L attice-based
public-key cryptosystems

D. J. Bernstein

NIST post-quantum competition:
69 submissions in first round,

from hundreds of people.
(+13 submissions that NIST
declared incomplete or improper.)

22 signature-system submissions.
5 lattice-based: Dilithium:
DRS (broken); FALCON*;
pqgNTRUSign*; qTESLA.

47 encryption-system submissions.
20 lattice-based: Compact LWE*
(broken); Ding*; EMBLEM;
Frodo; HILA5 (CCA broken);
KCL*: KINDI; Kyber; LAC; LIMA:
Lizard*; LOTUS; NewHope;
NTRUEncrypt; NTRU HRSS;
NTRU Prime: Odd Manhattan:
Round2*: SABER: Titanium.

*. submitter claims patent on
this submission. Warning: even
without *, submission could be

covered by other patents!

First serious lattice-based
encryption system: NTRU from
Hoffstein—Pipher-Silverman.

Announced 20 August 1996
at Crypto 1996 rump session.
Patented until 2017.

First serious lattice-based
encryption system: NTRU from
Hoffstein—Pipher-Silverman.

Announced 20 August 1996
at Crypto 1996 rump session.
Patented until 2017.

First version of NTRU paper,
handed out at Crypto 1996,
finally put online in 2016:
web.securityinnovation.com
/hubfs/files/ntru-orig.pdf

https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf

First serious lattice-based
encryption system: NTRU from
Hoffstein—Pipher-Silverman.

Announced 20 August 1996
at Crypto 1996 rump session.
Patented until 2017.

First version of NTRU paper,
handed out at Crypto 1996,
finally put online in 2016:
web.securityinnovation.com
/hubfs/files/ntru-orig.pdf

Proposed 104-byte public keys

280

for security.

https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf

1996 paper converted NTRU
attack problem into a lattice
problem (suboptimally), and then
applied LLL (not state of the art)
to attack the lattice problem.

1996 paper converted NTRU
attack problem into a lattice
problem (suboptimally), and then
applied LLL (not state of the art)
to attack the lattice problem.

Coppersmith—Shamir, Eurocrypt
1997: better conversion +
better attacks than LLL.
Quantitative impact? Unclear.

1996 paper converted NTRU

attack problem

Into a lattice

problem (suboptimally), and then
applied LLL (not state of the art)
to attack the lattice problem.

Coppersmith—Shamir, Eurocrypt
1997: better conversion +

better attacks t
Quantitative im

nan LLL.

hact? Unclear.

NTRU paper, ANTS 1998:
proposed 147-byte or b03-byte
keys for 277 or 2170 security.

Let's try NTRU on the computer.

Debian: apt install sagemath
Fedora: yum install sagemath
Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2
+ many math libraries

+ a few syntax differences:

sage: 1076 # power, not xor
1000000

sage: factor(314159265358979323)
317213509 * 990371647

sage:

https://www.sagemath.org
https://sagecell.sagemath.org

sage:
sage:
sage:
sage:

sage:

Zx.<x> = ZZ[]
now Zx 1is a class
Zx objects are polys

1in X with int coeffs

sage:
sage:
sage:
sage:
sage:

sage:

Zx.<x> = ZZ[]
now Zx 1is a class
Zx objects are polys

1in X with int coeffs

f = Zx([3,1,4])

sage: Zx.<x> = ZZ[]

sage: # now Zx 1s a class
sage: # Zx objects are polys
sage: # 1n x with int coeffs
sage: f = Zx([3,1,4])

sage: f

4*x"2 + x + 3

sage:

sage: Zx.<x> = ZZ[]

sage: # now Zx 1s a class
sage: # Zx objects are polys
sage: # 1n x with int coeffs
sage: f = Zx([3,1,4])

sage: f

4*x"2 + x + 3

sage: g = Zx([2,7,1])

sage:

sage: Zx.<x> = ZZ[]

sage: # now Zx 1s a class
sage: # Zx objects are polys
sage: # 1n x with int coeffs
sage: f = Zx([3,1,4])

sage: f

4*x"2 + x + 3

sage: g = Zx([2,7,1])

sage: g

X2 + T*x + 2

sage:

sage: Zx.<x> = ZZ[]

sage: # now Zx 1s a class
sage: # Zx objects are polys
sage: # 1n x with int coeffs
sage: f = Zx([3,1,4])

sage: f

4*x"2 + x + 3

sage: g = Zx([2,7,1])

sage: g

X"2 + 7*xx + 2
sage: f+g # built-in add
5xx"2 + 8*xx + 5

sage:

sage: f*x # built-in mul
4*x"3 + x72 + 3*x

sage:

sage: f*x # built-in mul
4*x"3 + x72 + 3*x

sage: f*xx"2

4*xx74 + x°3 + 3*x72

sage:

sage: f*x # built-in mul
4*x"3 + x72 + 3*x

sage: f*xx"2

4*xx74 + x°3 + 3*x72

sage: f*2

S*x"2 + 2%x + 6

sage:

sage: f*x # built-in mul
4*x"3 + x72 + 3*x

sage: f*xx"2

4*xx74 + x°3 + 3*x72

sage: f*2

S*x"2 + 2%x + 6

sage: f*(7%*x)

28*%x"3 + 7*x"2 + 21%x

sage:

sage: f*x # built-in mul

4*x"3 + x72 + 3*x

sage: f*xx"2

4*xx74 + x°3 + 3*x72

sage: f*2

S*x"2 + 2%x + 6

sage: f*(7%*x)

28*%x"3 + 7*x"2 + 21%x
sage: fx*xg

4*xx"4 + 29%xx"3 + 18*x"2 + 23*x
+ 6

sage:

sage: f*x # built-in mul

4*x"3 + x72 + 3*x

sage: f*xx"2

4*xx74 + x°3 + 3*x72

sage: f*2

S*x"2 + 2%x + 6

sage: f*(7%*x)

28*%x"3 + 7*x"2 + 21%x

sage: fx*xg

4*xx"4 + 29%xx"3 + 18*x"2 + 23*x
+ 6

sage: fxg == f£x2+f*(7T*x)+f*x"2

True

sage:

sage: # replace x'n with 1,
sage: # x"(n+l) with x, etc.
sage: def convolution(f,g):

....: return (fxg) J (x"n-1)

sage: # replace x'n with 1,
sage: # x"(n+l) with x, etc.
sage: def convolution(f,g):
....: return (fxg) J (x"n-1)

sage: n = 3 # global variable

: # replace x"n with 1,
. # x"(n+1) with x, etc.

: def convolution(f,g):

return (fxg) % (x"n-1)

: n =3 # global variable

convolution(f,x)

3*x + 4

sage: # replace x'n with 1,
sage: # x"(n+l) with x, etc.
sage: def convolution(f,g):
....: return (fxg) J (x"n-1)
sage: n = 3 # global variable
sage: convolution(f,x)

Xx"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4*xx + 1

sage:

sage: # replace x'n with 1,
sage: # x"(n+l) with x, etc.
sage: def convolution(f,g):
....: return (fxg) J (x"n-1)
sage: n = 3 # global variable
sage: convolution(f,x)

Xx"2 + 3xx + 4

sage: convolution(f,x"2)

3*x"2 + 4xx + 1

sage: convolution(f,g)

18*%x72 + 27*x + 305

sage:

sage: def randompoly():
....: £ = 1list(randrange(3)-1
Ceel for j in range(n))

e return Zx(f)

sage: def randompoly():
....: £ = 1list(randrange(3)-1
Ceel for j in range(n))

e return Zx(f)

sage: def randompoly():

....: £ = 1list(randrange(3)-1
Ceel for j in range(n))
....: return Zx(f)

sage: n = 7

sage: randompoly ()

-Xx"3 - x"2 -x -1

sage: def randompoly():

....: £ = 1list(randrange(3)-1
Ceel for j in range(n))
....: return Zx(f)

sage: n = 7

sage: randompoly ()

-x"3 - x2-x-1

sage: randompoly ()

X6 + x5 +x"3 - X

sage:

sage: def randompoly():

....: £ = 1list(randrange(3)-1
Ceel for j in range(n))
....: return Zx(f)

sage: n = 7

sage: randompoly ()

sage: randompoly ()

X6 + x°b+x"3 - x

sage: randompoly ()

-X"6 + x°b + x4 - x"3 - x72+
x + 1

sage:

Will use bigger n for security.

Some choices of n
In submissions to NIST:

n = 701 for NTRU HRSS.
n = 743 for NTRUEncrypt.

n =761 for sntrup4591761.

10

Will use bigger n for security.

Some choices of n
In submissions to NIST:

n =701 for NTRU HRSS.
n = 743 for NTRUEncrypt.
n =761 for sntrup4591761.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

10

Will use bigger n for security.

Some choices of n
In submissions to NIST:

n =701 for NTRU HRSS.
n = 743 for NTRUEncrypt.
n =761 for sntrup4591761.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Can we find better algorithms?

10

10
Will use bigger n for security.

Some choices of n
In submissions to NIST:

n =701 for NTRU HRSS.
n = 743 for NTRUEncrypt.
n =761 for sntrup4591761.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.

11
Modular reduction

For integers u, g with q > 0,
Sage's “u’%q’ always produces
outputs between 0 and q — 1.

Matches standard math definition.

11
Modular reduction

For integers u, g with q > 0,
Sage's “u’%q’ always produces
outputs between 0 and q — 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so
nonzero output leaks input sign.

11
Modular reduction

For integers u, g with q > 0,
Sage's “u’%q’ always produces
outputs between 0 and q — 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so
nonzero output leaks input sign.

Warning: For polynomials u,
Sage can make the same mistake.

sage:
sage:
sage:
sage:
sage:

sage:

def balancedmod(f,q):
g=1ist (((£[i]l+q//2)%q)
-q//2 for i in range(n))
return Zx(g)

12

sage:
sage:
sage:
sage:
sage:
sage:

sage:

def balancedmod(f,q):
g=1ist (((£[i]l+q//2)%q)
-q//2 for i in range(n))
return Zx(g)

u = 314-159%*x

12

sage: def balancedmod(f,q):
sage: g=1list (((£[i]+q//2)%q)

sage: -q//2 for i in range(n))
sage: return Zx(g)
sage:

sage: u = 314-159*x
sage: u /% 200
-159*x + 114

sage:

12

sage: def balancedmod(f,q):
sage: g=1list (((£[i]+q//2)%q)

sage: -q//2 for i in range(n))
sage: return Zx(g)
sage:

sage: u = 314-159*x
sage: u /% 200

-159*%x + 114

sage: (u - 400) % 200
-159%xx - 86

sage:

12

12
sage: def balancedmod(f,q):

sage: g=list(((£[il+q//2)%q)

sage: -q//2 for i in range(n))
sage: return Zx(g)
sage:

sage: u = 314-159*x
sage: u /% 200

-159*%x + 114

sage: (u - 400) % 200
-159%xx - 86

sage: balancedmod(u,200)
41*xx — 86

sage:

13
sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)
....: T = Fpx.quotient(x"n-1)
.e..: return Zx(1lift(1/T(£)))

13
sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)
....: T = Fpx.quotient(x"n-1)
.e..: return Zx(1lift(1/T(£)))

13
sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)
....: T = Fpx.quotient(x"n-1)
.e..: return Zx(1lift(1/T(£)))

-
randompoly ()

)
S
0Q
O
H
|

)
S
0Q
®

Hh
|

13
sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)
....: T = Fpx.quotient(x"n-1)
... return Zx(1ift(1/T(£)))
n=7>97

sage: f = randompoly()

sage: £f3 = invertmodprime(f,3)

13
sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)
....: T = Fpx.quotient(x"n-1)
... return Zx(1ift(1/T(£)))
sage: n =7

sage: f = randompoly()

sage: f3 = invertmodprime(f,3)
sage: convolution(f,f3)

6*xx"6 + 6*%x"5 + 3*%x74 + 3*x"3 +
3xx"2 + 3*%x + 4

sage:

14
def invertmodpowerof2(f,q):

assert q.is_power_of (2)
g = invertmodprime(f,2)
M = balancedmod
C = convolution
while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how
invertmodpowerof2 works.

Hint: Compare r to previous r.

sage:
sage:

sage:

n

Q9

256

15

sage:
sage:
sage:

sage:

7
256
randompoly ()

15

sage:
sage:
sage:

sage:

-X~6

sage:

7
256

randompoly ()

H H QO B
Il

- x4 + x2 +x -1

15

sage: n =7

sage: q = 256

sage: f = randompoly()
sage: f

X6 - x4 +x"2+x-1
sage: g = invertmodpowerof2(f,q)

sage:

sage: n =7

sage: q = 256

sage: f = randompoly()
sage: f

X6 - x4 +x"2+x-1

sage: g = invertmodpowerof2(f,q)
sage: g

47xx"6 + 126*%x75 - bd*xx"4 -
87*x"3 - 36*xx"2 - 58*x + 61

sage:

15

15

sage: n =7

sage: q = 256

sage: f = randompoly()
sage: f

X6 - x4 +x2+x -1

sage: g = invertmodpowerof2(f,q)
sage: g

47*x"6 + 126*xx"5 - bd*x"4 -
87*x"3 - 36xx"2 - b8*x + 61
sage: convolution(f,g)

—-256*%x"5 - 2b6*%x74 + 266*x + 2b7

sage:

15

sage: n =7

sage: q = 256

sage: f = randompoly()
sage: f

X6 - x4 +x2+x -1

sage: g = invertmodpowerof2(f,q)
sage: g

47*x"6 + 126*xx"5 - bd*x"4 -
87*x"3 - 36xx"2 - b8*x + 61
sage: convolution(f,g)

—-256*%x"5 - 2b6*%x74 + 266*x + 2b7
sage: balancedmod(_,q)

1

sage:

NTRU key generation

Parameters:
n, positive integer (e.g., 701);
g, power of 2 (e.g., 4096).

16

NTRU key generation

Parameters:
n, positive integer (e.g., 701);
g, power of 2 (e.g., 4096).

Secret key:
random n-coeff polynomial a;

random n-coeff polynomial d;
all coefficients in {—1,0, 1}.

NTRU key generation

Parameters:
n, positive integer (e.g., 701);
g, power of 2 (e.g., 4096).

Secret key:
random n-coeff polynomial a;

random n-coeff polynomial d;
all coefficients in {—1,0, 1}.

Require d invertible mod q.

Require d invertible mod 3.

NTRU key generation

Parameters:
n, positive integer (e.g., 701);
g, power of 2 (e.g., 4096).

Secret key:
random n-coeff polynomial a;

random n-coeff polynomial d;
all coefficients in {—1,0, 1}.

Require d invertible mod q.

Require d invertible mod 3.

Public key: A = 3a/d in the ring
Rq = (Z/q)[x]/(x" = 1),

17
def keypair():

while True:
try:
d = randompoly()
d3 = invertmodprime(d,3)
dq = invertmodpowerof2(d,q)
break
except:
pass
a = randompoly()
publickey = balancedmod(3
convolution(a,dq),q)
secretkey = d,d3

return publickey,secretkey

sage: A,secretkey = keypair()

sage:

18

sage: A,secretkey = keypair()
sage: A

-126*%x"6 - 31*xx"b - 118*x"4 -
33*x"3 + 73*x72 - 16*xx + 7

sage:

18

sage: A,secretkey = keypair()
sage: A

-126*x"6 - 31*x"b - 118*x"4 -
33*x"3 + 73*x72 - 16*xx + 7
sage: d,d3 = secretkey

sage:

18

sage: A,secretkey = keypair()
sage: A

-126*xx"6 - 31*xx"b - 118*x"4 -
33*x"3 + 73*x72 - 16*xx + 7
sage: d,d3 = secretkey

sage: d

-X"6 + x°b - x4 +x"3 -1

sage:

18

sage: A,secretkey = keypair()
sage: A

-126*x"6 - 31*x"b - 118*x"4 -
33*x"3 + 73*x72 - 16*xx + 7
sage: d,d3 = secretkey

sage: d

-X"6 + x°b - x4 +x"3 -1
sage: convolution(d,A)

-3*x"6 + 263*%x"5 + 2B3*x"3 -
2063*x"2 - 3*x - 3

sage:

18

sage: A,secretkey = keypair()
sage: A

33*x"3 + 73*x72 - 16*xx + 7
sage: d,d3 = secretkey

sage: d

-X"6 + x°b - x4 +x"3 -1
sage: convolution(d,A)

-3*x"6 + 263*%x"5 + 2B3*x"3 -
2063*x"2 - 3*x - 3

sage: balancedmod(_,q)

-3*xX"6 — 3*x"5 - 3*x"3 + 3*%x72
- 3*x - 3

sage:

18

N TRU encryption

One more parameter:
w, positive integer (e.g., 467).

19

N TRU encryption

One more parameter:
w, positive integer (e.g., 467).

Message for encryption:
n-coeff weight-w polynomial ¢
with all coeffs in {—1,0, 1}.

"Weight w": w nonzero coeffs,
n — w zero coeffs.

19

NTRU

encryption

One more parameter:

w, positive integer (e.g., 467).

Message for encryption:

n-coef

- weight-w polynomial ¢

with a

“Weight w':

n—w

Cipher
where
from t

| coeffs in {—1,0,1}.

zero coeffs.

text: C = Ab+c in Ry
b is chosen randomly
he set of messages.

W nonzero coeffs,

19

: def randommessage() :

R = randrange
assert w <= n
c = n*x[0]
for j in range(w):
while True:
r = R(n)
if not clr]: break
c[r] = 1-2%R(2)

return Zx(c)

T W =05

: randommessage ()

- X"+ x4 + x3 - x72

20

21
sage: def encrypt(c,A):

....: b = randommessage ()
Ce Ab = convolution(A,Db)
....: C = balancedmod(Ab + c,q)

e e return C

21
sage: def encrypt(c,A):

....: b = randommessage ()
Ce Ab = convolution(A,Db)
....: C = balancedmod(Ab + c,q)

e e return C

sage: A,secretkey = keypair()

21

: def encrypt(c,A):

b = randommessage ()
Ab = convolution(A,Db)
C = balancedmod(Ab + c,q)

return C

: A,secretkey = keypair()

c = randommessage ()

21

: def encrypt(c,A):

b = randommessage ()
Ab = convolution(A,Db)
C = balancedmod(Ab + c,q)

return C

: A,secretkey = keypair()

= randommessage ()

C
: C = encrypt(c,A)

21
sage: def encrypt(c,A):

....: b = randommessage ()
Ce Ab = convolution(A,Db)
....: C = balancedmod(Ab + c,q)
Cee return C
sage: A,secretkey = keypair()

c = randommessage ()
sage: C = encrypt(c,A)
sage: C
21*%x"6 - 48*xx"b + 31*x"4 -
76xx"3 - 77*xx"2 + 1bxx - 113

sage:

NTRU decryption

Compute dC = 3ab + dc in Ry.

22

NTRU decryption

Compute dC = 3ab + dc in Ry.

a, b, c, d have small coeffs,
so 3ab + dc is not very big.

22

NTRU decryption

Compute dC = 3ab + dc in Ry.

a, b, ¢, d have small coeffs,

so 3ab + dc is not very big.
Assume that coeffs of 3ab + dc
are between —q/2 and q/2 — 1.

22

22
NTRU decryption

Compute dC = 3ab + dc in Ry.

a, b, ¢, d have small coeffs,

so 3ab + dc is not very big.
Assume that coeffs of 3ab + dc
are between —q/2 and q/2 — 1.

Then 3ab + dc in Rq reveals
3ab+ dcin R =Z|x]/(x" —1).

22
NTRU decryption

Compute dC = 3ab + dc in Ry.

a, b, ¢, d have small coeffs,

so 3ab + dc is not very big.
Assume that coeffs of 3ab + dc
are between —q/2 and q/2 — 1.

Then 3ab + dc in Rq reveals
3ab+ dcin R =Z|x]/(x" —1).
Reduce modulo 3: dc in R3.

22
NTRU decryption

Compute dC = 3ab + dc in Ry.

a, b, ¢, d have small coeffs,

so 3ab + dc is not very big.
Assume that coeffs of 3ab + dc
are between —q/2 and q/2 — 1.

Then 3ab + dc in Rq reveals
3ab+ dcin R =Z|x]/(x" —1).
Reduce modulo 3: dc in R3.
Multiply by 1/d in R3

to recover message c in R3.

NTRU decryption

Compute dC = 3ab + dc in Ry.

a, b, ¢, d have small coeffs,

so 3ab + dc is not very big.
Assume that coeffs of 3ab + dc
are between —q/2 and q/2 — 1.

Then 3ab + dc in Rq reveals
3ab+ dcin R =Z|x]/(x" —1).
Reduce modulo 3: dc in R3.

Multiply by 1/d in R3

to recover message c in R3.
Coeffs are between —1 and 1,
so recover ¢ in R.

22

23
sage: def decrypt(C,secretkey):

- M = balancedmod
Cee f,r = secretkey
Ce u=M(convolution(C,f),q)
Ce c=M(convolution(u,r),3)

c e e e return c

23
sage: def decrypt(C,secretkey):

- M = balancedmod

Cee f,r = secretkey

Ce u=M(convolution(C,f),q)
Ce c=M(convolution(u,r),3)
Ce et return c

sage: C

x’b+x4-x"3+x+1

sage:

23
sage: def decrypt(C,secretkey):

Ceeat M = balancedmod

Cee f,r = secretkey

Ce u=M(convolution(C,f),q)
Ce c=M(convolution(u,r),3)
ce et return cC

sage: C

x’b+ x4 -x"3+x+1

sage: decrypt(C,secretkey)

x’b+ x4 -x"3+x+1

sage:

sage:
sage:
sage:

sage:

256

24

sage:
sage:
sage:
sage:

sage:

n
W
9
A

=7

= B

= 256

,secretkey = keypair()

24

sage: n =7
sage: W = O
sage: q = 256

sage: A,secretkey = keypair()
sage: A

-101*x"6 - 76%x"5 - 90*x"4 -

83*x"3 + 40*xx"2 + 108*xx - 54

sage:

sage: n =7
sage: W = O
sage: q = 256

sage: A,secretkey = keypair()
sage: A

-101*x"6 - 76*xx"5 - 90*x"4 -

83*x"3 + 40*xx"2 + 108*xx - 54
sage: d,d3 = secretkey

sage:

24

sage: n =7
sage: W = O
sage: q = 256

sage: A,secretkey = keypair()
sage: A

-101*x"6 - 76*xx"5 - 90*x"4 -
83*x"3 + 40*xx"2 + 108*xx - 54
sage: d,d3 = secretkey

sage: d

x50 +x4-x"3+x-1

sage:

sage:
sage:
sage:
sage:

sage:

24

n=="
w =05
q = 256

A,secretkey = keypair()
A

-101*x"6 - 76%x"5 - 90*xx"4 -
83*x"3 + 40*x"2 + 108*xx - b4

sage:

sage:

d,d3 = secretkey
d

x’b +x74 - x3 +x -1

sage:

sage:

conv = convolution

24

sage: n =7
sage: W = O
sage: q = 256

sage: A,secretkey = keypair()
sage: A

-101*x"6 - 76*xx"5 - 90*x"4 -
83*x"3 + 40*xx"2 + 108*xx - 54
sage: d,d3 = secretkey

sage: d

x50 +x4-x"3+x-1

sage: conv = convolution
sage: M = balancedmod

sage:

sage:
sage:
sage:
sage:

sage:

24

n=="
w =05
q = 256

A,secretkey = keypair()
A

-101*x"6 - 76%x"5 - 90*xx"4 -
83*x"3 + 40*x"2 + 108*xx - b4

sage:

sage:

d,d3 = secretkey
d

x’b +x74 - x3 +x -1

sage:
sage:
sage:

sage:

conv = convolution
M = balancedmod

a3 = M(conv(d,A),q)

sage:
sage:
sage:
sage:

sage:

24

n=="
w =05
q = 256

A,secretkey = keypair()
A

-101*x"6 - 76%x"5 - 90*xx"4 -
83*x"3 + 40*x"2 + 108*xx - b4

sage:

sage:

d,d3 = secretkey
d

x’b +x74 - x3 +x -1

sage:
sage:
sage:

sage:

conv = convolution
M = balancedmod

a3 = M(conv(d,A),q)
a3

3*kx"2 — 3%Xx

sage:

sage:

C

randommessage ()

25

sage:
sage:

sage:

C

b

randommessage ()

randommessage ()

25

sage:
sage: b
sage:

sage:

randommessage ()

randommessage ()

M(conv(A,b)+c,q)

25

sage: C
sage: b
sage: C
sage: C
-57*x"6
72%xx"3

sage:

randommessage ()

randommessage ()

M(conv(A,b)+c,q)

28*xx"b + 114xx74 +
37xx"2 + 16*x + 119

25

25

sage: ¢ = randommessage ()
sage: b = randommessage ()
sage: C = M(conv(A,b)+c,q)
sage: C

-b57*x"6 + 28*%xx"b + 114xx"4 +
72*xx"3 — 37*x"2 + 16*%x + 119
M(conv(C,d),q)

sage: u

sage:

sage: C
sage: b
sage: C
sage: C
-57*x"6
72%xx"3
sage: u
sage: u

-8*%x"6 + 2*%x°5 + 4xx"4 - x°3 -

randommessage ()

randommessage ()

M(conv(A,b)+c,q)

28xx"5 + 114*xx"4 +
37*xx"2 + 16*xx + 119
M(conv(C,d),q)

Axx~2 + bxx + 1

sage:

25

sage: ¢ = randommessage ()
sage: b = randommessage ()
sage: C = M(conv(A,b)+c,q)
sage: C

-b57*x"6 + 28*%xx"b + 114xx"4 +
72*xx"3 — 37*x"2 + 16*%x + 119
M(conv(C,d),q)

sage: u
sage: u
-8*%X"6 + 2*%x"b + 4xx"4 - x"3 -
4*xx~2 + bxx + 1

sage: conv(a3,b)+conv(c,d)
-3%X"6 + 2%x"0 + 4*%x74 - x°3 -

4xx~2 + bxx + 1

sage: M(u,3)
x’6 - xb+x4 - x"3 - x"2-X
+ 1

sage:

26

sage: M(u,3)

X6 - xb+x4 -x"3-x"2-X
+ 1

sage: M(conv(c,d),3)

X6 - X"0+x74-x"3-%x"2-X
+ 1

sage:

26

sage: M(u,3)

X6 - xb+x4 -x"3-x"2-X
+ 1

sage: M(conv(c,d),3)

X6 - X"0+x74-x"3-%x"2-X
+ 1

sage: conv(M(u,3),d3)

X6 - X0 - x4 - 3xx"3 - x72 +
X - 3

sage:

26

sage: M(u,3)

X6 - xb+x4 -x"3-x"2-X
+ 1

sage: M(conv(c,d),3)

X6 - X"0+x74-x"3-%x"2-X
+ 1

sage: conv(M(u,3),d3)

X6 - X0 - x4 - 3xx"3 - x72 +
X - 3

sage: M(_,3)

X6 - xb-x"4 -x"2+x

sage:

26

sage: M(u,3)

X6 - X0+ x4 - x"3 -
+ 1

sage: M(conv(c,d),3)

X6 - X0+ x4 - x"3 -
+ 1

sage: conv(M(u,3),d3)

X6 - X7b - x4 - 3%xx”3
X - 3

sage: M(_,3)

X6 - xb-x"4 -x72 +
sage: C

X6 - X0 - x4 -x"2 +

sage:

26

X"2 - X
X2 - X
- x"2 +
X
X

27

Does decryption always work?

All coef
All coef

s of aarein {—1,0,1}.

s of b arein {—1,0,1},

and exactly w are nonzero.

Does decryption always work?

All coeffs of a are in {—1,0, 1}.
All coeffs of b are in {—1,0,1},
and exactly w are nonzero.

Each coeff of ab in R
has absolute value at most w.

27

27
Does decryption always work?

All coeffs of a are in {—1,0, 1}.
All coeffs of b are in {—1,0,1},
and exactly w are nonzero.

Each coeff of abin R

has absolute value at most w.
(Same argument would work for
b of any weight, a of weight w.)

27
Does decryption always work?

All coeffs of a are in {—1,0, 1}.
All coeffs of b are in {—1,0,1},
and exactly w are nonzero.

Each coeff of abin R

has absolute value at most w.
(Same argument would work for
b of any weight, a of weight w.)

Similar comments for d, c.
Each coeff of 3ab+ dcin R
has absolute value at most 4w.

27
Does decryption always work?

All coeffs of a are in {—1,0, 1}.
All coeffs of b are in {—1,0,1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w.
(Same argument would work for
b of any weight, a of weight w.)

Similar comments for d, c.
Each coeff of 3ab+ dcin R
has absolute value at most 4w.

e.g. w =467: at most 1368.
Decryption works for g = 4096.

28
What about w = 467, g = 20487

What about w = 467, g = 20487

Same argument doesn't work.
a=b=c=d=

1+ x+x2 4+ 4+ xv 1

3ab + dc has a coeff 4w > q/2.

28

What about w = 467, g = 20487

Same argument doesn't work.
a=b=c=d=

1+ x+x2 4+ 4+ xv 1

3ab + dc has a coeff 4w > q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

28

What about w = 467, g = 20487

Same argument doesn't work.
a=b=c=d=

1+ x+x2 4+ 4+ xv 1

3ab + dc has a coeff 4w > q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 N TRU handout mentioned
no-decryption-failure option,
but recommended smaller g
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
it can be ignored in practice”.

28

29
Crypto 2003 Howgrave-Graham-—

Nguyen—Pointcheval-Proos—
Silverman—-Singer—Whyte
“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that
“all the security proofs known . ..
for various NTRU paddings may
not be valid after all”.

29
Crypto 2003 Howgrave-Graham-—

Nguyen—Pointcheval-Proos—
Silverman—-Singer—Whyte
“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that
“all the security proofs known . ..
for various NTRU paddings may
not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!

Coeff of x™ L in cd is

codn—1+c1dp—o+ ...+ ch_1dp.

This coeff is large <
co,C1,...,Ch—1 has
high correlation with
dn_1,dp—2,...,dp.

30

Coeff of x™ L in cd is

codn—1+c1dp—o+ ...+ ch_1dp.

This coeff is large <
co,C1,...,Ch—1 has
high correlation with
dn_1,dp—2,...,dp.

Some coeff is large <

€0, C1,-..,Ch—1 has high
correlation with some rotation
of do_1,dn_2,...,dp.

30

30
Coeff of x™ L in cd is

codn—1+c1dp—o+ ...+ ch_1dp.

This coeff is large <
co,C1,...,Ch—1 has
high correlation with
dn_1,dp—2,...,dp.

Some coeff is large <

€0, C1,-..,Ch—1 has high
correlation with some rotation
of do_1,dn_2,...,dp.

l.e. ¢ Is correlated with
x' rev(d) for some i, where

rev(d) = dp dlxn_l - +dp_1x.

Reasonable guesses given a
random decryption failure:
¢ correlated with some x' rev(d).

31

31
Reasonable guesses given a

random decryption failure:
¢ correlated with some x' rev(d).
rev(c) correlated with x~'d.

31
Reasonable guesses given a

random decryption failure:

¢ correlated with some x' rev(d).
rev(c) correlated with x~'d.
crev(c) correlated with drev(d).

31
Reasonable guesses given a

random decryption failure:

¢ correlated with some x' rev(d).
rev(c) correlated with x~'d.
crev(c) correlated with drev(d).

Experimentally confirmed:
Average of crev(c)

over some decryption failures
is close to drev(d).

Round to integers: drev(d).

31
Reasonable guesses given a

random decryption failure:

¢ correlated with some x' rev(d).
rev(c) correlated with x~'d.
crev(c) correlated with drev(d).

Experimentally confirmed:
Average of crev(c)

over some decryption failures
is close to drev(d).

Round to integers: drev(d).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds d.

32
1999 Hall-Goldberg—Schneier,

2000 Jaulmes—Joux, 2000
Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

32

1999 Hall-Goldberg—Schneier,

2000 Jau

mes—Joux, 2000

Hoffstein—Silverman, 2016

Fluhrer, e

tc.: Even easier attacks

using invalid messages.

Attacker changes c to

n—1.

ct1l c-

- X, ..., CTtXx

C::2,C:

- 2X, ..., C::2Xn_1;

c + 3, etc.

1999 Hall-Goldberg—Schneier,

2000 Jau

mes—Joux, 2000

Hoffstein—Silverman, 2016

Fluhrer, e

tc.: Even easier attacks

using invalid messages.

Attacker changes c to

C —]., cCt X, ..., C__Xn_]';
ct2 c+2x, ..., C::2Xn_1;
c + 3, etc.

This changes 3ab + dc: adds

+d, +xd

+3d, etc.

. ::Xn_ld;

+2d, +£2xd, ..., ::2Xn_1d;

32

33
e.g. 3ab+dc =---+390x*8+. ..

all other coeffs in [—389, 389];
and d:---—I—X478—|—---.

e.g. 3ab+dc =---+390x*8+. ..

all other coeffs in [—389, 389];
and d:---—I—X478—|—---.

Then 3ab+ dc + kd =
4+ (390 + K)xHB 4.
Decryption fails for big k.

33

e.g. 3ab+dc =---+390x*8+. ..

all other coeffs in [—389, 389];
and d:---—I—X478—|—---.

Then 3ab+ dc + kd =
4+ (390 + K)xHB 4.
Decryption fails for big k.

Search for smallest k that falis.

33

33
e.g. 3ab+dc =---+390x*8+. ..

all other coeffs in [—389, 389];
and d:---—I—X478—|—---.

Then 3ab+ dc + kd =
(390 + K)xHB 4.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?
Yes I.fXd:---—|—X478_|_...,
l.e., Ifd:—|—x477_|_

33
e.g. 3ab+dc =---+390x*8+. ..

all other coeffs in [—389, 389];
and d:---—I—X478—|—---.

Then 3ab+ dc + kd =
(390 + K)xHB 4.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?
Yes I.fXd:---—|—X478_|_...,
l.e., Ifd:—|—x477_|_

Try szd, X3kd, etc.
See pattern of d coeffs.

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

t

Use signatures to ensure

nat nobody else uses key.

e.g. original “IND-CPA" version

of New Hope; Ding.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

t

Use signatures to ensure

nat nobody else uses key.

e.g. original “IND-CPA" version

of New Hope; Ding.

If user reuses a key:

Blame user for the attacks.

34

Approach 2: Modity

encryption and decryption to
eliminate invalid messages.

35

Approach 2: Modity

encryption and decryption to
eliminate invalid messages.

e.g. "IND-CCA" New Hope
submission; most submissions.

35

35
Approach 2: Modity

encryption and decryption to
eliminate invalid messages.

e.g. "IND-CCA" New Hope
submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After
decrypting message, check
whether (1) message is valid
and (2) ciphertext matches
reencryption of message.

Approach 2: Modity

encryption and decryption to
eliminate invalid messages.

e.g. "IND-CCA" New Hope
submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After
decrypting message, check
whether (1) message is valid
and (2) ciphertext matches
reencryption of message.

But encryption is randomized!
Reencryption won't match.

35

Solution: Compute all
randomness that was used.

e.g. after computing ¢ in NTRU,
compute b from 3ab + dc.

36

36
Solution: Compute all

randomness that was used.

e.g. after computing ¢ in NTRU,
compute b from 3ab + dc.

Can view (b, c) as message,
no further randomness.
“Deterministic encryption.”

36
Solution: Compute all

randomness that was used.

e.g. after computing ¢ in NTRU,
compute b from 3ab + dc.

Can view (b, c) as message,
no further randomness.
“Deterministic encryption.”

“Product NTRU" variant
is not naturally deterministic.

36
Solution: Compute all

randomness that was used.

e.g. after computing ¢ in NTRU,
compute b from 3ab + dc.

Can view (b, c) as message,
no further randomness.
“Deterministic encryption.”

“Product NTRU" variant
is not naturally deterministic.

Generic Fujisaki-Okamoto
solution: Require sender to
compute randomness as
standard hash of message.

How to handle decryption failures

Eliminating invalid messages iIs
not enough: remember attack
using decryption failures for
random valid messages.

37

How to handle decryption failures

Eliminating invalid messages iIs
not enough: remember attack
using decryption failures for
random valid messages.

NIST encryption submissions
vary in failure rates.

NTRU HRSS, NTRU Prime,
Odd Manhattan choose g to
eliminate decryption failures.

37

How to handle decryption failures

Eliminating invalid messages iIs
not enough: remember attack
using decryption failures for
random valid messages.

NIST encryption submissions
vary in failure rates.

NTRU HRSS, NTRU Prime,
Odd Manhattan choose g to
eliminate decryption failures.

LIMA tried to eliminate
decryption failures, but failed.

37

38
More claimed failure rates:

LOTUS: <2-2°0
New Hope submission: <2213,
KINDI: 2165

NTRUEncrypt: <230,
KCL: ~290.
Ding: ~2799 only IND-CPA.

Current debates about
what decryption failure probability

Is small enough; whether
decryption failure probabilities
were calculated correctly; etc.

How to randomize messages

If message is guessable:
Attacker can check whether
a guess matches a ciphertext.

39

How to randomize messages

If message is guessable:
Attacker can check whether
a guess matches a ciphertext.

Also various attacks using
guesses of portion of message.

39

How to randomize messages

If message is guessable:
Attacker can check whether
a guess matches a ciphertext.

Also various attacks using
guesses of portion of message.

Modern “KEM-DEM" solution,
from Eurocrypt 2000 Shoup:
Choose random message.

Use hash of message as (e.g.)
AES-256-GCM key to encrypt
and authenticate user data.

39

Central “one-wayness” question:

Can attacker figure out
a random message given
public key and ciphertext?

40

40
Central “one-wayness” question:

Can attacker figure out
a random message given
public key and ciphertext?

Fujisaki-Okamoto and many
newer papers try to prove that all
chosen-ciphertext distinguishers
(“IND-CCA attacks”) are as

difficult as breaking one-wayness.

40
Central “one-wayness” question:

Can attacker figure out
a random message given
public key and ciphertext?

Fujisaki-Okamoto and many
newer papers try to prove that all
chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as
difficult as breaking one-wayness.

Many limitations to proofs: bugs;
looseness; assumptions of “ROM"”
or “QROM" attacks; assumptions

on failure probability; etc.

Brute-force search

Attacker i1s given public key
A = 3a/d, ciphertext C = Ab + c.
Can attacker find ¢?

41

Brute-force search

Attacker i1s given public key
A = 3a/d, ciphertext C = Ab + c.
Can attacker find ¢?

Search (V”V)2W choices of b.
If ¢c = C — Ab is small: donel

41

Brute-force search

Attacker i1s given public key

A = 3a/d, ciphertext C = Ab + c.

Can attacker find c¢?

Search (V”V)2W choices of b.
If ¢c = C — Ab is small: donel

(Can this find two ¢

messages c? Unlike
also stop legitimate

ifferent
y. This would
decryption.)

41

Brute-force search

Attacker i1s given public key

A = 3a/d, ciphertext C = Ab + c.

Can attacker find c¢?

Search (V”V)2W choices of b.
If ¢c = C — Ab is small: donel

(Can this find two ¢

messages c? Unlike
also stop legitimate

ifferent
y. This would
decryption.)

Or search 3" choices of d.

If a = dA/3 is small, use (a, d) to

decrypt. Slightly slower but can

be reused for many ciphertexts.

41

Equivalent keys

Secret key (a, d) is equivalent to

secret key (xa, xd),
secret key (x2a, x°d), etc.

42

Equivalent keys

Secret key (a, d) is equivalent to
secret key (xa, xd),
secret key (x2a, x°d), etc.

Search only about 3"/n choices.

42

42
Equivalent keys

Secret key (a, d) is equivalent to
secret key (xa, xd),
secret key (x2a, x°d), etc.

Search only about 3"/n choices.

n=701 w = 467:
(VI?/)2W ~ 21106.09;
3N~y 21111.06.

3n/n ~ 21101.61_

42
Equivalent keys

Secret key (a, d) is equivalent to
secret key (xa, xd),
secret key (x2a, x°d), etc.

Search only about 3"/n choices.

n=701 w = 467:
(VI?/)2W ~ 21106.09;
3N~y 21111.06.

3n/n ~ 21101.61_

Exercise: Find more equivalences!

42
Equivalent keys

Secret key (a, d) is equivalent to
secret key (xa, xd),
secret key (x2a, x°d), etc.

Search only about 3"/n choices.

n=701 w = 467:
(VI?/)2W ~ 21106.09;
3N~y 21111.06.

3n/n ~ 21101.61_
Exercise: Find more equivalences!

But if w is chosen smaller then
(\2’/)2‘/" search will be faster.

Collision attacks

Write d as di + dy where
di = bottom [n/2| terms of d,
d> = remaining terms of d.

43

Collision attacks

Write d as di + dy where
di = bottom [n/2| terms of d,
d> = remaining terms of d.

a=(A/3)d = (A/3)d1 + (A/3)d>
so a— (A/3)dr, = (A/3)d.

43

Collision attacks

Write d as di + dy where
di = bottom [n/2| terms of d,
d> = remaining terms of d.

a=(A/3)d = (A/3)d1 + (A/3)d
so a— (A/3)dr = (A/3)d.
Eliminate a: almost certainly
H(—(A/3)d2) = H((A/3)d1) for
H(f) — ([f() < O] [fk—l < O])

43

Collision attacks

Write d as di + dy where
di = bottom [n/2| terms of d,
d> = remaining terms of d.

a=(A/3)d = (A/3)d1 + (A/3)d
so a— (A/3)dr = (A/3)d.
Eliminate a: almost certainly
H(—(A/3)d2) = H((A/3)d1) for
H(f) — ([f() < O] [fk—l < O])

Enumerate all H(—(A/3)db).
Enumerate all H((A/3)d1).
Search for collisions.

Only about 3n/2 computations;

but beware cost of memory.

43

| attices

44

44

| attices

This i1s a lettuce

44

| attices

This i1s a lettuce

ICE

This i1s a latt

45
Lattices, mathematically

Assume that by, by, ..., by € R”
are R-linearly independent,

l.e., Rb1 + ...+ Rb, =

{rib1 +...+rbg:r,....r € R}
Is a k-dimensional vector space.

45

Lattices, mathematically

Assume that by, by, ..., by € R”
are R-linearly independent,

l.e., Rb1 + ...+ Rb, =

{rib1 +...+rbg:r,....r € R}
Is a k-dimensional vector space.

Zby + ...+ Zby =
{nbi+...+nrby:r,....rn €Z}
Is a rank-k length-n lattice.

45

Lattices, mathematically

Assume that by, by, ..., by € R”
are R-linearly independent,

l.e., Rb1 + ...+ Rb, =

{rib1 +...+rbg:r,....r € R}
Is a k-dimensional vector space.

Zby + ...+ Zby =
{nbi+...+nrby:r,....rn €Z}
Is a rank-k length-n lattice.

bi,..., by
Is a basis of this lattice.

Short vectors in lattices

Given by, by, ..., b, € Z",
what Is shortest vector
in Zby + ...+ Zb; "

46

Short vectors in lattices

Given by, by, ..., b, € Z",
what Is shortest vector
in Zby + ...+ Zb; "

0.

46

Short vectors in lattices

Given by, by, ..., b, € Z",
what Is shortest vector
in Zby + ...+ Zb; "

0.

What is shortest nonzero vector?

46

46
Short vectors in lattices

Given by, by, ..., b, € Z",
what Is shortest vector
in Zby + ...+ Zb; "

0.
What is shortest nonzero vector?

LLL algorithm runs in poly time,
computes a vector whose length
is at most 22 times

length of shortest nonzero vector.

46
Short vectors in lattices

Given by, by, ..., b, € Z",
what Is shortest vector
in Zby + ...+ Zb; "

0.
What is shortest nonzero vector?

LLL algorithm runs in poly time,
computes a vector whose length
is at most 22 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)
compute shorter vectors
at surprisingly high speed.

Lattice view of NTRU

Given public key A = 3a/d.
Compute A/3 = a/d.

47

Lattice view of NTRU

Given public key A = 3a/d.
Compute A/3 = a/d.

d 1s obtained from

by a few additions, subtractions.

47

Lattice view of NTRU

Given public key A = 3a/d.
Compute A/3 = a/d.

d 1s obtained from

by a few additions, subtractions.

d(A/3) is obtained from
A/3,xA/3, ..., x""1A/3

by a few additions, subtractions.

47

47
Lattice view of NTRU

Given public key A = 3a/d.
Compute A/3 = a/d.

d 1s obtained from

by a few additions, subtractions.

d(A/3) is obtained from
A/3,xA/3, ..., x""1A/3
by a few additions, subtractions.

a I1s obtained from

by a few additions, subtractions.

48
(a, d) is obtained from

qu”‘l,Ol
(A/3,1),
(xA/3, x),

(X”_lA/3, Xn—l)
by a few additions, subtractions.

(a, d) is obtained from

qu”‘l,Ol
(A/3,1),
(xA/3, x),

(X”_lA/3, Xn—l)
by a few additions, subtractions.

Write A/3 as
Ho + Hix+ ...+ Hn_lxn_l.

43

IS obtained from
(9,0,...,0,0,0,...,0),
(0,q,...,0,0,0,...,0),

(Hl,Hg H(),0,0,...,l)
by a few additions, subtractions.

50
(ag, a1,...,an—1,do, d1,...,dn_1)

Is a surprisingly short vector

in lattice generated by
(g9,0,...,0,0,0,...,0) etc.

50
(ag, a1,...,an—1,do, d1,...,dn_1)

Is a surprisingly short vector

in lattice generated by
(g9,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using LLL etc.

50
(ag, a1,...,an—1,do, d1,...,dn_1)

Is a surprisingly short vector

in lattice generated by
(g9,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using LLL etc.

1997 Coppersmith—Shamir
balancing: e.g., set up lattice

to contain (10a, d)

if d is chosen 10x larger than a.

50
(ag, a1,...,an—1,do, d1,...,dn_1)

Is a surprisingly short vector

in lattice generated by
(g9,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using LLL etc.

1997 Coppersmith—Shamir
balancing: e.g., set up lattice

to contain (10a, d)

if d is chosen 10x larger than a.

Exercise: Describe search for
(b, c) as a problem of finding
a vector close to a lattice.

51
Quotient NTRU vs. product NTRU

“Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates A = 3a/d in R,
for small random a, d-

l.e., dA—3a=01In Ry.

51
Quotient NTRU vs. product NTRU

“Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates A = 3a/d in R,
for small random a, d-

l.e., dA—3a=01In Ry.

Bob sends C = Ab+ c in Ry.

Alice computes dC in Ry,
l.e., 3ab+ dc in Ry.

51

Quotient NTRU vs. product NTRU

“Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates A = 3a/d in R,

for small random a, d:
l.e., dA—3a=01In Ry.

Bob sends C = Ab+ c in Ry.

Alice computes dC in Ry,
l.e., 3ab+ dc in Ry.

Alice reconstructs 3ab + dc in R,
using smallness of a, b, d, c.

Alice computes dc In R3,
deduces c, deduces b.

“Product NTRU" (new name),
2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Ry.
Alice generates A = aG + d in Ry
for small random a, d.

52

52
“Product NTRU" (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Ry.
Alice generates A = aG + d in Ry
for small random a, d.

Bob sends B = Gb+ e in Ry
and C =m+ Ab+cin Ry
where b, ¢, e are small and

each coefficient of mis 0 or q/2.

52
“Product NTRU" (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Ry.
Alice generates A = aG + d in Ry
for small random a, d.

Bob sends B = Gb+ e in Ry
and C =m+ Ab+cin Ry
where b, ¢, e are small and

each coefficient of mis 0 or q/2.

Alice computes C — aB in Ry,
l.e., m+db+c—aein Ry.
Alice reconstructs m,

using smallness of d, b, c, a, e.

