
1

Lattice-based

public-key cryptosystems

D. J. Bernstein

NIST post-quantum competition:

69 submissions in first round,

from hundreds of people.

(+13 submissions that NIST

declared incomplete or improper.)

22 signature-system submissions.

5 lattice-based: Dilithium;

DRS (broken); FALCON*;

pqNTRUSign*; qTESLA.

2

47 encryption-system submissions.

20 lattice-based: Compact LWE*

(broken); Ding*; EMBLEM;

Frodo; HILA5 (CCA broken);

KCL*; KINDI; Kyber; LAC; LIMA;

Lizard*; LOTUS; NewHope;

NTRUEncrypt; NTRU HRSS;

NTRU Prime; Odd Manhattan;

Round2*; SABER; Titanium.

*: submitter claims patent on

this submission. Warning: even

without *, submission could be

covered by other patents!

3

First serious lattice-based

encryption system: NTRU from

Hoffstein–Pipher–Silverman.

Announced 20 August 1996

at Crypto 1996 rump session.

Patented until 2017.

3

First serious lattice-based

encryption system: NTRU from

Hoffstein–Pipher–Silverman.

Announced 20 August 1996

at Crypto 1996 rump session.

Patented until 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

web.securityinnovation.com

/hubfs/files/ntru-orig.pdf

https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf

3

First serious lattice-based

encryption system: NTRU from

Hoffstein–Pipher–Silverman.

Announced 20 August 1996

at Crypto 1996 rump session.

Patented until 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

web.securityinnovation.com

/hubfs/files/ntru-orig.pdf

Proposed 104-byte public keys

for 280 security.

https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

Coppersmith–Shamir, Eurocrypt

1997: better conversion +

better attacks than LLL.

Quantitative impact? Unclear.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

Coppersmith–Shamir, Eurocrypt

1997: better conversion +

better attacks than LLL.

Quantitative impact? Unclear.

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

5

Let’s try NTRU on the computer.

Debian: apt install sagemath

Fedora: yum install sagemath

Source: www.sagemath.org

Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

https://www.sagemath.org
https://sagecell.sagemath.org

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage:

8

sage: # replace x^n with 1,

sage: # x^(n+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^n-1)

....:

sage: n = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage:

9

sage: def randompoly():

....: f = list(randrange(3)-1

....: for j in range(n))

....: return Zx(f)

....:

sage: n = 7

sage: randompoly()

-x^3 - x^2 - x - 1

sage: randompoly()

x^6 + x^5 + x^3 - x

sage: randompoly()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Can we find better algorithms?

10

Will use bigger n for security.

Some choices of n

in submissions to NIST:

n = 701 for NTRU HRSS.

n = 743 for NTRUEncrypt.

n = 761 for sntrup4591761.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so

nonzero output leaks input sign.

11

Modular reduction

For integers u, q with q > 0,

Sage’s “u%q” always produces

outputs between 0 and q− 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials u,

Sage can make the same mistake.

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage:

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage:

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage:

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage:

12

sage: def balancedmod(f,q):

sage: g=list(((f[i]+q//2)%q)

sage: -q//2 for i in range(n))

sage: return Zx(g)

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage:

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage: n = 7

sage:

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage: n = 7

sage: f = randompoly()

sage:

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage: n = 7

sage: f = randompoly()

sage: f3 = invertmodprime(f,3)

sage:

13

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^n-1)

....: return Zx(lift(1/T(f)))

....:

sage: n = 7

sage: f = randompoly()

sage: f3 = invertmodprime(f,3)

sage: convolution(f,f3)

6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +

3*x^2 + 3*x + 4

sage:

14

def invertmodpowerof2(f,q):

assert q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

C = convolution

while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: Compare r to previous r.

15

sage: n = 7

sage: q = 256

sage:

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage:

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage:

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,q)

sage:

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage:

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage:

15

sage: n = 7

sage: q = 256

sage: f = randompoly()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,q)

1

sage:

16

NTRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

16

NTRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

Secret key:

random n-coeff polynomial a;

random n-coeff polynomial d ;

all coefficients in {−1; 0; 1}.

16

NTRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

Secret key:

random n-coeff polynomial a;

random n-coeff polynomial d ;

all coefficients in {−1; 0; 1}.

Require d invertible mod q.

Require d invertible mod 3.

16

NTRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

Secret key:

random n-coeff polynomial a;

random n-coeff polynomial d ;

all coefficients in {−1; 0; 1}.

Require d invertible mod q.

Require d invertible mod 3.

Public key: A = 3a=d in the ring

Rq = (Z=q)[x]=(xn − 1).

17

def keypair():

while True:

try:

d = randompoly()

d3 = invertmodprime(d,3)

dq = invertmodpowerof2(d,q)

break

except:

pass

a = randompoly()

publickey = balancedmod(3 *

convolution(a,dq),q)

secretkey = d,d3

return publickey,secretkey

18

sage: A,secretkey = keypair()

sage:

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage:

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: d,d3 = secretkey

sage:

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: d,d3 = secretkey

sage: d

-x^6 + x^5 - x^4 + x^3 - 1

sage:

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: d,d3 = secretkey

sage: d

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(d,A)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage:

18

sage: A,secretkey = keypair()

sage: A

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: d,d3 = secretkey

sage: d

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(d,A)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

19

NTRU encryption

One more parameter:

w , positive integer (e.g., 467).

19

NTRU encryption

One more parameter:

w , positive integer (e.g., 467).

Message for encryption:

n-coeff weight-w polynomial c

with all coeffs in {−1; 0; 1}.

“Weight w”: w nonzero coeffs,

n − w zero coeffs.

19

NTRU encryption

One more parameter:

w , positive integer (e.g., 467).

Message for encryption:

n-coeff weight-w polynomial c

with all coeffs in {−1; 0; 1}.

“Weight w”: w nonzero coeffs,

n − w zero coeffs.

Ciphertext: C = Ab + c in Rq

where b is chosen randomly

from the set of messages.

20

sage: def randommessage():

....: R = randrange

....: assert w <= n

....: c = n*[0]

....: for j in range(w):

....: while True:

....: r = R(n)

....: if not c[r]: break

....: c[r] = 1-2*R(2)

....: return Zx(c)

....:

sage: w = 5

sage: randommessage()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage:

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage:

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage:

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage: C = encrypt(c,A)

sage:

21

sage: def encrypt(c,A):

....: b = randommessage()

....: Ab = convolution(A,b)

....: C = balancedmod(Ab + c,q)

....: return C

....:

sage: A,secretkey = keypair()

sage: c = randommessage()

sage: C = encrypt(c,A)

sage: C

21*x^6 - 48*x^5 + 31*x^4 -

76*x^3 - 77*x^2 + 15*x - 113

sage:

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

Then 3ab + dc in Rq reveals

3ab + dc in R = Z[x]=(xn − 1).

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

Then 3ab + dc in Rq reveals

3ab + dc in R = Z[x]=(xn − 1).

Reduce modulo 3: dc in R3.

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

Then 3ab + dc in Rq reveals

3ab + dc in R = Z[x]=(xn − 1).

Reduce modulo 3: dc in R3.

Multiply by 1=d in R3

to recover message c in R3.

22

NTRU decryption

Compute dC = 3ab + dc in Rq .

a; b; c; d have small coeffs,

so 3ab + dc is not very big.

Assume that coeffs of 3ab + dc

are between −q=2 and q=2− 1.

Then 3ab + dc in Rq reveals

3ab + dc in R = Z[x]=(xn − 1).

Reduce modulo 3: dc in R3.

Multiply by 1=d in R3

to recover message c in R3.

Coeffs are between −1 and 1,

so recover c in R.

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage:

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage:

23

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: f,r = secretkey

....: u=M(convolution(C,f),q)

....: c=M(convolution(u,r),3)

....: return c

....:

sage: c

x^5 + x^4 - x^3 + x + 1

sage: decrypt(C,secretkey)

x^5 + x^4 - x^3 + x + 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage:

24

sage: n = 7

sage: w = 5

sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x^6 - 76*x^5 - 90*x^4 -

83*x^3 + 40*x^2 + 108*x - 54

sage: d,d3 = secretkey

sage: d

x^5 + x^4 - x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*x^2 - 3*x

25

sage: c = randommessage()

sage:

25

sage: c = randommessage()

sage: b = randommessage()

sage:

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage:

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage:

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage: u = M(conv(C,d),q)

sage:

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage: u = M(conv(C,d),q)

sage: u

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

sage:

25

sage: c = randommessage()

sage: b = randommessage()

sage: C = M(conv(A,b)+c,q)

sage: C

-57*x^6 + 28*x^5 + 114*x^4 +

72*x^3 - 37*x^2 + 16*x + 119

sage: u = M(conv(C,d),q)

sage: u

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

sage: conv(a3,b)+conv(c,d)

-8*x^6 + 2*x^5 + 4*x^4 - x^3 -

4*x^2 + 5*x + 1

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage:

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage:

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: conv(M(u,3),d3)

x^6 - x^5 - x^4 - 3*x^3 - x^2 +

x - 3

sage:

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: conv(M(u,3),d3)

x^6 - x^5 - x^4 - 3*x^3 - x^2 +

x - 3

sage: M(_,3)

x^6 - x^5 - x^4 - x^2 + x

sage:

26

sage: M(u,3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: M(conv(c,d),3)

x^6 - x^5 + x^4 - x^3 - x^2 - x

+ 1

sage: conv(M(u,3),d3)

x^6 - x^5 - x^4 - 3*x^3 - x^2 +

x - 3

sage: M(_,3)

x^6 - x^5 - x^4 - x^2 + x

sage: c

x^6 - x^5 - x^4 - x^2 + x

sage:

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w .

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w .

(Same argument would work for

b of any weight, a of weight w .)

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w .

(Same argument would work for

b of any weight, a of weight w .)

Similar comments for d; c .

Each coeff of 3ab + dc in R

has absolute value at most 4w .

27

Does decryption always work?

All coeffs of a are in {−1; 0; 1}.
All coeffs of b are in {−1; 0; 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w .

(Same argument would work for

b of any weight, a of weight w .)

Similar comments for d; c .

Each coeff of 3ab + dc in R

has absolute value at most 4w .

e.g. w = 467: at most 1868.

Decryption works for q = 4096.

28

What about w = 467, q = 2048?

28

What about w = 467, q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xw−1:

3ab + dc has a coeff 4w > q=2.

28

What about w = 467, q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xw−1:

3ab + dc has a coeff 4w > q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

28

What about w = 467, q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xw−1:

3ab + dc has a coeff 4w > q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

29

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings may

not be valid after all”.

29

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings may

not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

Some coeff is large ⇔
c0; c1; : : : ; cn−1 has high

correlation with some rotation

of dn−1; dn−2; : : : ; d0.

30

Coeff of xn−1 in cd is

c0dn−1 + c1dn−2 + : : : + cn−1d0.

This coeff is large ⇔
c0; c1; : : : ; cn−1 has

high correlation with

dn−1; dn−2; : : : ; d0.

Some coeff is large ⇔
c0; c1; : : : ; cn−1 has high

correlation with some rotation

of dn−1; dn−2; : : : ; d0.

i.e. c is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
n−1+· · ·+dn−1x .

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

rev(c) correlated with x−id .

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

rev(c) correlated with x−id .

c rev(c) correlated with d rev(d).

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

rev(c) correlated with x−id .

c rev(c) correlated with d rev(d).

Experimentally confirmed:

Average of c rev(c)

over some decryption failures

is close to d rev(d).

Round to integers: d rev(d).

31

Reasonable guesses given a

random decryption failure:

c correlated with some x i rev(d).

rev(c) correlated with x−id .

c rev(c) correlated with d rev(d).

Experimentally confirmed:

Average of c rev(c)

over some decryption failures

is close to d rev(d).

Round to integers: d rev(d).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds d .

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

c ± 1, c ± x , : : : , c ± xn−1;

c ± 2, c ± 2x , : : : , c ± 2xn−1;

c ± 3, etc.

32

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

c ± 1, c ± x , : : : , c ± xn−1;

c ± 2, c ± 2x , : : : , c ± 2xn−1;

c ± 3, etc.

This changes 3ab + dc: adds

±d , ±xd , : : : , ±xn−1d ;

±2d , ±2xd , : : : , ±2xn−1d ;

±3d , etc.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

Then 3ab + dc + kd =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

Then 3ab + dc + kd =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that falis.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

Then 3ab + dc + kd =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?

Yes if xd = · · ·+ x478 + · · ·,
i.e., if d = · · ·+ x477 + · · ·.

33

e.g. 3ab+dc = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and d = · · ·+ x478 + · · ·.

Then 3ab + dc + kd =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?

Yes if xd = · · ·+ x478 + · · ·,
i.e., if d = · · ·+ x477 + · · ·.

Try x2kd , x3kd , etc.

See pattern of d coeffs.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA” version

of New Hope; Ding.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA” version

of New Hope; Ding.

If user reuses a key:

Blame user for the attacks.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

e.g. “IND-CCA” New Hope

submission; most submissions.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

e.g. “IND-CCA” New Hope

submission; most submissions.

Basic idea, from Crypto 1999

Fujisaki–Okamoto: After

decrypting message, check

whether (1) message is valid

and (2) ciphertext matches

reencryption of message.

35

Approach 2: Modify

encryption and decryption to

eliminate invalid messages.

e.g. “IND-CCA” New Hope

submission; most submissions.

Basic idea, from Crypto 1999

Fujisaki–Okamoto: After

decrypting message, check

whether (1) message is valid

and (2) ciphertext matches

reencryption of message.

But encryption is randomized!

Reencryption won’t match.

36

Solution: Compute all

randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

36

Solution: Compute all

randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

Can view (b; c) as message,

no further randomness.

“Deterministic encryption.”

36

Solution: Compute all

randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

Can view (b; c) as message,

no further randomness.

“Deterministic encryption.”

“Product NTRU” variant

is not naturally deterministic.

36

Solution: Compute all

randomness that was used.

e.g. after computing c in NTRU,

compute b from 3ab + dc.

Can view (b; c) as message,

no further randomness.

“Deterministic encryption.”

“Product NTRU” variant

is not naturally deterministic.

Generic Fujisaki–Okamoto

solution: Require sender to

compute randomness as

standard hash of message.

37

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

37

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NIST encryption submissions

vary in failure rates.

NTRU HRSS, NTRU Prime,

Odd Manhattan choose q to

eliminate decryption failures.

37

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NIST encryption submissions

vary in failure rates.

NTRU HRSS, NTRU Prime,

Odd Manhattan choose q to

eliminate decryption failures.

LIMA tried to eliminate

decryption failures, but failed.

38

More claimed failure rates:

LOTUS: <2−256.

New Hope submission: <2−213.

KINDI: 2−165.
...

NTRUEncrypt: <2−80.

KCL: ≈2−60.

Ding: ≈2−60, only IND-CPA.

Current debates about

what decryption failure probability

is small enough; whether

decryption failure probabilities

were calculated correctly; etc.

39

How to randomize messages

If message is guessable:

Attacker can check whether

a guess matches a ciphertext.

39

How to randomize messages

If message is guessable:

Attacker can check whether

a guess matches a ciphertext.

Also various attacks using

guesses of portion of message.

39

How to randomize messages

If message is guessable:

Attacker can check whether

a guess matches a ciphertext.

Also various attacks using

guesses of portion of message.

Modern “KEM-DEM” solution,

from Eurocrypt 2000 Shoup:

Choose random message.

Use hash of message as (e.g.)

AES-256-GCM key to encrypt

and authenticate user data.

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki–Okamoto and many

newer papers try to prove that all

chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as

difficult as breaking one-wayness.

40

Central “one-wayness” question:

Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki–Okamoto and many

newer papers try to prove that all

chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as

difficult as breaking one-wayness.

Many limitations to proofs: bugs;

looseness; assumptions of “ROM”

or “QROM” attacks; assumptions

on failure probability; etc.

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

Search
`n
w

´
2w choices of b.

If c = C − Ab is small: done!

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

Search
`n
w

´
2w choices of b.

If c = C − Ab is small: done!

(Can this find two different

messages c? Unlikely. This would

also stop legitimate decryption.)

41

Brute-force search

Attacker is given public key

A = 3a=d , ciphertext C = Ab + c .

Can attacker find c?

Search
`n
w

´
2w choices of b.

If c = C − Ab is small: done!

(Can this find two different

messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3n choices of d .

If a = dA=3 is small, use (a; d) to

decrypt. Slightly slower but can

be reused for many ciphertexts.

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

Search only about 3n=n choices.

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

Search only about 3n=n choices.

n = 701, w = 467:`n
w

´
2w ≈ 21106:09;

3n ≈ 21111:06;

3n=n ≈ 21101:61.

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

Search only about 3n=n choices.

n = 701, w = 467:`n
w

´
2w ≈ 21106:09;

3n ≈ 21111:06;

3n=n ≈ 21101:61.

Exercise: Find more equivalences!

42

Equivalent keys

Secret key (a; d) is equivalent to

secret key (xa; xd),

secret key (x2a; x2d), etc.

Search only about 3n=n choices.

n = 701, w = 467:`n
w

´
2w ≈ 21106:09;

3n ≈ 21111:06;

3n=n ≈ 21101:61.

Exercise: Find more equivalences!

But if w is chosen smaller then`n
w

´
2w search will be faster.

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

a = (A=3)d = (A=3)d1 + (A=3)d2

so a− (A=3)d2 = (A=3)d1.

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

a = (A=3)d = (A=3)d1 + (A=3)d2

so a− (A=3)d2 = (A=3)d1.

Eliminate a: almost certainly

H(−(A=3)d2) = H((A=3)d1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

43

Collision attacks

Write d as d1 + d2 where

d1 = bottom dn=2e terms of d ,

d2 = remaining terms of d .

a = (A=3)d = (A=3)d1 + (A=3)d2

so a− (A=3)d2 = (A=3)d1.

Eliminate a: almost certainly

H(−(A=3)d2) = H((A=3)d1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(A=3)d2).

Enumerate all H((A=3)d1).

Search for collisions.

Only about 3n=2 computations;

but beware cost of memory.

44

Lattices

44

Lattices

This is a lettuce:

44

Lattices

This is a lettuce:

This is a lattice:

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

Zb1 + : : : + Zbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ Z}
is a rank-k length-n lattice.

45

Lattices, mathematically

Assume that b1; b2; : : : ; bk ∈ Rn

are R-linearly independent,

i.e., Rb1 + : : : + Rbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ R}
is a k-dimensional vector space.

Zb1 + : : : + Zbk =

{r1b1 + : : : + rkbk : r1; : : : ; rk ∈ Z}
is a rank-k length-n lattice.

b1; : : : ; bk
is a basis of this lattice.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

0.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

0.

What is shortest nonzero vector?

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

0.

What is shortest nonzero vector?

LLL algorithm runs in poly time,

computes a vector whose length

is at most 2n=2 times

length of shortest nonzero vector.

46

Short vectors in lattices

Given b1; b2; : : : ; bk ∈ Zn,

what is shortest vector

in Zb1 + : : : + Zbk?

0.

What is shortest nonzero vector?

LLL algorithm runs in poly time,

computes a vector whose length

is at most 2n=2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)

compute shorter vectors

at surprisingly high speed.

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

d is obtained from

1; x; : : : ; xn−1

by a few additions, subtractions.

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

d is obtained from

1; x; : : : ; xn−1

by a few additions, subtractions.

d(A=3) is obtained from

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

47

Lattice view of NTRU

Given public key A = 3a=d .

Compute A=3 = a=d .

d is obtained from

1; x; : : : ; xn−1

by a few additions, subtractions.

d(A=3) is obtained from

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

a is obtained from

q; qx; qx2; : : : ; qxn−1,

A=3; xA=3; : : : ; xn−1A=3

by a few additions, subtractions.

48

(a; d) is obtained from

(q; 0),

(qx; 0),
...

(qxn−1; 0),

(A=3; 1),

(xA=3; x),
...

(xn−1A=3; xn−1)

by a few additions, subtractions.

48

(a; d) is obtained from

(q; 0),

(qx; 0),
...

(qxn−1; 0),

(A=3; 1),

(xA=3; x),
...

(xn−1A=3; xn−1)

by a few additions, subtractions.

Write A=3 as

H0 + H1x + : : : + Hn−1x
n−1.

49

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is obtained from

(q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; q; 0; 0; : : : ; 0),

(H0; H1; : : : ; Hn−1; 1; 0; : : : ; 0),

(Hn−1; H0; : : : ; Hn−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using LLL etc.

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using LLL etc.

1997 Coppersmith–Shamir

balancing: e.g., set up lattice

to contain (10a; d)

if d is chosen 10× larger than a.

50

(a0; a1; : : : ; an−1; d0; d1; : : : ; dn−1)

is a surprisingly short vector

in lattice generated by

(q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using LLL etc.

1997 Coppersmith–Shamir

balancing: e.g., set up lattice

to contain (10a; d)

if d is chosen 10× larger than a.

Exercise: Describe search for

(b; c) as a problem of finding

a vector close to a lattice.

51

Quotient NTRU vs. product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates A = 3a=d in Rq

for small random a; d :

i.e., dA− 3a = 0 in Rq.

51

Quotient NTRU vs. product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates A = 3a=d in Rq

for small random a; d :

i.e., dA− 3a = 0 in Rq.

Bob sends C = Ab + c in Rq.

Alice computes dC in Rq ,

i.e., 3ab + dc in Rq.

51

Quotient NTRU vs. product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates A = 3a=d in Rq

for small random a; d :

i.e., dA− 3a = 0 in Rq.

Bob sends C = Ab + c in Rq.

Alice computes dC in Rq ,

i.e., 3ab + dc in Rq.

Alice reconstructs 3ab + dc in R,

using smallness of a; b; d; c .

Alice computes dc in R3,

deduces c , deduces b.

52

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ Rq.

Alice generates A = aG + d in Rq

for small random a; d .

52

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ Rq.

Alice generates A = aG + d in Rq

for small random a; d .

Bob sends B = Gb + e in Rq

and C = m + Ab + c in Rq

where b; c; e are small and

each coefficient of m is 0 or q=2.

52

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ Rq.

Alice generates A = aG + d in Rq

for small random a; d .

Bob sends B = Gb + e in Rq

and C = m + Ab + c in Rq

where b; c; e are small and

each coefficient of m is 0 or q=2.

Alice computes C − aB in Rq,

i.e., m + db + c − ae in Rq.

Alice reconstructs m,

using smallness of d; b; c; a; e.

