
1

Cryptographic

software engineering,

part 1

Daniel J. Bernstein

This is easy, right?

1. Take general principles

of software engineering.

2. Apply principles to crypto.

Let’s try some examples : : :

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

1

Cryptographic

software engineering,

part 1

Daniel J. Bernstein

This is easy, right?

1. Take general principles

of software engineering.

2. Apply principles to crypto.

Let’s try some examples : : :

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

1

Cryptographic

software engineering,

part 1

Daniel J. Bernstein

This is easy, right?

1. Take general principles

of software engineering.

2. Apply principles to crypto.

Let’s try some examples : : :

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

1

Cryptographic

software engineering,

part 1

Daniel J. Bernstein

This is easy, right?

1. Take general principles

of software engineering.

2. Apply principles to crypto.

Let’s try some examples : : :

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

Do not design APIs like this:

“The sample code used in

this manual omits the checking

of status values for clarity, but

when using cryptlib you should

check return values, particularly

for critical functions : : : ”

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

Do not design APIs like this:

“The sample code used in

this manual omits the checking

of status values for clarity, but

when using cryptlib you should

check return values, particularly

for critical functions : : : ”

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. FRIEND: stop at 1.

• FAAAAA vs. FRIEND: stop at 2.

• FRAAAA vs. FRIEND: stop at 3.

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

Do not design APIs like this:

“The sample code used in

this manual omits the checking

of status values for clarity, but

when using cryptlib you should

check return values, particularly

for critical functions : : : ”

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. FRIEND: stop at 1.

• FAAAAA vs. FRIEND: stop at 2.

• FRAAAA vs. FRIEND: stop at 3.

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

Do not design APIs like this:

“The sample code used in

this manual omits the checking

of status values for clarity, but

when using cryptlib you should

check return values, particularly

for critical functions : : : ”

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. FRIEND: stop at 1.

• FAAAAA vs. FRIEND: stop at 2.

• FRAAAA vs. FRIEND: stop at 3.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

Do not design APIs like this:

“The sample code used in

this manual omits the checking

of status values for clarity, but

when using cryptlib you should

check return values, particularly

for critical functions : : : ”

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. FRIEND: stop at 1.

• FAAAAA vs. FRIEND: stop at 2.

• FRAAAA vs. FRIEND: stop at 3.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

Do not design APIs like this:

“The sample code used in

this manual omits the checking

of status values for clarity, but

when using cryptlib you should

check return values, particularly

for critical functions : : : ”

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. FRIEND: stop at 1.

• FAAAAA vs. FRIEND: stop at 2.

• FRAAAA vs. FRIEND: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

Do not design APIs like this:

“The sample code used in

this manual omits the checking

of status values for clarity, but

when using cryptlib you should

check return values, particularly

for critical functions : : : ”

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. FRIEND: stop at 1.

• FAAAAA vs. FRIEND: stop at 2.

• FRAAAA vs. FRIEND: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

Do not design APIs like this:

“The sample code used in

this manual omits the checking

of status values for clarity, but

when using cryptlib you should

check return values, particularly

for critical functions : : : ”

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. FRIEND: stop at 1.

• FAAAAA vs. FRIEND: stop at 2.

• FRAAAA vs. FRIEND: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

Do not design APIs like this:

“The sample code used in

this manual omits the checking

of status values for clarity, but

when using cryptlib you should

check return values, particularly

for critical functions : : : ”

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. FRIEND: stop at 1.

• FAAAAA vs. FRIEND: stop at 2.

• FRAAAA vs. FRIEND: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. FRIEND: stop at 1.

• FAAAAA vs. FRIEND: stop at 2.

• FRAAAA vs. FRIEND: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. FRIEND: stop at 1.

• FAAAAA vs. FRIEND: stop at 2.

• FRAAAA vs. FRIEND: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. FRIEND: stop at 1.

• FAAAAA vs. FRIEND: stop at 2.

• FRAAAA vs. FRIEND: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. FRIEND: stop at 1.

• FAAAAA vs. FRIEND: stop at 2.

• FRAAAA vs. FRIEND: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. FRIEND: stop at 1.

• FAAAAA vs. FRIEND: stop at 2.

• FRAAAA vs. FRIEND: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

one of the CAESAR candidates:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

one of the CAESAR candidates:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

one of the CAESAR candidates:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

one of the CAESAR candidates:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

one of the CAESAR candidates:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

one of the CAESAR candidates:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

one of the CAESAR candidates:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

one of the CAESAR candidates:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

one of the CAESAR candidates:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

one of the CAESAR candidates:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

one of the CAESAR candidates:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Variable-time lab experiment.

Same issues described in 2004.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Variable-time lab experiment.

Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Variable-time lab experiment.

Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Variable-time lab experiment.

Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Variable-time lab experiment.

Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Variable-time lab experiment.

Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Variable-time lab experiment.

Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Variable-time lab experiment.

Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Variable-time lab experiment.

Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Variable-time lab experiment.

Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

14

Suppose we know (some)

const-time machine instructions.

Suppose programming language

has “secret” types.

Easy for compiler to guarantee

that secret types are used only

by const-time instructions.

Proofs of concept: Valgrind

(uninitialized data as secret),

ctgrind, ct-verif, FlowTracker.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

14

Suppose we know (some)

const-time machine instructions.

Suppose programming language

has “secret” types.

Easy for compiler to guarantee

that secret types are used only

by const-time instructions.

Proofs of concept: Valgrind

(uninitialized data as secret),

ctgrind, ct-verif, FlowTracker.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

14

Suppose we know (some)

const-time machine instructions.

Suppose programming language

has “secret” types.

Easy for compiler to guarantee

that secret types are used only

by const-time instructions.

Proofs of concept: Valgrind

(uninitialized data as secret),

ctgrind, ct-verif, FlowTracker.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

14

Suppose we know (some)

const-time machine instructions.

Suppose programming language

has “secret” types.

Easy for compiler to guarantee

that secret types are used only

by const-time instructions.

Proofs of concept: Valgrind

(uninitialized data as secret),

ctgrind, ct-verif, FlowTracker.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

14

Suppose we know (some)

const-time machine instructions.

Suppose programming language

has “secret” types.

Easy for compiler to guarantee

that secret types are used only

by const-time instructions.

Proofs of concept: Valgrind

(uninitialized data as secret),

ctgrind, ct-verif, FlowTracker.

How can we implement, e.g.,

sorting of a secret array?

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

14

Suppose we know (some)

const-time machine instructions.

Suppose programming language

has “secret” types.

Easy for compiler to guarantee

that secret types are used only

by const-time instructions.

Proofs of concept: Valgrind

(uninitialized data as secret),

ctgrind, ct-verif, FlowTracker.

How can we implement, e.g.,

sorting of a secret array?

15

Eliminating branches

Let’s try sorting 2 integers.

Assume int32 is secret.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

14

Suppose we know (some)

const-time machine instructions.

Suppose programming language

has “secret” types.

Easy for compiler to guarantee

that secret types are used only

by const-time instructions.

Proofs of concept: Valgrind

(uninitialized data as secret),

ctgrind, ct-verif, FlowTracker.

How can we implement, e.g.,

sorting of a secret array?

15

Eliminating branches

Let’s try sorting 2 integers.

Assume int32 is secret.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

14

Suppose we know (some)

const-time machine instructions.

Suppose programming language

has “secret” types.

Easy for compiler to guarantee

that secret types are used only

by const-time instructions.

Proofs of concept: Valgrind

(uninitialized data as secret),

ctgrind, ct-verif, FlowTracker.

How can we implement, e.g.,

sorting of a secret array?

15

Eliminating branches

Let’s try sorting 2 integers.

Assume int32 is secret.

14

Suppose we know (some)

const-time machine instructions.

Suppose programming language

has “secret” types.

Easy for compiler to guarantee

that secret types are used only

by const-time instructions.

Proofs of concept: Valgrind

(uninitialized data as secret),

ctgrind, ct-verif, FlowTracker.

How can we implement, e.g.,

sorting of a secret array?

15

Eliminating branches

Let’s try sorting 2 integers.

Assume int32 is secret.

14

Suppose we know (some)

const-time machine instructions.

Suppose programming language

has “secret” types.

Easy for compiler to guarantee

that secret types are used only

by const-time instructions.

Proofs of concept: Valgrind

(uninitialized data as secret),

ctgrind, ct-verif, FlowTracker.

How can we implement, e.g.,

sorting of a secret array?

15

Eliminating branches

Let’s try sorting 2 integers.

Assume int32 is secret.

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

}

}

14

Suppose we know (some)

const-time machine instructions.

Suppose programming language

has “secret” types.

Easy for compiler to guarantee

that secret types are used only

by const-time instructions.

Proofs of concept: Valgrind

(uninitialized data as secret),

ctgrind, ct-verif, FlowTracker.

How can we implement, e.g.,

sorting of a secret array?

15

Eliminating branches

Let’s try sorting 2 integers.

Assume int32 is secret.

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

}

}

Unacceptable: not constant-time.

14

Suppose we know (some)

const-time machine instructions.

Suppose programming language

has “secret” types.

Easy for compiler to guarantee

that secret types are used only

by const-time instructions.

Proofs of concept: Valgrind

(uninitialized data as secret),

ctgrind, ct-verif, FlowTracker.

How can we implement, e.g.,

sorting of a secret array?

15

Eliminating branches

Let’s try sorting 2 integers.

Assume int32 is secret.

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

}

}

Unacceptable: not constant-time.

16

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

} else {

x[0] = x0;

x[1] = x1;

}

}

14

Suppose we know (some)

const-time machine instructions.

Suppose programming language

has “secret” types.

Easy for compiler to guarantee

that secret types are used only

by const-time instructions.

Proofs of concept: Valgrind

(uninitialized data as secret),

ctgrind, ct-verif, FlowTracker.

How can we implement, e.g.,

sorting of a secret array?

15

Eliminating branches

Let’s try sorting 2 integers.

Assume int32 is secret.

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

}

}

Unacceptable: not constant-time.

16

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

} else {

x[0] = x0;

x[1] = x1;

}

}

14

Suppose we know (some)

const-time machine instructions.

Suppose programming language

has “secret” types.

Easy for compiler to guarantee

that secret types are used only

by const-time instructions.

Proofs of concept: Valgrind

(uninitialized data as secret),

ctgrind, ct-verif, FlowTracker.

How can we implement, e.g.,

sorting of a secret array?

15

Eliminating branches

Let’s try sorting 2 integers.

Assume int32 is secret.

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

}

}

Unacceptable: not constant-time.

16

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

} else {

x[0] = x0;

x[1] = x1;

}

}

15

Eliminating branches

Let’s try sorting 2 integers.

Assume int32 is secret.

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

}

}

Unacceptable: not constant-time.

16

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

} else {

x[0] = x0;

x[1] = x1;

}

}

15

Eliminating branches

Let’s try sorting 2 integers.

Assume int32 is secret.

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

}

}

Unacceptable: not constant-time.

16

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

} else {

x[0] = x0;

x[1] = x1;

}

}

Safe compiler won’t allow this.

Branch timing leaks secrets.

15

Eliminating branches

Let’s try sorting 2 integers.

Assume int32 is secret.

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

}

}

Unacceptable: not constant-time.

16

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

} else {

x[0] = x0;

x[1] = x1;

}

}

Safe compiler won’t allow this.

Branch timing leaks secrets.

17

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[0] = (c ? x1 : x0);

x[1] = (c ? x0 : x1);

}

15

Eliminating branches

Let’s try sorting 2 integers.

Assume int32 is secret.

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

}

}

Unacceptable: not constant-time.

16

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

} else {

x[0] = x0;

x[1] = x1;

}

}

Safe compiler won’t allow this.

Branch timing leaks secrets.

17

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[0] = (c ? x1 : x0);

x[1] = (c ? x0 : x1);

}

15

Eliminating branches

Let’s try sorting 2 integers.

Assume int32 is secret.

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

}

}

Unacceptable: not constant-time.

16

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

} else {

x[0] = x0;

x[1] = x1;

}

}

Safe compiler won’t allow this.

Branch timing leaks secrets.

17

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[0] = (c ? x1 : x0);

x[1] = (c ? x0 : x1);

}

16

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

} else {

x[0] = x0;

x[1] = x1;

}

}

Safe compiler won’t allow this.

Branch timing leaks secrets.

17

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[0] = (c ? x1 : x0);

x[1] = (c ? x0 : x1);

}

16

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

} else {

x[0] = x0;

x[1] = x1;

}

}

Safe compiler won’t allow this.

Branch timing leaks secrets.

17

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[0] = (c ? x1 : x0);

x[1] = (c ? x0 : x1);

}

Syntax is different but “?:”

is a branch by definition:

if (x1 < x0) x[0] = x1;

else x[0] = x0;

if (x1 < x0) x[1] = x0;

else x[1] = x1;

16

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

} else {

x[0] = x0;

x[1] = x1;

}

}

Safe compiler won’t allow this.

Branch timing leaks secrets.

17

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[0] = (c ? x1 : x0);

x[1] = (c ? x0 : x1);

}

Syntax is different but “?:”

is a branch by definition:

if (x1 < x0) x[0] = x1;

else x[0] = x0;

if (x1 < x0) x[1] = x0;

else x[1] = x1;

18

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[c] = x0;

x[1 - c] = x1;

}

16

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

} else {

x[0] = x0;

x[1] = x1;

}

}

Safe compiler won’t allow this.

Branch timing leaks secrets.

17

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[0] = (c ? x1 : x0);

x[1] = (c ? x0 : x1);

}

Syntax is different but “?:”

is a branch by definition:

if (x1 < x0) x[0] = x1;

else x[0] = x0;

if (x1 < x0) x[1] = x0;

else x[1] = x1;

18

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[c] = x0;

x[1 - c] = x1;

}

16

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

if (x1 < x0) {

x[0] = x1;

x[1] = x0;

} else {

x[0] = x0;

x[1] = x1;

}

}

Safe compiler won’t allow this.

Branch timing leaks secrets.

17

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[0] = (c ? x1 : x0);

x[1] = (c ? x0 : x1);

}

Syntax is different but “?:”

is a branch by definition:

if (x1 < x0) x[0] = x1;

else x[0] = x0;

if (x1 < x0) x[1] = x0;

else x[1] = x1;

18

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[c] = x0;

x[1 - c] = x1;

}

17

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[0] = (c ? x1 : x0);

x[1] = (c ? x0 : x1);

}

Syntax is different but “?:”

is a branch by definition:

if (x1 < x0) x[0] = x1;

else x[0] = x0;

if (x1 < x0) x[1] = x0;

else x[1] = x1;

18

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[c] = x0;

x[1 - c] = x1;

}

17

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[0] = (c ? x1 : x0);

x[1] = (c ? x0 : x1);

}

Syntax is different but “?:”

is a branch by definition:

if (x1 < x0) x[0] = x1;

else x[0] = x0;

if (x1 < x0) x[1] = x0;

else x[1] = x1;

18

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[c] = x0;

x[1 - c] = x1;

}

Safe compiler won’t allow this:

won’t allow secret data

to be used as an array index.

Cache timing is not constant:

see earlier attack examples.

17

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[0] = (c ? x1 : x0);

x[1] = (c ? x0 : x1);

}

Syntax is different but “?:”

is a branch by definition:

if (x1 < x0) x[0] = x1;

else x[0] = x0;

if (x1 < x0) x[1] = x0;

else x[1] = x1;

18

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[c] = x0;

x[1 - c] = x1;

}

Safe compiler won’t allow this:

won’t allow secret data

to be used as an array index.

Cache timing is not constant:

see earlier attack examples.

19

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

c *= x1 - x0;

x[0] = x0 + c;

x[1] = x1 - c;

}

17

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[0] = (c ? x1 : x0);

x[1] = (c ? x0 : x1);

}

Syntax is different but “?:”

is a branch by definition:

if (x1 < x0) x[0] = x1;

else x[0] = x0;

if (x1 < x0) x[1] = x0;

else x[1] = x1;

18

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[c] = x0;

x[1 - c] = x1;

}

Safe compiler won’t allow this:

won’t allow secret data

to be used as an array index.

Cache timing is not constant:

see earlier attack examples.

19

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

c *= x1 - x0;

x[0] = x0 + c;

x[1] = x1 - c;

}

17

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[0] = (c ? x1 : x0);

x[1] = (c ? x0 : x1);

}

Syntax is different but “?:”

is a branch by definition:

if (x1 < x0) x[0] = x1;

else x[0] = x0;

if (x1 < x0) x[1] = x0;

else x[1] = x1;

18

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[c] = x0;

x[1 - c] = x1;

}

Safe compiler won’t allow this:

won’t allow secret data

to be used as an array index.

Cache timing is not constant:

see earlier attack examples.

19

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

c *= x1 - x0;

x[0] = x0 + c;

x[1] = x1 - c;

}

18

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[c] = x0;

x[1 - c] = x1;

}

Safe compiler won’t allow this:

won’t allow secret data

to be used as an array index.

Cache timing is not constant:

see earlier attack examples.

19

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

c *= x1 - x0;

x[0] = x0 + c;

x[1] = x1 - c;

}

18

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[c] = x0;

x[1 - c] = x1;

}

Safe compiler won’t allow this:

won’t allow secret data

to be used as an array index.

Cache timing is not constant:

see earlier attack examples.

19

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

c *= x1 - x0;

x[0] = x0 + c;

x[1] = x1 - c;

}

Does safe compiler allow

multiplication of secrets?

Recall that multiplication

takes variable time on, e.g.,

Cortex-M3 and most PowerPCs.

18

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[c] = x0;

x[1 - c] = x1;

}

Safe compiler won’t allow this:

won’t allow secret data

to be used as an array index.

Cache timing is not constant:

see earlier attack examples.

19

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

c *= x1 - x0;

x[0] = x0 + c;

x[1] = x1 - c;

}

Does safe compiler allow

multiplication of secrets?

Recall that multiplication

takes variable time on, e.g.,

Cortex-M3 and most PowerPCs.

20

Will want to handle this issue

for fast prime-field ECC etc.,

but let’s dodge the issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = -(x1 < x0);

c &= x1 ^ x0;

x[0] = x0 ^ c;

x[1] = x1 ^ c;

}

18

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[c] = x0;

x[1 - c] = x1;

}

Safe compiler won’t allow this:

won’t allow secret data

to be used as an array index.

Cache timing is not constant:

see earlier attack examples.

19

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

c *= x1 - x0;

x[0] = x0 + c;

x[1] = x1 - c;

}

Does safe compiler allow

multiplication of secrets?

Recall that multiplication

takes variable time on, e.g.,

Cortex-M3 and most PowerPCs.

20

Will want to handle this issue

for fast prime-field ECC etc.,

but let’s dodge the issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = -(x1 < x0);

c &= x1 ^ x0;

x[0] = x0 ^ c;

x[1] = x1 ^ c;

}

18

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

x[c] = x0;

x[1 - c] = x1;

}

Safe compiler won’t allow this:

won’t allow secret data

to be used as an array index.

Cache timing is not constant:

see earlier attack examples.

19

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

c *= x1 - x0;

x[0] = x0 + c;

x[1] = x1 - c;

}

Does safe compiler allow

multiplication of secrets?

Recall that multiplication

takes variable time on, e.g.,

Cortex-M3 and most PowerPCs.

20

Will want to handle this issue

for fast prime-field ECC etc.,

but let’s dodge the issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = -(x1 < x0);

c &= x1 ^ x0;

x[0] = x0 ^ c;

x[1] = x1 ^ c;

}

19

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

c *= x1 - x0;

x[0] = x0 + c;

x[1] = x1 - c;

}

Does safe compiler allow

multiplication of secrets?

Recall that multiplication

takes variable time on, e.g.,

Cortex-M3 and most PowerPCs.

20

Will want to handle this issue

for fast prime-field ECC etc.,

but let’s dodge the issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = -(x1 < x0);

c &= x1 ^ x0;

x[0] = x0 ^ c;

x[1] = x1 ^ c;

}

19

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

c *= x1 - x0;

x[0] = x0 + c;

x[1] = x1 - c;

}

Does safe compiler allow

multiplication of secrets?

Recall that multiplication

takes variable time on, e.g.,

Cortex-M3 and most PowerPCs.

20

Will want to handle this issue

for fast prime-field ECC etc.,

but let’s dodge the issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = -(x1 < x0);

c &= x1 ^ x0;

x[0] = x0 ^ c;

x[1] = x1 ^ c;

}

21

1. Possible correctness problems

(also for previous code):

C standard does not define

int32 as twos-complement; says

“undefined” behavior on overflow.

Real CPU uses twos-complement

but C compiler can screw this up.

19

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

c *= x1 - x0;

x[0] = x0 + c;

x[1] = x1 - c;

}

Does safe compiler allow

multiplication of secrets?

Recall that multiplication

takes variable time on, e.g.,

Cortex-M3 and most PowerPCs.

20

Will want to handle this issue

for fast prime-field ECC etc.,

but let’s dodge the issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = -(x1 < x0);

c &= x1 ^ x0;

x[0] = x0 ^ c;

x[1] = x1 ^ c;

}

21

1. Possible correctness problems

(also for previous code):

C standard does not define

int32 as twos-complement; says

“undefined” behavior on overflow.

Real CPU uses twos-complement

but C compiler can screw this up.

19

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = (x1 < x0);

c *= x1 - x0;

x[0] = x0 + c;

x[1] = x1 - c;

}

Does safe compiler allow

multiplication of secrets?

Recall that multiplication

takes variable time on, e.g.,

Cortex-M3 and most PowerPCs.

20

Will want to handle this issue

for fast prime-field ECC etc.,

but let’s dodge the issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = -(x1 < x0);

c &= x1 ^ x0;

x[0] = x0 ^ c;

x[1] = x1 ^ c;

}

21

1. Possible correctness problems

(also for previous code):

C standard does not define

int32 as twos-complement; says

“undefined” behavior on overflow.

Real CPU uses twos-complement

but C compiler can screw this up.

20

Will want to handle this issue

for fast prime-field ECC etc.,

but let’s dodge the issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = -(x1 < x0);

c &= x1 ^ x0;

x[0] = x0 ^ c;

x[1] = x1 ^ c;

}

21

1. Possible correctness problems

(also for previous code):

C standard does not define

int32 as twos-complement; says

“undefined” behavior on overflow.

Real CPU uses twos-complement

but C compiler can screw this up.

20

Will want to handle this issue

for fast prime-field ECC etc.,

but let’s dodge the issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = -(x1 < x0);

c &= x1 ^ x0;

x[0] = x0 ^ c;

x[1] = x1 ^ c;

}

21

1. Possible correctness problems

(also for previous code):

C standard does not define

int32 as twos-complement; says

“undefined” behavior on overflow.

Real CPU uses twos-complement

but C compiler can screw this up.

Fix: use gcc -fwrapv.

20

Will want to handle this issue

for fast prime-field ECC etc.,

but let’s dodge the issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = -(x1 < x0);

c &= x1 ^ x0;

x[0] = x0 ^ c;

x[1] = x1 ^ c;

}

21

1. Possible correctness problems

(also for previous code):

C standard does not define

int32 as twos-complement; says

“undefined” behavior on overflow.

Real CPU uses twos-complement

but C compiler can screw this up.

Fix: use gcc -fwrapv.

2. Does safe compiler allow

“x1 < x0” for secrets?

What do we do if it doesn’t?

20

Will want to handle this issue

for fast prime-field ECC etc.,

but let’s dodge the issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = -(x1 < x0);

c &= x1 ^ x0;

x[0] = x0 ^ c;

x[1] = x1 ^ c;

}

21

1. Possible correctness problems

(also for previous code):

C standard does not define

int32 as twos-complement; says

“undefined” behavior on overflow.

Real CPU uses twos-complement

but C compiler can screw this up.

Fix: use gcc -fwrapv.

2. Does safe compiler allow

“x1 < x0” for secrets?

What do we do if it doesn’t?

C compilers sometimes use

constant-time instructions for this.

20

Will want to handle this issue

for fast prime-field ECC etc.,

but let’s dodge the issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = -(x1 < x0);

c &= x1 ^ x0;

x[0] = x0 ^ c;

x[1] = x1 ^ c;

}

21

1. Possible correctness problems

(also for previous code):

C standard does not define

int32 as twos-complement; says

“undefined” behavior on overflow.

Real CPU uses twos-complement

but C compiler can screw this up.

Fix: use gcc -fwrapv.

2. Does safe compiler allow

“x1 < x0” for secrets?

What do we do if it doesn’t?

C compilers sometimes use

constant-time instructions for this.

22

Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }

Returns -1 if x < 0, otherwise 0.

20

Will want to handle this issue

for fast prime-field ECC etc.,

but let’s dodge the issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = -(x1 < x0);

c &= x1 ^ x0;

x[0] = x0 ^ c;

x[1] = x1 ^ c;

}

21

1. Possible correctness problems

(also for previous code):

C standard does not define

int32 as twos-complement; says

“undefined” behavior on overflow.

Real CPU uses twos-complement

but C compiler can screw this up.

Fix: use gcc -fwrapv.

2. Does safe compiler allow

“x1 < x0” for secrets?

What do we do if it doesn’t?

C compilers sometimes use

constant-time instructions for this.

22

Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }

Returns -1 if x < 0, otherwise 0.

20

Will want to handle this issue

for fast prime-field ECC etc.,

but let’s dodge the issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x[0];

int32 x1 = x[1];

int32 c = -(x1 < x0);

c &= x1 ^ x0;

x[0] = x0 ^ c;

x[1] = x1 ^ c;

}

21

1. Possible correctness problems

(also for previous code):

C standard does not define

int32 as twos-complement; says

“undefined” behavior on overflow.

Real CPU uses twos-complement

but C compiler can screw this up.

Fix: use gcc -fwrapv.

2. Does safe compiler allow

“x1 < x0” for secrets?

What do we do if it doesn’t?

C compilers sometimes use

constant-time instructions for this.

22

Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }

Returns -1 if x < 0, otherwise 0.

21

1. Possible correctness problems

(also for previous code):

C standard does not define

int32 as twos-complement; says

“undefined” behavior on overflow.

Real CPU uses twos-complement

but C compiler can screw this up.

Fix: use gcc -fwrapv.

2. Does safe compiler allow

“x1 < x0” for secrets?

What do we do if it doesn’t?

C compilers sometimes use

constant-time instructions for this.

22

Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }

Returns -1 if x < 0, otherwise 0.

21

1. Possible correctness problems

(also for previous code):

C standard does not define

int32 as twos-complement; says

“undefined” behavior on overflow.

Real CPU uses twos-complement

but C compiler can screw this up.

Fix: use gcc -fwrapv.

2. Does safe compiler allow

“x1 < x0” for secrets?

What do we do if it doesn’t?

C compilers sometimes use

constant-time instructions for this.

22

Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }

Returns -1 if x < 0, otherwise 0.

Why this works: the bits

(b31; b30; : : : ; b2; b1; b0)

represent the integer b0 + 2b1 +

4b2 + · · · + 230b30 − 231b31.

“1-bit signed right shift”:

(b31; b31; : : : ; b3; b2; b1).

“31-bit signed right shift”:

(b31; b31; : : : ; b31; b31; b31).

21

1. Possible correctness problems

(also for previous code):

C standard does not define

int32 as twos-complement; says

“undefined” behavior on overflow.

Real CPU uses twos-complement

but C compiler can screw this up.

Fix: use gcc -fwrapv.

2. Does safe compiler allow

“x1 < x0” for secrets?

What do we do if it doesn’t?

C compilers sometimes use

constant-time instructions for this.

22

Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }

Returns -1 if x < 0, otherwise 0.

Why this works: the bits

(b31; b30; : : : ; b2; b1; b0)

represent the integer b0 + 2b1 +

4b2 + · · · + 230b30 − 231b31.

“1-bit signed right shift”:

(b31; b31; : : : ; b3; b2; b1).

“31-bit signed right shift”:

(b31; b31; : : : ; b31; b31; b31).

23

int32 ispositive(int32 x)

{ return isnegative(-x); }

21

1. Possible correctness problems

(also for previous code):

C standard does not define

int32 as twos-complement; says

“undefined” behavior on overflow.

Real CPU uses twos-complement

but C compiler can screw this up.

Fix: use gcc -fwrapv.

2. Does safe compiler allow

“x1 < x0” for secrets?

What do we do if it doesn’t?

C compilers sometimes use

constant-time instructions for this.

22

Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }

Returns -1 if x < 0, otherwise 0.

Why this works: the bits

(b31; b30; : : : ; b2; b1; b0)

represent the integer b0 + 2b1 +

4b2 + · · · + 230b30 − 231b31.

“1-bit signed right shift”:

(b31; b31; : : : ; b3; b2; b1).

“31-bit signed right shift”:

(b31; b31; : : : ; b31; b31; b31).

23

int32 ispositive(int32 x)

{ return isnegative(-x); }

21

1. Possible correctness problems

(also for previous code):

C standard does not define

int32 as twos-complement; says

“undefined” behavior on overflow.

Real CPU uses twos-complement

but C compiler can screw this up.

Fix: use gcc -fwrapv.

2. Does safe compiler allow

“x1 < x0” for secrets?

What do we do if it doesn’t?

C compilers sometimes use

constant-time instructions for this.

22

Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }

Returns -1 if x < 0, otherwise 0.

Why this works: the bits

(b31; b30; : : : ; b2; b1; b0)

represent the integer b0 + 2b1 +

4b2 + · · · + 230b30 − 231b31.

“1-bit signed right shift”:

(b31; b31; : : : ; b3; b2; b1).

“31-bit signed right shift”:

(b31; b31; : : : ; b31; b31; b31).

23

int32 ispositive(int32 x)

{ return isnegative(-x); }

22

Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }

Returns -1 if x < 0, otherwise 0.

Why this works: the bits

(b31; b30; : : : ; b2; b1; b0)

represent the integer b0 + 2b1 +

4b2 + · · · + 230b30 − 231b31.

“1-bit signed right shift”:

(b31; b31; : : : ; b3; b2; b1).

“31-bit signed right shift”:

(b31; b31; : : : ; b31; b31; b31).

23

int32 ispositive(int32 x)

{ return isnegative(-x); }

22

Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }

Returns -1 if x < 0, otherwise 0.

Why this works: the bits

(b31; b30; : : : ; b2; b1; b0)

represent the integer b0 + 2b1 +

4b2 + · · · + 230b30 − 231b31.

“1-bit signed right shift”:

(b31; b31; : : : ; b3; b2; b1).

“31-bit signed right shift”:

(b31; b31; : : : ; b31; b31; b31).

23

int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!

Fails for input −231,

because “-x” produces −231.

22

Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }

Returns -1 if x < 0, otherwise 0.

Why this works: the bits

(b31; b30; : : : ; b2; b1; b0)

represent the integer b0 + 2b1 +

4b2 + · · · + 230b30 − 231b31.

“1-bit signed right shift”:

(b31; b31; : : : ; b3; b2; b1).

“31-bit signed right shift”:

(b31; b31; : : : ; b31; b31; b31).

23

int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!

Fails for input −231,

because “-x” produces −231.

Can catch this bug by testing:

int64 x; int32 c;

for (x = INT32_MIN;

x <= INT32_MAX;++x) {

c = ispositive(x);

assert(c == -(x > 0));

}

22

Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }

Returns -1 if x < 0, otherwise 0.

Why this works: the bits

(b31; b30; : : : ; b2; b1; b0)

represent the integer b0 + 2b1 +

4b2 + · · · + 230b30 − 231b31.

“1-bit signed right shift”:

(b31; b31; : : : ; b3; b2; b1).

“31-bit signed right shift”:

(b31; b31; : : : ; b31; b31; b31).

23

int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!

Fails for input −231,

because “-x” produces −231.

Can catch this bug by testing:

int64 x; int32 c;

for (x = INT32_MIN;

x <= INT32_MAX;++x) {

c = ispositive(x);

assert(c == -(x > 0));

}

24

Side note illustrating -fwrapv:

int32 ispositive(int32 x)

{ if (x == -x) return 0;

return isnegative(-x); }

22

Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }

Returns -1 if x < 0, otherwise 0.

Why this works: the bits

(b31; b30; : : : ; b2; b1; b0)

represent the integer b0 + 2b1 +

4b2 + · · · + 230b30 − 231b31.

“1-bit signed right shift”:

(b31; b31; : : : ; b3; b2; b1).

“31-bit signed right shift”:

(b31; b31; : : : ; b31; b31; b31).

23

int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!

Fails for input −231,

because “-x” produces −231.

Can catch this bug by testing:

int64 x; int32 c;

for (x = INT32_MIN;

x <= INT32_MAX;++x) {

c = ispositive(x);

assert(c == -(x > 0));

}

24

Side note illustrating -fwrapv:

int32 ispositive(int32 x)

{ if (x == -x) return 0;

return isnegative(-x); }

22

Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }

Returns -1 if x < 0, otherwise 0.

Why this works: the bits

(b31; b30; : : : ; b2; b1; b0)

represent the integer b0 + 2b1 +

4b2 + · · · + 230b30 − 231b31.

“1-bit signed right shift”:

(b31; b31; : : : ; b3; b2; b1).

“31-bit signed right shift”:

(b31; b31; : : : ; b31; b31; b31).

23

int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!

Fails for input −231,

because “-x” produces −231.

Can catch this bug by testing:

int64 x; int32 c;

for (x = INT32_MIN;

x <= INT32_MAX;++x) {

c = ispositive(x);

assert(c == -(x > 0));

}

24

Side note illustrating -fwrapv:

int32 ispositive(int32 x)

{ if (x == -x) return 0;

return isnegative(-x); }

23

int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!

Fails for input −231,

because “-x” produces −231.

Can catch this bug by testing:

int64 x; int32 c;

for (x = INT32_MIN;

x <= INT32_MAX;++x) {

c = ispositive(x);

assert(c == -(x > 0));

}

24

Side note illustrating -fwrapv:

int32 ispositive(int32 x)

{ if (x == -x) return 0;

return isnegative(-x); }

23

int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!

Fails for input −231,

because “-x” produces −231.

Can catch this bug by testing:

int64 x; int32 c;

for (x = INT32_MIN;

x <= INT32_MAX;++x) {

c = ispositive(x);

assert(c == -(x > 0));

}

24

Side note illustrating -fwrapv:

int32 ispositive(int32 x)

{ if (x == -x) return 0;

return isnegative(-x); }

Not constant-time.

23

int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!

Fails for input −231,

because “-x” produces −231.

Can catch this bug by testing:

int64 x; int32 c;

for (x = INT32_MIN;

x <= INT32_MAX;++x) {

c = ispositive(x);

assert(c == -(x > 0));

}

24

Side note illustrating -fwrapv:

int32 ispositive(int32 x)

{ if (x == -x) return 0;

return isnegative(-x); }

Not constant-time.

Even worse: without -fwrapv,

current gcc can remove the

x == -x test, breaking this code.

23

int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!

Fails for input −231,

because “-x” produces −231.

Can catch this bug by testing:

int64 x; int32 c;

for (x = INT32_MIN;

x <= INT32_MAX;++x) {

c = ispositive(x);

assert(c == -(x > 0));

}

24

Side note illustrating -fwrapv:

int32 ispositive(int32 x)

{ if (x == -x) return 0;

return isnegative(-x); }

Not constant-time.

Even worse: without -fwrapv,

current gcc can remove the

x == -x test, breaking this code.

Incompetent gcc engineering:

source of many security holes.

Incompetent language standard.

23

int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!

Fails for input −231,

because “-x” produces −231.

Can catch this bug by testing:

int64 x; int32 c;

for (x = INT32_MIN;

x <= INT32_MAX;++x) {

c = ispositive(x);

assert(c == -(x > 0));

}

24

Side note illustrating -fwrapv:

int32 ispositive(int32 x)

{ if (x == -x) return 0;

return isnegative(-x); }

Not constant-time.

Even worse: without -fwrapv,

current gcc can remove the

x == -x test, breaking this code.

Incompetent gcc engineering:

source of many security holes.

Incompetent language standard.

25

int32 isnonzero(int32 x)

{ return isnegative(x)

|| isnegative(-x); }

23

int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!

Fails for input −231,

because “-x” produces −231.

Can catch this bug by testing:

int64 x; int32 c;

for (x = INT32_MIN;

x <= INT32_MAX;++x) {

c = ispositive(x);

assert(c == -(x > 0));

}

24

Side note illustrating -fwrapv:

int32 ispositive(int32 x)

{ if (x == -x) return 0;

return isnegative(-x); }

Not constant-time.

Even worse: without -fwrapv,

current gcc can remove the

x == -x test, breaking this code.

Incompetent gcc engineering:

source of many security holes.

Incompetent language standard.

25

int32 isnonzero(int32 x)

{ return isnegative(x)

|| isnegative(-x); }

23

int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!

Fails for input −231,

because “-x” produces −231.

Can catch this bug by testing:

int64 x; int32 c;

for (x = INT32_MIN;

x <= INT32_MAX;++x) {

c = ispositive(x);

assert(c == -(x > 0));

}

24

Side note illustrating -fwrapv:

int32 ispositive(int32 x)

{ if (x == -x) return 0;

return isnegative(-x); }

Not constant-time.

Even worse: without -fwrapv,

current gcc can remove the

x == -x test, breaking this code.

Incompetent gcc engineering:

source of many security holes.

Incompetent language standard.

25

int32 isnonzero(int32 x)

{ return isnegative(x)

|| isnegative(-x); }

24

Side note illustrating -fwrapv:

int32 ispositive(int32 x)

{ if (x == -x) return 0;

return isnegative(-x); }

Not constant-time.

Even worse: without -fwrapv,

current gcc can remove the

x == -x test, breaking this code.

Incompetent gcc engineering:

source of many security holes.

Incompetent language standard.

25

int32 isnonzero(int32 x)

{ return isnegative(x)

|| isnegative(-x); }

24

Side note illustrating -fwrapv:

int32 ispositive(int32 x)

{ if (x == -x) return 0;

return isnegative(-x); }

Not constant-time.

Even worse: without -fwrapv,

current gcc can remove the

x == -x test, breaking this code.

Incompetent gcc engineering:

source of many security holes.

Incompetent language standard.

25

int32 isnonzero(int32 x)

{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.

Second part is evaluated

only if first part is zero.

24

Side note illustrating -fwrapv:

int32 ispositive(int32 x)

{ if (x == -x) return 0;

return isnegative(-x); }

Not constant-time.

Even worse: without -fwrapv,

current gcc can remove the

x == -x test, breaking this code.

Incompetent gcc engineering:

source of many security holes.

Incompetent language standard.

25

int32 isnonzero(int32 x)

{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.

Second part is evaluated

only if first part is zero.

int32 isnonzero(int32 x)

{ return isnegative(x)

| isnegative(-x); }

Constant-time logic instructions.

Safe compiler will allow this.

24

Side note illustrating -fwrapv:

int32 ispositive(int32 x)

{ if (x == -x) return 0;

return isnegative(-x); }

Not constant-time.

Even worse: without -fwrapv,

current gcc can remove the

x == -x test, breaking this code.

Incompetent gcc engineering:

source of many security holes.

Incompetent language standard.

25

int32 isnonzero(int32 x)

{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.

Second part is evaluated

only if first part is zero.

int32 isnonzero(int32 x)

{ return isnegative(x)

| isnegative(-x); }

Constant-time logic instructions.

Safe compiler will allow this.

26

int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

24

Side note illustrating -fwrapv:

int32 ispositive(int32 x)

{ if (x == -x) return 0;

return isnegative(-x); }

Not constant-time.

Even worse: without -fwrapv,

current gcc can remove the

x == -x test, breaking this code.

Incompetent gcc engineering:

source of many security holes.

Incompetent language standard.

25

int32 isnonzero(int32 x)

{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.

Second part is evaluated

only if first part is zero.

int32 isnonzero(int32 x)

{ return isnegative(x)

| isnegative(-x); }

Constant-time logic instructions.

Safe compiler will allow this.

26

int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

24

Side note illustrating -fwrapv:

int32 ispositive(int32 x)

{ if (x == -x) return 0;

return isnegative(-x); }

Not constant-time.

Even worse: without -fwrapv,

current gcc can remove the

x == -x test, breaking this code.

Incompetent gcc engineering:

source of many security holes.

Incompetent language standard.

25

int32 isnonzero(int32 x)

{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.

Second part is evaluated

only if first part is zero.

int32 isnonzero(int32 x)

{ return isnegative(x)

| isnegative(-x); }

Constant-time logic instructions.

Safe compiler will allow this.

26

int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

25

int32 isnonzero(int32 x)

{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.

Second part is evaluated

only if first part is zero.

int32 isnonzero(int32 x)

{ return isnegative(x)

| isnegative(-x); }

Constant-time logic instructions.

Safe compiler will allow this.

26

int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

25

int32 isnonzero(int32 x)

{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.

Second part is evaluated

only if first part is zero.

int32 isnonzero(int32 x)

{ return isnegative(x)

| isnegative(-x); }

Constant-time logic instructions.

Safe compiler will allow this.

26

int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

This code is incorrect!

Generalization of ispositive.

Wrong for inputs (0;−231).

25

int32 isnonzero(int32 x)

{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.

Second part is evaluated

only if first part is zero.

int32 isnonzero(int32 x)

{ return isnegative(x)

| isnegative(-x); }

Constant-time logic instructions.

Safe compiler will allow this.

26

int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

This code is incorrect!

Generalization of ispositive.

Wrong for inputs (0;−231).

Wrong for many more inputs.

Caught quickly by random tests:

for (j = 0;j < 10000000;++j) {

x += random(); y += random();

c = issmaller(x,y);

assert(c == -(x < y));

}

25

int32 isnonzero(int32 x)

{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.

Second part is evaluated

only if first part is zero.

int32 isnonzero(int32 x)

{ return isnegative(x)

| isnegative(-x); }

Constant-time logic instructions.

Safe compiler will allow this.

26

int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

This code is incorrect!

Generalization of ispositive.

Wrong for inputs (0;−231).

Wrong for many more inputs.

Caught quickly by random tests:

for (j = 0;j < 10000000;++j) {

x += random(); y += random();

c = issmaller(x,y);

assert(c == -(x < y));

}

27

int32 issmaller(int32 x,int32 y)

{ int32 xy = x ^ y;

int32 c = x - y;

c ^= xy & (c ^ x);

return isnegative(c);

}

25

int32 isnonzero(int32 x)

{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.

Second part is evaluated

only if first part is zero.

int32 isnonzero(int32 x)

{ return isnegative(x)

| isnegative(-x); }

Constant-time logic instructions.

Safe compiler will allow this.

26

int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

This code is incorrect!

Generalization of ispositive.

Wrong for inputs (0;−231).

Wrong for many more inputs.

Caught quickly by random tests:

for (j = 0;j < 10000000;++j) {

x += random(); y += random();

c = issmaller(x,y);

assert(c == -(x < y));

}

27

int32 issmaller(int32 x,int32 y)

{ int32 xy = x ^ y;

int32 c = x - y;

c ^= xy & (c ^ x);

return isnegative(c);

}

25

int32 isnonzero(int32 x)

{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.

Second part is evaluated

only if first part is zero.

int32 isnonzero(int32 x)

{ return isnegative(x)

| isnegative(-x); }

Constant-time logic instructions.

Safe compiler will allow this.

26

int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

This code is incorrect!

Generalization of ispositive.

Wrong for inputs (0;−231).

Wrong for many more inputs.

Caught quickly by random tests:

for (j = 0;j < 10000000;++j) {

x += random(); y += random();

c = issmaller(x,y);

assert(c == -(x < y));

}

27

int32 issmaller(int32 x,int32 y)

{ int32 xy = x ^ y;

int32 c = x - y;

c ^= xy & (c ^ x);

return isnegative(c);

}

26

int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

This code is incorrect!

Generalization of ispositive.

Wrong for inputs (0;−231).

Wrong for many more inputs.

Caught quickly by random tests:

for (j = 0;j < 10000000;++j) {

x += random(); y += random();

c = issmaller(x,y);

assert(c == -(x < y));

}

27

int32 issmaller(int32 x,int32 y)

{ int32 xy = x ^ y;

int32 c = x - y;

c ^= xy & (c ^ x);

return isnegative(c);

}

26

int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

This code is incorrect!

Generalization of ispositive.

Wrong for inputs (0;−231).

Wrong for many more inputs.

Caught quickly by random tests:

for (j = 0;j < 10000000;++j) {

x += random(); y += random();

c = issmaller(x,y);

assert(c == -(x < y));

}

27

int32 issmaller(int32 x,int32 y)

{ int32 xy = x ^ y;

int32 c = x - y;

c ^= xy & (c ^ x);

return isnegative(c);

}

Some verification strategies:

• Think this through.

• Write a proof.

• Formally verify proof.

• Automate proof construction.

• Test many random inputs.

• A bit painful: test all inputs.

• Faster: test int16 version.

26

int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

This code is incorrect!

Generalization of ispositive.

Wrong for inputs (0;−231).

Wrong for many more inputs.

Caught quickly by random tests:

for (j = 0;j < 10000000;++j) {

x += random(); y += random();

c = issmaller(x,y);

assert(c == -(x < y));

}

27

int32 issmaller(int32 x,int32 y)

{ int32 xy = x ^ y;

int32 c = x - y;

c ^= xy & (c ^ x);

return isnegative(c);

}

Some verification strategies:

• Think this through.

• Write a proof.

• Formally verify proof.

• Automate proof construction.

• Test many random inputs.

• A bit painful: test all inputs.

• Faster: test int16 version.

28

void minmax(int32 *x,int32 *y)

{ int32 a = *x;

int32 b = *y;

int32 ab = b ^ a;

int32 c = b - a;

c ^= ab & (c ^ b);

c >>= 31;

c &= ab;

*x = a ^ c;

*y = b ^ c;

}

void sort2(int32 *x)

{ minmax(x,x + 1); }

26

int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

This code is incorrect!

Generalization of ispositive.

Wrong for inputs (0;−231).

Wrong for many more inputs.

Caught quickly by random tests:

for (j = 0;j < 10000000;++j) {

x += random(); y += random();

c = issmaller(x,y);

assert(c == -(x < y));

}

27

int32 issmaller(int32 x,int32 y)

{ int32 xy = x ^ y;

int32 c = x - y;

c ^= xy & (c ^ x);

return isnegative(c);

}

Some verification strategies:

• Think this through.

• Write a proof.

• Formally verify proof.

• Automate proof construction.

• Test many random inputs.

• A bit painful: test all inputs.

• Faster: test int16 version.

28

void minmax(int32 *x,int32 *y)

{ int32 a = *x;

int32 b = *y;

int32 ab = b ^ a;

int32 c = b - a;

c ^= ab & (c ^ b);

c >>= 31;

c &= ab;

*x = a ^ c;

*y = b ^ c;

}

void sort2(int32 *x)

{ minmax(x,x + 1); }

26

int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

This code is incorrect!

Generalization of ispositive.

Wrong for inputs (0;−231).

Wrong for many more inputs.

Caught quickly by random tests:

for (j = 0;j < 10000000;++j) {

x += random(); y += random();

c = issmaller(x,y);

assert(c == -(x < y));

}

27

int32 issmaller(int32 x,int32 y)

{ int32 xy = x ^ y;

int32 c = x - y;

c ^= xy & (c ^ x);

return isnegative(c);

}

Some verification strategies:

• Think this through.

• Write a proof.

• Formally verify proof.

• Automate proof construction.

• Test many random inputs.

• A bit painful: test all inputs.

• Faster: test int16 version.

28

void minmax(int32 *x,int32 *y)

{ int32 a = *x;

int32 b = *y;

int32 ab = b ^ a;

int32 c = b - a;

c ^= ab & (c ^ b);

c >>= 31;

c &= ab;

*x = a ^ c;

*y = b ^ c;

}

void sort2(int32 *x)

{ minmax(x,x + 1); }

27

int32 issmaller(int32 x,int32 y)

{ int32 xy = x ^ y;

int32 c = x - y;

c ^= xy & (c ^ x);

return isnegative(c);

}

Some verification strategies:

• Think this through.

• Write a proof.

• Formally verify proof.

• Automate proof construction.

• Test many random inputs.

• A bit painful: test all inputs.

• Faster: test int16 version.

28

void minmax(int32 *x,int32 *y)

{ int32 a = *x;

int32 b = *y;

int32 ab = b ^ a;

int32 c = b - a;

c ^= ab & (c ^ b);

c >>= 31;

c &= ab;

*x = a ^ c;

*y = b ^ c;

}

void sort2(int32 *x)

{ minmax(x,x + 1); }

27

int32 issmaller(int32 x,int32 y)

{ int32 xy = x ^ y;

int32 c = x - y;

c ^= xy & (c ^ x);

return isnegative(c);

}

Some verification strategies:

• Think this through.

• Write a proof.

• Formally verify proof.

• Automate proof construction.

• Test many random inputs.

• A bit painful: test all inputs.

• Faster: test int16 version.

28

void minmax(int32 *x,int32 *y)

{ int32 a = *x;

int32 b = *y;

int32 ab = b ^ a;

int32 c = b - a;

c ^= ab & (c ^ b);

c >>= 31;

c &= ab;

*x = a ^ c;

*y = b ^ c;

}

void sort2(int32 *x)

{ minmax(x,x + 1); }

29

int32 ispositive(int32 x)

{ int32 c = -x;

c ^= x & c;

return isnegative(c);

}

void sort(int32 *x,long long n)

{ long long i,j;

for (j = 0;j < n;++j)

for (i = j - 1;i >= 0;--i)

minmax(x + i,x + i + 1);

}

Safe compiler will allow this

if array length n is not secret.

27

int32 issmaller(int32 x,int32 y)

{ int32 xy = x ^ y;

int32 c = x - y;

c ^= xy & (c ^ x);

return isnegative(c);

}

Some verification strategies:

• Think this through.

• Write a proof.

• Formally verify proof.

• Automate proof construction.

• Test many random inputs.

• A bit painful: test all inputs.

• Faster: test int16 version.

28

void minmax(int32 *x,int32 *y)

{ int32 a = *x;

int32 b = *y;

int32 ab = b ^ a;

int32 c = b - a;

c ^= ab & (c ^ b);

c >>= 31;

c &= ab;

*x = a ^ c;

*y = b ^ c;

}

void sort2(int32 *x)

{ minmax(x,x + 1); }

29

int32 ispositive(int32 x)

{ int32 c = -x;

c ^= x & c;

return isnegative(c);

}

void sort(int32 *x,long long n)

{ long long i,j;

for (j = 0;j < n;++j)

for (i = j - 1;i >= 0;--i)

minmax(x + i,x + i + 1);

}

Safe compiler will allow this

if array length n is not secret.

27

int32 issmaller(int32 x,int32 y)

{ int32 xy = x ^ y;

int32 c = x - y;

c ^= xy & (c ^ x);

return isnegative(c);

}

Some verification strategies:

• Think this through.

• Write a proof.

• Formally verify proof.

• Automate proof construction.

• Test many random inputs.

• A bit painful: test all inputs.

• Faster: test int16 version.

28

void minmax(int32 *x,int32 *y)

{ int32 a = *x;

int32 b = *y;

int32 ab = b ^ a;

int32 c = b - a;

c ^= ab & (c ^ b);

c >>= 31;

c &= ab;

*x = a ^ c;

*y = b ^ c;

}

void sort2(int32 *x)

{ minmax(x,x + 1); }

29

int32 ispositive(int32 x)

{ int32 c = -x;

c ^= x & c;

return isnegative(c);

}

void sort(int32 *x,long long n)

{ long long i,j;

for (j = 0;j < n;++j)

for (i = j - 1;i >= 0;--i)

minmax(x + i,x + i + 1);

}

Safe compiler will allow this

if array length n is not secret.

28

void minmax(int32 *x,int32 *y)

{ int32 a = *x;

int32 b = *y;

int32 ab = b ^ a;

int32 c = b - a;

c ^= ab & (c ^ b);

c >>= 31;

c &= ab;

*x = a ^ c;

*y = b ^ c;

}

void sort2(int32 *x)

{ minmax(x,x + 1); }

29

int32 ispositive(int32 x)

{ int32 c = -x;

c ^= x & c;

return isnegative(c);

}

void sort(int32 *x,long long n)

{ long long i,j;

for (j = 0;j < n;++j)

for (i = j - 1;i >= 0;--i)

minmax(x + i,x + i + 1);

}

Safe compiler will allow this

if array length n is not secret.

