub, mul of, e.g.,

polynomials mod x"®1 — x — 1.)

Typical “big-integer library":

a variable-length uint32 string
(fo, f1, ..., fy—_1) represents

the nonnegative integer

fy 4+ 232 4 ... 4+ 232¢-D)f,
Uniqueness: £ =0 or fy_1 # 0.

31

Library provides functions acting
on this representation: (1) f, g —
fg, (2) f,g — f mod g; etc.

ECC implementor using library:
multiply f, g mod 22°° — 19
by (1) multiplying f by g;

(2) reducing mod 22> — 19.

But these functions take variable

time to ensure uniqueness!

32

Modular arithmetic

Basic ECC operations:
add, sub, mul of, e.g.,
integers mod 22°° — 19.

(Basic NTRU operations:
add, sub, mul of, e.g.,

polynomials mod x"®1 — x — 1.)

Typical “big-integer library":

a variable-length uint32 string
(fo, f1, ..., fy—_1) represents

the nonnegative integer

fy 4+ 232 4 ... 4+ 232¢-D)f,
Uniqueness: £ =0 or fy_1 # 0.

31

Library provides functions acting
on this representation: (1) f, g —
fg, (2) f,g — f mod g; etc.

ECC implementor using library:
multiply f, g mod 22°° — 19

by (1) multiplying f by g;
(2) reducing mod 22> — 19.

But these functions take variable

time to ensure uniqueness!

Need a different representation
for constant-time arithmetic.
Can also gain speed this way.

32

“arithmetic

_C operations:

, mul of, e.g.,
mod 22°° — 19.

I TRLU

. mu

ials mod x"%1 — x — 1))

“big-integer library" :
e-length uint32 string
., fy_1) represents

operations:
of, e.g.,

1egative Iinteger

f1 +---+ 232(3_1) @_1_
ess: £ =0or f_1 # 0.

31

32
Library provides functions acting

on this representation: (1) f, g +—
fg, (2) f,g — f mod g; etc.

ECC implementor using library:
multiply f, g mod 22°° — 19

by (1) multiplying f by g;
(2) reducing mod 22> — 19.

But these functions take variable
time to ensure uniqueness!

Need a different representation
for constant-time arithmetic.
Can also gain speed this way.

Constan
a consta

(fo, f1, ..
the noni

fo + 32

Adding
always a
Don't re

C

ons:

..,
— 19.

rations:

.8,
0l _ x —1.)

or library™ :
1int32 string
presents
teger
232({—1) fr_q.

or fp_1 # 0.

31

32
Library provides functions acting

on this representation: (1) f, g —
fg;, (2) f,g — f mod g; etc.

ECC implementor using library:
multiply f, g mod 22°° — 19

by (1) multiplying f by g;
(2) reducing mod 22> — 19.

But these functions take variable
time to ensure uniqueness!

Need a different representation
for constant-time arithmetic.
Can also gain speed this way.

Constant-time big
a constant-length
(fo, f1, ..., fp_1) re
the nonnegative Ir
fo+ 2%+ -+

Adding two £-limb
always allocate £ -
Don't remove top

ing

31

Library provides functions acting
on this representation: (1) f, g +—
fg, (2) f,g — f mod g; etc.

ECC implementor using library:
multiply f, g mod 22°° — 19

by (1) multiplying f by g;
(2) reducing mod 22> — 19.

But these functions take variable

time to ensure uniqueness!

Need a different representation
for constant-time arithmetic.
Can also gain speed this way.

32

Constant-time bigint library:
a constant-length uint32 st
(fo, f1, ..., fp_71) represents
the nonnegative integer

fo +232f 4 .- 4 2301,

Adding two £-limb integers:
always allocate £ + 1 limbs.
Don't remove top zero limb

Library provides functions acting
on this representation: (1) f, g —
fg; (2) f,g — f mod g; etc.

ECC implementor using library:
multiply f, g mod 22°° — 19

by (1) multiplying f by g;
(2) reducing mod 22> — 19.

But these functions take variable

time to ensure uniqueness!

Need a different representation
for constant-time arithmetic.
Can also gain speed this way.

32

33
Constant-time bigint library:

a constant-length uint32 string
(fo, f1, ..., fp_1) represents

the nonnegative integer

fo+ 2326 + - +2328-1f

Adding two £-limb integers:
always allocate £ + 1 limbs.
Don't remove top zero limb.

Library provides functions acting
on this representation: (1) f, g —
fg; (2) f,g — f mod g; etc.

ECC implementor using library:
multiply f, g mod 22°° — 19

by (1) multiplying f by g;
(2) reducing mod 22> — 19.

But these functions take variable
time to ensure uniqueness!

Need a different representation
for constant-time arithmetic.
Can also gain speed this way.

32

Constant-time bigint library:
a constant-length uint32 string

(fo, f1, ..
the nonnegative integer

fo+232f ... 4 232f

., fp_1) represents

Adding two £-limb integers:
always allocate £ + 1 limbs.
Don't remove top zero limb.

Can also track bounds more
refined than 2V 232 204 29 .

but no limbs—bounds data flow.

33

Library provides functions acting
on this representation: (1) f, g —
fg; (2) f,g — f mod g; etc.

ECC implementor using library:
multiply f, g mod 22°° — 19

by (1) multiplying f by g;
(2) reducing mod 22> — 19.

But these functions take variable
time to ensure uniqueness!

Need a different representation
for constant-time arithmetic.
Can also gain speed this way.

32

Constant-time bigint library:
a constant-length uint32 string

(fo, f1, ..
the nonnegative integer

fo+232f ... 4 232f

., fp_1) represents

Adding two £-limb integers:
always allocate £ + 1 limbs.
Don't remove top zero limb.

Can also track bounds more
refined than 2V 232 204 29 .

but no limbs—bounds data flow.

f mod p is as short as p.

33

rovides functions acting
epresentation: (1) f, g +—
f,g — f mod g; etc.

blementor using library:
f. g mod 22°° — 19

wltiplying f by g;
cing mod 2%°° — 19.

e functions take variable
ensure uniqueness!

lifferent representation
tant-time arithmetic.
 gain speed this way.

32

Constant-time bigint library:
a constant-length uint32 string

(fo, f1, ..
the nonnegative integer

fo+232f .. 4 2321f

., fp_1) represents

Adding two £-limb integers:
always allocate £ + 1 limbs.
Don't remove top zero limb.

Can also track bounds more
refined than 2V 232 204 29 .

but no limbs—bounds data flow.

f mod p is as short as p.

33

Usually
uint32
represen
11 f3 +
2179 fr +

Constan

More |in
but save
overflow

After mi
replace

Inctions acting

ion: (1) f, g —
nod g; etc.
using library:
2255 — 19

f by g;

22 19

s take variable
queness!

>presentation
arithmetic.
d this way.

32

Constant-time bigint library:

a constant-length uint32 string
(fo, f1, ..., fp_1) represents

the nonnegative integer
fo+2%2f + .- 4232 0f

Adding two £-limb integers:
always allocate £ + 1 limbs.
Don’'t remove top zero limb.

Can also track bounds more
refined than 2V 232 204 29 .

but no limbs—bounds data flow.

f mod p is as short as p.

33

Usually faster repr
uint32 string (fo,
represents fy + 22
277f3 4+ 21O2f4 49
2179f‘7 4+ 22O4f8 4

Constant bound o

More limbs than L
but save time by ¢
overflows and dela

After multiplicatio
replace 22°° with

32
“ting

T,gH

\ry:

1able

on

Constant-time bigint library:
a constant-length uint32 string

(fo, f1, ..
the nonnegative integer

fo+2%f +- -+ 232 0f

., fp_1) represents

Adding two £-limb integers:
always allocate £ + 1 limbs.
Don't remove top zero limb.

Can also track bounds more
refined than 2V 232 204 29 .

but no limbs—bounds data flow.

f mod p is as short as p.

33

Usually faster representation
uint32 string (fo, f1,..., fg]
represents fy + 220f; + 2°11
277f3 4+ 2102f4 4+ 2128f5 4+ 71
2179f7 + 2204f8 4 2230f9_

Constant bound on each f;.

More limbs than before,
but save time by avoiding
overflows and delaying carrie

After multiplication,
replace 22°° with 19.

Constant-time bigint library:

a constant-length uint32 string
(fo, f1, ..., fp_71) represents

the nonnegative integer

fo+ 2326 + - +2328-1f

Adding two £-limb integers:
always allocate £ + 1 limbs.
Don't remove top zero limb.

Can also track bounds more
refined than 2V 232 204 29 .
but no limbs—bounds data flow.

f mod p is as short as p.

33

34
Usually faster representation:

uint32 string (f(), f1,..., fg)
represents fy + 220f 4 291f 4
277f3 + 2102 f4 4 2128f5 + 2153f6 4+
2179f7 4+ 2204f8 + 2230f9_

Constant bound on each f;.

More limbs than before,
but save time by avoiding
overflows and delaying carries.

After multiplication,
replace 22°° with 19.

Constant-time bigint library:

a constant-length uint32 string
(fo, f1, ..., fp_71) represents

the nonnegative integer

fo+ 2326 + - +2328-1f

Adding two £-limb integers:
always allocate £ + 1 limbs.
Don't remove top zero limb.

Can also track bounds more
refined than 2V 232 204 29 .

but no limbs—bounds data flow.

f mod p is as short as p.

33

34
Usually faster representation:

uint32 string (f(), f1,..., fg)
represents fy + 220f 4 291f 4
277f3 + 2102 f4 4 2128f5 + 2153f6 4+
2179f7 4+ 2204f8 + 2230f9_

Constant bound on each f;.

More limbs than before,
but save time by avoiding
overflows and delaying carries.

After multiplication,
replace 22°° with 19.

Slightly faster on some CPUs:
int32 string (fo, f1,..., fg).

t-time bigint library:
nt-length uint32 string
., fp_1) represents
1egative integer

f1 +---+ 232(5_1) fp_1.

'wo £-limb integers:
llocate £ + 1 limbs.
move top zero limb.

y track bounds more
han 20 232 264 % .
'mbs—bounds data flow.

IS as short as p.

33

34
Usually faster representation:

uint32 string (fy, f1,...,fo)
represents fy + 220f; + 2°1f +
277f, 4 9102 | 0128f | 9153 |
21T9f, 4 9204f | 9230

Constant bound on each f;.

More limbs than before,
but save time by avoiding
overflows and delaying carries.

After multiplication,
replace 22°° with 19.

Slightly faster on some CPUs:
int32 string (fo, f1,..., fg).

int32 f
int32 g

inted £
int6d £

f7_2

int64 h

c4d = (h
hd += c:

int library:
uint32 string
presents
teger

232({—1) 1.

Integers:
-1 limbs.
zero limb.

1inds more
2 264 296

Inds data flow.

T as p.

33

Usually faster representation:
uint32 string (f(), f1,..., fg)
represents fy + 220f 4 291f 4
277f3 + 2102 f1 -+ 2128f5 + 2153f6 4+
21797c7 4+ 2204f8 4+ 2230f9_

Constant bound on each f;.

More limbs than before,
but save time by avoiding
overflows and delaying carries.

After multiplication,
replace 22°° with 19.

Slightly faster on some CPUs:
int32 string (fo, f1,..., fg).

34

int32 £7_2 = 2 %
int32 g7_19 = 19

int64 f0g4 = £O
int64 £7g7_38 =
f7 2 % (int64)

int64 h4 = fOg4
f2g2
£4g0
f6g8_
£8g6_

+ + + +

cd = (h4 + (inté6
hd += c4; hd -=

ring

flow.

33

34
Usually faster representation:

uint32 string (fy, f1,...,fo)
represents fy + 220f; + 2°1f +
277f, 4 9102 | 2128f 4 9153 |
21T9f, 4 9204f | 9230

Constant bound on each f;.

More limbs than before,
but save time by avoiding
overflows and delaying carries.

After multiplication,
replace 22°° with 19.

Slightly faster on some CPUs:
int32 string (fo, f1,..., fg).

int32 f7_2 = 2 *x £f7,;
int32 g7_19 = 19 * g7,

int64 fOg4 = fO * (int64)
int64 f7g7_38 =
f7_2 * (int64) g7_19;

int64 h4d = f0gd4d + f1g3_2
f2g2 + f3gl_2
f4g0 + fbg9_38
f6g8_19 + f7g7
f8g6_19 + £f9gb

+ + + 4+

cd = (hd4 + (inte64) (1<<25)
h5 += c4; hd -= c4d <L 26;

Usually faster representation:
uint32 string (fy, f1,..., fo)
represents fy + 220f; + 2°1f +
277f3 4+ 21O2f4 + 2128f5 4 2153f6 4
O179f, 4 9204f | 92304

Constant bound on each f;.

More limbs than before,
but save time by avoiding
overflows and delaying carries.

After multiplication,
replace 22°° with 19.

Slightly faster on some CPUs:
int32 string (fo, f1,..., fg).

34

35
int32 f7_2 = 2 *x £7;

int32 g7_19 = 19 * g7;

int64 f0g4 = fO * (int64) g4;
int64 £7g7_38 =
£7_2 * (int64) g7_19;

int64 h4d = fOg4d + f1g3_2
f2g2 + £3gl1_2
f4g0 + £5g9_38
f6g8_19 + £7g7_38
f8g6_19 + f£9gb_38;

+ + + +

c4d = (hd + (int64) (1<<25)) >> 26;
hd += c4; hd —-= c4d << 26;

faster representation:
String (fo, f1, C . fg)

ts fy + 2°°f; + 216 +
2102f4 4+ 2128f5 + 2153f6 4
_ 2204 f8 4 2230 fg.

t bound on each f;.

1bs than before,
' time by avoiding
s and delaying carries.

iltiplication,
2299 with 19.

faster on some CPUs:
tring (fo, f1,..., fg).

34

int32 f7_2 = 2 *x £f7,;
int32 g7_19 = 19 * g7,

int64 f0g4 = fO * (int64) g4;
int64 £7g7_38 =
£7_2 % (int64) g7_19;

int64 h4d = fOg4d + f1g3_2
f2g2 + £3gl1_2
f4g0 + £5g9_38
f6g8_19 + £7g7_38
f8g6_19 + f£9g5_38;

+ + + 4+

35

c4d = (hd + (int64) (1<<25)) >> 26;

h5 += c4; hd —-= c4d << 26;

Initial cc
Is polync
modulo
Exercise
are bein,

esentation:
fl,...,fo)

6f1 -+ 251f2 -+
128 f5 4+ 2153 f6 1+
230 fg.

n each f;.

efore,
wvolding
ying carries.

n,

19.

some CPUs:
1,...,19).

34

int32 £7_2 = 2 x £7;
int32 g7_19 = 19 * g7;

int64 f0g4 = fO * (int64) g4;
int64 £7g7_38 =
£7_2 * (int64) g7_19;

int64 h4d = fOg4d + f1g3_2
f2g2 + £3gl1_2
f4g0 + £5g9_38
f6g8_19 + £7g7_38
f8g6_19 + f£9gb_38;

+ + + +

35

c4d = (hd + (int64) (1<<25)) >> 26;

hd += c4; hd -= c4 << 26;

Initial computatiol
Is polynomial mult
modulo x10 — 19
Exercise: Which p
are being multiplie

34

int32 f7_2 = 2 *x £f7,;
int32 g7_19 = 19 * g7,

int64 fO0g4 = fO * (int64) g4;
int64 f7g7_38 =
£7_2 % (int64) g7_19;

int64 h4d = fOg4d + f1g3_2
f2g2 + £3gl1_2
f4g0 + £5g9_38
f6g8_19 + £7g7_38
f8g6_19 + f£9g5_38;

+ + + 4+

35

c4d = (hd + (int64) (1<<25)) >> 26;

h5 += c4; hd -= c4d <L 26;

Initial computation of hO, ..
Is polynomial multiplication
modulo x10 — 19.

Exercise: Which polynomial
are being multiplied?

35 36

int32 f7.2 = 2 * f7; Initial computation of hO, ..., h9

int32 g7_19 = 19 * g7; Is polynomial multiplication
modulo x10 — 19.

int64 fOgd4 = fO * (int64) g4; Exercise: Which polynomials

int64 f7g7_38 = are being multiplied?

£7_2 * (int64) g7_19;

int64 h4d = fOg4d + f1g3_2
f2g2 + £3gl1_2
f4g0 + £5g9_38
f6g8_19 + £7g7_38
f8g6_19 + f£9gb_38;

+ + + +

c4d = (hd + (int64) (1<<25)) >> 26;
hd += c4; hd —-= c4d << 26;

35
int32 f7_2 = 2 * £7;

int32 g7_19 = 19 * g7;

int64 f0g4 = fO * (int64) g4;
int64 £7g7_38 =
£7_2 * (int64) g7_19;

int64 h4d = fOg4d + f1g3_2
f2g2 + £3gl1_2
f4g0 + £5g9_38
f6g8_19 + £7g7_38
f8g6_19 + f£9gb_38;

+ + + +

c4d = (hd + (int64) (1<<25)) >> 26;
hd += c4; hd —-= c4d << 26;

Initial computation of hO, ..., h9
Is polynomial multiplication
modulo x10 — 19

Exercise: Which polynomials

are being multiplied?

Reduction modulo x10 — 19

and carries such as h4—h5
squeeze the product
iInto limited-size representation

suitable for next multiplication.

36

35
int32 f7_2 = 2 * £7;

int32 g7_19 = 19 * g7;

int64 f0g4 = fO * (int64) g4;
int64 £7g7_38 =
£7_2 * (int64) g7_19;

int64 h4d = fOg4d + f1g3_2
f2g2 + £3gl1_2
f4g0 + £5g9_38
f6g8_19 + £7g7_38
f8g6_19 + f£9gb_38;

+ + + +

c4d = (hd + (int64) (1<<25)) >> 26;
hd += c4; hd —-= c4d << 26;

Initial computation of hO, ..., h9
Is polynomial multiplication
modulo x10 — 19

Exercise: Which polynomials

are being multiplied?

Reduction modulo x10 — 19

and carries such as h4—h5
squeeze the product
iInto limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

Into unique representation
suitable for network transmission.

36

35
(_2 =2 % f7;

7_19 = 19 * g7;

Ogh = £0 * (int64) g4
(g/_38 =
¥ (int64) g7_19;

H—
Il

fOgd + f1g3_2
f2g2 + f3gl_2
f4g0 + £5g9_38
f6g8_19 + £7g7_38
f8g6_19 + £9g5_38;

+ + + 4+

A + (int64) (1<<25)) >> 26;
4; hd -= cd << 26;

Initial computation of hO, ..., h9
Is polynomial multiplication
modulo x10 — 19

Exercise: Which polynomials

are being multiplied?

Reduction modulo x10 — 19

and carries such as h4—hb5
squeeze the product
into limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

Into unique representation
suitable for network transmission.

36

Much m
see, e.g.

35
£f7;

> g7;

* (int64) g4;

gr_19;

+ f1g3_2

+ f3gl_2

+ f£bg9_38

19 + f7g7_38
19 + f9gb_38;

4) (1<<25)) >> 26;
cd <L 26;

Initial computation of hO, ..., h9

Is polynomial multiplication
modulo x10 — 19
Exercise: Which polynomials

are being multi

Reduction moc

plied?
ulo x10 — 19
n as h4—hb

and carries suc

squeeze the product

iInto limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

Into unique representation

suitable for network transmission.

36

Much more about
see, e.g., 2015 Ch

35
g4;
38
_38;
) >> 26;

Initial computation of hO, ..., h9

Is polynomial multiplication
modulo x10 — 19

Exercise: Whic
are being multi

Reduction moa

h polynomials
plied?

ulo x10 — 19

and carries suc

n as h4—hb

squeeze the product

into limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

Into unique representation

suitable for network transmission.

36

Much more about ECC spee
see, e.g., 2015 Chou.

Initial computation of hO, ..., h9

Is polynomial multiplication
modulo x10 — 19

Exercise: Whic
are being multi

Reduction moc

h polynomials
plied?

ulo x10 — 19

and carries suc

n as h4—hb

squeeze the product

iInto limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

Into unique representation

suitable for network transmission.

36

Much more about ECC speed:
see, e.g., 2015 Chou.

37

Initial computation of hO, ..., h9

Is polynomial multiplication
modulo x10 — 19

Exercise: Whic
are being multi

Reduction moc

h polynomials
plied?

ulo x10 — 19

and carries suc

n as h4—hb

squeeze the product

iInto limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

Into unique representation

suitable for network transmission.

36

Much more about ECC speed:
see, e.g., 2015 Chou.

Verifying constant time:
Increasingly automated.

37

Initial computation of hO, ..., h9
Is polynomial multiplication
modulo x10 — 19

Exercise: Which polynomials

are being multiplied?

Reduction modulo x10 — 19

and carries such as h4—hb5
squeeze the product
iInto limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

Into unique representation
suitable for network transmission.

36

Much more about ECC speed:
see, e.g., 2015 Chou.

Verifying constant time:
Increasingly automated.

Testing can miss rare bugs
that attacker might trigger.
Fix: prove that software
matches mathematical spec;
have computer check proofs.

37

Initial computation of hO, ..., h9
Is polynomial multiplication
modulo x10 — 19

Exercise: Which polynomials

are being multiplied?

Reduction modulo x10 — 19

and carries such as h4—hb5
squeeze the product
iInto limited-size representation

suitable for next multiplication.

At end of computation:

freeze representation

Into unique representation
suitable for network transmission.

36

Much more about ECC speed:
see, e.g., 2015 Chou.

Verifying constant time:
Increasingly automated.

Testing can miss rare bugs
that attacker might trigger.
Fix: prove that software
matches mathematical spec;
have computer check proofs.

Progress in deploying proven
fast software: see, e.g., 2015
Bernstein—-Schwabe “gfverif”;

2017 HACL* X25519 in Firefox.

37

ymputation of hO, ..., h9
bomial multiplication

x10 — 19,

. Which polynomials

o multiplied?

yn modulo x!9 — 19

les such as h4—hb5

' the product

ted-size representation
for next multiplication.

f computation:
epresentation

Jjue representation

for network transmission.

36

Much more about ECC speed:
see, e.g., 2015 Chou.

Verifying constant time:
increasingly automated.

Testing can miss rare bugs
that attacker might trigger.
Fix: prove that software
matches mathematical spec;
have computer check proofs.

Progress in deploying proven
fast software: see, e.g., 2015

Bernstein—-Schwabe “gfverif”;
2017 HACL* X25519 in Firefox.

37

gfverif h
impleme
plus occ
against

1 of hO, ..., h9
Iplication

olynomials
d”?

x19 — 19

S h4—hb

ICt
presentation
wltiplication.

ytion:

1on

entation

k transmission.

36

Much more about ECC speed:

see, e.g., 2015 Chou.

Verifying constant time:
Increasingly automated.

Testing can miss rare bugs
that attacker might trigger.
Fix: prove that software
matches mathematical spec;
have computer check proofs.

Progress in deploying proven
fast software: see, e.g., 2015
Bernstein—-Schwabe “gfverif”;

2017 HACL* X25519 in Firefox.

37

gfverif has verified
implementation of
plus occasional an
against the followi

p = 2%*255-19

A = 486662

x2,z2,x3,z3 = 1,

for 1 1n reverse
ni = bit(n,i)
x2,x3 = cswap(
z2,z3 = cswap(
x3,z3 = (4*x(x2

Axx1* (x2*%z3-2

x2,z2 = ((x2%%

Axx k7% (x2%*

., h9

on

SsS1oN.

36

Much more about ECC speed:
see, e.g., 2015 Chou.

Verifying constant time:
increasingly automated.

Testing can miss rare bugs
that attacker might trigger.
Fix: prove that software
matches mathematical spec;
have computer check proofs.

Progress in deploying proven
fast software: see, e.g., 2015
Bernstein—-Schwabe “gfverif”;

2017 HACL* X25519 in Firefox.

37

gfverif has verified ref10
implementation of X25519,
plus occasional annotations,
against the following specifie

p = 2%*255-19

A = 43836662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range (2
ni = bit(n,i)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
x3,z3 = (4*x(x2*xx3-22%23

Axx1* (x2%23-22%x3) **2)

x2,22 = ((x2%*2-z2%%x2) %

AxxD*k7 2% (Xx2% %2+ A*x 2% 72

Much more about ECC speed:
see, e.g., 2015 Chou.

Verifying constant time:
Increasingly automated.

Testing can miss rare bugs
that attacker might trigger.
Fix: prove that software
matches mathematical spec;
have computer check proofs.

Progress in deploying proven
fast software: see, e.g., 2015

Bernstein—-Schwabe “gfverif”;
2017 HACL* X25519 in Firefox.

37

38
gfverif has verified ref10

implementation of X25519,
plus occasional annotations,
against the following specification:

p = 2%*255-19

A = 486662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
ni = bit(n,i)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
x3,2z3 = (4*x(x2*x3-22%23) **2
Axx1* (x2%23-22%x3) **2)
xX2,22 = ((x2%*%2-z2%*%2) **%2
Akx2%Z2% (X2%*2+A*X2%Z2+Z2%*2))

ore about ECC speed:
, 2015 Chou.

y constant time:
gly automated.

can miss rare bugs
icker might trigger.
ve that software
mathematical spec;
nputer check proofs.

. in deploying proven
ware: see, e.g., 2015

n—Schwabe “gfverif”;
\CL* X25519 in Firefox.

37

gfverif has verified ref10
implementation of X25519,
plus occasional annotations,

against the following specification:

D = 2%*255-19

A = 43836662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
ni = bit(n,i)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
x3,2z3 = (4*x(x2*x3-22%23) **2
Axx1* (x2%23-22%x3) **2)
x2,22 = ((x2%*2-z2%*%2)**%2

38

AxxD*k7 2% (Xx2% %2+ A*x2%Z2+72%%2))

x3,23
X2 ,22
cut (x
cut (x.
cut (z
cut (z.
x2,x%X3
z2,Z3
cut (x2)
cut (z2)

return

What's
Is the sa

and i1s b

ECC speed:
ou.

time:
1ated.

are bugs
it trigger.
ftware
tical spec;
ack proofs.

Ing proven
e.g., 2015
e “gfverit”;

19 In Firefox.

37

gfverif has verified ref10
implementation of X25519,
plus occasional annotations,

against the following specification:

p = 2%*255-19

A = 486662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
ni = bit(n,1i)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
x3,2z3 = (4*x(x2*x3-22%23) **2
Axx 1% (x2%23-22%x3) **2)
x2,22 = ((x2%%2-z2%*%2) **%2

38

AxxD*7 2% (x2*% %2+ A*x2%Z2+72%%2))

x3,z3 = (x3/p,
x2,z2 = (x2%p,
cut (x2)
cut (x3)
cut (z2)
cut (z3)
x2,x3 = cswap(
z2,z3 = cswap(
cut (x2)
cut (z2)

return x2*pow(z2

What's verified: o
IS the same as spe

and i1s between 0 :

\ 8

foX.

37

gfverif has verified ref10
implementation of X25519,
plus occasional annotations,

against the following specification:

D = 2%*255-19

A = 436662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
ni = bit(n,i)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
x3,2z3 = (4*x(x2*x3-22%23) **2
Axx1* (x2%23-22%x3) **2)
x2,22 = ((x2%*2-z2%*%2)**%2

38

AxxD*k7 2% (Xx2% %2+ A*x2%Z2+72%%2))

x3,z3 = (x3%p,z3%p)
x2,z2 = (x2%p,z2%p)
cut (x2)
cut (x3)
cut (z2)

cut (z3)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

cut

cut

(x2)
(z2)

return x2*pow(z2,p-2,p)

What's veritied: output of r

IS t

ne same as spec mod p,

dNd@

is between 0 and p — 1.

38
gfverif has verified ref10

implementation of X25519,
plus occasional annotations,
against the following specification:

p = 2%*255-19
A = 486662
x2,z2,x3,z3 = 1,0,x1,1
for i in reversed(range(255)):
ni = bit(n,1i)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
x3,2z3 = (4*x(x2*x3-22%23) **2
Axx1* (x2%23-22%x3) **2)
x2,22 = ((x2%%2-z2%*%x2)**%2
Akx2%Z2% (X2%*2+A*X2%Z2+Z2%*2))

x3,2z3 = (x3%p,z3%p)
x2,z2 = (x2%hp,2z2%hp)
cut (x2)
cut (x3)
cut (z2)
cut (z3)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
cut (x2)
cut (z2)
return x2*pow(z2,p-2,p)

What's verified: output of ref10
Is the same as spec mod p,

and Is between 0 and p — 1.

39

38
as verified ref10

ntation of X25519,
asional annotations,
the following specification:

255-19

562

3,z3 = 1,0,x1,1

n reversed(range(255)):
pit(n,i)

= cswap(x2,x3,ni)

= cswap(z2,z3,ni)

= (4% (x2*x3-22%23) **2,
k (x2%23-2z2*%x3) **2)

= ((X2%*%2-22%%2) **2
kZ 2% (X2%*2+A*X2%Z22+Z2%%2))

x3,z3 = (x3%p,z3%p)
x2,z2 = (x2%p,z2%p)
cut (x2)
cut (x3)
cut (z2)

cut (z3)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

cut

cut

(x2)
(z2)

return x2*pow(z2,p-2,p)

What's veritied: output of ref10

IS t

ne same as spec mod p,

dNd@

Is between 0 and p — 1.

39

“What ¢

NIST P-
2256 9

ECDSA

reductio
an integ

Write A
(A1s, Aq
Ag, A7,

meaning

Define
T;51;5:

£

dS

38
refl0

- X25519,
notations,
ng specification:

0,x1,1
d(range (255)) :

x2,x3,ni)
z2,z3,ni)
*x3-22%23) *x*2
2%x3) *x*2)
2-22%%2) *x*x2
2+A*xX2%xZz2+z2%*2))

x3,2z3 = (x3%p,z3%p)
x2,z2 = (x2%hp,z2%hp)
cut (x2)
cut (x3)
cut (z2)

cut (z3)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

cut

cut

(x2)
(z2)

return x2*pow(z2,p-2,p)

What's verified: output of ref10

IS t

ne same as spec mod p,

dNcG

Is between 0 and p — 1.

39

"What a differenc

NIST P-256 prime
2256___2224_+_2192

ECDSA standard

reduction procedu
an integer “A less

Write A as
(A1s, A4, A13, A1
Ag, A7, Ag, As, A

meaning 3 A;2%

Define
T;51;592;53;54; L

dS

38

~ation:

55)) :

) k%2

+72%%2))

x3,z3 = (x3%p,z3%p)
x2,z2 = (x2%p,z2%p)
cut (x2)
cut (x3)
cut (z2)
cut (z3)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
cut (x2)
cut(z2)
return x2*pow(z2,p-2,p)

What's verified: output of ref10
Is the same as spec mod p,

and is between 0 and p — 1.

39

"What a difference a prime_

NIST P-256 prime p is
2256 o 2224 4 2192 4+ 296 _

ECDSA standard specifies

reduction procedure given
an integer “A less than p?”:

Write A as

(A1s, A14, A13, A12, A11, A10
Ag. A7 As. As. As. A, Ao, »

meaning 3_: A;23%

Define
T:51;592;53;54; D1; Dy; D3
as

x3,2z3 = (x3%p,z3%p)
x2,z2 = (x2%hp,z2%hp)
cut (x2)
cut (x3)
cut (z2)
cut (z3)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
cut (x2)
cut (z2)
return x2*pow(z2,p-2,p)

What's verified: output of ref10
Is the same as spec mod p,

and Is between 0 and p — 1.

39

40
"What a difference a prime makes”

NIST P-256 prime p is
2256 o 2224 4 2192 4 296 1

ECDSA standard specifies

reduction procedure given
an integer “A less than p?":

Write A as

(A1s, A14, A13, A12, A11, A10, Ao,
AS,A7,A6,A5,A4_, Az, Az, A1, Ao),

meaning 3_: A;23%,

Define
T;51;52;53;54; D1; Dy; D3; Dy
as

= (x3%p,z3%p)
= (x2%p,z2%p)

cswap(x2,x3,ni)

cswap(z2,z3,ni)

x2*pow (z2,p-2,p)

verified: output of ref10
me as spec mod p,
etween 0 and p — 1.

"What a difference a prime makes”

NIST P-256 prime p is
2256 o 2224 4 2192 4+ 296 1

ECDSA standard specifies

reduction procedure given
an integer “A less than p?”:

Write A as
(A1s, A14, A13, A12, A11, A10, Ao,

Ag, A7, As, As, Ag, A3, Az, A1, Ap),

meaning 3_: A;23%

Define
T:51;52;53;54; D1; Do; D3; Dy
as

40

Reduce
subtract

z3%p)
z27p)

x2,x3,ni)

z2,z3,ni)

,P~2,p)

utput of ref10
c mod p,
ind p — 1.

"What a difference a prime makes”

NIST P-256 prime p is
2256 o 2224 4 2192 4 296 1

ECDSA standard specifies
reduction procedure given
an integer “A less than p?”:

Write A as
(A1s, A14, A13, A12, A11, A10, Ao,

Ag, A7, As, As, Ag, A3, Az, A1, Ap),

meaning 3_: A;23%,

Define
T;51;52;53;54; D1; Dy; D3; Dy
as

40

(A10,As,0,0,0, A
(A11, A9, 0,0, Azs,
(A12,0, A1g, Ag, A
(A13,0, A11, A10, /

Compute T + 257
So. — D1 — Dy — [

Reduce modulo p
subtracting a few

efl10

"What a difference a prime makes”

NIST P-256 prime p is
2256 o 2224 4 2192 4+ 296 1

ECDSA standard specifies

reduction procedure given
an integer "A less than p?”

Write A as
(A1s, A14, A13, A12, A11, A10, Ao,

Ag, A7, Ap, As, Ag, A3, Az, A1, Ap),

meaning 3_: A;23%

Define
T:51;52;53;54; D1; Dy; D3; Dy
as

40

(A7, Ag, As, Ag, A3, Ao, A1, /
(A15, A14, A13, A12, A11,0,0
(0, A1s, A14, A13, A12,0,0,0
(A1s,A14,0,0,0, A, Ag, Asg
(A, A13, A1s, A1, A13, A11,
(A10,Ag,0,0,0, A3, A2, A
(A11, A9, 0,0, Ats, A14, A13,
(A12,0, A1g, Ag, Ag, A1s, A14
(A13,0, A11, A10, A9, 0, A1,

Compute T + 251 + 255 +
Ss — D1 — Dy — D3 — Dyg.

Reduce modulo p “by addin
subtracting a few copies” of

"What a difference a prime makes”

NIST P-256 prime p is
2256 o 2224 4 2192 4 296 1

ECDSA standard specifies
reduction procedure given
an integer “A less than p?”

Write A as
(A1s, A14, A13, A12, A11, A10, Ao,

Ag, A7, As, As, Ag, A3, Az, A1, Ap),

meaning 3_: A;23%,

Define
T;51;52;53;54; D1; Dy; D3; Dy
as

40

41

(A7, As, As, Aq. Az, As, A1, Ag):
(A1s, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);
(A15,A14,0,0,0, A1g, Ag, Ag);

(Ag, A13, A1s, A14, A13, A11, A0, Ag);
(A10,Ag,0,0,0, A3, A12, A11),;
(A11, A9, 0,0, A1s, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

Compute T + 251 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.

' difference a prime makes”

250 prime p is

standard specifies
n procedure given
r “A less than p2”

as
4, A13, A12, A11, A10, Ao,

Ag, As, Ag, Az, Ao, A1, Ag),

Y A3

;. 53, 54; D1; Do; D3; Dy

40

41

(A7, Ag, As, Ag, A3, A2, A1, Ap);
(A1s, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);

(A1, A14,0,0,0, Ao, Ag, Ag);

(Ag, A13, A1s, A14, A13, A11, A10, Ag);
(A10,Ag,0,0,0, A3, A12, A11);

(A11, A9, 0,0, A5, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A1a, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

Compute T + 251 + 257 + 53 +
Sy — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies” of p.

What is
Variable

e 2 prime makes”

D IS
+2% -1

specifies
re given
than p2”

, A11, A10, Ao,

1, Az, Ao, A1, Ap),

i

)1; Do; D3; Dy

40

41

(A7, As, As, Aq. Az, As, A1, Ag):
(A1s, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);
(A15,A14,0,0,0, A1g, Ag, Ag);

(Ag, A13, A1s, A14, A13, A11, A10, Ag);
(A10,Ag,0,0,0, A3, A12, A11),;
(A11, A9, 0,0, A1, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies” of p.

What is “a few co
Variable-time loop

makes”

40

41

(A7, Ae, As, A4, A3, A2, A1, Ap);
(A1, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);

(A1s, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A1a, A13, A11, A1, Ag);
(A10,Ag,0,0,0, A3, A12, A11);

(A11, A9, 0,0, A5, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

Compute T + 251 + 257 + 53 +
Sy — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies” of p.

What is “a few copies” ?
Variable-time loop is unsafe.

41

(A7, A, As, A4, A3, A2, A1, Ap);
(A1s5, A14, A13, A12, A11, 0,0, 0);

(0, A1, A14, A13, A12,0,0,0);

(A1s, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A14, A13, A11, A10, Aog);
(A10,Ag,0,0,0, A3, A12, A11);
(A11, A9, 0,0, A5, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.

What is “a few copies” ?

Variable-time loop is unsafe.

42

41

(A7, A, As, A4, A3, A2, A1, Ap);
(A1s5, A14, A13, A12, A11, 0,0, 0);

(0, A1, A14, A13, A12,0,0,0);

(A1s, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A14, A13, A11, A10, Aog);
(A10,Ag,0,0,0, A3, A12, A11);
(A11, A9, 0,0, A5, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.

What is “a few copies” ?

Variable-time loop is unsafe.

Correct but quite slow:

conda
conda
conda
conda
cond

condc

itiona
itiona
itiona
itiona
itiona
itiona

y ac
y ac

y ac
y Su
y Su
y Su

d 4p,
d 2p,

d p,
D 4p,

D 2p,

0 P.

42

41

(A7, As, As, Aq. Az, As, A1, Ag):
(A1s, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);
(A15,A14,0,0,0, A1g, Ag, Ag);

(Ag, A13, A1s, A14, A13, A11, A10, Ag);
(A10,Ag,0,0,0, A3, A12, A11);
(A11, A9, 0,0, A1s, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.

What is “a few copies” ?
Variable-time loop is unsafe.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add p,
conditionally sub 4p,
conditionally sub 2p,

conditionally sub p.

Delay until end of computation?
Trouble: “A less than p?”

42

41

(A7, As, As, Aq. Az, As, A1, Ag):
(A1s, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);
(A15,A14,0,0,0, A1g, Ag, Ag);

(Ag, A13, A1s, A14, A13, A11, A10, Ag);
(A10,Ag,0,0,0, A3, A12, A11);
(A11, A9, 0,0, A1s, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.

What is “a few copies” ?
Variable-time loop is unsafe.

Correct but quite slow:

4p,
2p,

y add p,
y sub 4p,

conditionally ada

conditionally ada

conditiona
conditiona

y sub 2p,
y sub p.

conditiona

conditiona

Delay until end of computation?

Trouble: “A less than p?”

Even worse: what about platforms
where 232 isn't best radix?

42

41

As, Ay, A3, Az, A1, Ap);
4, A13, A12, A11, 0,0, 0);
A1, A13, A12,0,0,0);
4,0,0,0, A10, Ag, Ag);

 A1s, A1a, A13, A11, A10, Ag);

,0,0,0, A13, A12, A11);
0,0, A15, A1, A13, A12);
A10, Ag, Ag, A1s, A14, A13);
A11, A10, A9, 0, A1s, A14).

e T 4+ 251 + 257 + 53 +
— Dy — D3 — Dy,.

modulo p “by adding or
ing a few copies” of p.

What is “a few copies” ?

Variable-time loop is unsafe.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add p,
conditionally sub 4p,
conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p?".

Even worse: what about platforms

where 232 isn't best radix?

42

There at

cryptogr
affect di
correct

e.g. ECI
of scalar

e.g. ECI
addition
EdDSA

41

, Az, A1, Ag);

., A11,0,0,0);
112,0,0,0);

A13, A11, A10. Ag);
3, A12, A11);

A14, A13, A12);

3, A1, A14, A13);
19,0, Ay, A14).

+ 257 + 53 +
)3 — Dy.

“by adding or
copies’ of p.

What is “a few copies” ?

Variable-time loop is unsafe.

Correct but quite slow:

conda
conda
conda
conda
condc

conc

Delay until end of computation?

itiona
itiona
itiona
itiona
itiona
itiona

ly ac
y ac

y ac
y Su
y Su

y Su

d 4p,
d 2p,

d p,
D 4p,

D 2p,

0 P.

Trouble: “A less than p?".

Even worse: what about platforms

where 232 isn't best radix?

42

There are many
cryptographic desi
affect difficulty of
correct constant-t

e.g. ECDSA needs
of scalars. EADSA

e.g. ECDSA splits
additions Into seve
EdDSA uses comg

41

What is “a few copies” ?

Variable-time loop is unsafe.

Correct but quite slow:

conda
conda
conda
conda
conc

conc

Delay until end of computation?

itiona
itiona
itiona
itiona
itiona
itiona

ly ac
y ac

y ac
y Su
y Su

y Su

C
C

C

4p,
2p,
p,

0 4p,
0 2p,

0 P.

Trouble: “A less than p?".

Even worse: what about platforms
where

232

Isn't best radix?

42

There are many more ways 1

cryptographic design choices
affect difficulty of building f:
correct constant-time softws

e.g. ECDSA needs c

of scalars. EdDSA ¢

IVISIONS
oesn t.

e.g. ECDSA splits elliptic-cu
additions into several cases.

EdDSA uses complete formt

42 43
What is “a few copies” ? There are many more ways that

Variable-time loop is unsafe. cryptographic design choices
affect ditficulty of building fast

Correct but quite slow: |
correct constant-time software.

conditionally add 4p,
conditionally add 2p, e.g. ECDSA needs divisions

conditionally add p, of scalars. EADSA doesn't.

conditionally sub 4p, e.g. ECDSA splits elliptic-curve

conditionally sub 2p, .. .
Y P additions into several cases.

conditionally sub p.
y P EdDSA uses complete formulas.

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms
where 232 isn't best radix?

What is “a few copies” ?
Variable-time loop is unsafe.

Correct but quite slow:

4p,
2p,

y add p,
y sub 4p,

conditionally ada

conditionally ada

conditiona
conditiona

y sub 2p,
y sub p.

conditiona

conditiona

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms

232

where Isn't best radix?

42

43
There are many more ways that

cryptographic design choices
affect ditficulty of building fast
correct constant-time software.

e.g. ECDSA needs divisions
of scalars. EADSA doesn't.

e.g. ECDSA splits elliptic-curve
additions into several cases.
EdDSA uses complete formulas.

What's better use of time:
implementing ECDSA, or
upgrading protocol to EdDSA?

