Cryptographic

software engineering,
part 2
Daniel J. Bernstein

Previous part:

- General software engineering.
- Using const-time instructions.

Software optimization
Almost all software is much slower than it could be.

Cryptographic

software engineering,
part 2

Daniel J. Bernstein

Previous part:

- General software engineering.
- Using const-time instructions.

Software optimization
Almost all software is much slower than it could be.

Is software applied to much data?
Usually not. Usually the wasted CPU time is negligible.

Cryptographic
software engineering,
part 2

Daniel J. Bernstein

Previous part:

- General software engineering.
- Using const-time instructions.

Software optimization
Almost all software is much slower than it could be.

Is software applied to much data?
Usually not. Usually the wasted CPU time is negligible.

But crypto software should be applied to all communication.

Crypto that's too slow
\Rightarrow fewer users
\Rightarrow fewer cryptanalysts
\Rightarrow less attractive for everybody.
raphic
engineering,

Bernstein
part:
l software engineering. const-time instructions.

Software optimization
Almost all software is much slower than it could be.

Is software applied to much data?
Usually not. Usually the wasted CPU time is negligible.

But crypto software should be applied to all communication.

Crypto that's too slow
\Rightarrow fewer users
\Rightarrow fewer cryptanalysts
\Rightarrow less attractive for everybody.

Typical
X is a c
You hav referenc

You war software as efficie

You hav
(Can rep
You mea impleme

Software optimization
Almost all software is much slower than it could be.

Is software applied to much data?
Usually not. Usually the wasted CPU time is negligible.

But crypto software should be applied to all communication.

Crypto that's too slow
\Rightarrow fewer users
\Rightarrow fewer cryptanalysts
\Rightarrow less attractive for everybody.

Typical situation:
X is a cryptograpl
You have written reference impleme

You want (const-t software that com as efficiently as pc

You have chosen a (Can repeat for ot

You measure perfc implementation.

Software optimization

Almost all software is much slower than it could be.

Is software applied to much data?
Usually not. Usually the wasted CPU time is negligible.

But crypto software should be applied to all communication.

Crypto that's too slow
\Rightarrow fewer users
\Rightarrow fewer cryptanalysts
\Rightarrow less attractive for everybody.

Typical situation:
X is a cryptographic system
You have written a (const-ti reference implementation of

You want (const-time) software that computes X as efficiently as possible.

You have chosen a target Cl (Can repeat for other CPUs

You measure performance o implementation. Now what?

Software optimization

Almost all software is much slower than it could be.

Is software applied to much data?
Usually not. Usually the wasted CPU time is negligible.

But crypto software should be applied to all communication.

Crypto that's too slow
\Rightarrow fewer users
\Rightarrow fewer cryptanalysts
\Rightarrow less attractive for everybody.

Typical situation:
X is a cryptographic system.
You have written a (const-time) reference implementation of X.

You want (const-time) software that computes X as efficiently as possible.

You have chosen a target CPU. (Can repeat for other CPUs.)

You measure performance of the implementation. Now what?

Typical situation:
X is a cryptographic system.
You have written a (const-time) reference implementation of X.

You want (const-time) software that computes X as efficiently as possible.

You have chosen a target CPU. (Can repeat for other CPUs.)

You measure performance of the implementation. Now what?

A simpli
Target microco one ARI

Referenc
int sum
int r
int i
for
res
retur
\}

Typical situation:
X is a cryptographic system.
You have written a (const-time) reference implementation of X.

You want (const-time) software that computes X as efficiently as possible.

You have chosen a target CPU. (Can repeat for other CPUs.)

You measure performance of the implementation. Now what?

A simplified exam
Target CPU: TI L microcontroller co one ARM Cortex-I

Reference implem

```
int sum(int *x)
```

\{
int result $=0$
int i;
for (i $=0 ; i$
result $+=x[$
return result;
\}

Typical situation:
X is a cryptographic system.
You have written a (const-time) reference implementation of X.

You want (const-time) software that computes X as efficiently as possible.

You have chosen a target CPU. (Can repeat for other CPUs.)

You measure performance of the implementation. Now what?

A simplified example
Target CPU: TI LM4F120H microcontroller containing one ARM Cortex-M4F core.

Reference implementation:

```
int sum(int *x)
```

\{
int result $=0$;
int i;
for $(i=0 ; i<1000 ;++i$
result $+=x[i]$;
return result;
\}

Typical situation:
X is a cryptographic system.
You have written a (const-time) reference implementation of X.

You want (const-time) software that computes X as efficiently as possible.

You have chosen a target CPU. (Can repeat for other CPUs.)

You measure performance of the implementation. Now what?

A simplified example

Target CPU: TI LM4F120H5QR

 microcontroller containing one ARM Cortex-M4F core.Reference implementation:

```
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0;i < 1000;++i)
        result += x[i];
    return result;
}
```

situation:
ryptographic system.
e written a (const-time) e implementation of X.
t (const-time)
that computes X
ently as possible.
e chosen a target CPU. seat for other CPUs.)
sure performance of the ntation. Now what?

A simplified example

Target CPU: TI LM4F120H5QR microcontroller containing one ARM Cortex-M4F core.

Reference implementation:

```
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0;i < 1000;++i)
        result += x[i];
    return result;
}
```

Countin
static

* cons
$=$ (vo
-••
int bef
int res
int aft
UARTpri resul

Output
Change

A simplified example

Target CPU: TI LM4F120H5QR microcontroller containing one ARM Cortex-M4F core.

Reference implementation:

```
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0;i < 1000;++i)
        result += x[i];
    return result;
}
```

Counting cycles:

```
static volatile
    *const DWT_CYC
    = (void *) OxE
```

int beforesum =
int result $=$ sum
int aftersum = *
UARTprintf("sum
result, aftersu

Output shows 801 Change 1000 to 5

A simplified example

Target CPU: TI LM4F120H5QR

 microcontroller containing one ARM Cortex-M4F core.Reference implementation:

```
int sum(int *x)
```

$\{$
int result $=0$;
int i;
for ($i=0 ; i<1000 ;++i)$
result $+=x[i] ;$
return result;
\}

Counting cycles:
static volatile unsigned *const DWT_CYCCNT = (void *) OxE0001004; . . .
int beforesum = *DWT_CYCO int result $=\operatorname{sum}(x)$;
int aftersum = *DWT_CYCCN
UARTprintf("sum \%d \%d\n", result, aftersum-befores

Output shows 8012 cycles. Change 1000 to 500: 4012.

A simplified example

Target CPU: TI LM4F120H5QR

 microcontroller containing one ARM Cortex-M4F core.Reference implementation:

```
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0;i < 1000;++i)
        result += x[i];
    return result;
}
```

Counting cycles:

```
static volatile unsigned int
    *const DWT_CYCCNT
    = (void *) 0xE0001004;
..
```

int beforesum $=$ *DWT_CYCCNT;
int result $=\operatorname{sum}(x)$;
int aftersum = *DWT_CYCCNT;
UARTprintf ("sum \%d \%d\n",
result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

Counting cycles:

```
static volatile unsigned int
    *const DWT_CYCCNT
    = (void *) 0xE0001004;
```

...
int beforesum $=*$ DWT_CYCCNT;
int result $=$ sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf ("sum \%d \%d\n",
result, aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.
"Okay, Um, are really th

Counting cycles:

```
static volatile unsigned int
    *const DWT_CYCCNT
    = (void *) 0xE0001004;
```

...
int beforesum $=$ *DWT_CYCCNT;
int result $=\operatorname{sum}(x)$;
int aftersum = *DWT_CYCCNT;
UARTprintf("sum \%d \%d\n",
result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.
"Okay, 8 cycles pe Um, are microcon really this slow at

Counting cycles:

```
static volatile unsigned int
    *const DWT_CYCCNT
    = (void *) OxE0001004;
```

int beforesum $=*$ DWT_CYCCNT;
int result $=\operatorname{sum}(x)$;
int aftersum $=* D W T _C Y C C N T ;$
UARTprintf("sum \%d \%d\n",
result, aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.
"Okay, 8 cycles per addition Um, are microcontrollers really this slow at addition?'

Counting cycles:

```
static volatile unsigned int
    *const DWT_CYCCNT
    = (void *) OxE0001004;
```

int beforesum $=$ *DWT_CYCCNT;
int result $=$ sum(x);
int aftersum $=$ *DWT_CYCCNT;
UARTprintf ("sum \%d \%d\n",
result, aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.
"Okay, 8 cycles per addition. Um, are microcontrollers really this slow at addition?"

Counting cycles:

```
static volatile unsigned int
    *const DWT_CYCCNT
    = (void *) 0xE0001004;
int beforesum = *DWT_CYCCNT;
int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf("sum %d %d\n",
    result,aftersum-beforesum);
Output shows 8012 cycles.
Change 1000 to 500: 4012.
```

"Okay, 8 cycles per addition.
Um, are microcontrollers really this slow at addition?"

Bad practice:
Apply random "optimizations" (and tweak compiler options) until you get bored.
Keep the fastest results.

Counting cycles:

```
static volatile unsigned int
    *const DWT_CYCCNT
    = (void *) 0xE0001004;
int beforesum = *DWT_CYCCNT;
int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf("sum %d %d\n",
    result,aftersum-beforesum);
Output shows 8012 cycles.
Change 1000 to 500: 4012.
```

"Okay, 8 cycles per addition.
Um, are microcontrollers really this slow at addition?"

Bad practice:
Apply random "optimizations" (and tweak compiler options) until you get bored.
Keep the fastest results.
Try -Os: 8012 cycles.

Counting cycles:

```
static volatile unsigned int
    *const DWT_CYCCNT
    = (void *) 0xE0001004;
int beforesum = *DWT_CYCCNT;
int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf("sum %d %d\n",
    result,aftersum-beforesum);
Output shows 8012 cycles.
Change 1000 to 500: 4012.
```

"Okay, 8 cycles per addition.
Um, are microcontrollers really this slow at addition?"

Bad practice:
Apply random "optimizations" (and tweak compiler options) until you get bored.
Keep the fastest results.
Try -Os: 8012 cycles.
Try -01: 8012 cycles.

Counting cycles:

```
static volatile unsigned int
    *const DWT_CYCCNT
    = (void *) 0xE0001004;
int beforesum = *DWT_CYCCNT;
int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf("sum %d %d\n",
    result,aftersum-beforesum);
Output shows 8012 cycles.
Change 1000 to 500: 4012.
```

"Okay, 8 cycles per addition.
Um, are microcontrollers really this slow at addition?"

Bad practice:
Apply random "optimizations" (and tweak compiler options) until you get bored.
Keep the fastest results.
Try -Os: 8012 cycles.
Try -01: 8012 cycles.
Try -02: 8012 cycles.

Counting cycles:

```
static volatile unsigned int
    *const DWT_CYCCNT
    = (void *) 0xE0001004;
int beforesum = *DWT_CYCCNT;
int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf("sum %d %d\n",
    result,aftersum-beforesum);
Output shows 8012 cycles.
Change 1000 to 500: 4012.
```

"Okay, 8 cycles per addition.
Um, are microcontrollers really this slow at addition?"

Bad practice:
Apply random "optimizations" (and tweak compiler options) until you get bored.
Keep the fastest results.
Try -Os: 8012 cycles.
Try -01: 8012 cycles.
Try -02: 8012 cycles.
Try -03: 8012 cycles.
g cycles:
volatile unsigned int
t DWT_CYCCNT
id *) 0xE0001004;
oresum = *DWT_CYCCNT;
ult $=\operatorname{sum}(x)$;
ersum $=$ *DWT_CYCCNT;
ntf("sum \%d \%d\n",
t,aftersum-beforesum) ;
shows 8012 cycles.
1000 to 500: 4012.
"Okay, 8 cycles per addition.
Um, are microcontrollers really this slow at addition?"

Bad practice:
Apply random "optimizations" (and tweak compiler options) until you get bored.
Keep the fastest results.
Try -0s: 8012 cycles.
Try -01: 8012 cycles.
Try -02: 8012 cycles.
Try -03: 8012 cycles.

Try mov
int sum
int r
int i
for res
retur
"Okay, 8 cycles per addition. Um, are microcontrollers really this slow at addition?"

Bad practice:
Apply random "optimizations" (and tweak compiler options) until you get bored.
Keep the fastest results.
Try -0s: 8012 cycles.
Try -01: 8012 cycles.
Try -02: 8012 cycles.
Try -03: 8012 cycles.

Try moving the pc

```
int sum(int *x)
```

$\{$
int result $=0$
int i;
for (i $=0 ; i$
result $+=$ *x
return result;
\}
"Okay, 8 cycles per addition. Um, are microcontrollers really this slow at addition?"

Bad practice:
Apply random "optimizations" (and tweak compiler options) until you get bored.
Keep the fastest results.
Try -0s: 8012 cycles.
Try -01: 8012 cycles.
Try -02: 8012 cycles.
Try -03: 8012 cycles.

Try moving the pointer:

```
int sum(int *x)
```

$\{$
int result $=0$;
int i;
for $(i=0 ; i<1000 ;++i$
result $+=* x++$;
return result;
\}
"Okay, 8 cycles per addition.
Um, are microcontrollers really this slow at addition?"

Bad practice:
Apply random "optimizations" (and tweak compiler options) until you get bored.
Keep the fastest results.
Try -0s: 8012 cycles.
Try -01: 8012 cycles.
Try -02: 8012 cycles.
Try -03: 8012 cycles.

Try moving the pointer:

```
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0;i < 1000;++i)
        result += *x++;
    return result;
}
```

"Okay, 8 cycles per addition.
Um, are microcontrollers really this slow at addition?"

Bad practice:
Apply random "optimizations" (and tweak compiler options) until you get bored.
Keep the fastest results.
Try -0s: 8012 cycles.
Try -01: 8012 cycles.
Try -02: 8012 cycles.
Try -03: 8012 cycles.

Try moving the pointer:

```
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0;i < 1000;++i)
        result += *x++;
    return result;
}
```

8010 cycles.

3 cycles per addition. microcontrollers
is slow at addition?"
ctice:
ndom "optimizations" eak compiler options) get bored.
e fastest results.
8012 cycles.
8012 cycles.
8012 cycles.
8012 cycles.

Try moving the pointer:

```
int sum(int *x)
```

\{
int result $=0$;
int i;
for ($i=0 ; i<1000 ;++i)$
result $+=* x++$;
return result;
\}
8010 cycles.
for res
retur
\}
Try cour

```
int sum
\(\{\)
int \(r\)
int i
{
```

 for
 res
 retur
 \}
r addition. trollers addition?"
timizations"
er options)
d.
esults.
les.
les.
des.
les.

Try moving the pointer:
int sum(int *x)
\{
int result $=0$;
int i;
for ($i=0 ; i<1000 ;++i)$
result $+=$ *x++;
return result;
\}
8010 cycles.

Try counting dowr

```
int sum(int *x)
```

\{
int result $=0$
int i;
for $(i=1000$;
result $+=* x$
return result;
\}

Try moving the pointer:
int sum(int *x)
$\{$
int result $=0$;
int i;
for $(i=0 ; i<1000 ;++i)$
result $+=* \mathrm{x}++$;
return result;
\}
8010 cycles.

Try counting down:
int sum(int *x)
$\{$
int result $=0$;
int i;
for $(i=1000 ; i>0 ;--i$ result $+=* \mathrm{x}++$;
return result;
\}

Try moving the pointer:

```
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0;i < 1000;++i)
        result += *x++;
    return result;
}
```

8010 cycles.

Try counting down:

```
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 1000;i > 0;--i)
        result += *x++;
    return result;
}
```

Try moving the pointer:

```
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0;i < 1000;++i)
        result += *x++;
    return result;
}
8010 cycles.
```

Try counting down:

```
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 1000;i > 0;--i)
        result += *x++;
    return result;
}
```

8010 cycles.
ing the pointer:
(int *x)
esult $=0$;
i $=0 ; i<1000 ;++i)$
ult += *x++;
n result;

Try counting down:
int sum(int *x)
\{
int result $=0$;
int i;
for (i $=1000 ; i>0 ;-$ i)
result += *x++;
return result;
\}
8010 cycles.
cles.

Try usin
int sum
\{
int r
int *
while res
retur
\}

inter:
$1000 ;++i)$

Try counting down:
int sum(int *x)
\{
int result $=0$;
int i;
for ($i=1000 ; i>0 ;--i)$
result $+=* x++;$
return result;
\}
8010 cycles.

Try using an end
int sum(int *x)
\{
int result $=0$
int *y = x + 1
while (x ! $=\mathrm{y}$)
result $+=* x$ return result;
\}

Try counting down:
int sum(int *x)
$\{$
int result $=0$;
int i;
for ($i=1000 ; i>0 ;--i)$
result $+=* x++;$
return result;
\}
8010 cycles.

Try using an end pointer:
int sum(int *x)
\{
int result $=0$;
int $* y=x+1000 ;$
while ($\mathrm{x} \quad \mathrm{I}=\mathrm{y}$)
result $+=* x++;$
return result;
\}

Try counting down:

```
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 1000;i > 0;--i)
        result += *x++;
    return result;
}
```

8010 cycles.

Try using an end pointer:

```
int sum(int *x)
{
    int result = 0;
    int *y = x + 1000;
    while (x != y)
        result += *x++;
    return result;
}
```

Try counting down:

```
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 1000;i > 0;--i)
        result += *x++;
    return result;
}
```

8010 cycles.

Try using an end pointer:

```
int sum(int *x)
{
    int result = 0;
    int *y = x + 1000;
    while (x != y)
        result += *x++;
    return result;
}
```

8010 cycles.
+. 8 (int *x)
esult $=0$;
i $=1000 ; i>0 ;--i)$
ult += *x++;
n result; cles.

Try using an end pointer:
int sum(int *x)
\{
int result $=0$;
int *y = x + 1000;
while (x ! $=\mathrm{y}$)
result $+=* x++$;
return result;
\}
8010 cycles.

Back to
int sum
\{
int r
int i
for res res
\}
retur

Try using an end pointer:
int sum(int *x)
\{
int result $=0$;
int $* y=x+1000 ;$
while (x ! = y)
result $+=* x++;$
return result;
\}
8010 cycles.

Back to original.

```
int sum(int *x)
```

\{
int result $=0$
int i;
for (i $=0 ; i$
result $+=x[$
result $+=x[$
\}
return result;
\}

Try using an end pointer:
int sum(int *x)
$\{$
int result $=0$;
int $* y=x+1000 ;$
while ($\mathrm{x} \quad \mathrm{I}=\mathrm{y}$)
result $+=* \mathrm{x}++$;
return result;
\}
8010 cycles.

Back to original. Try unrolli
int sum(int *x)
$\{$

```
    int result = 0;
```

 int i;
 for (i \(=0 ; i<1000 ; i\)
 result \(+=x[i]\);
 result \(+=x[i+1]\);
 \}
 return result;
 \}

Try using an end pointer:

```
int sum(int *x)
{
    int result = 0;
    int *y = x + 1000;
    while (x ! = y)
        result += *x++;
    return result;
}
```

8010 cycles.

Back to original. Try unrolling:

```
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0;i < 1000;i += 2) {
        result += x[i];
        result += x[i + 1];
    }
    return result;
}
```

Try using an end pointer:

```
int sum(int *x)
{
    int result = 0;
    int *y = x + 1000;
    while (x != y)
        result += *x++;
    return result;
}
8010 cycles.
```

Back to original. Try unrolling:

```
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0;i < 1000;i += 2) {
        result += x[i];
        result += x[i + 1];
    }
    return result;
}
```

5016 cycles.
g an end pointer:

esult $=0$;
$y=x+1000 ;$
$(\mathrm{x} \quad!=\mathrm{y})$
ult $+=* x++$;
n result;
cles.

Back to original. Try unrolling:

```
int sum(int *x)
```

$\{$
int result $=0$;
int i;
for (i $=0 ; i<1000 ; i+=2)\{$
result $+=x[i]$;
result $+=x[i+1]$;
\}
return result;
\}

5016 cycles.
int sum(int *x)
\{
int result $=0$ int i;
for (i $=0 ; i$
result $+=x[$
result $+=x[$
result $+=x[$
result $+=x[$
result $+=x[$
\}
return result;
\}

Back to original. Try unrolling:
int sum(int *x)
$\{$
int result $=0$;
int i;
for ($i=0 ; i<1000 ; i+=2)\{$ result $+=x[i]$; result $+=x[i+1] ;$
\}
return result;
\}
5016 cycles.

```
int sum(int *x)
```

$\{$
int result $=0$;
int i;
for $(i=0 ; i<1000 ; i$
result $+=x[i]$;
result $+=x[i+1]$;
result $+=x[i+2]$;
result $+=x[i+3]$;
result $+=x[i+4]$;
\}
return result;
\}

Back to original. Try unrolling:

```
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0;i < 1000;i += 2) {
        result += x[i];
        result += x[i + 1];
    }
    return result;
}
```

5016 cycles.
int sum(int *x)
\{
int result $=0$;
int i;
for ($i=0 ; i<1000 ; i+=5)\{$ result $+=x[i]$;
result $+=x[i+1]$;
result $+=x[i+2]$;
result $+=x[i+3]$;
result $+=\mathrm{x}[\mathrm{i}+4]$;
\}
return result;
\}

Back to original. Try unrolling:

```
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0;i < 1000;i += 2) {
        result += x[i];
        result += x[i + 1];
    }
    return result;
}
5016 cycles.
```

int sum(int *x)
\{
int result $=0$;
int i;
for (i $=0 ; i<1000 ; i+=5)$ \{ result += x[i];
result += $x[i+1]$;
result += x[i + 2];
result += x[i + 3];
result += x[i + 4];
\}
return result;
\}

4016 cycles. "Are we done yet?"
original. Try unrolling:
esult $=0$;
$i=0 ; i<1000 ; i+=2)\{$
ult $+=x[i]$;
ult $+=x[i+1]$;
n result;
int sum(int *x)
\{

$$
\text { int result }=0
$$

int i;

$$
\text { for }(i=0 ; i<1000 ; i+=5)\{
$$

$$
\text { result }+=x[i]
$$

$$
\text { result }+=x[i+1]
$$

$$
\text { result }+=x[i+2]
$$

$$
\text { result }+=x[i+3]
$$

$$
\text { result }+=x[i+4]
$$

\}
return result;
\}
4016 cycles. "Are we done yet?"
"Why is
Didn't y in makir
cles.
"Why is this bad Didn't we succeed in making code tu

```
1000;i += 2) {
1000;i += 2) \{
```

i] ;
i + 1]; i] ;
i + 1];

Try unrolling:

```
int sum(int *x)
{
int result = 0; 
int result = 0;
int result = 0;
            result += x[i];
            result += x[i + 1];
            result += x[i + 2];
            result += x[i + 3];
            result += x[i + 4];
    }
    return result;
}
```

4016 cycles. "Are we done yet?"
\{

1

Are we don
int result $=0$;
int i;
for ($i=0 ; i<1000 ; i+=5)\{$
result $+=x[i]$;
result $+=x[i+1]$;
result $+=x[i+2]$;
result $+=x[i+3]$;
result $+=x[i+4]$;
\}
return result;
\}

4016 cycles. "Are we done yet?"
"Why is this bad practice? Didn't we succeed in making code twice as fas
int sum(int *x)
\{
int result $=0$;
int i;
for ($i=0 ; i<1000 ; i+=5)\{$ result $+=x[i]$; result $+=x[i+1]$; result $+=x[i+2]$; result $+=x[i+3]$; result $+=x[i+4]$;
\}
return result;
\}
4016 cycles. "Are we done yet?"
"Why is this bad practice?
Didn't we succeed in making code twice as fast?"
int sum(int *x)
\{
int result $=0$;
int i;
for ($i=0 ; i<1000 ; i+=5)\{$ result $+=x[i]$; result $+=x[i+1]$; result $+=x[i+2]$; result $+=x[i+3]$; result $+=x[i+4]$;
\}
return result;
\}
4016 cycles. "Are we done yet?"
"Why is this bad practice?
Didn't we succeed in making code twice as fast?"

Yes, but CPU time is still nowhere near optimal, and human time was wasted.
int sum(int *x)
\{
int result $=0$;
int i;
for ($i=0 ; i<1000 ; i+=5)\{$ result $+=x[i]$; result $+=x[i+1]$; result $+=x[i+2]$; result $+=x[i+3]$; result $+=x[i+4]$;
\}
return result;
\}
4016 cycles. "Are we done yet?"
"Why is this bad practice?
Didn't we succeed in making code twice as fast?"

Yes, but CPU time is still nowhere near optimal, and human time was wasted.

Good practice:
Figure out lower bound for cycles spent on arithmetic etc.
Understand gap between lower bound and observed time.
(int *x)

$$
\text { esult }=0
$$

$$
i=0 ; i<1000 ; i+=5)\{
$$

$$
\text { ult }+=x[i] ;
$$

$$
u l t+=x[i+1]
$$

$$
\text { ult }+=\mathrm{x}[\mathrm{i}+2] \text {; }
$$

$$
\text { ult }+=x[i+3] ;
$$

$$
\text { ult }+=x[i+4] ;
$$

n result;
cles. "Are we done yet?"
"Why is this bad practice?
Didn't we succeed in making code twice as fast?"

Yes, but CPU time is still nowhere near optimal, and human time was wasted.

Good practice:

Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between lower bound and observed time.

Find " A
Technica
Rely on
M4F =
"Why is this bad practice?
Didn't we succeed
in making code twice as fast?"
Yes, but CPU time is still
nowhere near optimal, and human time was wasted.

Good practice:
Figure out lower bound for cycles spent on arithmetic etc.
Understand gap between
lower bound and observed time.

Find "ARM Corte
Technical Referen
Rely on Wikipedia $\mathrm{M} 4 \mathrm{~F}=\mathrm{M} 4+$ floa
"Why is this bad practice?
Didn't we succeed
in making code twice as fast?"
Yes, but CPU time is still nowhere near optimal, and human time was wasted.

Good practice:
Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between
lower bound and observed time.

Find "ARM Cortex-M4 Proc
Technical Reference Manual
Rely on Wikipedia comment
M4F = M4 + floating-point
"Why is this bad practice?
Didn't we succeed in making code twice as fast?"

Yes, but CPU time is still nowhere near optimal, and human time was wasted.

Good practice:
Figure out lower bound for cycles spent on arithmetic etc.
Understand gap between lower bound and observed time.

Find "ARM Cortex-M4 Processor Technical Reference Manual".
Rely on Wikipedia comment that $\mathrm{M} 4 \mathrm{~F}=\mathrm{M} 4+$ floating-point unit.
"Why is this bad practice?
Didn't we succeed in making code twice as fast?"

Yes, but CPU time is still nowhere near optimal, and human time was wasted.

Good practice:
Figure out lower bound for cycles spent on arithmetic etc.
Understand gap between lower bound and observed time.

Find "ARM Cortex-M4 Processor Technical Reference Manual".
Rely on Wikipedia comment that $\mathrm{M} 4 \mathrm{~F}=\mathrm{M} 4+$ floating-point unit.

Manual says that Cortex-M4 "implements the ARMv7E-M architecture profile".
"Why is this bad practice?
Didn't we succeed in making code twice as fast?"

Yes, but CPU time is still nowhere near optimal, and human time was wasted.

Good practice:
Figure out lower bound for cycles spent on arithmetic etc.
Understand gap between lower bound and observed time.

Find "ARM Cortex-M4 Processor Technical Reference Manual".
Rely on Wikipedia comment that $\mathrm{M} 4 \mathrm{~F}=\mathrm{M} 4+$ floating-point unit.

Manual says that Cortex-M4 "implements the ARMv7E-M architecture profile".

Points to the "ARMv7-M Architecture Reference Manual", which defines instructions:
e.g., "ADD" for 32-bit addition.

First manual says that ADD takes just 1 cycle.
this bad practice?
re succeed
g code twice as fast?"
CPU time is still
near optimal, ran time was wasted.
actice:
ut lower bound for ent on arithmetic etc.
and gap between und and observed time.

Find "ARM Cortex-M4 Processor
Technical Reference Manual".
Rely on Wikipedia comment that $\mathrm{M} 4 \mathrm{~F}=\mathrm{M} 4+$ floating-point unit.

Manual says that Cortex-M4 "implements the ARMv7E-M architecture profile".

Points to the "ARMv7-M
Architecture Reference Manual", which defines instructions:
e.g., "ADD" for 32-bit addition.

First manual says that ADD takes just 1 cycle.

Inputs a "integer has 16 special-p and "pro
ice as fast?"
e is still
mal,
vas wasted.
ound for thmetic etc.
etween bserved time.

Find "ARM Cortex-M4 Processor Technical Reference Manual".
Rely on Wikipedia comment that $\mathrm{M} 4 \mathrm{~F}=\mathrm{M} 4+$ floating-point unit.

Manual says that Cortex-M4 "implements the ARMv7E-M architecture profile".

Points to the "ARMv7-M
Architecture Reference Manual", which defines instructions:
e.g., "ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

Inputs and output "integer registers" has 16 integer reg special-purpose "s and "program cou

Find "ARM Cortex-M4 Processor Technical Reference Manual".
Rely on Wikipedia comment that
$\mathrm{M} 4 \mathrm{~F}=\mathrm{M} 4+$ floating-point unit.
Manual says that Cortex-M4 "implements the ARMv7E-M architecture profile".

Points to the "ARMv7-M
Architecture Reference Manual", which defines instructions:
e.g., "ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

Inputs and output of ADD "integer registers". ARMv7has 16 integer registers, incl special-purpose "stack point and "program counter".

Find "ARM Cortex-M4 Processor Technical Reference Manual".
Rely on Wikipedia comment that M4F $=$ M4 + floating-point unit.

Manual says that Cortex-M4 "implements the ARMv7E-M architecture profile".

Points to the "ARMv7-M Architecture Reference Manual", which defines instructions: e.g., "ADD" for 32-bit addition.

First manual says that ADD takes just 1 cycle.

Find "ARM Cortex-M4 Processor Technical Reference Manual".
Rely on Wikipedia comment that $\mathrm{M} 4 \mathrm{~F}=\mathrm{M} 4+$ floating-point unit.

Manual says that Cortex-M4 "implements the ARMv7E-M architecture profile".

Points to the "ARMv7-M Architecture Reference Manual", which defines instructions: e.g., "ADD" for 32-bit addition.

First manual says that ADD takes just 1 cycle.

Find "ARM Cortex-M4 Processor Technical Reference Manual".
Rely on Wikipedia comment that $\mathrm{M} 4 \mathrm{~F}=\mathrm{M} 4+$ floating-point unit.

Manual says that Cortex-M4 "implements the ARMv7E-M architecture profile".

Points to the "ARMv7-M Architecture Reference Manual", which defines instructions: e.g., "ADD" for 32-bit addition.

First manual says that ADD takes just 1 cycle.

Inputs and output of ADD are "integer registers". ARMv7-M has 16 integer registers, including special-purpose "stack pointer" and "program counter".

Each element of x array needs to be "loaded" into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds a note about "pipelining". Then more explanation: if next instruction is also LDR (with address not based on first LDR) then it saves 1 cycle.

RM Cortex-M4 Processor al Reference Manual".
Wikipedia comment that M4 + floating-point unit. says that Cortex-M4 ents the ARMv7E-M cure profile".
o the "ARMv7-M
ture Reference Manual", efines instructions:
DD" for 32-bit addition.
nual says that kes just 1 cycle.

Inputs and output of ADD are "integer registers". ARMv7-M has 16 integer registers, including special-purpose "stack pointer" and "program counter".

Each element of x array needs to be "loaded" into a register.

Basic load instruction: LDR. Manual says 2 cycles but adds a note about "pipelining". Then more explanation: if next instruction is also LDR (with address not based on first LDR) then it saves 1 cycle.
n consec takes on
("more pipelines

Can ach in other but noth

Lower b $2 n+1 c$ includin

Why ob non-con costs of
x-M4 Processor ce Manual". comment that ing-point unit.

Cortex-M4
RMv7E-M

Mv7-M
ence Manual", uctions:
2-bit addition.
that
cycle.

Inputs and output of ADD are "integer registers". ARMv7-M has 16 integer registers, including special-purpose "stack pointer" and "program counter".

Each element of x array needs to be "loaded" into a register.

Basic load instruction: LDR. Manual says 2 cycles but adds a note about "pipelining". Then more explanation: if next instruction is also LDR (with address not based on first LDR) then it saves 1 cycle.
n consecutive LDF takes only $n+1 \mathrm{c}$ ("more multiple L pipelined together

Can achieve this s in other ways (LD but nothing seems

Lower bound for n $2 n+1$ cycles, including n cycles

Why observed tim non-consecutive L costs of manipulat

Inputs and output of ADD are "integer registers". ARMv7-M has 16 integer registers, including special-purpose "stack pointer" and "program counter".

Each element of x array needs to be "loaded" into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds a note about "pipelining".
Then more explanation: if next instruction is also LDR (with address not based on first LDR) then it saves 1 cycle. takes only $n+1$ cycles ("more multiple LDRs can pipelined together").

Can achieve this speed in other ways (LDRD, LDM but nothing seems faster.

Lower bound for n LDR $+n$ $2 n+1$ cycles, including n cycles of arithm Why observed time is highet non-consecutive LDRs; costs of manipulating i.

Inputs and output of ADD are "integer registers". ARMv7-M has 16 integer registers, including special-purpose "stack pointer" and "program counter".

Each element of x array needs to be "loaded" into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds a note about "pipelining". Then more explanation: if next instruction is also LDR (with address not based on first LDR) then it saves 1 cycle.
n consecutive LDRs takes only $n+1$ cycles ("more multiple LDRs can be pipelined together").

Can achieve this speed in other ways (LDRD, LDM) but nothing seems faster.

Lower bound for n LDR $+n$ ADD:
$2 n+1$ cycles, including n cycles of arithmetic.

Why observed time is higher: non-consecutive LDRs; costs of manipulating i.
nd output of ADD are registers". ARMv7-M
iteger registers, including urpose "stack pointer" gram counter".
ment of x array needs to led" into a register. ad instruction: LDR. says 2 cycles but adds bout "pipelining". ore explanation: if next on is also LDR (with not based on first LDR) aves 1 cycle.
n consecutive LDRs
takes only $n+1$ cycles
("more multiple LDRs can be pipelined together").

Can achieve this speed in other ways (LDRD, LDM) but nothing seems faster.

Lower bound for n LDR $+n$ ADD:
$2 n+1$ cycles, including n cycles of arithmetic.

Why observed time is higher: non-consecutive LDRs; costs of manipulating i.
of ADD are ARMv7-M
isters, including tack pointer" nter" .
array needs to register.
ion: LDR.
les but adds elining". ation: if next
LDR (with on first LDR) le.
n consecutive LDRs
takes only $n+1$ cycles
("more multiple LDRs can be pipelined together").

Can achieve this speed in other ways (LDRD, LDM) but nothing seems faster.

Lower bound for n LDR $+n$ ADD:
$2 n+1$ cycles,
including n cycles of arithmetic.
Why observed time is higher: non-consecutive LDRs; costs of manipulating i.
int sum(int *x) \{

$$
\begin{aligned}
& \text { int result = 0 } \\
& \text { int } * y=x+1 \\
& \text { int } x 0, x 1, x 2, x \\
& x 5, x 6, x 7, x
\end{aligned} \begin{aligned}
& \text { while }(x \quad!=y) \\
& x 0=0[(v o l a \\
& x 1=1[(v o l a \\
& x 2=2[(v o l a \\
& x 3=3[(v o l a \\
& x 4=4[(v o l a \\
& x 5=5[(v o l a \\
& x 6=6[(v o l a
\end{aligned}
$$

n consecutive LDRs
takes only $n+1$ cycles
("more multiple LDRs can be pipelined together").

Can achieve this speed in other ways (LDRD, LDM) but nothing seems faster.

Lower bound for n LDR $+n$ ADD: $2 n+1$ cycles, including n cycles of arithmetic.

Why observed time is higher: non-consecutive LDRs; costs of manipulating i.
\{

```
int result = 0;
int *y = x + 1000;
int x0,x1,x2,x3,x4,
        x5,x6,x7,x8,x9;
```

while (x ! = y) \{
x0 $=0[(v o l a t i l e ~ i n t ~$
x1 = 1[(volatile int
x2 = 2[(volatile int
x3 = 3[(volatile int
x4 = 4[(volatile int
x5 = 5[(volatile int
x6 = 6[(volatile int
n consecutive LDRs
takes only $n+1$ cycles ("more multiple LDRs can be pipelined together").

Can achieve this speed in other ways (LDRD, LDM) but nothing seems faster.

Lower bound for n LDR $+n$ ADD: $2 n+1$ cycles, including n cycles of arithmetic.

Why observed time is higher: non-consecutive LDRs; costs of manipulating i.

$$
\begin{aligned}
& \text { int result }=0 \\
& \text { int } * y=x+1000 ; \\
& \text { int } x 0, x 1, x 2, x 3, x 4 \\
& \quad x 5, x 6, x 7, x 8, x 9
\end{aligned}
$$

while (x ! = y) \{

$$
x 0=0[(\text { volatile int } *) x] ;
$$

$$
\mathrm{x} 1=1[(\text { volatile int } *) \mathrm{x}] ;
$$

$$
x 2=2[(\text { volatile int } *) x] ;
$$

$$
x 3=3[(\text { volatile int } *) x] ;
$$

$$
x 4=4[(\text { volatile int } *) x] ;
$$

$$
x 5=5[(\text { volatile int } *) x] ;
$$

$$
\mathrm{x} 6=6[(\text { volatile int } *) \mathrm{x}] ;
$$

utive LDRs
ly $n+1$ cycles multiple LDRs can be together").
ieve this speed
ways (LDRD, LDM)
ing seems faster.
ound for $n \mathrm{LDR}+n$ ADD: ycles,
n cycles of arithmetic.
served time is higher:
secutive LDRs;
manipulating i.
int sum(int *x)
\{

$$
\begin{aligned}
& \text { int result }=0 \text {; } \\
& \text { int } * y=x+1000 ; \\
& \text { int } x 0, x 1, x 2, x 3, x 4 \text {, } \\
& \mathrm{x} 5, \mathrm{x} 6, \mathrm{x} 7, \mathrm{x} 8, \mathrm{x} 9 \text {; } \\
& \text { while (x ! = y) \{ } \\
& x 0=0[(v o l a t i l e ~ i n t ~ *) x] ; \\
& \mathrm{x} 1 \text { = 1[(volatile int *) } \mathrm{x}] \text {; } \\
& x 2=2[(v o l a t i l e ~ i n t ~ *) x] ; \\
& x 3=3[(\text { volatile int *) x] ; } \\
& \mathrm{x} 4=4[(\text { volatile int } *) \mathrm{x}] \text {; } \\
& x 5=5[(\text { volatile int *) x] ; } \\
& \mathrm{x} 6=6[(\text { volatile int *) } \mathrm{x}] \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x} 7=7 \text { [(vola } \\
& x 8=8[(v o l a \\
& \text { x9 = 9[(vola } \\
& \text { result += x0 } \\
& \text { result += x1 } \\
& \text { result += x2 } \\
& \text { result += x3 } \\
& \text { result += x4 } \\
& \text { result += x5 } \\
& \text { result += x6 } \\
& \text { result += x7 } \\
& \text { result += x8 } \\
& \text { result += x9 } \\
& \mathrm{x} 0 \text { = } 10 \text { [(vol } \\
& \mathrm{x} 1 \text { = } 11 \text { [(vol }
\end{aligned}
$$

int sum(int *x)
\{

$$
\begin{aligned}
& \text { int result }=0 ; \\
& \text { int } * y=x+1000 ; \\
& \text { int } x 0, x 1, x 2, x 3, x 4, \\
& \quad x 5, x 6, x 7, x 8, x 9
\end{aligned}
$$

$$
\begin{aligned}
& \text { while (x ! = y) \{ } \\
& \mathrm{x} 0=0[(\text { volatile int *) } \mathrm{x}] \text {; } \\
& \mathrm{x} 1=1[(\text { volatile int *) } \mathrm{x}] \text {; } \\
& \mathrm{x} 2=2[(v o l a t i l e ~ i n t ~ *) x] ; \\
& \text { x3 = 3[(volatile int *) x]; } \\
& x 4=4[(v o l a t i l e ~ i n t ~ *) x] ; \\
& x 5=5[(v o l a t i l e ~ i n t ~ *) x] ; \\
& x 6=6[(v o l a t i l e ~ i n t ~ *) x] ;
\end{aligned}
$$

int sum(int *x)
\{

$$
\begin{aligned}
& \text { int result }=0 \text {; } \\
& \text { int *y }=\mathrm{x}+1000 \text {; } \\
& \text { int } x 0, x 1, x 2, x 3, x 4 \text {, } \\
& \mathrm{x} 5, \mathrm{x} 6, \mathrm{x} 7, \mathrm{x} 8, \mathrm{x} 9 \text {; } \\
& \text { while (x ! = y) \{ } \\
& x 0=0[(\text { volatile int } *) x] ; \\
& \mathrm{x} 1=1[(\text { volatile int } *) \mathrm{x}] \text {; } \\
& x 2=2[(v o l a t i l e ~ i n t ~ *) x] ; \\
& x 3=3[(\text { volatile int *) x] ; } \\
& \mathrm{x} 4=4[(\text { volatile int } *) \mathrm{x}] \text {; } \\
& \mathrm{x} 5=5[(\text { volatile int } *) \mathrm{x}] \text {; } \\
& \mathrm{x} 6=6[(\text { volatile int *) } \mathrm{x}] \text {; }
\end{aligned}
$$

```
x7 = 7[(volatile int *)x];
x8 = 8[(volatile int *)x];
x9 = 9[(volatile int *)x];
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
result += x6;
result += x7;
result += x8;
result += x9;
x0 = 10[(volatile int *)x];
x1 = 11[(volatile int *)x];
```

```
(int *x)
```

esult $=0$;
$y=x+1000 ;$
$0, x 1, x 2, x 3, x 4$,
5, x6, x7, x8, x9;
(x ! = y) \{
$=0[($ volatile int $*) x]$;
$=1[($ volatile int $*) x]$;
$=2[(v o l a t i l e ~ i n t ~ *) x] ;$
$=3[(v o l a t i l e ~ i n t ~ *) x] ;$
$=4[($ volatile int $*) x]$;
$=5[(v o l a t i l e ~ i n t ~ *) x] ;$
$=6[($ volatile int $*) x]$;

```
x7 = 7[(volatile int *)x];
x8 = 8[(volatile int *)x];
x9 = 9[(volatile int *)x];
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
result += x6;
result += x7;
result += x8;
result += x9;
x0 = 10[(volatile int *)x];
x1 = 11[(volatile int *)x];
```

x4

$$
\begin{aligned}
& x 7=7[(v o l a t i l e ~ i n t ~ *) x] ; \\
& x 8=8[(v o l a t i l e ~ i n t ~ *) x] ; \\
& x 9=9[(v o l a t i l e ~ i n t ~ *) x] ; \\
& \text { result += x0; } \\
& \text { result += x1; } \\
& \text { result += x2; } \\
& \text { result += x3; } \\
& \text { result += x4; } \\
& \text { result += x5; } \\
& \text { result += x6; } \\
& \text { result += x7; } \\
& \text { result += x8; } \\
& \text { result += x9; } \\
& \text { x0 = } 10[(v o l a t i l e ~ i n t ~ *) x] ; \\
& \text { x1 = } 11[(v o l a t i l e ~ i n t ~ *) x] ; ~
\end{aligned}
$$

```
x7 = 7[(volatile int *)x];
x8 = 8[(volatile int *)x];
x9 = 9[(volatile int *)x];
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
result += x6;
result += x7;
result += x8;
result += x9;
x0 = 10[(volatile int *)x];
x1 = 11[(volatile int *)x];
```

```
x7 = 7[(volatile int *)x];
x8 = 8[(volatile int *)x];
x9 = 9[(volatile int *)x];
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
result += x6;
result += x7;
result += x8;
result += x9;
x0 = 10[(volatile int *)x];
x1 = 11[(volatile int *)x];
```

x2 = 12[(volatile int *) x];
x3 = 13[(volatile int *) x] ;
$\mathrm{x} 4=14[($ volatile int $*) \mathrm{x}]$;
x5 = 15[(volatile int *) x] ;
x6 = 16[(volatile int *) x];
x7 = 17[(volatile int *) x] ;
x8 = 18[(volatile int *) x];
x9 = 19[(volatile int *) x];
$\mathrm{x}+=20 ;$
result += x0;
result += x1;
result += x2;
result += x3;
result $+=x 4$;
result += x5;
$=7[(v o l a t i l e ~ i n t ~ *) x] ;$ $=8[(v o l a t i l e ~ i n t ~ *) x] ; ~$ $=9[(v o l a t i l e ~ i n t ~ *) x] ;$
ult += x0;
ult += x1;
ult += x2;
ult += x3;
ult $+=$ x4;
ult += x5;
ult += x6;
ult += x7;
ult += x8;
ult += x9;
$=10[(v o l a t i l e ~ i n t ~ *) x] ;$
= 11[(volatile int *)x];

$$
\begin{aligned}
& x 2=12[(v o l a t i l e ~ i n t ~ *) x] ; \\
& x 3=13[(v o l a t i l e ~ i n t *) x] ; \\
& x 4=14[(v o l a t i l e ~ i n t *) x] ; \\
& x 5=15[(v o l a t i l e ~ i n t ~ *) x] ; \\
& x 6=16[(v o l a t i l e ~ i n t ~ *) x] ; \\
& x 7=17[(v o l a t i l e ~ i n t ~ *) x] ; \\
& x 8=18[(v o l a t i l e ~ i n t ~ *) x] ; \\
& x 9=19[(v o l a t i l e ~ i n t ~ *) x] ; \\
& x+=20 ; \\
& \text { result }+=x 0 ; \\
& \text { result }+=x 1 ; \\
& \text { result }+=x 2 ; \\
& \text { result }+=x 3 ; \\
& \text { result }+=x 4 ; \\
& \text { result }+=x 5 ;
\end{aligned}
$$

tile int *)x];
tile int *)x];
tile int *)x];
atile int *) x] ;
atile int *) x] ;

$$
\begin{aligned}
& x 2=12[(v o l a t i l e ~ i n t ~ *) x] ; \\
& x 3=13[(v o l a t i l e ~ i n t *) x] ; \\
& x 4=14[(v o l a t i l e ~ i n t *) x] ; \\
& x 5=15[(v o l a t i l e ~ i n t ~ *) x] ; \\
& x 6=16[(v o l a t i l e ~ i n t *) x] ; \\
& x 7=17[(v o l a t i l e ~ i n t *) x] ; \\
& x 8=18[(v o l a t i l e ~ i n t *) x] ; \\
& x 9=19[(v o l a t i l e ~ i n t *) x] ; \\
& x+=20 ; \\
& \text { result }+=x 0 ; \\
& \text { result }+=x 1 ; \\
& \text { result }+=x 2 ; \\
& \text { result }+=x 3 ; \\
& \text { result }+=x 4 ; \\
& \text { result }+=x 5 ;
\end{aligned}
$$

```
    result += x6
    result += x7
    result += x8
    result += x9
```

\}
return result;

$$
\text { *) } \mathrm{x}] \text {; }
$$

$$
\text { *) } \mathrm{x}] \text {; }
$$

$$
\begin{aligned}
& \text { x2 = 12[(volatile int *) x]; } \\
& \text { x3 = 13[(volatile int *) x]; } \\
& x 4=14[(v o l a t i l e ~ i n t ~ *) x] ; \\
& \text { x5 = 15[(volatile int *) x]; } \\
& \text { x6 = 16[(volatile int *) x] ; } \\
& \text { x7 = } 17 \text { [(volatile int *) x]; } \\
& \text { x8 = 18[(volatile int *) x]; } \\
& \text { x9 = 19[(volatile int *) x]; } \\
& \mathrm{x}+=20 \text {; } \\
& \text { result += x0; } \\
& \text { result += x1; } \\
& \text { result += x2; } \\
& \text { result += x3; }
\end{aligned}
$$

```
x2 = 12[(volatile int *)x];
x3 = 13[(volatile int *)x];
x4 = 14[(volatile int *)x];
x5 = 15[(volatile int *)x];
x6 = 16[(volatile int *)x];
x7 = 17[(volatile int *)x];
x8 = 18[(volatile int *)x];
x9 = 19[(volatile int *)x];
x += 20;
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
```

```
    result += x6;
    result += x7;
    result += x8;
    result += x9;
    }
    return result;
}
```

```
x2 = 12[(volatile int *)x];
x3 = 13[(volatile int *)x];
x4 = 14[(volatile int *)x];
x5 = 15[(volatile int *)x];
x6 = 16[(volatile int *)x];
x7 = 17[(volatile int *)x];
x8 = 18[(volatile int *)x];
x9 = 19[(volatile int *)x];
x += 20;
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
```

```
        result += x6;
        result += x7;
        result += x8;
        result += x9;
```

 \}
 return result;
 \}

2526 cycles. Even better in asm.

```
x2 = 12[(volatile int *)x];
x3 = 13[(volatile int *)x];
x4 = 14[(volatile int *)x];
x5 = 15[(volatile int *)x];
x6 = 16[(volatile int *)x];
x7 = 17[(volatile int *)x];
x8 = 18[(volatile int *)x];
x9 = 19[(volatile int *)x];
x += 20;
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
```

```
    result += x6;
    result += x7;
    result += x8;
    result += x9;
    }
```

 return result;
 \}

2526 cycles. Even better in asm.
Wikipedia: "By the late 1990s for even performance sensitive code, optimizing compilers exceeded the performance of human experts."

```
x2 = 12[(volatile int *)x];
x3 = 13[(volatile int *)x];
x4 = 14[(volatile int *)x];
x5 = 15[(volatile int *)x];
x6 = 16[(volatile int *)x];
x7 = 17[(volatile int *)x];
x8 = 18[(volatile int *)x];
x9 = 19[(volatile int *)x];
x += 20;
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
```

```
    result += x6;
    result += x7;
    result += x8;
    result += x9;
    }
```

 return result;
 \}

2526 cycles. Even better in asm.
Wikipedia: "By the late 1990s for even performance sensitive code, optimizing compilers exceeded the performance of human experts."

- [citation needed]

```
= 12[(volatile int *)x];
= 13[(volatile int *)x];
= 14[(volatile int *)x];
= 15[(volatile int *)x];
= 16[(volatile int *)x];
= 17[(volatile int *)x];
= 18[(volatile int *)x];
= 19[(volatile int *)x];
= 20;
ult += x0;
ult += x1;
ult += x2;
ult += x3;
ult += x4;
ult += x5;
```

atile int *)x] ;
atile int *)x];

$$
\begin{aligned}
& \text { result }+=x 6 ; \\
& \text { result }+=x 7 \\
& \text { result }+=x 8 ; \\
& \text { result }+=x 9
\end{aligned}
$$

$$
\}
$$

return result;

$$
\}
$$

2526 cycles. Even better in asm.
Wikipedia: "By the late 1990s for even performance sensitive code, optimizing compilers exceeded the performance of human experts."

- [citation needed]

A real example
Salsa20 reference 30.25 cycles/byte

Lower bound for a 64 bytes require 21 • 16 1-cycle AD $20 \cdot 16$ 1-cycle XO so at least 10.25 Also many rotatio ARMv7-M instruc includes free rotat as part of XOR in (Compiler knows t
*) x] ;
result $+=\mathrm{x} 6$;
result += x7;
result $+=x 8$;
result $+=\mathrm{x} 9$;
\}
return result;
\}

2526 cycles. Even better in asm.
Wikipedia: "By the late 1990s for even performance sensitive code, optimizing compilers exceeded the performance of human experts."

- [citation needed]

A real example

Salsa20 reference software: 30.25 cycles/byte on this CF Lower bound for arithmetic: 64 bytes require
21 • 16 1-cycle ADDs, 20 • 16 1-cycle XORs, so at least 10.25 cycles/byt

Also many rotations, but ARMv7-M instruction set includes free rotation as part of XOR instruction. (Compiler knows this.)
result $+=\mathrm{x} 6$;
result $+=\mathrm{x} 7$;
result $+=\mathrm{x} 8$;
result $+=\mathrm{x} 9$;
\}
return result;
\}

2526 cycles. Even better in asm.
Wikipedia: "By the late 1990s for even performance sensitive code, optimizing compilers exceeded the performance of human experts."

- [citation needed]

A real example

Salsa20 reference software: 30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require
21 • 16 1-cycle ADDs, 20 • 16 1-cycle XORs, so at least 10.25 cycles/byte.

Also many rotations, but ARMv7-M instruction set includes free rotation as part of XOR instruction. (Compiler knows this.)
ult $+=x 6$;
ult $+=x 7$;
ult $+=x 8$;
ult $+=\mathrm{x} 9$;
n result;
cles. Even better in asm.
ia: "By the late 1990s for formance sensitive code, ng compilers exceeded the ance of human experts."
ion needed]

A real example

Salsa20 reference software: 30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require
21 • 16 1-cycle ADDs,
20 • 16 1-cycle XORs,
so at least 10.25 cycles/byte.
Also many rotations, but ARMv7-M instruction set includes free rotation as part of XOR instruction. (Compiler knows this.)

Detailed several load_li store_1

Can rep (Compil

Then ob 18 cycle plus 5 Still far

A real example

Salsa20 reference software: 30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require
21 • 16 1-cycle ADDs, 20 • 16 1-cycle XORs, so at least 10.25 cycles/byte.

Also many rotations, but
ARMv7-M instruction set includes free rotation as part of XOR instruction.
(Compiler knows this.)

Detailed benchma several cycles/byt load_littleendia store_littleendi

Can replace with (Compiler doesn't

Then observe 23 18 cycles/byte for plus 5 cycles/byte Still far above 10.

A real example
Salsa20 reference software: 30.25 cycles/byte on this CPU.

Lower bound for arithmetic: 64 bytes require 21 • 16 1-cycle ADDs, $20 \cdot 16$ 1-cycle XORs, so at least 10.25 cycles/byte.

Also many rotations, but ARMv7-M instruction set includes free rotation as part of XOR instruction. (Compiler knows this.)

Detailed benchmarks show several cycles/byte spent on load_littleendian and store_littleendian.

Can replace with LDR and (Compiler doesn't see this.)

Then observe 23 cycles/byt 18 cycles/byte for rounds, plus 5 cycles/byte overhead. Still far above 10.25 cycles/

Detailed benchmarks show several cycles/byte spent on load_littleendian and store_littleendian.

Can replace with LDR and STR. (Compiler doesn't see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds, plus 5 cycles/byte overhead. Still far above 10.25 cycles/byte.

A real example

Salsa20 reference software: 30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require
21 • 16 1-cycle ADDs, $20 \cdot 16$ 1-cycle XORs, so at least 10.25 cycles/byte.

Also many rotations, but ARMv7-M instruction set includes free rotation as part of XOR instruction. (Compiler knows this.)

Detailed benchmarks show several cycles/byte spent on load_littleendian and store_littleendian.

Can replace with LDR and STR. (Compiler doesn't see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds, plus 5 cycles/byte overhead. Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by choosing "spills" carefully.

Which o
should b
Don't tr
optimize
Which o
should b
Don't tr
optimize

Which o
should b
Don't tr
optimize
Which o
should b
Don't tr
optimize

Detailed benchmarks show several cycles/byte spent on
load_littleendian and store_littleendian.

Can replace with LDR and STR. (Compiler doesn't see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds, plus 5 cycles/byte overhead. Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by choosing "spills" carefully.
ny rotations, but
M instruction set free rotation
f XOR instruction.
er knows this.)
reference software: cles/byte on this CPU.
ound for arithmetic:
require
-cycle ADDs, -cycle XORs,
st 10.25 cycles/byte.
software: on this CPU.
rithmetic:

Ds, Rs, ycles/byte.
ns, but
tion set
ion
struction.
his.)

Detailed benchmarks show several cycles/byte spent on
load_littleendian and store_littleendian.

Can replace with LDR and STR. (Compiler doesn't see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds, plus 5 cycles/byte overhead. Still far above 10.25 cycles/byte.

Gap is mostly loads, stores. Minimize load/store cost by choosing "spills" carefully.

Which of the 16 S should be in regist Don't trust compi optimize register a

Detailed benchmarks show several cycles/byte spent on
load_littleendian and
store_littleendian.
Can replace with LDR and STR. (Compiler doesn't see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds, plus 5 cycles/byte overhead. Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by choosing "spills" carefully.

Which of the 16 Salsa20 wo should be in registers?
Don't trust compiler to optimize register allocation.

Detailed benchmarks show several cycles/byte spent on load_littleendian and store_littleendian.

Can replace with LDR and STR. (Compiler doesn't see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds, plus 5 cycles/byte overhead. Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by choosing "spills" carefully.

Which of the 16 Salsa20 words should be in registers?
Don't trust compiler to optimize register allocation.

Detailed benchmarks show several cycles/byte spent on load_littleendian and store_littleendian.

Can replace with LDR and STR. (Compiler doesn't see this.)

Then observe 23 cycles/byte: 18 cycles/byte for rounds, plus 5 cycles/byte overhead. Still far above 10.25 cycles/byte.

Gap is mostly loads, stores. Minimize load/store cost by choosing "spills" carefully.

Which of the 16 Salsa20 words should be in registers?
Don't trust compiler to optimize register allocation.

Make loads consecutive?
Don't trust compiler to optimize instruction scheduling.

Detailed benchmarks show several cycles/byte spent on load_littleendian and store_littleendian.

Can replace with LDR and STR. (Compiler doesn't see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds, plus 5 cycles/byte overhead. Still far above 10.25 cycles/byte.

Gap is mostly loads, stores. Minimize load/store cost by choosing "spills" carefully.

Which of the 16 Salsa20 words should be in registers?
Don't trust compiler to optimize register allocation.

Make loads consecutive?
Don't trust compiler to optimize instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to optimize instruction selection.

Detailed benchmarks show several cycles/byte spent on load_littleendian and store_littleendian.

Can replace with LDR and STR. (Compiler doesn't see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds, plus 5 cycles/byte overhead. Still far above 10.25 cycles/byte.

Gap is mostly loads, stores. Minimize load/store cost by choosing "spills" carefully.

Which of the 16 Salsa20 words should be in registers?
Don't trust compiler to optimize register allocation.

Make loads consecutive?
Don't trust compiler to optimize instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to optimize instruction selection.

On bigger CPUs, selecting vector instructions is critical for performance.
benchmarks show ycles/byte spent on ttleendian and ittleendian.
ace with LDR and STR. er doesn't see this.)
serve 23 cycles/byte:
s/byte for rounds, ycles/byte overhead. above 10.25 cycles/byte. nostly loads, stores.
e load/store cost by "spills" carefully.

Which of the 16 Salsa20 words should be in registers?
Don't trust compiler to optimize register allocation.

Make loads consecutive?
Don't trust compiler to
optimize instruction scheduling.
Spill to FPU instead of stack?
Don't trust compiler to optimize instruction selection.

On bigger CPUs, selecting vector instructions is critical for performance.
https: includes of 614 c $>20 \mathrm{imp}$

Haswell: impleme gcc -03
is $6.15 \times$
Salsa20
rks show

spent on

n and
an.
_DR and STR. see this.)
ycles/byte:
rounds, overhead.

25 cycles/byte.
s, stores.
re cost by :arefully.

Which of the 16 Salsa20 words should be in registers?
Don't trust compiler to optimize register allocation.

Make loads consecutive?
Don't trust compiler to optimize instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to optimize instruction selection.

On bigger CPUs,
selecting vector instructions is critical for performance.
https://bench. includes 2392 imp of 614 cryptograp
>20 implementati
Haswell: Reasonal implementation cc gcc -03 -fomitis $6.15 \times$ slower th
Salsa20 implemen

Which of the 16 Salsa20 words should be in registers?
Don't trust compiler to optimize register allocation.
;TR.
Make loads consecutive?
Don't trust compiler to optimize instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to optimize instruction selection.

On bigger CPUs, selecting vector instructions is critical for performance.
https://bench.cr.yp.to includes 2392 implementatic of 614 cryptographic primiti >20 implementations of Sal

Haswell: Reasonably simple implementation compiled wi gcc -03-fomit-frame-po is $6.15 \times$ slower than fastest Salsa20 implementation.

Which of the 16 Salsa20 words should be in registers?
Don't trust compiler to optimize register allocation.

Make loads consecutive?
Don't trust compiler to optimize instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to optimize instruction selection.

On bigger CPUs, selecting vector instructions is critical for performance.
https://bench.cr.yp.to includes 2392 implementations of 614 cryptographic primitives.
>20 implementations of Salsa20.
Haswell: Reasonably simple ref implementation compiled with gcc -03-fomit-frame-pointer is $6.15 \times$ slower than fastest Salsa20 implementation.

Which of the 16 Salsa20 words should be in registers?
Don't trust compiler to optimize register allocation.

Make loads consecutive?
Don't trust compiler to optimize instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to optimize instruction selection.

On bigger CPUs, selecting vector instructions is critical for performance.
https://bench.cr.yp.to includes 2392 implementations of 614 cryptographic primitives. >20 implementations of Salsa20.

Haswell: Reasonably simple ref implementation compiled with gcc -03-fomit-frame-pointer is $6.15 \times$ slower than fastest Salsa20 implementation.
merged implementation with "machine-independent" optimizations and best of 121 compiler options: $4.52 \times$ slower.
f the 16 Salsa20 words e in registers?
ust compiler to register allocation.
ads consecutive?
ust compiler to instruction scheduling.

FPU instead of stack?
ust compiler to instruction selection.
er CPUs,
vector instructions
I for performance.
https://bench.cr.yp.to includes 2392 implementations of 614 cryptographic primitives. >20 implementations of Salsa20.

Haswell: Reasonably simple ref implementation compiled with gcc-03-fomit-frame-pointer is $6.15 \times$ slower than fastest Salsa20 implementation.
merged implementation with "machine-independent" optimizations and best of 121 compiler options: $4.52 \times$ slower.

Fast ran
Goal: P into a ra
alsa20 words
ers?
ler to
Ilocation.
cutive?
ler to
on scheduling.
ad of stack?
ler to
on selection.
structions rmance.
https://bench.cr.yp.to includes 2392 implementations of 614 cryptographic primitives. >20 implementations of Salsa20.

Haswell: Reasonably simple ref implementation compiled with gcc-03-fomit-frame-pointer is $6.15 \times$ slower than fastest Salsa20 implementation.
merged implementation with "machine-independent" optimizations and best of 121 compiler options: $4.52 \times$ slower.

Fast random perm
Goal: Put list (x_{1}, into a random ord
https://bench.cr.yp.to

Fast random permutations
Goal: Put list $\left(x_{1}, \ldots, x_{n}\right)$ into a random order.
https://bench.cr.yp.to includes 2392 implementations of 614 cryptographic primitives. >20 implementations of Salsa20.

Haswell: Reasonably simple ref implementation compiled with gcc -03-fomit-frame-pointer is $6.15 \times$ slower than fastest Salsa20 implementation.
merged implementation with "machine-independent" optimizations and best of 121 compiler options: $4.52 \times$ slower.

Fast random permutations
Goal: Put list $\left(x_{1}, \ldots, x_{n}\right)$ into a random order.
https://bench.cr.yp.to includes 2392 implementations of 614 cryptographic primitives. >20 implementations of Salsa20.

Haswell: Reasonably simple ref implementation compiled with gcc -03-fomit-frame-pointer is $6.15 \times$ slower than fastest Salsa20 implementation.
merged implementation with "machine-independent" optimizations and best of 121 compiler options: $4.52 \times$ slower.

Fast random permutations

Goal: Put list $\left(x_{1}, \ldots, x_{n}\right)$ into a random order.

One textbook strategy:
Sort (Mr $\left.r_{1}+x_{1}, \ldots, M r_{n}+x_{n}\right)$ for random $\left(r_{1}, \ldots, r_{n}\right)$, suitable M.
https://bench.cr.yp.to includes 2392 implementations of 614 cryptographic primitives. >20 implementations of Salsa20.

Haswell: Reasonably simple ref implementation compiled with gcc -03-fomit-frame-pointer is $6.15 \times$ slower than fastest Salsa20 implementation.
merged implementation with "machine-independent" optimizations and best of 121 compiler options: $4.52 \times$ slower.

Fast random permutations

Goal: Put list $\left(x_{1}, \ldots, x_{n}\right)$ into a random order.

One textbook strategy:
Sort (Mr $\left.r_{1}+x_{1}, \ldots, M r_{n}+x_{n}\right)$ for random $\left(r_{1}, \ldots, r_{n}\right)$, suitable M.

McEliece encryption example:
Randomly order 6960 bits
($1, \ldots, 1,0, \ldots, 0$), weight 119.
https://bench.cr.yp.to includes 2392 implementations of 614 cryptographic primitives. >20 implementations of Salsa20.

Haswell: Reasonably simple ref implementation compiled with gcc -03-fomit-frame-pointer is $6.15 \times$ slower than fastest Salsa20 implementation.
merged implementation with "machine-independent" optimizations and best of 121 compiler options: $4.52 \times$ slower.

Fast random permutations

Goal: Put list $\left(x_{1}, \ldots, x_{n}\right)$ into a random order.

One textbook strategy:
Sort (Mr $\left.r_{1}+x_{1}, \ldots, M r_{n}+x_{n}\right)$ for random $\left(r_{1}, \ldots, r_{n}\right)$, suitable M.

McEliece encryption example:
Randomly order 6960 bits
($1, \ldots, 1,0, \ldots, 0$), weight 119.
NTRU encryption example:
Randomly order 761 trits
$(\pm 1, \ldots, \pm 1,0, \ldots, 0)$, wt 286.
//bench.cr.yp.to 2392 implementations ryptographic primitives. olementations of Salsa20.

Reasonably simple ref ntation compiled with -fomit-frame-pointer slower than fastest implementation.
implementation achine-independent" tions and best of 121 options: $4.52 \times$ slower.

Fast random permutations

Goal: Put list $\left(x_{1}, \ldots, x_{n}\right)$ into a random order.

One textbook strategy:
Sort (Mr $\left.r_{1}+x_{1}, \ldots, M r_{n}+x_{n}\right)$ for random $\left(r_{1}, \ldots, r_{n}\right)$, suitable M.

McEliece encryption example:
Randomly order 6960 bits
$(1, \ldots, 1,0, \ldots, 0)$, weight 119.
NTRU encryption example:
Randomly order 761 trits
$(\pm 1, \ldots, \pm 1,0, \ldots, 0)$, wt 286.

Simulat using RI
cr.yp.to
lementations nic primitives. ons of Salsa20.
oly simple ref mpiled with
frame-pointer an fastest tation.
tation
ependent"
best of 121
$4.52 \times$ slower.

Fast random permutations

Goal: Put list $\left(x_{1}, \ldots, x_{n}\right)$ into a random order.

One textbook strategy:
Sort $\left(M r_{1}+x_{1}, \ldots, M r_{n}+x_{n}\right)$ for random $\left(r_{1}, \ldots, r_{n}\right)$, suitable M.

McEliece encryption example:
Randomly order 6960 bits
$(1, \ldots, 1,0, \ldots, 0)$, weight 119.
NTRU encryption example:
Randomly order 761 trits
$(\pm 1, \ldots, \pm 1,0, \ldots, 0)$, wt 286.

Simulate uniform using RNG: e.g., s

Fast random permutations

Simulate uniform random r_{i} using RNG: e.g., stream cipl

Fast random permutations

Goal: Put list $\left(x_{1}, \ldots, x_{n}\right)$ into a random order.

One textbook strategy:
Sort (Mr $\left.r_{1}+x_{1}, \ldots, M r_{n}+x_{n}\right)$ for random $\left(r_{1}, \ldots, r_{n}\right)$, suitable M.

McEliece encryption example:
Randomly order 6960 bits
$(1, \ldots, 1,0, \ldots, 0)$, weight 119.
NTRU encryption example:
Randomly order 761 trits $(\pm 1, \ldots, \pm 1,0, \ldots, 0)$, wt 286 .

Simulate uniform random r_{i} using RNG: e.g., stream cipher.

Fast random permutations

Goal: Put list $\left(x_{1}, \ldots, x_{n}\right)$ into a random order.

One textbook strategy:
Sort $\left(M r_{1}+x_{1}, \ldots, M r_{n}+x_{n}\right)$ for random $\left(r_{1}, \ldots, r_{n}\right)$, suitable M.

McEliece encryption example:
Randomly order 6960 bits
$(1, \ldots, 1,0, \ldots, 0)$, weight 119.
NTRU encryption example:
Randomly order 761 trits $(\pm 1, \ldots, \pm 1,0, \ldots, 0)$, wt 286 .

Simulate uniform random r_{i} using RNG: e.g., stream cipher.

How many bits in r_{i} ? Negligible collisions? Occasional collisions?

Fast random permutations

Goal: Put list $\left(x_{1}, \ldots, x_{n}\right)$ into a random order.

One textbook strategy:
Sort $\left(M r_{1}+x_{1}, \ldots, M r_{n}+x_{n}\right)$ for random $\left(r_{1}, \ldots, r_{n}\right)$, suitable M.

McEliece encryption example:
Randomly order 6960 bits
$(1, \ldots, 1,0, \ldots, 0)$, weight 119.
NTRU encryption example:
Randomly order 761 trits $(\pm 1, \ldots, \pm 1,0, \ldots, 0)$, wt 286 .

Simulate uniform random r_{i} using RNG: e.g., stream cipher.

How many bits in r_{i} ? Negligible collisions? Occasional collisions?

Restart on collision?
Uniform distribution; some cost.

Fast random permutations

Goal: Put list $\left(x_{1}, \ldots, x_{n}\right)$ into a random order.

One textbook strategy:
Sort $\left(M r_{1}+x_{1}, \ldots, M r_{n}+x_{n}\right)$ for random $\left(r_{1}, \ldots, r_{n}\right)$, suitable M.

McEliece encryption example:
Randomly order 6960 bits
$(1, \ldots, 1,0, \ldots, 0)$, weight 119.
NTRU encryption example:
Randomly order 761 trits $(\pm 1, \ldots, \pm 1,0, \ldots, 0)$, wt 286.

Simulate uniform random r_{i} using RNG: e.g., stream cipher.

How many bits in r_{i} ? Negligible collisions? Occasional collisions?

Restart on collision?
Uniform distribution; some cost.
Example: $n=6960$ bits;
weight 119; 31-bit r_{i}; no restart.
Any output is produced in
$\leq 119!(n-119)!\binom{2^{31}+n-1}{n}$ ways;
i.e., $<1.02 \cdot 2^{31 n} /\binom{n}{119}$ ways.

Factor <1.02 increase in
attacker's chance of winning.
dom permutations
ut list $\left(x_{1}, \ldots, x_{n}\right)$ indom order.
tbook strategy:
$\left.r_{1}+x_{1}, \ldots, M r_{n}+x_{n}\right)$ for $\left(r_{1}, \ldots, r_{n}\right)$, suitable M.
e encryption example:
ly order 6960 bits
, $0, \ldots, 0)$, weight 119.
ncryption example:
ly order 761 trits
, $\pm 1,0, \ldots, 0)$, wt 286.

Which s
Referenc $n(n-1)$

Restart on collision?
Uniform distribution; some cost.
Example: $n=6960$ bits;
weight 119; 31-bit r_{i}; no restart.
Any output is produced in
≤ 119 ! $(n-119)$! $\binom{2^{31}+n-1}{n}$ ways;
i.e., $<1.02 \cdot 2^{31 n} /\binom{n}{119}$ ways.

Factor <1.02 increase in
attacker's chance of winning.
utations
$\left.\ldots, x_{n}\right)$
er.
tegy:
., $\left.M r_{n}+x_{n}\right)$ for
), suitable M.
on example:
960 bits
, weight 119.
example:
61 trits
, 0), wt 286.

Which sorting alge
Reference bubbles $n(n-1) / 2$ minma

Simulate uniform random r_{i} using RNG: e.g., stream cipher.

How many bits in r_{i} ? Negligible collisions? Occasional collisions?

Restart on collision?
Uniform distribution; some cost.
Example: $n=6960$ bits; weight 119; 31-bit r_{i}; no restart. Any output is produced in $\leq 119!(n-119)!\binom{2^{31}+n-1}{n}$ ways; i.e., $<1.02 \cdot 2^{31 n} /\binom{n}{119}$ ways.

Factor <1.02 increase in attacker's chance of winning.

Which sorting algorithm?
Reference bubblesort code $n(n-1) / 2$ minmax operatio

Simulate uniform random r_{i} using RNG: e.g., stream cipher.

How many bits in r_{i} ? Negligible collisions? Occasional collisions?

Restart on collision?
Uniform distribution; some cost.
Example: $n=6960$ bits;
weight 119; 31-bit r_{i}; no restart.
Any output is produced in
$\leq 119!(n-119)!\binom{2^{31}+n-1}{n}$ ways;
i.e., $<1.02 \cdot 2^{31 n} /\binom{n}{119}$ ways.

Factor <1.02 increase in
attacker's chance of winning.
Which sorting algorithm?
Reference bubblesort code does $n(n-1) / 2$ minmax operations.

Simulate uniform random r_{i} using RNG: e.g., stream cipher.

How many bits in r_{i} ? Negligible collisions? Occasional collisions?

Restart on collision?
Uniform distribution; some cost.
Example: $n=6960$ bits;
weight 119; 31-bit r_{i}; no restart.
Any output is produced in
$\leq 119!(n-119)!\binom{2^{31}+n-1}{n}$ ways;
i.e., $<1.02 \cdot 2^{31 n} /\binom{n}{119}$ ways.

Factor <1.02 increase in
attacker's chance of winning.
Which sorting algorithm?
Reference bubblesort code does $n(n-1) / 2$ minmax operations.

Many standard algorithms use fewer operations: mergesort, quicksort, heapsort, radixsort, etc.

But these algorithms rely on secret branches and secret indices.

Simulate uniform random r_{i} using RNG: e.g., stream cipher.

How many bits in r_{i} ? Negligible collisions? Occasional collisions?

Restart on collision?
Uniform distribution; some cost.
Example: $n=6960$ bits;
weight 119; 31-bit r_{i}; no restart.
Any output is produced in
$\leq 119!(n-119)!\binom{2^{31}+n-1}{n}$ ways;
i.e., $<1.02 \cdot 2^{31 n} /\binom{n}{119}$ ways.

Factor <1.02 increase in
attacker's chance of winning.
Which sorting algorithm?
Reference bubblesort code does $n(n-1) / 2$ minmax operations.

Many standard algorithms use fewer operations: mergesort, quicksort, heapsort, radixsort, etc.

But these algorithms rely on secret branches and secret indices.

Exercise: convert mergesort into constant-time mergesort using $\Theta\left(n^{2}\right)$ operations.
uniform random r_{i}
VG: e.g., stream cipher.
ny bits in r_{i} ? Negligible
s? Occasional collisions?
on collision?
distribution; some cost.
$: n=6960$ bits;
19; 31-bit r_{i}; no restart.
put is produced in
$n-119)!\binom{2^{31}+n-1}{n}$ ways;
$.02 \cdot 2^{31 n} /\binom{n}{119}$ ways.
1.02 increase in
's chance of winning.

Which sorting algorithm?
Reference bubblesort code does $n(n-1) / 2$ minmax operations.

Many standard algorithms use fewer operations: mergesort, quicksort, heapsort, radixsort, etc.

But these algorithms rely on secret branches and secret indices.

Exercise: convert mergesort into constant-time mergesort using $\Theta\left(n^{2}\right)$ operations.

Convert constant loses on cost of
random r_{i}
tream cipher.
r_{i} ? Negligible onal collisions?
n?
on; some cost.
0 bits;
$r_{i} ;$ no restart.
duced in
$\left.{ }^{231+n-1}\right)$ ways;
$\binom{n}{119}$ ways.
ease in
of winning.

Which sorting algorithm?
Reference bubblesort code does $n(n-1) / 2$ minmax operations.

Many standard algorithms use fewer operations: mergesort, quicksort, heapsort, radixsort, etc.

But these algorithms rely on secret branches and secret indices.

Exercise: convert mergesort into constant-time mergesort using $\Theta\left(n^{2}\right)$ operations.

Converting bubble constant-time bub loses only a consta cost of constant-ti

Which sorting algorithm?
Reference bubblesort code does $n(n-1) / 2$ minmax operations.

Many standard algorithms use fewer operations: mergesort, quicksort, heapsort, radixsort, etc.

But these algorithms rely on secret branches and secret indices.

Exercise: convert mergesort into constant-time mergesort using $\Theta\left(n^{2}\right)$ operations.

Converting bubblesort into constant-time bubblesort loses only a constant factor: cost of constant-time minma

Which sorting algorithm?
Reference bubblesort code does $n(n-1) / 2$ minmax operations.

Many standard algorithms use fewer operations: mergesort, quicksort, heapsort, radixsort, etc.

But these algorithms rely on secret branches and secret indices.

Exercise: convert mergesort into constant-time mergesort using $\Theta\left(n^{2}\right)$ operations.

Converting bubblesort into constant-time bubblesort loses only a constant factor: cost of constant-time minmax.

Which sorting algorithm?
Reference bubblesort code does $n(n-1) / 2$ minmax operations.

Many standard algorithms use fewer operations: mergesort, quicksort, heapsort, radixsort, etc.

But these algorithms rely on secret branches and secret indices.

Exercise: convert mergesort into constant-time mergesort using $\Theta\left(n^{2}\right)$ operations.

Converting bubblesort into constant-time bubblesort loses only a constant factor: cost of constant-time minmax.
"Sorting network":
sorting algorithm built as constant sequence of minmax operations ("comparators").

Which sorting algorithm?
Reference bubblesort code does $n(n-1) / 2$ minmax operations.

Many standard algorithms use fewer operations: mergesort, quicksort, heapsort, radixsort, etc.

But these algorithms rely on secret branches and secret indices.

Exercise: convert mergesort into constant-time mergesort using $\Theta\left(n^{2}\right)$ operations.

Converting bubblesort into constant-time bubblesort loses only a constant factor: cost of constant-time minmax.
"Sorting network":
sorting algorithm built as constant sequence of minmax operations ("comparators").

Sorting network on next slide: Batcher's merge-exchange sort. $\Theta\left(n(\log n)^{2}\right)$ minmax operations; $(1 / 4)\left(e^{2}-e+4\right) n-1$ for $n=2^{e}$.
orting algorithm?
e bubblesort code does
/2 minmax operations.
andard algorithms use erations: mergesort, t, heapsort, radixsort, etc.
e algorithms rely on anches and secret indices.
convert mergesort stant-time mergesort $\left(n^{2}\right)$ operations.

Converting bubblesort into constant-time bubblesort loses only a constant factor: cost of constant-time minmax.
"Sorting network":
sorting algorithm built as constant sequence of minmax operations ("comparators").

Sorting network on next slide:
Batcher's merge-exchange sort. $\Theta\left(n(\log n)^{2}\right)$ minmax operations;
$(1 / 4)\left(e^{2}-e+4\right) n-1$ for $n=2^{e}$.
void so
\{ long
$t=1$
while
for
for
i
for
\}
rithm?
ort code does
x operations.
forithms use
mergesort,
t, radixsort, etc.
ms rely on
d secret indices.
mergesort
mergesort
tions.

Converting bubblesort into constant-time bubblesort loses only a constant factor: cost of constant-time minmax.
"Sorting network":
sorting algorithm built as
constant sequence of minmax operations ("comparators").

Sorting network on next slide:
Batcher's merge-exchange sort.
$\Theta\left(n(\log n)^{2}\right)$ minmax operations;
$(1 / 4)\left(e^{2}-e+4\right) n-1$ for $n=2^{e}$.
void sort(int32 \{ long long t,p, $\mathrm{t}=1$; if ($\mathrm{n}<$ while (t < $\mathrm{n}-\mathrm{t}$ for ($p=t ; p>$
for (i = 0;i
if (! (i \&
minmax $(x$
for ($q=t ; q$
for (i = 0
if (! (i
minmax
\}
\}

Converting bubblesort into constant-time bubblesort loses only a constant factor: cost of constant-time minmax.
"Sorting network":
sorting algorithm built as constant sequence of minmax operations ("comparators").

Sorting network on next slide:
Batcher's merge-exchange sort. $\Theta\left(n(\log n)^{2}\right)$ minmax operations; $(1 / 4)\left(e^{2}-e+4\right) n-1$ for $n=2^{e}$.
void sort(int32 *x,long 1
\{ long long t,p,q,i;
$\mathrm{t}=1$; if ($\mathrm{n}<2$) retur
while ($\mathrm{t}<\mathrm{n}-\mathrm{t}$) $\mathrm{t}+=\mathrm{t}$;
for (p = t;p > 0;p >>=
for (i = 0;i < n-p;++
if (! (i \& p))
minmax $(x+i, x+i+p)$
for $(q=t ; q>p ; q \gg$
for (i = 0;i < n-q;
if (! (i \& p)) $\operatorname{minmax}(x+i+p, x+$
\}
\}

Converting bubblesort into constant-time bubblesort loses only a constant factor: cost of constant-time minmax.
"Sorting network":
sorting algorithm built as constant sequence of minmax operations ("comparators").

Sorting network on next slide: Batcher's merge-exchange sort. $\Theta\left(n(\log n)^{2}\right)$ minmax operations; $(1 / 4)\left(e^{2}-e+4\right) n-1$ for $n=2^{e}$.
ng bubblesort into -time bubblesort
y a constant factor: zonstant-time minmax.
network":
algorithm built as
sequence of minmax ns ("comparators").
network on next slide:
s merge-exchange sort.
$n)^{2}$) minmax operations;
$-e+4) n-1$ for $n=2^{e}$.

```
void sort(int32 *x,long long n)
{ long long t,p,q,i;
    t = 1; if (n < 2) return;
    while (t < n-t) t += t;
    for (p = t;p>0;p>>= 1) {
        for (i = 0;i < n-p;++i)
        if (!(i & p))
        minmax(x+i,x+i+p);
        for (q = t;q>p;q >>= 1)
        for (i = 0;i < n-q;++i)
            if (!(i & p))
                minmax (x+i+p,x+i+q);
    }
}
```

How ma Intel Ha

Every cy "min" o 8 32-bit
sort into
blesort
ant factor:
me minmax.
ouilt as
of minmax
arators").
n next slide:
xchange sort.
tax operations;
$n-1$ for $n=2^{e}$.
void sort (int32 *x,long long n) \{ long long t,p,q,i;
t = 1; if (n < 2) return;
while (t < $\mathrm{n}-\mathrm{t}$) $\mathrm{t}+=\mathrm{t}$;
for $(\mathrm{p}=\mathrm{t} ; \mathrm{p}>0 ; \mathrm{p} \gg=1)\{$
for ($i=0 ; i<n-p ;++i)$
if (! (i \& p))
$\operatorname{minmax}(x+i, x+i+p) ;$
for ($q=t ; q>p ; q \gg=1$)
for ($i=0 ; i<n-q ;++i)$
if (! (i \& p))
$\operatorname{minmax}(x+i+p, x+i+q) ;$
\}
\}

How many cycles Intel Haswell CPU

Every cycle: a vec "min" operations 8 32-bit "max" op
void sort (int32 *x, long long n)
\{ long long t,p,q,i;
$\mathrm{t}=1 ;$ if $(\mathrm{n}<2)$ return;
while (t < $\mathrm{n}-\mathrm{t}$) $\mathrm{t}+=\mathrm{t}$;
for $(\mathrm{p}=\mathrm{t} ; \mathrm{p}>0 ; \mathrm{p} \gg=1)\{$
for ($i=0 ; i<n-p ;++i)$
if (! (i \& p))
minmax $(x+i, x+i+p) ;$
for $(q=t ; q>p ; q \gg=1)$
for $(i=0 ; i<n-q ;++i)$
if (! (i \& p))
$\operatorname{minmax}(x+i+p, x+i+q) ;$
$=2^{e}$
\}
\}

How many cycles on, e.g., Intel Haswell CPU core?

Every cycle: a vector of 83 "min" operations and a vect 8 32-bit "max" operations.
void sort (int32 *x,long long n)
\{ long long t,p,q,i;

$$
\mathrm{t}=1 ; \text { if }(\mathrm{n}<2) \text { return; }
$$

$$
\text { while (} \mathrm{t}<\mathrm{n}-\mathrm{t} \text {) } \mathrm{t}+=\mathrm{t} \text {; }
$$

$$
\text { for }(p=t ; p>0 ; p \gg=1)\{
$$

$$
\text { for }(i=0 ; i<n-p ;++i)
$$

$$
\text { if }(!(i \& p))
$$

$$
\operatorname{minmax}(x+i, x+i+p) ;
$$

$$
\text { for }(q=t ; q>p ; q \gg=1)
$$

$$
\text { for }(i=0 ; i<n-q ;++i)
$$

 if (! (i \& p))
 \(\operatorname{minmax}(x+i+p, x+i+q) ;\)
 \}
\}

How many cycles on, e.g., Intel Haswell CPU core?

Every cycle: a vector of 832 -bit "min" operations and a vector of 8 32-bit "max" operations.
void sort (int32 *x,long long n)
$\{$ long long $t, p, q, i ;$
$\mathrm{t}=1$; if $(\mathrm{n}<2)$ return; while (t < $\mathrm{n}-\mathrm{t}) \mathrm{t}+=\mathrm{t}$; for $(\mathrm{p}=\mathrm{t} ; \mathrm{p}>0 ; \mathrm{p} \gg=1)\{$
for ($i=0 ; i<n-p ;++i)$ if (! (i \& p)) $\operatorname{minmax}(x+i, x+i+p) ;$
for $(q=t ; q>p ; q \gg=1)$ for ($i=0 ; i<n-q ;++i)$ if (! (i \& p)) $\operatorname{minmax}(x+i+p, x+i+q) ;$ \}
\}

How many cycles on, e.g., Intel Haswell CPU core?

Every cycle: a vector of 832 -bit "min" operations and a vector of 8 32-bit "max" operations.
≥ 3008 cycles for $n=1024$.
Current software: 7328 cycles.
void sort (int32 *x,long long n)
$\{$ long long $t, p, q, i ;$

```
t = 1; if (n < 2) return;
```

while (t < $\mathrm{n}-\mathrm{t}) \mathrm{t}+=\mathrm{t}$;
for $(\mathrm{p}=\mathrm{t} ; \mathrm{p}>0 ; \mathrm{p} \gg=1)\{$
for ($i=0 ; i<n-p ;++i)$
if (! (i \& p))
$\operatorname{minmax}(x+i, x+i+p) ;$
for $(q=t ; q>p ; q \gg=1)$
for $(i=0 ; i<n-q ;++i)$
if (! (i \& p))
$\operatorname{minmax}(x+i+p, x+i+q) ;$
\}
\}

How many cycles on, e.g., Intel Haswell CPU core?

Every cycle: a vector of 832 -bit "min" operations and a vector of 8 32-bit "max" operations.
≥ 3008 cycles for $n=1024$.
Current software: 7328 cycles.
(Can gap be narrowed?)

```
void sort(int32 *x,long long n)
{ long long t,p,q,i;
    t = 1; if (n < 2) return;
    while (t < n-t) t += t;
    for (p = t;p>0;p>>= 1) {
    for (i = 0;i < n-p;++i)
        if (!(i & p))
        minmax (x+i,x+i+p);
    for (q = t;q>p;q>>= 1)
        for (i = 0;i < n-q;++i)
        if (!(i & p))
        minmax (x+i+p,x+i+q);
    }
}
```

How many cycles on, e.g., Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit "min" operations and a vector of 8 32-bit "max" operations.
≥ 3008 cycles for $n=1024$.
Current software: 7328 cycles. (Can gap be narrowed?)

This is fastest available sorting software. Much faster than, e.g., Intel's "Integrated Performance Primitives" software library.

$$
\begin{aligned}
& \text { rt(int32 *x,long long n) } \\
& \text { long t,p,q,i; } \\
& \text { if (} n<2 \text {) return; } \\
& \text { (} \mathrm{t}<\mathrm{n}-\mathrm{t} \text {) } \mathrm{t}+=\mathrm{t} \text {; } \\
& p=t ; p>0 ; p \gg=1)\{ \\
& \text { (i }=0 ; i<n-p ;++i) \\
& f(!(i \quad \& \quad p)) \\
& \operatorname{minmax}(x+i, x+i+p) ; \\
& (\mathrm{q}=\mathrm{t} ; \mathrm{q}>\mathrm{p} ; \mathrm{q} \gg=1) \\
& \text { or (} i=0 ; i<n-q ;++i) \\
& \text { if (! (i \& p)) } \\
& \operatorname{minmax}(x+i+p, x+i+q) ;
\end{aligned}
$$

How many cycles on, e.g., Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit "min" operations and a vector of 8 32-bit "max" operations.
≥ 3008 cycles for $n=1024$.
Current software: 7328 cycles. (Can gap be narrowed?)

This is fastest available sorting software. Much faster than, e.g., Intel's "Integrated Performance Primitives" software library.

Constan "optimiz code? ト
*x,long long n)
q,i;
2) return;
$\mathrm{t}+=\mathrm{t}$;
$0 ; p \gg=1)\{$
$<\mathrm{n}-\mathrm{p} ;++\mathrm{i})$
p))
$+i, x+i+p) ;$
$>p ; q \gg=1)$
;i<n-q;++i)
\& p))
$(x+i+p, x+i+q) ;$

How many cycles on, e.g., Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit "min" operations and a vector of 8 32-bit "max" operations.
≥ 3008 cycles for $n=1024$.
Current software: 7328 cycles. (Can gap be narrowed?)

This is fastest available sorting software. Much faster than, e.g., Intel's "Integrated Performance Primitives" software library.

Constant-time coc "optimized" non-c code? How is this

How many cycles on, e.g., Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit "min" operations and a vector of 8 32-bit "max" operations.
≥ 3008 cycles for $n=1024$.
Current software: 7328 cycles.
(Can gap be narrowed?)
This is fastest available sorting software. Much faster than, e.g., Intel's "Integrated Performance Primitives" software library.
"optimized" non-constant-ti code? How is this possible?

How many cycles on, e.g., Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit "min" operations and a vector of 8 32-bit "max" operations.
≥ 3008 cycles for $n=1024$.
Current software: 7328 cycles.
(Can gap be narrowed?)
This is fastest available sorting software. Much faster than, e.g., Intel's "Integrated Performance Primitives" software library.

Constant-time code faster than "optimized" non-constant-time code? How is this possible?

How many cycles on, e.g., Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit "min" operations and a vector of 8 32-bit "max" operations.
≥ 3008 cycles for $n=1024$.
Current software: 7328 cycles. (Can gap be narrowed?)

This is fastest available sorting software. Much faster than, e.g., Intel's "Integrated Performance Primitives" software library.

Constant-time code faster than "optimized" non-constant-time code? How is this possible?

People optimize algorithms for a naive model of CPUs:

- Branches are fast.
- Random access is fast.

How many cycles on, e.g., Intel Haswell CPU core?

Every cycle: a vector of 8 32-bit "min" operations and a vector of 8 32-bit "max" operations. ≥ 3008 cycles for $n=1024$. Current software: 7328 cycles. (Can gap be narrowed?)

This is fastest available sorting software. Much faster than, e.g., Intel's "Integrated Performance Primitives" software library.

Constant-time code faster than "optimized" non-constant-time code? How is this possible?

People optimize algorithms for a naive model of CPUs:

- Branches are fast.
- Random access is fast.

CPUs are evolving farther and farther away from this naive model.
Fundamental hardware costs
of constant-time arithmetic are much lower than random access.
ny cycles on, e.g., swell CPU core?
cle: a vector of 8 32-bit perations and a vector of "max" operations.
ycles for $n=1024$.
software: 7328 cycles.
p be narrowed?)
astest available sorting
Much faster than, e.g., Integrated Performance es" software library.

Constant-time code faster than "optimized" non-constant-time code? How is this possible?

People optimize algorithms for a naive model of CPUs:

- Branches are fast.
- Random access is fast.

CPUs are evolving
farther and farther away from this naive model.
Fundamental hardware costs
of constant-time arithmetic are much lower than random access.

Modular
Basic E add, sub integers
(Basic add, sub polynom
on, e.g.,
core?
tor of 832 -bit and a vector of erations.
$7=1024$.
7328 cycles.
wed?)
ilable sorting ster than, e.g., Performance re library.

Constant-time code faster than "optimized" non-constant-time code? How is this possible?

People optimize algorithms for a naive model of CPUs:

- Branches are fast.
- Random access is fast.

CPUs are evolving
farther and farther away from this naive model.
Fundamental hardware costs of constant-time arithmetic are much lower than random access.

Modular arithmeti
Basic ECC operat add, sub, mul of, integers $\bmod 2^{255}$
(Basic NTRU ope add, sub, mul of, polynomials mod

Constant-time code faster than "optimized" non-constant-time code? How is this possible?

People optimize algorithms for a naive model of CPUs:

- Branches are fast.
- Random access is fast.

CPUs are evolving
farther and farther away from this naive model.
Fundamental hardware costs of constant-time arithmetic are much lower than random access.

Modular arithmetic

Basic ECC operations: add, sub, mul of, e.g., integers $\bmod 2^{255}-19$.
(Basic NTRU operations: add, sub, mul of, e.g., polynomials $\bmod x^{761}-x-$

Constant-time code faster than "optimized" non-constant-time code? How is this possible?

People optimize algorithms for a naive model of CPUs:

- Branches are fast.
- Random access is fast.

CPUs are evolving farther and farther away from this naive model.
Fundamental hardware costs of constant-time arithmetic are much lower than random access.

Modular arithmetic

Basic ECC operations: add, sub, mul of, e.g., integers $\bmod 2^{255}-19$.
(Basic NTRU operations: add, sub, mul of, e.g., polynomials $\bmod x^{761}-x-1$.)

Constant-time code faster than "optimized" non-constant-time code? How is this possible?

People optimize algorithms for a naive model of CPUs:

- Branches are fast.
- Random access is fast.

CPUs are evolving farther and farther away from this naive model.
Fundamental hardware costs of constant-time arithmetic are much lower than random access.

Modular arithmetic

Basic ECC operations: add, sub, mul of, e.g., integers mod $2^{255}-19$.
(Basic NTRU operations: add, sub, mul of, e.g., polynomials $\bmod x^{761}-x-1$.)

Typical "big-integer library":
a variable-length uint32 string $\left(f_{0}, f_{1}, \ldots, f_{\ell-1}\right)$ represents the nonnegative integer $f_{0}+2^{32} f_{1}+\cdots+2^{32(\ell-1)} f_{\ell-1}$.
Uniqueness: $\ell=0$ or $f_{\ell-1} \neq 0$.
t-time code faster than ed" non-constant-time low is this possible?
ptimize algorithms ve model of CPUs:
nes are fast.
m access is fast.
e evolving
nd farther away
s naive model.
ental hardware costs
ant-time arithmetic are wer than random access.

Modular arithmetic
Basic ECC operations:
add, sub, mul of, e.g.,
integers mod $2^{255}-19$.
(Basic NTRU operations:
add, sub, mul of, e.g.,
polynomials $\bmod x^{761}-x-1$.)
Typical "big-integer library":
a variable-length uint32 string
$\left(f_{0}, f_{1}, \ldots, f_{\ell-1}\right)$ represents
the nonnegative integer
$f_{0}+2^{32} f_{1}+\cdots+2^{32(\ell-1)} f_{\ell-1}$.
Uniqueness: $\ell=0$ or $f_{\ell-1} \neq 0$.

Library
on this
fg; (2)
le faster than onstant-time possible?
gorithms of CPUs:
is fast.

- away
odel.
ware costs
rithmetic are andom access.

Modular arithmetic

Basic ECC operations:
add, sub, mul of, e.g., integers mod $2^{255}-19$.
(Basic NTRU operations:
add, sub, mul of, e.g.,
polynomials $\bmod x^{761}-x-1$.)
Typical "big-integer library":
a variable-length uint32 string
$\left(f_{0}, f_{1}, \ldots, f_{\ell-1}\right)$ represents
the nonnegative integer
$f_{0}+2^{32} f_{1}+\cdots+2^{32(\ell-1)} f_{\ell-1}$.
Uniqueness: $\ell=0$ or $f_{\ell-1} \neq 0$.

Library provides fu on this representa $f g$; (2) $f, g \mapsto f r$

Modular arithmetic
Basic ECC operations:
add, sub, mul of, e.g., integers $\bmod 2^{255}-19$.
(Basic NTRU operations:
add, sub, mul of, e.g.,
polynomials $\bmod x^{761}-x-1$.)
Typical "big-integer library":
a variable-length uint32 string $\left(f_{0}, f_{1}, \ldots, f_{\ell-1}\right)$ represents the nonnegative integer $f_{0}+2^{32} f_{1}+\cdots+2^{32(\ell-1)} f_{\ell-1}$.
Uniqueness: $\ell=0$ or $f_{\ell-1} \neq 0$.

Library provides functions ac on this representation: (1) $f g$; (2) $f, g \mapsto f \bmod g$; etc

Modular arithmetic

Basic ECC operations: add, sub, mul of, e.g., integers $\bmod 2^{255}-19$.
(Basic NTRU operations:
add, sub, mul of, e.g., polynomials $\bmod x^{761}-x-1$.)

Typical "big-integer library":
a variable-length uint32 string $\left(f_{0}, f_{1}, \ldots, f_{\ell-1}\right)$ represents
the nonnegative integer
$f_{0}+2^{32} f_{1}+\cdots+2^{32(\ell-1)} f_{\ell-1}$.
Uniqueness: $\ell=0$ or $f_{\ell-1} \neq 0$.

Library provides functions acting on this representation: (1) $f, g \mapsto$ $f g$; (2) $f, g \mapsto f \bmod g$; etc.

Modular arithmetic

Basic ECC operations: add, sub, mul of, e.g., integers $\bmod 2^{255}-19$.
(Basic NTRU operations:
add, sub, mul of, e.g., polynomials mod $x^{761}-x-1$.)

Typical "big-integer library":
a variable-length uint32 string $\left(f_{0}, f_{1}, \ldots, f_{\ell-1}\right)$ represents
the nonnegative integer
$f_{0}+2^{32} f_{1}+\cdots+2^{32(\ell-1)} f_{\ell-1}$.
Uniqueness: $\ell=0$ or $f_{\ell-1} \neq 0$.

Library provides functions acting on this representation: (1) $f, g \mapsto$ $f g$; (2) $f, g \mapsto f \bmod g$; etc.

ECC implementor using library: multiply $f, g \bmod 2^{255}-19$ by (1) multiplying f by g;
(2) reducing mod $2^{255}-19$.

Modular arithmetic

Basic ECC operations: add, sub, mul of, e.g., integers $\bmod 2^{255}-19$.
(Basic NTRU operations:
add, sub, mul of, e.g., polynomials mod $x^{761}-x-1$.)

Typical "big-integer library":
a variable-length uint32 string $\left(f_{0}, f_{1}, \ldots, f_{\ell-1}\right)$ represents
the nonnegative integer
$f_{0}+2^{32} f_{1}+\cdots+2^{32(\ell-1)} f_{\ell-1}$.
Uniqueness: $\ell=0$ or $f_{\ell-1} \neq 0$.

Library provides functions acting on this representation: (1) $f, g \mapsto$ $f g$; (2) $f, g \mapsto f \bmod g$; etc.

ECC implementor using library: multiply $f, g \bmod 2^{255}-19$ by (1) multiplying f by g; (2) reducing mod $2^{255}-19$.

But these functions take variable time to ensure uniqueness!

Modular arithmetic

Basic ECC operations: add, sub, mul of, e.g., integers $\bmod 2^{255}-19$.
(Basic NTRU operations:
add, sub, mul of, e.g.,
polynomials mod $x^{761}-x-1$.)
Typical "big-integer library":
a variable-length uint32 string $\left(f_{0}, f_{1}, \ldots, f_{\ell-1}\right)$ represents the nonnegative integer $f_{0}+2^{32} f_{1}+\cdots+2^{32(\ell-1)} f_{\ell-1}$.
Uniqueness: $\ell=0$ or $f_{\ell-1} \neq 0$.

Library provides functions acting on this representation: (1) $f, g \mapsto$ $f g$; (2) $f, g \mapsto f \bmod g$; etc.

ECC implementor using library: multiply $f, g \bmod 2^{255}-19$ by (1) multiplying f by g; (2) reducing mod $2^{255}-19$.

But these functions take variable time to ensure uniqueness!

Need a different representation for constant-time arithmetic.
Can also gain speed this way.

arithmetic

CC operations:
, mul of, e.g.,
$\bmod 2^{255}-19$.
ITRU operations:
, mul of, e.g.,
ials $\bmod x^{761}-x-1$.)
"big-integer library":
e-length uint32 string
., $\left.f_{\ell-1}\right)$ represents
egative integer
$f_{1}+\cdots+2^{32(\ell-1)} f_{\ell-1}$.
ess: $\ell=0$ or $f_{\ell-1} \neq 0$.

Library provides functions acting on this representation: (1) $f, g \mapsto$ $f g$; (2) $f, g \mapsto f \bmod g$; etc.

ECC implementor using library: multiply $f, g \bmod 2^{255}-19$ by (1) multiplying f by g; (2) reducing mod $2^{255}-19$.

But these functions take variable time to ensure uniqueness!

Need a different representation for constant-time arithmetic.
Can also gain speed this way.

Constan
a consta $\left(f_{0}, f_{1}, \ldots\right.$ the nonr $f_{0}+2^{32}$

Adding always a
Don't re

Library provides functions acting on this representation: (1) $f, g \mapsto$ $f g$; (2) $f, g \mapsto f \bmod g$; etc.

ECC implementor using library: multiply $f, g \bmod 2^{255}-19$
by (1) multiplying f by g;
(2) reducing mod $2^{255}-19$.

But these functions take variable time to ensure uniqueness!

Need a different representation for constant-time arithmetic.
Can also gain speed this way.

Constant-time big a constant-length $\left(f_{0}, f_{1}, \ldots, f_{\ell-1}\right)$ the nonnegative in $f_{0}+2^{32} f_{1}+\cdots+$

Adding two ℓ-limb always allocate $\ell-$ Don't remove top

Library provides functions acting on this representation: (1) $f, g \mapsto$ $f g$; (2) $f, g \mapsto f \bmod g$; etc.

ECC implementor using library: multiply $f, g \bmod 2^{255}-19$
by (1) multiplying f by g;
(2) reducing mod $2^{255}-19$.

But these functions take variable time to ensure uniqueness!

Need a different representation for constant-time arithmetic.
Can also gain speed this way.

Library provides functions acting on this representation: (1) $f, g \mapsto$ $f g$; (2) $f, g \mapsto f \bmod g$; etc.

ECC implementor using library: multiply $f, g \bmod 2^{255}-19$
by (1) multiplying f by g;
(2) reducing mod $2^{255}-19$.

But these functions take variable time to ensure uniqueness!

Need a different representation for constant-time arithmetic. Can also gain speed this way.

Constant-time bigint library:
a constant-length uint32 string $\left(f_{0}, f_{1}, \ldots, f_{\ell-1}\right)$ represents
the nonnegative integer $f_{0}+2^{32} f_{1}+\cdots+2^{32(\ell-1)} f_{\ell-1}$.

Adding two ℓ-limb integers: always allocate $\ell+1$ limbs. Don't remove top zero limb.

Library provides functions acting on this representation: (1) $f, g \mapsto$ $f g$; (2) $f, g \mapsto f \bmod g$; etc.

ECC implementor using library: multiply $f, g \bmod 2^{255}-19$
by (1) multiplying f by g;
(2) reducing mod $2^{255}-19$.

But these functions take variable time to ensure uniqueness!

Need a different representation for constant-time arithmetic. Can also gain speed this way.

Constant-time bigint library:
a constant-length uint32 string $\left(f_{0}, f_{1}, \ldots, f_{\ell-1}\right)$ represents
the nonnegative integer $f_{0}+2^{32} f_{1}+\cdots+2^{32(\ell-1)} f_{\ell-1}$.

Adding two ℓ-limb integers: always allocate $\ell+1$ limbs. Don't remove top zero limb.

Can also track bounds more refined than $2^{0}, 2^{32}, 2^{64}, 2^{96}, \ldots$; but no limbs \rightarrow bounds data flow.

Library provides functions acting on this representation: (1) $f, g \mapsto$ $f g$; (2) $f, g \mapsto f \bmod g$; etc.

ECC implementor using library: multiply $f, g \bmod 2^{255}-19$
by (1) multiplying f by g;
(2) reducing mod $2^{255}-19$.

But these functions take variable time to ensure uniqueness!

Need a different representation for constant-time arithmetic. Can also gain speed this way.

Constant-time bigint library: a constant-length uint32 string $\left(f_{0}, f_{1}, \ldots, f_{\ell-1}\right)$ represents the nonnegative integer $f_{0}+2^{32} f_{1}+\cdots+2^{32(\ell-1)} f_{\ell-1}$.

Adding two ℓ-limb integers: always allocate $\ell+1$ limbs. Don't remove top zero limb.

Can also track bounds more refined than $2^{0}, 2^{32}, 2^{64}, 2^{96}, \ldots$; but no limbs \rightarrow bounds data flow.
$f \bmod p$ is as short as p.
brovides functions acting epresentation: (1) $f, g \mapsto$ $f, g \mapsto f \bmod g ;$ etc.
olementor using library:
$f, g \bmod 2^{255}-19$
ultiplying f by g;
cing $\bmod 2^{255}-19$.
e functions take variable ensure uniqueness!
different representation tant-time arithmetic. gain speed this way.

Constant-time bigint library:
a constant-length uint32 string $\left(f_{0}, f_{1}, \ldots, f_{\ell-1}\right)$ represents the nonnegative integer $f_{0}+2^{32} f_{1}+\cdots+2^{32(\ell-1)} f_{\ell-1}$.

Adding two ℓ-limb integers: always allocate $\ell+1$ limbs. Don't remove top zero limb.

Can also track bounds more refined than $2^{0}, 2^{32}, 2^{64}, 2^{96}, \ldots$; but no limbs \rightarrow bounds data flow.
$f \bmod p$ is as short as p.

Usually
uint32
represen
$2^{77} f_{3}+$
$2^{179} f_{7}+$
Constan
More lin but save overflow

After m replace
inctions acting tion: (1) $f, g \mapsto$ nod g; etc.
using library:
$2^{255}-19$
f by g; $2^{255}-19$.
s take variable queness!
epresentation arithmetic.
ed this way.

Constant-time bigint library:
a constant-length uint32 string $\left(f_{0}, f_{1}, \ldots, f_{\ell-1}\right)$ represents the nonnegative integer $f_{0}+2^{32} f_{1}+\cdots+2^{32(\ell-1)} f_{\ell-1}$.

Adding two ℓ-limb integers: always allocate $\ell+1$ limbs. Don't remove top zero limb.

Can also track bounds more refined than $2^{0}, 2^{32}, 2^{64}, 2^{96}, \ldots$; but no limbs \rightarrow bounds data flow.
$f \bmod p$ is as short as p.

Usually faster repr uint32 string (f_{0}, represents $f_{0}+2^{2}$ $2^{77} f_{3}+2^{102} f_{4}+2$ $2^{179} f_{7}+2^{204} f_{8}+$

Constant bound o
More limbs than b but save time by overflows and dela

After multiplicatio replace 2^{255} with

Constant-time bigint library:
a constant-length uint32 string $\left(f_{0}, f_{1}, \ldots, f_{\ell-1}\right)$ represents the nonnegative integer $f_{0}+2^{32} f_{1}+\cdots+2^{32(\ell-1)} f_{\ell-1}$.

Adding two ℓ-limb integers: always allocate $\ell+1$ limbs. Don't remove top zero limb.

Can also track bounds more refined than $2^{0}, 2^{32}, 2^{64}, 2^{96}, \ldots$; but no limbs \rightarrow bounds data flow.
$f \bmod p$ is as short as p.
ting iable ion

Usually faster representation uint32 string $\left(f_{0}, f_{1}, \ldots, f_{9}\right)$ represents $f_{0}+2^{26} f_{1}+2^{51} f$ $2^{77} f_{3}+2^{102} f_{4}+2^{128} f_{5}+2^{1}$ $2^{179} f_{7}+2^{204} f_{8}+2^{230} f_{9}$.

Constant bound on each f_{j}.
More limbs than before, but save time by avoiding overflows and delaying carri After multiplication, replace 2^{255} with 19 .

Constant-time bigint library:
a constant-length uint32 string $\left(f_{0}, f_{1}, \ldots, f_{\ell-1}\right)$ represents the nonnegative integer $f_{0}+2^{32} f_{1}+\cdots+2^{32(\ell-1)} f_{\ell-1}$.

Adding two ℓ-limb integers: always allocate $\ell+1$ limbs. Don't remove top zero limb.

Can also track bounds more refined than $2^{0}, 2^{32}, 2^{64}, 2^{96}, \ldots$; but no limbs \rightarrow bounds data flow. $f \bmod p$ is as short as p.

Usually faster representation:
uint32 string ($f_{0}, f_{1}, \ldots, f_{9}$)
represents $f_{0}+2^{26} f_{1}+2^{51} f_{2}+$
$2^{77} f_{3}+2^{102} f_{4}+2^{128} f_{5}+2^{153} f_{6}+$ $2^{179} f_{7}+2^{204} f_{8}+2^{230} f_{9}$.

Constant bound on each f_{i}.
More limbs than before, but save time by avoiding overflows and delaying carries.

After multiplication, replace 2^{255} with 19 .

Constant-time bigint library:
a constant-length uint32 string $\left(f_{0}, f_{1}, \ldots, f_{\ell-1}\right)$ represents the nonnegative integer $f_{0}+2^{32} f_{1}+\cdots+2^{32(\ell-1)} f_{\ell-1}$.

Adding two ℓ-limb integers: always allocate $\ell+1$ limbs. Don't remove top zero limb.

Can also track bounds more refined than $2^{0}, 2^{32}, 2^{64}, 2^{96}, \ldots$; but no limbs \rightarrow bounds data flow. $f \bmod p$ is as short as p.

Usually faster representation:
uint32 string ($f_{0}, f_{1}, \ldots, f_{9}$)
represents $f_{0}+2^{26} f_{1}+2^{51} f_{2}+$
$2^{77} f_{3}+2^{102} f_{4}+2^{128} f_{5}+2^{153} f_{6}+$ $2^{179} f_{7}+2^{204} f_{8}+2^{230} f_{9}$.

Constant bound on each f_{i}.
More limbs than before, but save time by avoiding overflows and delaying carries.

After multiplication, replace 2^{255} with 19 .

Slightly faster on some CPUs:
int32 string $\left(f_{0}, f_{1}, \ldots, f_{9}\right)$.
t-time bigint library:
nt-length uint32 string
$\left.f_{\ell-1}\right)$ represents
egative integer
$f_{1}+\cdots+2^{32(\ell-1)} f_{\ell-1}$.
two ℓ-limb integers: llocate $\ell+1$ limbs. move top zero limb.
track bounds more han $2^{0}, 2^{32}, 2^{64}, 2^{96}, \ldots$; mbs \rightarrow bounds data flow.
is as short as p.

Usually faster representation:
uint32 string ($f_{0}, f_{1}, \ldots, f_{9}$)
represents $f_{0}+2^{26} f_{1}+2^{51} f_{2}+$
$2^{77} f_{3}+2^{102} f_{4}+2^{128} f_{5}+2^{153} f_{6}+$ $2^{179} f_{7}+2^{204} f_{8}+2^{230} f_{9}$.

Constant bound on each f_{i}.
More limbs than before,
but save time by avoiding
overflows and delaying carries.
After multiplication, replace 2^{255} with 19 .

Slightly faster on some CPUs: int32 string ($f_{0}, f_{1}, \ldots, f_{9}$).
int32 f
int32 g
..
int64 f int64 f f7_2
int64 h
$\mathrm{c} 4=(\mathrm{h}$
$\mathrm{h} 5+=\mathrm{c}$
int library:
uint32 string presents
teger $2^{32(\ell-1)} f_{\ell-1}$.
integers:

- 1 limbs.
zero limb.
unds more
${ }^{2}, 2^{64}, 2^{96}$,
unds data flow.
t as p.

Usually faster representation:
uint32 string ($f_{0}, f_{1}, \ldots, f_{9}$)
represents $f_{0}+2^{26} f_{1}+2^{51} f_{2}+$
$2^{77} f_{3}+2^{102} f_{4}+2^{128} f_{5}+2^{153} f_{6}+$ $2^{179} f_{7}+2^{204} f_{8}+2^{230} f_{9}$.

Constant bound on each f_{i}.
More limbs than before,
but save time by avoiding
overflows and delaying carries.
After multiplication, replace 2^{255} with 19 .

Slightly faster on some CPUs:
int32 string $\left(f_{0}, f_{1}, \ldots, f_{9}\right)$.
int32 f7_2 = 2 *
int32 g7_19 = 19
int64 f0g4 = f0 int64 f7g7_38 = f7_2 * (int64)
int64 h4 = f0g4
$+\mathrm{f} 2 \mathrm{~g} 2$
$+\mathrm{f} 4 \mathrm{~g} 0$

+ f6g8_
+ f8g6_

$$
\begin{aligned}
& \text { c4 }=\text { (h4 + (int6 } \\
& \text { h5 += c4; h4 -= }
\end{aligned}
$$

Usually faster representation:
uint32 string ($f_{0}, f_{1}, \ldots, f_{9}$)
represents $f_{0}+2^{26} f_{1}+2^{51} f_{2}+$ $2^{77} f_{3}+2^{102} f_{4}+2^{128} f_{5}+2^{153} f_{6}+$ $2^{179} f_{7}+2^{204} f_{8}+2^{230} f_{9}$.

Constant bound on each f_{i}.
More limbs than before,
but save time by avoiding
overflows and delaying carries.
After multiplication, replace 2^{255} with 19 .

Slightly faster on some CPUs:
int32 string $\left(f_{0}, f_{1}, \ldots, f_{9}\right)$.

```
int64 f0g4 = f0 * (int64)
int64 f7g7_38 =
```

 f7_2 * (int64) g7_19;
 int64 h4 = f0g4 + f1g3_2
+f 2 g 2 + f3g1_2
+f 4 g 0 + f5g9_38
$+\mathrm{f} 6 \mathrm{~g} 8 _19$ + f7g7
+ f8g6_19 + f9g5
$c 4=(h 4+(i n t 64)(1 \ll 25)$
h5 += c4; h4 -= c4 << 26;

Usually faster representation:
uint32 string ($f_{0}, f_{1}, \ldots, f_{9}$)
represents $f_{0}+2^{26} f_{1}+2^{51} f_{2}+$
$2^{77} f_{3}+2^{102} f_{4}+2^{128} f_{5}+2^{153} f_{6}+$ $2^{179} f_{7}+2^{204} f_{8}+2^{230} f_{9}$.

Constant bound on each f_{i}.
More limbs than before, but save time by avoiding overflows and delaying carries.

After multiplication, replace 2^{255} with 19 .

Slightly faster on some CPUs: int32 string ($f_{0}, f_{1}, \ldots, f_{9}$).

```
int32 f7_2 = 2 * f7;
int32 g7_19 = 19 * g7;
```

int64 f0g4 $=f 0 *(i n t 64) g 4$;
int64 f7g7_38 =
f7_2 * (int64) g7_19;

$$
\begin{aligned}
\text { int64 h4 } & =f 0 g 4+f 1 g 3 _2 \\
& +f 2 g 2+f 3 g 1 _2 \\
& +f 4 g 0+f 5 g 9 _38 \\
& +f 6 g 8 _19+f 7 g 7 _38 \\
& +f 8 g 6 _19+f 9 g 5 _38
\end{aligned}
$$

```
c4 = (h4 + (int64)(1<<25)) >> 26;
h5 += c4; h4 -= c4 << 26;
```

Initial cc is polyn modulo Exercise are bein
faster on some CPUs:
tring $\left(f_{0}, f_{1}, \ldots, f_{9}\right)$.

```
int32 f7_2 = 2 * f7;
int32 g7_19 = 19 * g7;
```

int64 f0g4 $=\mathrm{f} 0 *($ int64) g 4 ;
int64 f7g7_38 =
f7_2 * (int64) g7_19;

$$
\begin{aligned}
\text { int64 h4 } & =f 0 g 4+f 1 g 3 _2 \\
& +f 2 g 2+f 3 g 1 _2 \\
& +f 4 g 0+f 5 g 9 _38 \\
& +f 6 g 8 _19+f 7 g 7 _38 \\
& +f 8 g 6 _19+f 9 g 5 _38
\end{aligned}
$$

```
\(c 4=(h 4+(\) int 64\()(1 \ll 25)) \gg 26 ;\)
h5 += c4; h4 -= c4 << 26;
\[
\begin{aligned}
& \text { c4 }=(h 4+(\text { int } 64)(1 \ll 25)) \gg 26 ; \\
& \text { h5 += c4; h4 -= c4 << } 26 ;
\end{aligned}
\]
```

..
esentation:
$\left.f_{1}, \ldots, f_{9}\right)$
${ }^{6} f_{1}+{ }^{51} f_{2}+$ ${ }^{128} f_{5}+2^{153} f_{6}+$ $2^{230} f_{9}$.
n each f_{i}.
efore,
voiding
ying carries.
n,
19.
some CPUs:
$\left.f_{9}\right)$

$$
\begin{aligned}
& \text { int32 f7_2 }=2 * f 7 \\
& \text { int32 } \mathrm{g} 7 _19=19 * \mathrm{~g} 7
\end{aligned}
$$

. . .
int64 f0g4 = f0 * (int64) g4;
int64 f7g7_38 =
f7_2 * (int64) g7_19;

$$
\begin{aligned}
\text { int64 h4 } & =f 0 g 4+f 1 g 3 _2 \\
& +f 2 g 2+f 3 g 1 _2 \\
& +f 4 g 0+f 5 g 9 _38 \\
& +f 6 g 8 _19+f 7 g 7 _38 \\
& +f 8 g 6 _19+f 9 g 5 _38
\end{aligned}
$$

$$
\begin{aligned}
& \text { c4 }=(h 4+(\text { int } 64)(1 \ll 25)) \gg 26 ; \\
& \text { h5 += c4; h4 -= c4 << } 26 ;
\end{aligned}
$$

Initial computatio is polynomial mult modulo $x^{10}-19$.
Exercise: Which p are being multiplie

```
int32 f7_2 = 2 * f7;
int32 g7_19 = 19 * g7;
```

int64 f0g4 $=\mathrm{f} 0 *($ int64) $\mathrm{g} 4 ;$
int64 f7g7_38 =
f7_2 * (int64) g7_19;
int64 h4 $=\mathrm{f} 0 \mathrm{~g} 4+\mathrm{f} 1 \mathrm{~g} 3 _2$
$+f 2 g 2+f 3 g 1 _2$
$+f 4 g 0+f 5 g 9 _38$
+ f6g8_19 + f7g7_38
+ f8g6_19 + f9g5_38;
$c 4=(h 4+(i n t 64)(1 \ll 25)) \gg 26 ;$
h5 += c4; h4 -= c4 $\ll 26 ;$

Initial computation of h0, . is polynomial multiplication modulo $x^{10}-19$.
Exercise: Which polynomial are being multiplied?
int32 $\mathrm{f} 7 _2=2 * f 7 ;$
int32 $\mathrm{g} 7 _19=19 * \mathrm{~g} 7$

```
int64 f0g4 = f0 * (int64) g4;
```

int64 f7g7_38 =
f7_2 * (int64) g7_19;

$$
\begin{aligned}
\text { int64 h4 } & =f 0 \mathrm{~g} 4+f 1 \mathrm{~g} 3 _2 \\
& +f 2 \mathrm{~g} 2+f 3 \mathrm{~g} 1 _2 \\
& +f 4 \mathrm{~g} 0+f 5 \mathrm{~g} 9 _38 \\
& +f 6 \mathrm{~g} 8 _19+\mathrm{f} 7 \mathrm{~g} 7 _38 \\
& +\mathrm{f} 8 \mathrm{~g} 6 _19+\mathrm{f} 9 \mathrm{~g} 5 _38
\end{aligned}
$$

$$
\begin{aligned}
& \text { c4 }=(h 4+(\text { int64 })(1 \ll 25)) \gg 26 ; \\
& \text { h5 += c4; h4 -= c4 << } 26 ;
\end{aligned}
$$

Initial computation of h0, ..., h9
is polynomial multiplication modulo $x^{10}-19$.

Exercise: Which polynomials are being multiplied?

$$
\begin{aligned}
& \text { int32 f7_2 = } 2 \text { * f7; } \\
& \text { int32 g7_19 = } 19 * g 7 \text {; } \\
& \text { int64 f0g4 }=f 0 *(\text { int } 64) ~ g 4 ; \\
& \text { int64 f7g7_38 = } \\
& \text { f7_2 * (int64) g7_19; } \\
& \text { int64 h4 }=\mathrm{f} 0 \mathrm{~g} 4+\mathrm{f} 1 \mathrm{~g} 3 _2 \\
& +f 2 g 2+f 3 g 1 _2 \\
& +\mathrm{f} 4 \mathrm{~g} 0 \text { + f5g9_38 } \\
& \text { + f6g8_19 + f7g7_38 } \\
& \text { + f8g6_19 + f9g5_38; } \\
& c 4=(h 4+(i n t 64)(1 \ll 25)) \gg 26 ; \\
& \text { h5 += c4; h4 -= c4 << 26; }
\end{aligned}
$$

Initial computation of h0, ..., h9 is polynomial multiplication modulo $x^{10}-19$.
Exercise: Which polynomials are being multiplied?

Reduction modulo $x^{10}-19$ and carries such as h4 \rightarrow h5 squeeze the product into limited-size representation suitable for next multiplication.

$$
\begin{aligned}
& \text { int32 f7_2 = } 2 \text { * f7; } \\
& \text { int32 g7_19 = } 19 * g 7 \text {; } \\
& \text { int64 f0g4 }=\mathrm{f0} *(\text { int64) } \mathrm{g} 4 ; \\
& \text { int64 f7g7_38 = } \\
& \text { f7_2 * (int64) g7_19; } \\
& \text { int64 h4 = f0g4 + f1g3_2 } \\
& +f 2 g 2+f 3 g 1 _2 \\
& +\mathrm{f} 4 \mathrm{~g} 0 \text { + f5g9_38 } \\
& \text { + f6g8_19 + f7g7_38 } \\
& \text { + f8g6_19 + f9g5_38; } \\
& \text { c4 }=(h 4+(i n t 64)(1 \ll 25)) \gg 26 ; \\
& \text { h5 += c4; h4 -= c4 << 26; }
\end{aligned}
$$

Initial computation of h0, ..., h9
is polynomial multiplication modulo $x^{10}-19$.

Exercise: Which polynomials are being multiplied?

Reduction modulo $x^{10}-19$ and carries such as h4 \rightarrow h5 squeeze the product into limited-size representation suitable for next multiplication.

At end of computation:
freeze representation into unique representation suitable for network transmission.

7_2 = 2 * f7;

```
7_19 = 19 * g7;
```

$0 \mathrm{~g} 4=\mathrm{f0} *(\mathrm{int64}) \mathrm{g} 4$;
7g7_38 =
(int64) g7_19;
$4=f 0 g 4+f 1 g 3 _2$
$+f 2 g 2+f 3 g 1 _2$
+f 4 g 0 + f5g9_38
+ f6g8_19 + f7g7_38
+ f8g6_19 + f9g5_38;
4 + (int64) (1<<25)) >> 26;
4; h4 -= c4 << 26;

Initial computation of h0, ..., h9 is polynomial multiplication modulo $x^{10}-19$.
Exercise: Which polynomials are being multiplied?

Reduction modulo $x^{10}-19$
and carries such as h4 h h5
squeeze the product
into limited-size representation suitable for next multiplication.

At end of computation:
freeze representation
into unique representation
suitable for network transmission.

Much m
see, e.g.
f7;

* g7;
* (int64) g4;
g7_19;
+ f1g3_2
+ f3g1_2
+ f5g9_38
19 + f7g7_38
19 + f9g5_38;

4) $(1 \ll 25)) \gg 26$;
c4 << 26;

Initial computation of h0, ..., h9
is polynomial multiplication modulo $x^{10}-19$.

Exercise: Which polynomials are being multiplied?

Reduction modulo $x^{10}-19$ and carries such as h4 \rightarrow h5 squeeze the product into limited-size representation suitable for next multiplication.

At end of computation:
freeze representation
into unique representation
suitable for network transmission.

Much more about
see, e.g., 2015 Ch

Initial computation of h0, ..., h9 is polynomial multiplication modulo $x^{10}-19$.
g4; Exercise: Which polynomials are being multiplied?

Reduction modulo $x^{10}-19$ and carries such as $\mathrm{h} 4 \rightarrow \mathrm{~h} 5$ squeeze the product into limited-size representation suitable for next multiplication.

At end of computation:
freeze representation
into unique representation
suitable for network transmission.

Much more about ECC spee see, e.g., 2015 Chou.

Initial computation of h0, ..., h9 is polynomial multiplication modulo $x^{10}-19$.
Exercise: Which polynomials are being multiplied?

Reduction modulo $x^{10}-19$
and carries such as $\mathrm{h} 4 \rightarrow \mathrm{~h} 5$
squeeze the product
into limited-size representation suitable for next multiplication.

At end of computation:
freeze representation
into unique representation
suitable for network transmission.

Much more about ECC speed:
see, e.g., 2015 Chou.

Initial computation of h0, ..., h9 is polynomial multiplication modulo $x^{10}-19$.
Exercise: Which polynomials are being multiplied?

Reduction modulo $x^{10}-19$
and carries such as h4 $\rightarrow \mathrm{h} 5$
squeeze the product
into limited-size representation suitable for next multiplication.

At end of computation:
freeze representation
into unique representation
suitable for network transmission.

Much more about ECC speed:
see, e.g., 2015 Chou.
Verifying constant time: increasingly automated.

Initial computation of h0, ..., h9
is polynomial multiplication modulo $x^{10}-19$.
Exercise: Which polynomials are being multiplied?

Reduction modulo $x^{10}-19$
and carries such as h4 \rightarrow h5
squeeze the product
into limited-size representation
suitable for next multiplication.
At end of computation:
freeze representation
into unique representation
suitable for network transmission.

Much more about ECC speed:
see, e.g., 2015 Chou.
Verifying constant time: increasingly automated.

Testing can miss rare bugs that attacker might trigger.
Fix: prove that software matches mathematical spec; have computer check proofs.

Initial computation of h0, ..., h9
is polynomial multiplication modulo $x^{10}-19$.
Exercise: Which polynomials are being multiplied?

Reduction modulo $x^{10}-19$
and carries such as $\mathrm{h} 4 \rightarrow \mathrm{~h} 5$
squeeze the product
into limited-size representation
suitable for next multiplication.
At end of computation:
freeze representation
into unique representation
suitable for network transmission.

Much more about ECC speed:
see, e.g., 2015 Chou.
Verifying constant time: increasingly automated.

Testing can miss rare bugs that attacker might trigger.
Fix: prove that software matches mathematical spec; have computer check proofs.

Progress in deploying proven fast software: see, e.g., 2015 Bernstein-Schwabe "gfverif"; 2017 HACL* X25519 in Firefox.
mputation of h0, ..., h9
omial multiplication
$x^{10}-19$.
Which polynomials o multiplied?
n modulo $x^{10}-19$
ies such as h4 \rightarrow h5
the product
ted-size representation for next multiplication.
fomputation:
epresentation
que representation
for network transmission.

Much more about ECC speed:
see, e.g., 2015 Chou.
Verifying constant time: increasingly automated.

Testing can miss rare bugs that attacker might trigger.
Fix: prove that software matches mathematical spec; have computer check proofs.

Progress in deploying proven fast software: see, e.g., 2015
Bernstein-Schwabe "gfverif"; 2017 HACL* X25519 in Firefox.
gfverif h impleme plus occ against
$\mathrm{p}=2 * *$
$\mathrm{A}=486$
x2, z2, x
for i i
ni $=$
x2, x3
z2,z3
x3,z3
4*x1
x2, z2
$4 * x 2$

ר of h0, ..., h9 iplication
olynomials
d?
$x^{10}-19$
s h4 h h5
uct
presentation ultiplication.
ation:
ion
entation
k transmission.

Much more about ECC speed:
see, e.g., 2015 Chou.
Verifying constant time: increasingly automated.

Testing can miss rare bugs that attacker might trigger.
Fix: prove that software matches mathematical spec; have computer check proofs.

Progress in deploying proven fast software: see, e.g., 2015 Bernstein-Schwabe "gfverif"; 2017 HACL* X25519 in Firefox.
gfverif has verified implementation of plus occasional an against the followi
$\mathrm{p}=2 * * 255-19$
$\mathrm{A}=486662$
$\mathrm{x} 2, \mathrm{z} 2, \mathrm{x} 3, \mathrm{z} 3=1$,
for i in reverse

$$
\text { ni }=\text { bit }(n, i)
$$

$$
\mathrm{x} 2, \mathrm{x} 3=\operatorname{cswap}(
$$

$$
\text { z2,z3 = cswap }(
$$

$$
x 3, z 3=(4 *(x 2
$$

$$
4 * x 1 *(x 2 * z 3-z
$$

$$
x 2, z 2=((x 2 * *
$$

$$
4 * \mathrm{x} 2 * \mathrm{z} 2 *(\mathrm{x} 2 * *
$$

Much more about ECC speed:
see, e.g., 2015 Chou.
Verifying constant time: increasingly automated.

Testing can miss rare bugs that attacker might trigger.
Fix: prove that software matches mathematical spec; have computer check proofs.

Progress in deploying proven fast software: see, e.g., 2015 Bernstein-Schwabe "gfverif"; 2017 HACL* X25519 in Firefox.
gfverif has verified ref 10 implementation of X25519, plus occasional annotations, against the following specifi
$\mathrm{p}=2 * * 255-19$
$\mathrm{A}=486662$
$\mathrm{x} 2, \mathrm{z} 2, \mathrm{x} 3, \mathrm{z3}=1,0, \mathrm{x} 1,1$
for i in reversed(range(2

$$
\begin{aligned}
& \mathrm{ni}=\text { bit }(\mathrm{n}, \mathrm{i}) \\
& \mathrm{x} 2, \mathrm{x} 3=\mathrm{cswap}(\mathrm{x} 2, \mathrm{x} 3, \mathrm{ni}) \\
& \mathrm{z} 2, \mathrm{z3}=\mathrm{cswap}(\mathrm{z} 2, \mathrm{z} 3, \mathrm{ni}) \\
& \mathrm{x} 3, \mathrm{z} 3=(4 *(\mathrm{x} 2 * \mathrm{x} 3-\mathrm{z} 2 * \mathrm{z} 3 \\
& 4 * \mathrm{x} 1 *(\mathrm{x} 2 * \mathrm{z} 3-\mathrm{z} 2 * \mathrm{x} 3) * * 2) \\
& \mathrm{x} 2, \mathrm{z} 2=((\mathrm{x} 2 * * 2-\mathrm{z} 2 * * 2) * \\
& 4 * \mathrm{x} 2 * \mathrm{z} 2 *(\mathrm{x} 2 * * 2+\mathrm{A} * \mathrm{x} 2 * \mathrm{z} 2
\end{aligned}
$$

Much more about ECC speed: see, e.g., 2015 Chou.

Verifying constant time: increasingly automated.

Testing can miss rare bugs that attacker might trigger.
Fix: prove that software matches mathematical spec; have computer check proofs.

Progress in deploying proven fast software: see, e.g., 2015 Bernstein-Schwabe "gfverif"; 2017 HACL* X25519 in Firefox.
gfverif has verified ref10 implementation of X25519, plus occasional annotations, against the following specification:

$$
\begin{aligned}
& \mathrm{p}=2 * * 255-19 \\
& \mathrm{~A}=486662 \\
& \mathrm{x} 2, \mathrm{z} 2, \mathrm{x} 3, \mathrm{z} 3=1,0, \mathrm{x} 1,1 \\
& \text { for } \mathrm{i} \text { in reversed }(\mathrm{range}(255)): \\
& \mathrm{ni}=\text { bit }(\mathrm{n}, \mathrm{i}) \\
& \mathrm{x} 2, \mathrm{x} 3=\operatorname{cswap}(\mathrm{x} 2, \mathrm{x} 3, \mathrm{ni}) \\
& \mathrm{z} 2, \mathrm{z} 3=\operatorname{cswap}(\mathrm{z} 2, \mathrm{z} 3, \mathrm{ni}) \\
& \mathrm{x} 3, \mathrm{z} 3=(4 *(\mathrm{x} 2 * \mathrm{x} 3-\mathrm{z} 2 * \mathrm{z} 3) * * 2, \\
& 4 * \mathrm{x} 1 *(\mathrm{x} 2 * \mathrm{z} 3-\mathrm{z} 2 * \mathrm{x} 3) * * 2) \\
& \mathrm{x} 2, \mathrm{z} 2=((\mathrm{x} 2 * * 2-\mathrm{z} 2 * * 2) * * 2, \\
& 4 * \mathrm{x} 2 * \mathrm{z} 2 *(\mathrm{x} 2 * * 2+\mathrm{A} * \mathrm{x} 2 * \mathrm{z} 2+\mathrm{z} 2 * * 2))
\end{aligned}
$$

ore about ECC speed: 2015 Chou.
constant time:
gly automated.
can miss rare bugs acker might trigger. ve that software mathematical spec; nputer check proofs.
in deploying proven ware: see, e.g., 2015 n-Schwabe "gfverif"; AL* X25519 in Firefox.
x3, z3
x2,z2 cut (x cut (x cut (z cut (z
x2, x3
z2, z3
cut (x2)
cut (z2)
return
What's is the sa and is b

ECC speed:
time:
rated.
are bugs
t trigger.
ftware
tical spec; eck proofs.
ing proven
e.g., 2015
e "gfverif";
519 in Firefox.
gfverif has verified ref 10
implementation of X25519, plus occasional annotations, against the following specification:

$$
\begin{aligned}
& p=2 * * 255-19 \\
& A=486662 \\
& x 2, z 2, x 3, z 3=1,0, x 1,1
\end{aligned}
$$

for i in reversed(range(255)):

$$
\mathrm{ni}=\operatorname{bit}(\mathrm{n}, \mathrm{i})
$$

$$
\mathrm{x} 2, \mathrm{x} 3=\operatorname{cswap}(\mathrm{x} 2, \mathrm{x} 3, \mathrm{ni})
$$

$$
\mathrm{z2}, \mathrm{z} 3=\operatorname{cswap}(\mathrm{z} 2, \mathrm{z3}, \mathrm{ni})
$$

$$
x 3, z 3=(4 *(x 2 * x 3-z 2 * z 3) * * 2
$$

$$
4 * \mathrm{x} 1 *(\mathrm{x} 2 * \mathrm{z} 3-\mathrm{z} 2 * \mathrm{x} 3) * * 2)
$$

$$
x 2, z 2=((x 2 * * 2-z 2 * * 2) * * 2
$$

$$
4 * x 2 * z 2 *(x 2 * * 2+A * x 2 * z 2+z 2 * * 2))
$$

```
x3,z3 = (x3%p,
x2,z2 = (x2%p,
cut(x2)
cut(x3)
cut(z2)
cut(z3)
x2,x3 = cswap(
z2,z3 = cswap(
cut(x2)
cut(z2)
return x2*pow(z2
```

What's verified: o is the same as spe and is between 0
gfverif has verified ref10 implementation of X25519, plus occasional annotations, against the following specification:
$\mathrm{p}=2 * * 255-19$
$\mathrm{A}=486662$
$\mathrm{x} 2, \mathrm{z} 2, \mathrm{x} 3, \mathrm{z3}=1,0, \mathrm{x} 1,1$
for i in reversed(range(255)):
ni $=$ bit(n,i)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
$x 3, z 3=(4 *(x 2 * x 3-z 2 * z 3) * * 2$,
$4 * x 1 *(x 2 * z 3-z 2 * x 3) * * 2)$
$\mathrm{x} 2, \mathrm{z} 2=((\mathrm{x} 2 * * 2-\mathrm{z} 2 * * 2) * * 2$,
$4 * \mathrm{x} 2 * \mathrm{z} 2 *(\mathrm{x} 2 * * 2+\mathrm{A} * \mathrm{x} 2 * \mathrm{z} 2+\mathrm{z} 2 * * 2))$

```
x3,z3 = (x3%p,z3%p)
x2,z2 = (x2%p,z2%p)
cut(x2)
cut(x3)
cut(z2)
cut(z3)
```

$\mathrm{x} 2, \mathrm{x} 3=\operatorname{cswap}(\mathrm{x} 2, \mathrm{x} 3, \mathrm{ni})$
z2,z3 = cswap(z2,z3,ni)
cut (x2)
cut (z2)
return $x 2$ *pow ($\mathrm{z} 2, \mathrm{p}-2, \mathrm{p}$)

What's verified: output of r is the same as spec $\bmod p$, and is between 0 and $p-1$.
gfverif has verified ref10 implementation of X25519, plus occasional annotations, against the following specification:

$$
\begin{aligned}
& p=2 * * 255-19 \\
& A=486662 \\
& x 2, z 2, x 3, z 3=1,0, x 1,1
\end{aligned}
$$

for i in reversed(range(255)):

$$
\mathrm{ni}=\operatorname{bit}(\mathrm{n}, \mathrm{i})
$$

$$
\mathrm{x} 2, \mathrm{x} 3=\operatorname{cswap}(\mathrm{x} 2, \mathrm{x} 3, \mathrm{ni})
$$

$$
\mathrm{z} 2, \mathrm{z3}=\operatorname{cswap}(\mathrm{z} 2, \mathrm{z} 3, \mathrm{ni})
$$

$$
x 3, z 3=(4 *(x 2 * x 3-z 2 * z 3) * * 2
$$

$$
4 * \mathrm{x} 1 *(\mathrm{x} 2 * \mathrm{z} 3-\mathrm{z} 2 * \mathrm{x} 3) * * 2)
$$

$$
\mathrm{x} 2, \mathrm{z} 2=((\mathrm{x} 2 * * 2-\mathrm{z} 2 * * 2) * * 2
$$

$$
4 * x 2 * z 2 *(x 2 * * 2+A * x 2 * z 2+z 2 * * 2))
$$

```
x3,z3 = (x3%p,z3%p)
x2,z2 = (x2%p,z2%p)
cut(x2)
cut(x3)
cut(z2)
cut(z3)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
cut(x2)
cut(z2)
return x2*pow(z2,p-2,p)
```

What's verified: output of ref10 is the same as spec $\bmod p$, and is between 0 and $p-1$.
as verified ref 10 ntation of X25519, asional annotations, the following specification:

```
255-19
```

62
$3, z 3=1,0, x 1,1$
n reversed(range(255)):
bit(n,i)
$=\operatorname{cswap}(x 2, x 3, n i)$
$=\operatorname{cswap}(z 2, z 3, n i)$
$=(4 *(x 2 * x 3-z 2 * z 3) * * 2$,

* $(x 2 * z 3-z 2 * x 3) * * 2)$
$=((\mathrm{x} 2 * * 2-\mathrm{z} 2 * * 2) * * 2$,
z2(x2**2+A*x2*z2+z2**2))

$$
\begin{aligned}
& x 3, z 3=(x 3 \% p, z 3 \% p) \\
& \mathrm{x} 2, \mathrm{z} 2=(\mathrm{x} 2 \% \mathrm{p}, \mathrm{z} 2 \% \mathrm{p}) \\
& \text { cut (x2) } \\
& \text { cut (x3) } \\
& \text { cut (z2) } \\
& \text { cut (z3) } \\
& \mathrm{x} 2, \mathrm{x} 3=\operatorname{cswap}(\mathrm{x} 2, \mathrm{x} 3, \mathrm{ni}) \\
& \text { z2,z3 = cswap(z2,z3,ni) } \\
& \text { cut (x2) } \\
& \text { cut (z2) } \\
& \text { return } x 2 * \operatorname{pow}(z 2, p-2, p) \\
& \text { What's verified: output of ref } 10 \\
& \text { is the same as spec } \bmod p \text {, } \\
& \text { and is between } 0 \text { and } p-1 \text {. }
\end{aligned}
$$

ref10
X25519, notations, ng specification:
$0, \mathrm{x} 1,1$
d(range(255)) :
x2, $\mathrm{x} 3, \mathrm{ni}$)
z2, z3, ni)
*x3-z2*z3) **2,
$2 * x 3) * * 2$)
$2-z 2 * * 2) * * 2$,
$2+A * x 2 * z 2+z 2 * * 2))$

$$
\begin{array}{l|l}
x 3, z 3=(x 3 \% p, z 3 \% p) & \text { "What a differenc } \\
x 2, z 2=(x 2 \% p, z 2 \% p) & \text { NIST P-256 prime } \\
\text { cut(x2) } & 2^{256}-2^{224}+2^{192}
\end{array}
$$

$$
\operatorname{cut}(x 3)
$$

$$
\operatorname{cut}(z 2)
$$

cut (z3)

$$
\mathrm{x} 2, \mathrm{x} 3=\operatorname{cswap}(\mathrm{x} 2, \mathrm{x} 3, \mathrm{ni})
$$

$$
\mathrm{z} 2, \mathrm{z} 3=\operatorname{cswap}(\mathrm{z} 2, \mathrm{z} 3, \mathrm{ni})
$$

cut (x2)

$$
\operatorname{cut}(z 2)
$$

$$
\text { return } \mathrm{x} 2 * \operatorname{pow}(\mathrm{z} 2, \mathrm{p}-2, \mathrm{p})
$$

What's verified: output of ref 10 is the same as spec $\bmod p$, and is between 0 and $p-1$.

ECDSA standard reduction procedu an integer " A less

Write A as
$\left(A_{15}, A_{14}, A_{13}, A_{12}\right.$ $A_{8}, A_{7}, A_{6}, A_{5}, A$ meaning $\sum_{i} A_{i} 2^{32}$

Define
$T ; S_{1} ; S_{2} ; S_{3} ; S_{4} ; L$ as

$$
\begin{aligned}
& x 3, z 3=(x 3 \% p, z 3 \% p) \\
& x 2, z 2=(x 2 \% p, z 2 \% p)
\end{aligned}
$$

cut (x2)
cation:
55)) :
$* * 2$
*2,
$+z 2 * * 2))$

$$
\begin{aligned}
& x 3, z 3=(x 3 \% p, z 3 \% p) \\
& x 2, z 2=(x 2 \% p, z 2 \% p) \\
& \operatorname{cut}(x 2)
\end{aligned}
$$

$$
\operatorname{cut}(x 3)
$$

$$
\operatorname{cut}(z 2)
$$

$$
\operatorname{cut}(z 3)
$$

$$
\mathrm{x} 2, \mathrm{x} 3=\operatorname{cswap}(\mathrm{x} 2, \mathrm{x} 3, \mathrm{ni})
$$

$$
\text { z2,z3 = cswap }(z 2, z 3, n i)
$$

cut (x2)

$$
\operatorname{cut}(z 2)
$$

$$
\text { return } x 2 * \operatorname{pow}(z 2, p-2, p)
$$

What's verified: output of ref 10 is the same as spec $\bmod p$, and is between 0 and $p-1$.
"What a difference a prime makes"
NIST P-256 prime p is
$2^{256}-2^{224}+2^{192}+2^{96}-1$.
ECDSA standard specifies reduction procedure given an integer " A less than p^{2} ":

Write A as
$\left(A_{15}, A_{14}, A_{13}, A_{12}, A_{11}, A_{10}, A_{9}\right.$,
$\left.A_{8}, A_{7}, A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right)$, meaning $\sum_{i} A_{i} 2^{32 i}$.

Define
$T ; S_{1} ; S_{2} ; S_{3} ; S_{4} ; D_{1} ; D_{2} ; D_{3} ; D_{4}$ as
"What a difference a prime makes"
NIST P-256 prime p is
$2^{256}-2^{224}+2^{192}+2^{96}-1$.
ECDSA standard specifies
reduction procedure given
an integer " A less than $p^{2 "}$:
Write A as
$\left(A_{15}, A_{14}, A_{13}, A_{12}, A_{11}, A_{10}, A_{9}\right.$, $\left.A_{8}, A_{7}, A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right)$, meaning $\sum_{i} A_{i} 2^{32 i}$.

Define
$T ; S_{1} ; S_{2} ; S_{3} ; S_{4} ; D_{1} ; D_{2} ; D_{3} ; D_{4}$ as
$\left(A_{7}, A_{6}\right.$, $\left(A_{15}, A_{1}\right.$ $\left(0, A_{15}\right.$, $\left(A_{15}, A_{1}\right.$ $\left(A_{8}, A_{13}\right.$ $\left(A_{10}, A_{8}\right.$ $\left(A_{11}, A_{9}\right.$ $\left(A_{12}, 0\right.$, $\left(A_{13}, 0\right.$,

Comput $S_{4}-D_{1}$

Reduce

 subtract"What a difference a prime makes"
NIST P-256 prime p is
$2^{256}-2^{224}+2^{192}+2^{96}-1$.
ECDSA standard specifies reduction procedure given an integer " A less than $p^{2 "}$:

Write A as
$\left(A_{15}, A_{14}, A_{13}, A_{12}, A_{11}, A_{10}, A_{9}\right.$, $\left.A_{8}, A_{7}, A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right)$, meaning $\sum_{i} A_{i} 2^{32 i}$.

Define
$T ; S_{1} ; S_{2} ; S_{3} ; S_{4} ; D_{1} ; D_{2} ; D_{3} ; D_{4}$ as
$\left(A_{7}, A_{6}, A_{5}, A_{4}, A_{3}\right.$ $\left(A_{15}, A_{14}, A_{13}, A_{12}\right.$ $\left(0, A_{15}, A_{14}, A_{13}\right.$, $\left(A_{15}, A_{14}, 0,0,0\right.$, $\left(A_{8}, A_{13}, A_{15}, A_{14}\right.$,
$\left(A_{10}, A_{8}, 0,0,0, A\right.$ $\left(A_{11}, A_{9}, 0,0, A_{15}\right.$, $\left(A_{12}, 0, A_{10}, A_{9}, A\right.$ $\left(A_{13}, 0, A_{11}, A_{10}\right.$,

Compute $T+2 S_{1}$
$S_{4}-D_{1}-D_{2}-L$
Reduce modulo p subtracting a few
"What a difference a prime makes"
NIST P-256 prime p is
$2^{256}-2^{224}+2^{192}+2^{96}-1$.
ECDSA standard specifies reduction procedure given an integer " A less than p^{2} ":

Write A as
$\left(A_{15}, A_{14}, A_{13}, A_{12}, A_{11}, A_{10}, A_{9}\right.$,
$\left.A_{8}, A_{7}, A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right)$,
meaning $\sum_{i} A_{i} 2^{32 i}$.
Define
$T ; S_{1} ; S_{2} ; S_{3} ; S_{4} ; D_{1} ; D_{2} ; D_{3} ; D_{4}$ as
$\left(A_{7}, A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}\right.$, $\left(A_{15}, A_{14}, A_{13}, A_{12}, A_{11}, 0,0\right.$ $\left(0, A_{15}, A_{14}, A_{13}, A_{12}, 0,0,0\right)$ $\left(A_{15}, A_{14}, 0,0,0, A_{10}, A_{9}, A_{8}\right.$ $\left(A_{8}, A_{13}, A_{15}, A_{14}, A_{13}, A_{11}\right.$, $\left(A_{10}, A_{8}, 0,0,0, A_{13}, A_{12}, A_{1}\right.$ $\left(A_{11}, A_{9}, 0,0, A_{15}, A_{14}, A_{13}\right.$, $\left(A_{12}, 0, A_{10}, A_{9}, A_{8}, A_{15}, A_{14}\right.$ $\left(A_{13}, 0, A_{11}, A_{10}, A_{9}, 0, A_{15}\right.$,

Compute $T+2 S_{1}+2 S_{2}+$ $S_{4}-D_{1}-D_{2}-D_{3}-D_{4}$.

Reduce modulo p "by addin subtracting a few copies" of
"What a difference a prime makes"
NIST P-256 prime p is
$2^{256}-2^{224}+2^{192}+2^{96}-1$.
ECDSA standard specifies reduction procedure given an integer " A less than p^{2} ":

Write A as
$\left(A_{15}, A_{14}, A_{13}, A_{12}, A_{11}, A_{10}, A_{9}\right.$,
$\left.A_{8}, A_{7}, A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right)$, meaning $\sum_{i} A_{i} 2^{32 i}$.

Define
$T ; S_{1} ; S_{2} ; S_{3} ; S_{4} ; D_{1} ; D_{2} ; D_{3} ; D_{4}$ as
$\left(A_{7}, A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right) ;$ $\left(A_{15}, A_{14}, A_{13}, A_{12}, A_{11}, 0,0,0\right)$; $\left(0, A_{15}, A_{14}, A_{13}, A_{12}, 0,0,0\right)$; $\left(A_{15}, A_{14}, 0,0,0, A_{10}, A_{9}, A_{8}\right)$; $\left(A_{8}, A_{13}, A_{15}, A_{14}, A_{13}, A_{11}, A_{10}, A_{9}\right)$; $\left(A_{10}, A_{8}, 0,0,0, A_{13}, A_{12}, A_{11}\right)$; $\left(A_{11}, A_{9}, 0,0, A_{15}, A_{14}, A_{13}, A_{12}\right)$; $\left(A_{12}, 0, A_{10}, A_{9}, A_{8}, A_{15}, A_{14}, A_{13}\right)$; $\left(A_{13}, 0, A_{11}, A_{10}, A_{9}, 0, A_{15}, A_{14}\right)$.

Compute $T+2 S_{1}+2 S_{2}+S_{3}+$ $S_{4}-D_{1}-D_{2}-D_{3}-D_{4}$.

Reduce modulo p "by adding or subtracting a few copies" of p.

difference a prime makes"

256 prime p is

$$
224+2^{192}+2^{96}-1 .
$$

standard specifies
n procedure given er " A less than $p^{2 "}$:
as
$4, A_{13}, A_{12}, A_{11}, A_{10}, A_{9}$,
$\left.A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right)$,
$\sum_{i} A_{i} 2^{32 i}$.
$2 ; S_{3} ; S_{4} ; D_{1} ; D_{2} ; D_{3} ; D_{4}$
$\left(A_{7}, A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right) ;$ $\left(A_{15}, A_{14}, A_{13}, A_{12}, A_{11}, 0,0,0\right)$; $\left(0, A_{15}, A_{14}, A_{13}, A_{12}, 0,0,0\right)$; $\left(A_{15}, A_{14}, 0,0,0, A_{10}, A_{9}, A_{8}\right)$;
$\left(A_{8}, A_{13}, A_{15}, A_{14}, A_{13}, A_{11}, A_{10}, A_{9}\right)$; $\left(A_{10}, A_{8}, 0,0,0, A_{13}, A_{12}, A_{11}\right)$;
$\left(A_{11}, A_{9}, 0,0, A_{15}, A_{14}, A_{13}, A_{12}\right)$;
$\left(A_{12}, 0, A_{10}, A_{9}, A_{8}, A_{15}, A_{14}, A_{13}\right)$;
$\left(A_{13}, 0, A_{11}, A_{10}, A_{9}, 0, A_{15}, A_{14}\right)$.
Compute $T+2 S_{1}+2 S_{2}+S_{3}+$ $S_{4}-D_{1}-D_{2}-D_{3}-D_{4}$.

Reduce modulo p "by adding or subtracting a few copies" of p.

What is
Variable
e a prime makes"
p is
$+2^{96}-1$.
specifies
re given
than $p^{2 "}$:
, A_{11}, A_{10}, A_{9}
$\left.4, A_{3}, A_{2}, A_{1}, A_{0}\right)$,
$D_{1} ; D_{2} ; D_{3} ; D_{4}$
$\left(A_{7}, A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right) ;$ $\left(A_{15}, A_{14}, A_{13}, A_{12}, A_{11}, 0,0,0\right)$; $\left(0, A_{15}, A_{14}, A_{13}, A_{12}, 0,0,0\right)$; $\left(A_{15}, A_{14}, 0,0,0, A_{10}, A_{9}, A_{8}\right)$;
$\left(A_{8}, A_{13}, A_{15}, A_{14}, A_{13}, A_{11}, A_{10}, A_{9}\right)$; $\left(A_{10}, A_{8}, 0,0,0, A_{13}, A_{12}, A_{11}\right)$; $\left(A_{11}, A_{9}, 0,0, A_{15}, A_{14}, A_{13}, A_{12}\right)$; $\left(A_{12}, 0, A_{10}, A_{9}, A_{8}, A_{15}, A_{14}, A_{13}\right)$; $\left(A_{13}, 0, A_{11}, A_{10}, A_{9}, 0, A_{15}, A_{14}\right)$.

Compute $T+2 S_{1}+2 S_{2}+S_{3}+$ $S_{4}-D_{1}-D_{2}-D_{3}-D_{4}$.

Reduce modulo p "by adding or subtracting a few copies" of p.

What is "a few co
Variable-time loop
makes" $\quad\left(A_{7}, A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right)$; $\left(A_{15}, A_{14}, A_{13}, A_{12}, A_{11}, 0,0,0\right)$; $\left(0, A_{15}, A_{14}, A_{13}, A_{12}, 0,0,0\right)$; $\left(A_{15}, A_{14}, 0,0,0, A_{10}, A_{9}, A_{8}\right)$; $\left(A_{8}, A_{13}, A_{15}, A_{14}, A_{13}, A_{11}, A_{10}, A_{9}\right)$; $\left(A_{10}, A_{8}, 0,0,0, A_{13}, A_{12}, A_{11}\right)$; $\left(A_{11}, A_{9}, 0,0, A_{15}, A_{14}, A_{13}, A_{12}\right)$; $\left(A_{12}, 0, A_{10}, A_{9}, A_{8}, A_{15}, A_{14}, A_{13}\right)$;
$\left(A_{13}, 0, A_{11}, A_{10}, A_{9}, 0, A_{15}, A_{14}\right)$.
$\left.A_{1}, A_{0}\right), \quad$ Compute $T+2 S_{1}+2 S_{2}+S_{3}+$ $S_{4}-D_{1}-D_{2}-D_{3}-D_{4}$.

Reduce modulo p "by adding or subtracting a few copies" of p.
, A_{9},

What is "a few copies"?
Variable-time loop is unsafe
$\left(A_{7}, A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right) ;$ $\left(A_{15}, A_{14}, A_{13}, A_{12}, A_{11}, 0,0,0\right)$; $\left(0, A_{15}, A_{14}, A_{13}, A_{12}, 0,0,0\right)$; $\left(A_{15}, A_{14}, 0,0,0, A_{10}, A_{9}, A_{8}\right)$; $\left(A_{8}, A_{13}, A_{15}, A_{14}, A_{13}, A_{11}, A_{10}, A_{9}\right)$; $\left(A_{10}, A_{8}, 0,0,0, A_{13}, A_{12}, A_{11}\right)$; $\left(A_{11}, A_{9}, 0,0, A_{15}, A_{14}, A_{13}, A_{12}\right)$; $\left(A_{12}, 0, A_{10}, A_{9}, A_{8}, A_{15}, A_{14}, A_{13}\right)$; $\left(A_{13}, 0, A_{11}, A_{10}, A_{9}, 0, A_{15}, A_{14}\right)$.

Compute $T+2 S_{1}+2 S_{2}+S_{3}+$ $S_{4}-D_{1}-D_{2}-D_{3}-D_{4}$.

Reduce modulo p "by adding or subtracting a few copies" of p.

What is "a few copies"?
Variable-time loop is unsafe.
$\left(A_{7}, A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right) ;$ $\left(A_{15}, A_{14}, A_{13}, A_{12}, A_{11}, 0,0,0\right)$; $\left(0, A_{15}, A_{14}, A_{13}, A_{12}, 0,0,0\right)$; $\left(A_{15}, A_{14}, 0,0,0, A_{10}, A_{9}, A_{8}\right)$; $\left(A_{8}, A_{13}, A_{15}, A_{14}, A_{13}, A_{11}, A_{10}, A_{9}\right)$; $\left(A_{10}, A_{8}, 0,0,0, A_{13}, A_{12}, A_{11}\right)$; $\left(A_{11}, A_{9}, 0,0, A_{15}, A_{14}, A_{13}, A_{12}\right)$; $\left(A_{12}, 0, A_{10}, A_{9}, A_{8}, A_{15}, A_{14}, A_{13}\right)$; $\left(A_{13}, 0, A_{11}, A_{10}, A_{9}, 0, A_{15}, A_{14}\right)$.

Compute $T+2 S_{1}+2 S_{2}+S_{3}+$ $S_{4}-D_{1}-D_{2}-D_{3}-D_{4}$.

Reduce modulo p "by adding or subtracting a few copies" of p.

What is "a few copies"?
Variable-time loop is unsafe.
Correct but quite slow: conditionally add $4 p$, conditionally add $2 p$, conditionally add p, conditionally sub $4 p$, conditionally sub $2 p$, conditionally sub p.
$\left(A_{7}, A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right) ;$ $\left(A_{15}, A_{14}, A_{13}, A_{12}, A_{11}, 0,0,0\right)$; $\left(0, A_{15}, A_{14}, A_{13}, A_{12}, 0,0,0\right)$; $\left(A_{15}, A_{14}, 0,0,0, A_{10}, A_{9}, A_{8}\right)$; $\left(A_{8}, A_{13}, A_{15}, A_{14}, A_{13}, A_{11}, A_{10}, A_{9}\right)$; $\left(A_{10}, A_{8}, 0,0,0, A_{13}, A_{12}, A_{11}\right)$; $\left(A_{11}, A_{9}, 0,0, A_{15}, A_{14}, A_{13}, A_{12}\right)$; $\left(A_{12}, 0, A_{10}, A_{9}, A_{8}, A_{15}, A_{14}, A_{13}\right)$; $\left(A_{13}, 0, A_{11}, A_{10}, A_{9}, 0, A_{15}, A_{14}\right)$.

Compute $T+2 S_{1}+2 S_{2}+S_{3}+$ $S_{4}-D_{1}-D_{2}-D_{3}-D_{4}$.

Reduce modulo p "by adding or subtracting a few copies" of p.

What is "a few copies"?
Variable-time loop is unsafe.
Correct but quite slow: conditionally add $4 p$, conditionally add $2 p$, conditionally add p, conditionally sub $4 p$, conditionally sub $2 p$, conditionally sub p.

Delay until end of computation?
Trouble: " A less than p^{2} ".
$\left(A_{7}, A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right) ;$ $\left(A_{15}, A_{14}, A_{13}, A_{12}, A_{11}, 0,0,0\right)$; $\left(0, A_{15}, A_{14}, A_{13}, A_{12}, 0,0,0\right)$; $\left(A_{15}, A_{14}, 0,0,0, A_{10}, A_{9}, A_{8}\right)$; $\left(A_{8}, A_{13}, A_{15}, A_{14}, A_{13}, A_{11}, A_{10}, A_{9}\right)$; $\left(A_{10}, A_{8}, 0,0,0, A_{13}, A_{12}, A_{11}\right)$; $\left(A_{11}, A_{9}, 0,0, A_{15}, A_{14}, A_{13}, A_{12}\right)$; $\left(A_{12}, 0, A_{10}, A_{9}, A_{8}, A_{15}, A_{14}, A_{13}\right)$; $\left(A_{13}, 0, A_{11}, A_{10}, A_{9}, 0, A_{15}, A_{14}\right)$.

Compute $T+2 S_{1}+2 S_{2}+S_{3}+$ $S_{4}-D_{1}-D_{2}-D_{3}-D_{4}$.

Reduce modulo p "by adding or subtracting a few copies" of p.

What is "a few copies"?
Variable-time loop is unsafe.
Correct but quite slow: conditionally add $4 p$, conditionally add $2 p$, conditionally add p, conditionally sub $4 p$, conditionally sub $2 p$, conditionally sub p.

Delay until end of computation? Trouble: " A less than p^{2} ".

Even worse: what about platforms where 2^{32} isn't best radix?
$\left.A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right) ;$
4, $\left.A_{13}, A_{12}, A_{11}, 0,0,0\right)$; $\left.A_{14}, A_{13}, A_{12}, 0,0,0\right)$;
$\left.4,0,0,0, A_{10}, A_{9}, A_{8}\right)$;
, $\left.A_{15}, A_{14}, A_{13}, A_{11}, A_{10}, A_{9}\right)$;
$\left., 0,0,0, A_{13}, A_{12}, A_{11}\right)$;
$\left., 0,0, A_{15}, A_{14}, A_{13}, A_{12}\right)$;
$\left.A_{10}, A_{9}, A_{8}, A_{15}, A_{14}, A_{13}\right)$;
$\left.A_{11}, A_{10}, A_{9}, 0, A_{15}, A_{14}\right)$.
e $T+2 S_{1}+2 S_{2}+S_{3}+$
$-D_{2}-D_{3}-D_{4}$.
modulo p "by adding or
ing a few copies" of p.

There ar cryptogr affect di correct
e.g. EC[of scalar e.g. EC[
addition EdDSA

Delay until end of computation? Trouble: " A less than p^{2} ".

Even worse: what about platforms where 2^{32} isn't best radix?

[^0]What is "a few copies"?
Variable-time loop is unsafe.
Correct but quite slow: conditionally add $4 p$, conditionally add $2 p$, conditionally add p, conditionally sub $4 p$, conditionally sub $2 p$, conditionally sub p.

Delay until end of computation? Trouble: " A less than p^{2} ".

Even worse: what about platforms where 2^{32} isn't best radix?

There are many m cryptographic desi affect difficulty of correct constant-t
e.g. ECDSA needs of scalars. EdDSA
e.g. ECDSA splits additions into seve EdDSA uses comp

What is "a few copies"?
Variable-time loop is unsafe.
Correct but quite slow:
conditionally add $4 p$, conditionally add $2 p$, conditionally add p, conditionally sub $4 p$, conditionally sub $2 p$, conditionally sub p.

Delay until end of computation? Trouble: " A less than p^{2} ".

Even worse: what about platforms where 2^{32} isn't best radix?

What is "a few copies"?
Variable-time loop is unsafe.
Correct but quite slow: conditionally add $4 p$, conditionally add $2 p$, conditionally add p, conditionally sub $4 p$, conditionally sub $2 p$, conditionally sub p.

Delay until end of computation? Trouble: " A less than p^{2} ".

Even worse: what about platforms where 2^{32} isn't best radix?

There are many more ways that cryptographic design choices affect difficulty of building fast correct constant-time software.
e.g. ECDSA needs divisions of scalars. EdDSA doesn't.
e.g. ECDSA splits elliptic-curve additions into several cases. EdDSA uses complete formulas.

What is "a few copies"?
Variable-time loop is unsafe.
Correct but quite slow:
conditionally add $4 p$, conditionally add $2 p$, conditionally add p, conditionally sub $4 p$, conditionally sub $2 p$, conditionally sub p.

Delay until end of computation? Trouble: " A less than p^{2} ".

Even worse: what about platforms where 2^{32} isn't best radix?

There are many more ways that cryptographic design choices affect difficulty of building fast correct constant-time software.
e.g. ECDSA needs divisions of scalars. EdDSA doesn't.
e.g. ECDSA splits elliptic-curve additions into several cases. EdDSA uses complete formulas.

What's better use of time: implementing ECDSA, or upgrading protocol to EdDSA?

[^0]: $\left.A_{2}, A_{1}, A_{0}\right)$;
 $\left.A_{11}, 0,0,0\right)$;
 $\left.\mathrm{A}_{12}, 0,0,0\right)$;
 $\left.{ }_{10}, A_{9}, A_{8}\right)$;
 $\left.A_{13}, A_{11}, A_{10}, A_{9}\right)$;
 $\left.{ }_{13}, A_{12}, A_{11}\right)$;
 $\left.A_{14}, A_{13}, A_{12}\right)$;
 $\left.{ }_{8}, A_{15}, A_{14}, A_{13}\right)$;
 $\left.A_{9}, 0, A_{15}, A_{14}\right)$.
 $+2 S_{2}+S_{3}+$
 $)_{3}-D_{4}$.
 "by adding or copies" of p.

