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Reference implementation:
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Try moving the pointer:

int sum(int *x)

{
int result = O;
int 1;
for (i = 0;i < 1000;++1i)
result += *xx++;
return result;
Iy
8010 cycles.

Try counting dowr

int sum(int *x)
{
int result = 0
int 1;
for (i = 1000;
result += *x

return result;
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result += x[i];
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}

return result;
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int sum(int *x)

{

. int 1;
int result = 0;

. . for (i = 0;i < 1000;i += 5) {
int 1;

result += x[i];
for (i = 0;i < 1000;i += 2) { =

5 result += x[i + 1];
result += x[i];
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¥
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Back to original. Try unrolling: int sum(int *x)

{

int result = O;

int sum(int *x)

{

. int 1;
int result = 0;

. . for (i = 0;i < 1000;i += 5) {
int 1;

for (i = 0;1i < 1000;i += 2) {
result += x|1
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result += x[i];
result += x|1 + 2];
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return result; )
}
return result;
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int sum(int *x)

{
int result = O;
int 1;

for (i = 0;i < 1000;i += 5) {

result += x[i];
result += x[i + 1];
result += x[i + 2];
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int sum(int *x)

{
int result = O;
int 1;
for (i = 0;i < 1000;i += 5) {
result += x[i];
result += x[1 + 1];
result += x[i + 2];
result += x[i + 3];
result += x[i + 4];
t
return result;
}
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int sum(int *x)
{
1nt result =

int 1;

for (i = 0;i < 1000;i += 5) {

result += x
result += x
result += x
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result += x[i + 4]

Iy

return result
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int sum(int *x)

{
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result
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=O;

x[i];
x[1i + 1
x[1i + 2
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x[1i + 4];

return result;
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nowhere near optimal,
and human time was wasted.
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int sum(int *x)

{

1nt result

int 1;
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result
result
result
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result

0;1i < 1000;i += 5) {
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=O;

x[i];

x[1i + 1]:;

x[1i + 2]:

x[1i + 3]:

x[1i + 4];

return result;

¥
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Yes, but CPU time is still
nowhere near optimal,
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Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.
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Rely on Wikipedia comment that
MA4F = M4 + tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M
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Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.
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Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
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then 1t saves 1 cycle.
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Basic load instruction: LDR.
Manual says 2 cycles but adds
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Then more explanation: if next
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address not based on first LDR)
then 1t saves 1 cycle.
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x1 -
X2 -
X3 -
x4 -
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including n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

15

int sum(int *x)

{

int
int
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result = 0

xy = x + 1

x0,x1,x2,x

x5,x6,x7,X

while (x != y)
O[(vola

x0
x1
X2
x3
x4
X5
X6
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(vola
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er" pipelined together” ). int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

Can achieve this speed
ds to in other ways (LDRD, LDM)

but nothing seems faster.
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int sum(int *x)

{

int result = O;
int *y = x + 1000;
int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {
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int
int
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int sum(int *x)

{
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int
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x0,x1,x2,x3,x4,
x5,x6,x7,x8,x9;

while (x != y) {
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int sum(int *x)

{

int
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x1
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x3
x4
X5
X6
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xy = x + 1000;
x0,x1,x2,x3,x4,
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int sum(int *x)

{

int
int

int

result = O;

xy = x + 1000;

x0,x1,x2,x3,x4,
x5,x6,x7,x8,x9;

while (x != y) {

x0
x1
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x4
X5
X6
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int
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x7 =71
x8 = 8[
x9 = 9]

result

result
result
result
result
result
result
result
result
result
x0 = 10
x1l = 11

(volatile int

(volatile int

(volatile int
+= x0;
+= x1;
+= x2;
+= x3;
+= x4;
+= x5;
+= X6;
+= X7;
+= x8;
+= x9;

[ (volatile int

[ (volatile int
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int sum(int *x) x7 = 7T[(volatile int *)x];

{ x8 = 8[(volatile int *)x];

int result = O; x9 = 9[(volatile int *)x];
int *y = x + 1000; result += x0;
int x0,x1,x2,x3,x4, result += x1;
x5,x6,x7,x8,x9; result += x2;

result += x3;

while (x !'= y) { result += x4;
x0 = O[(volatile int *)x]; result += x5;
x1 = 1[(volatile int *)x]; result += x6;
x2 = 2[(volatile int *)x]; result += x7;
x3 = 3[(volatile int *)x]; result += x8;
x4 = 4[(volatile int *)x]; result += x9;
x5 = 5[(volatile int *)x]; x0 = 10[(volatile int *)x];
x6 = 6[(volatile int *)x]; x1 = 11[(volatile int *)x];
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osult = 0O;
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H,X6,x7,x8,%x9;
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x + 1000;

1= y) {
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1
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result
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result
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result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

‘(volatile int *)x];:

9[(volatile int *)x];

‘(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= X5;
+= X6;
+= X7 ;
+= X3;
+= x9;
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result
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result
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x1 = 11[(volatile int *)x]:

(volatile int *)x];

9[(volatile int *)x];

(volatile int *)x];:

+= x0;
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+= X2;
+= xX3;
+= x4;
+= x5;
+= X6;
+= X7 ;
+= X8;
+= x9;
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 (volatile
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+= x0;
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+= x0;
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+= x4;
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17 [(volatile
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result +=
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result +=
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result += x6
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result += x8
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return result;



17

12[(volatile
13[(volatile
14[(volatile
15[ (volatile
16 [(volatile
17 [(volatile
18[(volatile
19[(volatile

X2 =
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N .
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Uniqueness: £ =0 or fy_1 # 0.
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that attacker might trigger.
Fix: prove that software
matches mathematical spec;
have computer check proofs.

Progress in deploying proven
fast software: see, e.g., 2015
Bernstein—-Schwabe “gfverif”;

2017 HACL* X25519 in Firefox.
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for 1 1n reverse
ni = bit(n,i)
x2,x3 = cswap(
z2,z3 = cswap(
x3,z3 = (4*x(x2

Axx1* (x2*%z3-2

x2,z2 = ((x2%%

Axx k7% (x2%*
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Much more about ECC speed:
see, e.g., 2015 Chou.

Verifying constant time:
increasingly automated.

Testing can miss rare bugs
that attacker might trigger.
Fix: prove that software
matches mathematical spec;
have computer check proofs.

Progress in deploying proven
fast software: see, e.g., 2015
Bernstein—-Schwabe “gfverif”;

2017 HACL* X25519 in Firefox.
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gfverif has verified ref10
implementation of X25519,
plus occasional annotations,
against the following specifie

p = 2%*255-19

A = 43836662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range (2
ni = bit(n,i)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
x3,z3 = (4*x(x2*xx3-22%23

Axx1* (x2%23-22%x3) **2)

x2,22 = ((x2%*2-z2%%x2) %

AxxD*k7 2% (Xx2% %2+ A*x 2% 72



Much more about ECC speed:
see, e.g., 2015 Chou.

Verifying constant time:
Increasingly automated.

Testing can miss rare bugs
that attacker might trigger.
Fix: prove that software
matches mathematical spec;
have computer check proofs.

Progress in deploying proven
fast software: see, e.g., 2015

Bernstein—-Schwabe “gfverif”;
2017 HACL* X25519 in Firefox.
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gfverif has verified ref10

implementation of X25519,
plus occasional annotations,
against the following specification:

p = 2%*255-19

A = 486662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
ni = bit(n,i)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
x3,2z3 = (4*x(x2*x3-22%23) **2
Axx1* (x2%23-22%x3) **2)
xX2,22 = ((x2%*%2-z2%*%2) **%2
Akx2%Z2% (X2%*2+A*X2%Z2+Z2%*2) )
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gfverif has verified ref10
implementation of X25519,
plus occasional annotations,

against the following specification:

D = 2%*255-19

A = 43836662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
ni = bit(n,i)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
x3,2z3 = (4*x(x2*x3-22%23) **2
Axx1* (x2%23-22%x3) **2)
x2,22 = ((x2%*2-z2%*%2)**%2

38

AxxD*k7 2% (Xx2% %2+ A*x2%Z2+72%%2) )

x3,23
X2 ,22
cut (x
cut (x.
cut (z
cut (z.
x2,x%X3
z2,Z3
cut (x2)
cut (z2)

return

What's
Is the sa

and i1s b
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gfverif has verified ref10
implementation of X25519,
plus occasional annotations,

against the following specification:

p = 2%*255-19

A = 486662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
ni = bit(n,1i)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
x3,2z3 = (4*x(x2*x3-22%23) **2
Axx 1% (x2%23-22%x3) **2)
x2,22 = ((x2%%2-z2%*%2) **%2

38

AxxD*7 2% (x2*% %2+ A*x2%Z2+72%%2) )

x3,z3 = (x3/p,
x2,z2 = (x2%p,
cut (x2)
cut (x3)
cut (z2)
cut (z3)
x2,x3 = cswap(
z2,z3 = cswap(
cut (x2)
cut (z2)

return x2*pow(z2

What's verified: o
IS the same as spe

and i1s between 0 :
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gfverif has verified ref10
implementation of X25519,
plus occasional annotations,

against the following specification:

D = 2%*255-19

A = 436662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
ni = bit(n,i)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
x3,2z3 = (4*x(x2*x3-22%23) **2
Axx1* (x2%23-22%x3) **2)
x2,22 = ((x2%*2-z2%*%2)**%2

38

AxxD*k7 2% (Xx2% %2+ A*x2%Z2+72%%2) )

x3,z3 = (x3%p,z3%p)
x2,z2 = (x2%p,z2%p)
cut (x2)
cut (x3)
cut (z2)

cut (z3)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

cut

cut

(x2)
(z2)

return x2*pow(z2,p-2,p)

What's veritied: output of r

IS t

ne same as spec mod p,

dNd@

is between 0 and p — 1.
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gfverif has verified ref10

implementation of X25519,
plus occasional annotations,
against the following specification:

p = 2%*255-19
A = 486662
x2,z2,x3,z3 = 1,0,x1,1
for i in reversed(range(255)):
ni = bit(n,1i)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
x3,2z3 = (4*x(x2*x3-22%23) **2
Axx1* (x2%23-22%x3) **2)
x2,22 = ((x2%%2-z2%*%x2)**%2
Akx2%Z2% (X2%*2+A*X2%Z2+Z2%*2) )

x3,2z3 = (x3%p,z3%p)
x2,z2 = (x2%hp,2z2%hp)
cut (x2)
cut (x3)
cut (z2)
cut (z3)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
cut (x2)
cut (z2)
return x2*pow(z2,p-2,p)

What's verified: output of ref10
Is the same as spec mod p,

and Is between 0 and p — 1.
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as verified ref10

ntation of X25519,
asional annotations,
the following specification:

255-19

562

3,z3 = 1,0,x1,1

n reversed(range(255)):
pit(n,i)

= cswap(x2,x3,ni)

= cswap(z2,z3,ni)

= (4% (x2*x3-22%23) **2,
k (x2%23-2z2*%x3) **2)

= ((X2%*%2-22%%2) **2
kZ 2% (X2%*2+A*X2%Z22+Z2%%2) )

x3,z3 = (x3%p,z3%p)
x2,z2 = (x2%p,z2%p)
cut (x2)
cut (x3)
cut (z2)

cut (z3)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

cut

cut

(x2)
(z2)

return x2*pow(z2,p-2,p)

What's veritied: output of ref10

IS t

ne same as spec mod p,

dNd@

Is between 0 and p — 1.
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£

dS



38
refl0

- X25519,
notations,
ng specification:

0,x1,1
d(range (255)) :

x2,x3,ni)
z2,z3,ni)
*x3-22%23) *x*2
2%x3) *x*2)
2-22%%2) *x*x2
2+A*xX2%xZz2+z2%*2) )

x3,2z3 = (x3%p,z3%p)
x2,z2 = (x2%hp,z2%hp)
cut (x2)
cut (x3)
cut (z2)

cut (z3)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

cut

cut

(x2)
(z2)

return x2*pow(z2,p-2,p)

What's verified: output of ref10

IS t

ne same as spec mod p,

dNcG

Is between 0 and p — 1.

39

"What a differenc

NIST P-256 prime
2256___2224_+_2192

ECDSA standard

reduction procedu
an integer “A less

Write A as
(A1s, A4, A13, A1
Ag, A7, Ag, As, A

meaning 3 A;2%

Define
T;51;592;53;54; L

dS



38

~ation:

55)) :

) k%2

+72%%2) )

x3,z3 = (x3%p,z3%p)
x2,z2 = (x2%p,z2%p)
cut (x2)
cut (x3)
cut (z2)
cut (z3)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
cut (x2)
cut(z2)
return x2*pow(z2,p-2,p)

What's verified: output of ref10
Is the same as spec mod p,

and is between 0 and p — 1.

39

"What a difference a prime_

NIST P-256 prime p is
2256 o 2224 4 2192 4+ 296 _

ECDSA standard specifies

reduction procedure given
an integer “A less than p?”:

Write A as

(A1s, A14, A13, A12, A11, A10
Ag. A7 As. As. As. A, Ao, »

meaning 3_: A;23%

Define
T:51;592;53;54; D1; Dy; D3
as



x3,2z3 = (x3%p,z3%p)
x2,z2 = (x2%hp,z2%hp)
cut (x2)
cut (x3)
cut (z2)
cut (z3)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
cut (x2)
cut (z2)
return x2*pow(z2,p-2,p)

What's verified: output of ref10
Is the same as spec mod p,

and Is between 0 and p — 1.
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40
"What a difference a prime makes”

NIST P-256 prime p is
2256 o 2224 4 2192 4 296 1

ECDSA standard specifies

reduction procedure given
an integer “A less than p?":

Write A as

(A1s, A14, A13, A12, A11, A10, Ao,
AS,A7,A6,A5,A4_, Az, Az, A1, Ao),

meaning 3_: A;23%,

Define
T;51;52;53;54; D1; Dy; D3; Dy
as



= (x3%p,z3%p)
= (x2%p,z2%p)

cswap(x2,x3,ni)

cswap(z2,z3,ni)

x2*pow (z2,p-2,p)

verified: output of ref10
me as spec mod p,
etween 0 and p — 1.

"What a difference a prime makes”

NIST P-256 prime p is
2256 o 2224 4 2192 4+ 296 1

ECDSA standard specifies

reduction procedure given
an integer “A less than p?”:

Write A as
(A1s, A14, A13, A12, A11, A10, Ao,

Ag, A7, As, As, Ag, A3, Az, A1, Ap),

meaning 3_: A;23%

Define
T:51;52;53;54; D1; Do; D3; Dy
as

40

Reduce
subtract



z3%p)
z27p)

x2,x3,ni)

z2,z3,ni)

,P~2,p)

utput of ref10
c mod p,
ind p — 1.

"What a difference a prime makes”

NIST P-256 prime p is
2256 o 2224 4 2192 4 296 1

ECDSA standard specifies
reduction procedure given
an integer “A less than p?”:

Write A as
(A1s, A14, A13, A12, A11, A10, Ao,

Ag, A7, As, As, Ag, A3, Az, A1, Ap),

meaning 3_: A;23%,

Define
T;51;52;53;54; D1; Dy; D3; Dy
as

40

(A10,As,0,0,0, A
(A11, A9, 0,0, Azs,
(A12,0, A1g, Ag, A
(A13,0, A11, A10, /

Compute T + 257
So. — D1 — Dy — [

Reduce modulo p
subtracting a few
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"What a difference a prime makes”

NIST P-256 prime p is
2256 o 2224 4 2192 4+ 296 1

ECDSA standard specifies

reduction procedure given
an integer "A less than p?”

Write A as
(A1s, A14, A13, A12, A11, A10, Ao,

Ag, A7, Ap, As, Ag, A3, Az, A1, Ap),

meaning 3_: A;23%

Define
T:51;52;53;54; D1; Dy; D3; Dy
as

40

(A7, Ag, As, Ag, A3, Ao, A1, /
(A15, A14, A13, A12, A11,0,0
(0, A1s, A14, A13, A12,0,0,0
(A1s,A14,0,0,0, A, Ag, Asg
(A, A13, A1s, A1, A13, A11,
(A10,Ag,0,0,0, A3, A2, A
(A11, A9, 0,0, Ats, A14, A13,
(A12,0, A1g, Ag, Ag, A1s, A14
(A13,0, A11, A10, A9, 0, A1,

Compute T + 251 + 255 +
Ss — D1 — Dy — D3 — Dyg.

Reduce modulo p “by addin
subtracting a few copies” of



"What a difference a prime makes”

NIST P-256 prime p is
2256 o 2224 4 2192 4 296 1

ECDSA standard specifies
reduction procedure given
an integer “A less than p?”

Write A as
(A1s, A14, A13, A12, A11, A10, Ao,

Ag, A7, As, As, Ag, A3, Az, A1, Ap),

meaning 3_: A;23%,

Define
T;51;52;53;54; D1; Dy; D3; Dy
as

40

41

(A7, As, As, Aq. Az, As, A1, Ag):
(A1s, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);
(A15,A14,0,0,0, A1g, Ag, Ag);

(Ag, A13, A1s, A14, A13, A11, A0, Ag);
(A10,Ag,0,0,0, A3, A12, A11),;
(A11, A9, 0,0, A1s, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

Compute T + 251 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.



' difference a prime makes”

250 prime p is

standard specifies
n procedure given
r “A less than p2”

as
4, A13, A12, A11, A10, Ao,

Ag, As, Ag, Az, Ao, A1, Ag),

Y A3

;. 53, 54; D1; Do; D3; Dy

40

41

(A7, Ag, As, Ag, A3, A2, A1, Ap);
(A1s, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);

(A1, A14,0,0,0, Ao, Ag, Ag);

(Ag, A13, A1s, A14, A13, A11, A10, Ag);
(A10,Ag,0,0,0, A3, A12, A11);

(A11, A9, 0,0, A5, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A1a, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

Compute T + 251 + 257 + 53 +
Sy — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies” of p.

What is
Variable



e 2 prime makes”

D IS
+2% -1

specifies
re given
than p2”

, A11, A10, Ao,

1, Az, Ao, A1, Ap),

i

)1; Do; D3; Dy

40

41

(A7, As, As, Aq. Az, As, A1, Ag):
(A1s, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);
(A15,A14,0,0,0, A1g, Ag, Ag);

(Ag, A13, A1s, A14, A13, A11, A10, Ag);
(A10,Ag,0,0,0, A3, A12, A11),;
(A11, A9, 0,0, A1, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies” of p.

What is “a few co
Variable-time loop



makes”

40

41

(A7, Ae, As, A4, A3, A2, A1, Ap);
(A1, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);

(A1s, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A1a, A13, A11, A1, Ag);
(A10,Ag,0,0,0, A3, A12, A11);

(A11, A9, 0,0, A5, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

Compute T + 251 + 257 + 53 +
Sy — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies” of p.

What is “a few copies” ?
Variable-time loop is unsafe.



41

(A7, A, As, A4, A3, A2, A1, Ap);
(A1s5, A14, A13, A12, A11, 0,0, 0);

(0, A1, A14, A13, A12,0,0,0);

(A1s, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A14, A13, A11, A10, Aog);
(A10,Ag,0,0,0, A3, A12, A11);
(A11, A9, 0,0, A5, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.

What is “a few copies” ?

Variable-time loop is unsafe.

42
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(A7, A, As, A4, A3, A2, A1, Ap);
(A1s5, A14, A13, A12, A11, 0,0, 0);

(0, A1, A14, A13, A12,0,0,0);

(A1s, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A14, A13, A11, A10, Aog);
(A10,Ag,0,0,0, A3, A12, A11);
(A11, A9, 0,0, A5, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.

What is “a few copies” ?

Variable-time loop is unsafe.

Correct but quite slow:

conda
conda
conda
conda
cond

condc

itiona
itiona
itiona
itiona
itiona
itiona

y ac
y ac

y ac
y Su
y Su
y Su

d 4p,
d 2p,

d p,
D 4p,

D 2p,

0 P.

42
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(A7, As, As, Aq. Az, As, A1, Ag):
(A1s, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);
(A15,A14,0,0,0, A1g, Ag, Ag);

(Ag, A13, A1s, A14, A13, A11, A10, Ag);
(A10,Ag,0,0,0, A3, A12, A11);
(A11, A9, 0,0, A1s, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.

What is “a few copies” ?
Variable-time loop is unsafe.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add p,
conditionally sub 4p,
conditionally sub 2p,

conditionally sub p.

Delay until end of computation?
Trouble: “A less than p?”

42
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(A7, As, As, Aq. Az, As, A1, Ag):
(A1s, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);
(A15,A14,0,0,0, A1g, Ag, Ag);

(Ag, A13, A1s, A14, A13, A11, A10, Ag);
(A10,Ag,0,0,0, A3, A12, A11);
(A11, A9, 0,0, A1s, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.

What is “a few copies” ?
Variable-time loop is unsafe.

Correct but quite slow:

4p,
2p,

y add p,
y sub 4p,

conditionally ada

conditionally ada

conditiona
conditiona

y sub 2p,
y sub p.

conditiona

conditiona

Delay until end of computation?

Trouble: “A less than p?”

Even worse: what about platforms
where 232 isn't best radix?

42
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As, Ay, A3, Az, A1, Ap);
4, A13, A12, A11, 0,0, 0);
A1, A13, A12,0,0,0);
4,0,0,0, A10, Ag, Ag);

 A1s, A1a, A13, A11, A10, Ag);

,0,0,0, A13, A12, A11);
0,0, A15, A1, A13, A12);
A10, Ag, Ag, A1s, A14, A13);
A11, A10, A9, 0, A1s, A14).

e T 4+ 251 + 257 + 53 +
— Dy — D3 — Dy,.

modulo p “by adding or
ing a few copies” of p.

What is “a few copies” ?

Variable-time loop is unsafe.

Correct but quite slow:
conditionally add 4p,
conditionally add 2p,

conditionally add p,
conditionally sub 4p,
conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p?".

Even worse: what about platforms

where 232 isn't best radix?
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There at

cryptogr
affect di
correct

e.g. ECI
of scalar

e.g. ECI
addition
EdDSA
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, Az, A1, Ag);

., A11,0,0,0);
112,0,0,0);

A13, A11, A10. Ag);
3, A12, A11);

A14, A13, A12);

3, A1, A14, A13);
19,0, Ay, A14).

+ 257 + 53 +
)3 — Dy.

“by adding or
copies’ of p.

What is “a few copies” ?

Variable-time loop is unsafe.

Correct but quite slow:

conda
conda
conda
conda
condc

conc

Delay until end of computation?

itiona
itiona
itiona
itiona
itiona
itiona

ly ac
y ac

y ac
y Su
y Su

y Su

d 4p,
d 2p,

d p,
D 4p,

D 2p,

0 P.

Trouble: “A less than p?".

Even worse: what about platforms

where 232 isn't best radix?

42

There are many
cryptographic desi
affect difficulty of
correct constant-t

e.g. ECDSA needs
of scalars. EADSA

e.g. ECDSA splits
additions Into seve
EdDSA uses comg
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What is “a few copies” ?

Variable-time loop is unsafe.

Correct but quite slow:

conda
conda
conda
conda
conc

conc

Delay until end of computation?

itiona
itiona
itiona
itiona
itiona
itiona

ly ac
y ac

y ac
y Su
y Su

y Su

C
C

C

4p,
2p,
p,

0 4p,
0 2p,

0 P.

Trouble: “A less than p?".

Even worse: what about platforms
where

232

Isn't best radix?

42

There are many more ways 1

cryptographic design choices
affect difficulty of building f:
correct constant-time softws

e.g. ECDSA needs c

of scalars. EdDSA ¢

IVISIONS
oesn t.

e.g. ECDSA splits elliptic-cu
additions into several cases.

EdDSA uses complete formt
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What is “a few copies” ? There are many more ways that

Variable-time loop is unsafe. cryptographic design choices
affect ditficulty of building fast

Correct but quite slow: |
correct constant-time software.

conditionally add 4p,
conditionally add 2p, e.g. ECDSA needs divisions

conditionally add p, of scalars. EADSA doesn't.

conditionally sub 4p, e.g. ECDSA splits elliptic-curve

conditionally sub 2p, .. .
Y P additions into several cases.

conditionally sub p.
y P EdDSA uses complete formulas.

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms
where 232 isn't best radix?




What is “a few copies” ?
Variable-time loop is unsafe.

Correct but quite slow:

4p,
2p,

y add p,
y sub 4p,

conditionally ada

conditionally ada

conditiona
conditiona

y sub 2p,
y sub p.

conditiona

conditiona

Delay until end of computation?
Trouble: “A less than p?".

Even worse: what about platforms

232

where Isn't best radix?

42

43
There are many more ways that

cryptographic design choices
affect ditficulty of building fast
correct constant-time software.

e.g. ECDSA needs divisions
of scalars. EADSA doesn't.

e.g. ECDSA splits elliptic-curve
additions into several cases.
EdDSA uses complete formulas.

What's better use of time:
implementing ECDSA, or
upgrading protocol to EdDSA?



