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A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing
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for (i = 0;i < 1000;++i)

result += x[i];
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20

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

Also many rotations, but

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)
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21

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.
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Modular arithmetic

Basic ECC operations:

add, sub, mul of, e.g.,

integers mod 2255 − 19.

(Basic NTRU operations:

add, sub, mul of, e.g.,

polynomials mod x761 − x − 1.)
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implementation of X25519,

plus occasional annotations,
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p = 2**255-19

A = 486662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
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x2,z2 = ((x2**2-z2**2)**2,

4*x2*z2*(x2**2+A*x2*z2+z2**2))
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What is “a few copies”?

Variable-time loop is unsafe.
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What is “a few copies”?

Variable-time loop is unsafe.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.
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Delay until end of computation?

Trouble: “A less than p2”.
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Even worse: what about platforms

where 232 isn’t best radix?
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Even worse: what about platforms

where 232 isn’t best radix?

43

There are many more ways that

cryptographic design choices

affect difficulty of building fast

correct constant-time software.

e.g. ECDSA needs divisions

of scalars. EdDSA doesn’t.

e.g. ECDSA splits elliptic-curve

additions into several cases.

EdDSA uses complete formulas.
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e.g. ECDSA splits elliptic-curve

additions into several cases.

EdDSA uses complete formulas.
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(A7; A6; A5; A4; A3; A2; A1; A0);

(A15; A14; A13; A12; A11; 0; 0; 0);

(0; A15; A14; A13; A12; 0; 0; 0);

(A15; A14; 0; 0; 0; A10; A9; A8);

(A8; A13; A15; A14; A13; A11; A10; A9);

(A10; A8; 0; 0; 0; A13; A12; A11);

(A11; A9; 0; 0; A15; A14; A13; A12);

(A12; 0; A10; A9; A8; A15; A14; A13);

(A13; 0; A11; A10; A9; 0; A15; A14).

Compute T + 2S1 + 2S2 + S3 +

S4 −D1 −D2 −D3 −D4.

Reduce modulo p “by adding or

subtracting a few copies” of p.

42

What is “a few copies”?

Variable-time loop is unsafe.

Correct but quite slow:

conditionally add 4p,

conditionally add 2p,

conditionally add p,

conditionally sub 4p,

conditionally sub 2p,

conditionally sub p.

Delay until end of computation?

Trouble: “A less than p2”.

Even worse: what about platforms

where 232 isn’t best radix?
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What is “a few copies”?

Variable-time loop is unsafe.

Correct but quite slow:
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Trouble: “A less than p2”.
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There are many more ways that

cryptographic design choices

affect difficulty of building fast

correct constant-time software.

e.g. ECDSA needs divisions

of scalars. EdDSA doesn’t.

e.g. ECDSA splits elliptic-curve

additions into several cases.

EdDSA uses complete formulas.

What’s better use of time:

implementing ECDSA, or

upgrading protocol to EdDSA?


