Lattice-based
public-key cryptosystems
D. J. Bernstein

NIST post-quantum competition: 69 submissions in first round, from hundreds of people. (+13 submissions that NIST declared incomplete or improper.)

22 signature-system submissions. 5 lattice-based: Dilithium; DRS (broken); FALCON*; pqNTRUSign*; qTESLA.

47 encryption-system submissions. 20 lattice-based: Compact LWE* (broken); Ding*; EMBLEM; Frodo; HILA5 (CCA broken); KCL*; KINDI; Kyber; LAC; LIMA; Lizard*; LOTUS; NewHope; NTRUEncrypt; NTRU HRSS;
NTRU Prime; Odd Manhattan; Round2*; SABER; Titanium.
*: submitter claims patent on this submission. Warning: even without *, submission could be covered by other patents!

47 encryption-system submissions. 20 lattice-based: Compact LWE* (broken); Ding*; EMBLEM;
Frodo; HILA5 (CCA broken);
KCL*; KINDI; Kyber; LAC; LIMA;
Lizard*; LOTUS; NewHope; NTRUEncrypt; NTRU HRSS; NTRU Prime; Odd Manhattan; Round2*; SABER; Titanium.
*: submitter claims patent on this submission. Warning: even without *, submission could be covered by other patents!
ey cryptosystems
rnstein
st-quantum competition: issions in first round, ndreds of people. bmissions that NIST incomplete or improper.)
ture-system submissions.
-based: Dilithium;
oken); FALCON*;
JSign*; qTESLA.

First ser
encrypti
Hoffsteir
Announ at Crypt
Patenter

47 encryption-system submissions. 20 lattice-based: Compact LWE* (broken); Ding*; EMBLEM; Frodo; HILA5 (CCA broken);
KCL*; KINDI; Kyber; LAC; LIMA; Lizard*; LOTUS; NewHope; NTRUEncrypt; NTRU HRSS; NTRU Prime; Odd Manhattan; Round2*; SABER; Titanium.
*: submitter claims patent on this submission. Warning: even without *, submission could be covered by other patents!

First serious lattic encryption system Hoffstein-Pipher-

Announced 20 Au at Crypto 1996 ru Patented until 201

47 encryption-system submissions. 20 lattice-based: Compact LWE* (broken); Ding*; EMBLEM; Frodo; HILA5 (CCA broken); KCL*; KINDI; Kyber; LAC; LIMA; Lizard*; LOTUS; NewHope; NTRUEncrypt; NTRU HRSS; NTRU Prime; Odd Manhattan; Round2*; SABER; Titanium.
*: submitter claims patent on this submission. Warning: even without *, submission could be covered by other patents!
ions.

First serious lattice-based encryption system: NTRU f Hoffstein-Pipher-Silverman.

Announced 20 August 1996 at Crypto 1996 rump sessior Patented until 2017.

47 encryption-system submissions. 20 lattice-based: Compact LWE* (broken); Ding*; EMBLEM; Frodo; HILA5 (CCA broken); KCL*; KINDI; Kyber; LAC; LIMA; Lizard*; LOTUS; NewHope; NTRUEncrypt; NTRU HRSS;
NTRU Prime; Odd Manhattan; Round2*; SABER; Titanium.
*: submitter claims patent on this submission. Warning: even without *, submission could be covered by other patents!

First serious lattice-based encryption system: NTRU from Hoffstein-Pipher-Silverman.

Announced 20 August 1996 at Crypto 1996 rump session.
Patented until 2017.

47 encryption-system submissions. 20 lattice-based: Compact LWE* (broken); Ding*; EMBLEM; Frodo; HILA5 (CCA broken); KCL*; KINDI; Kyber; LAC; LIMA; Lizard*; LOTUS; NewHope; NTRUEncrypt; NTRU HRSS;
NTRU Prime; Odd Manhattan; Round2*; SABER; Titanium.
*: submitter claims patent on this submission. Warning: even without *, submission could be covered by other patents!

First serious lattice-based encryption system: NTRU from Hoffstein-Pipher-Silverman.

Announced 20 August 1996 at Crypto 1996 rump session. Patented until 2017.

First version of NTRU paper, handed out at Crypto 1996, finally put online in 2016: web.securityinnovation.com /hubfs/files/ntru-orig.pdf

47 encryption-system submissions. 20 lattice-based: Compact LWE* (broken); Ding*; EMBLEM; Frodo; HILA5 (CCA broken); KCL*; KINDI; Kyber; LAC; LIMA; Lizard*; LOTUS; NewHope; NTRUEncrypt; NTRU HRSS;
NTRU Prime; Odd Manhattan; Round2*; SABER; Titanium.
*: submitter claims patent on this submission. Warning: even without *, submission could be covered by other patents!

First serious lattice-based encryption system: NTRU from Hoffstein-Pipher-Silverman.

Announced 20 August 1996 at Crypto 1996 rump session. Patented until 2017.

First version of NTRU paper, handed out at Crypto 1996, finally put online in 2016: web.securityinnovation.com /hubfs/files/ntru-orig.pdf

Proposed 104-byte public keys for 2^{80} security.

First serious lattice-based encryption system: NTRU from Hoffstein-Pipher-Silverman.

Announced 20 August 1996 at Crypto 1996 rump session. Patented until 2017.

First version of NTRU paper, handed out at Crypto 1996, finally put online in 2016:
web.securityinnovation.com /hubfs/files/ntru-orig.pdf

Proposed 104-byte public keys for 2^{80} security.

1996 ра attack p problem applied to attac

LOTUS; NewHope; ncrypt; NTRU HRSS; Prime; Odd Manhattan; ; SABER; Titanium.
itter claims patent on nission. Warning: even
*, submission could be by other patents!
em submissions. Compact LWE* EMBLEM;

A broken); oer; LAC; LIMA; NewHope; rRU HRSS;
d Manhattan;
Titanium.
is patent on Varning: even sion could be patents!

First serious lattice-based encryption system: NTRU from Hoffstein-Pipher-Silverman.

Announced 20 August 1996 at Crypto 1996 rump session. Patented until 2017.

First version of NTRU paper, handed out at Crypto 1996, finally put online in 2016:
web.securityinnovation.com /hubfs/files/ntru-orig.pdf

Proposed 104-byte public keys for 2^{80} security.

1996 paper conver attack problem int problem (suboptin applied LLL (not to attack the latti

First serious lattice-based encryption system: NTRU from Hoffstein-Pipher-Silverman.

Announced 20 August 1996 at Crypto 1996 rump session. Patented until 2017.

First version of NTRU paper, handed out at Crypto 1996, finally put online in 2016: web.securityinnovation.com /hubfs/files/ntru-orig.pdf

Proposed 104-byte public keys for 2^{80} security.

1996 paper converted NTRL attack problem into a lattice problem (suboptimally), and applied LLL (not state of th to attack the lattice problem

First serious lattice-based encryption system: NTRU from Hoffstein-Pipher-Silverman.

Announced 20 August 1996 at Crypto 1996 rump session. Patented until 2017.

First version of NTRU paper, handed out at Crypto 1996, finally put online in 2016:
web.securityinnovation.com /hubfs/files/ntru-orig.pdf

Proposed 104-byte public keys for 2^{80} security.

1996 paper converted NTRU attack problem into a lattice problem (suboptimally), and then applied LLL (not state of the art) to attack the lattice problem.

First serious lattice-based encryption system: NTRU from Hoffstein-Pipher-Silverman.

Announced 20 August 1996 at Crypto 1996 rump session. Patented until 2017.

First version of NTRU paper, handed out at Crypto 1996, finally put online in 2016:
web.securityinnovation.com /hubfs/files/ntru-orig.pdf Proposed 104-byte public keys for 2^{80} security.

1996 paper converted NTRU attack problem into a lattice problem (suboptimally), and then applied LLL (not state of the art) to attack the lattice problem.

Coppersmith-Shamir, Eurocrypt 1997: better conversion + better attacks than LLL.
Quantitative impact? Unclear.

First serious lattice-based encryption system: NTRU from Hoffstein-Pipher-Silverman.

Announced 20 August 1996 at Crypto 1996 rump session. Patented until 2017.

First version of NTRU paper, handed out at Crypto 1996, finally put online in 2016: web.securityinnovation.com /hubfs/files/ntru-orig.pdf Proposed 104-byte public keys for 2^{80} security.

1996 paper converted NTRU attack problem into a lattice problem (suboptimally), and then applied LLL (not state of the art) to attack the lattice problem.

Coppersmith-Shamir, Eurocrypt 1997: better conversion + better attacks than LLL.
Quantitative impact? Unclear.
NTRU paper, ANTS 1998:
proposed 147-byte or 503-byte keys for 2^{77} or 2^{170} security.

1996 paper converted NTRU attack problem into a lattice problem (suboptimally), and then applied LLL (not state of the art) to attack the lattice problem.

Coppersmith-Shamir, Eurocrypt 1997: better conversion + better attacks than LLL.
Quantitative impact? Unclear.
NTRU paper, ANTS 1998:
proposed 147-byte or 503-byte keys for 2^{77} or 2^{170} security.

Let's try
Debian:
Fedora:
Source:
Web: sa
Sage is

+ many
+ a few
sage: 1
1000000
sage: f
3172135
sage:
e-based
NTRU from Silverman. gust 1996 mp session. 7.

「RU paper, pto 1996, n 2016:
novation.com
Eru-orig.pdf
public keys

1996 paper converted NTRU attack problem into a lattice problem (suboptimally), and then applied LLL (not state of the art) to attack the lattice problem.

Coppersmith-Shamir, Eurocrypt
1997: better conversion + better attacks than LLL.
Quantitative impact? Unclear.
NTRU paper, ANTS 1998:
proposed 147-byte or 503-byte keys for 2^{77} or 2^{170} security.

Let's try NTRU o
Debian: apt inst
Fedora: yum inst
Source: www.sage
Web: sagecell.
Sage is Python 2

+ many math libr
+ a few syntax di
sage: 10^6 \# pow 1000000
sage: factor(314
317213509 * 9903
sage:

1996 paper converted NTRU attack problem into a lattice problem (suboptimally), and then applied LLL (not state of the art) to attack the lattice problem.

Coppersmith-Shamir, Eurocrypt 1997: better conversion + better attacks than LLL. Quantitative impact? Unclear.

NTRU paper, ANTS 1998: proposed 147-byte or 503-byte keys for 2^{77} or 2^{170} security.

Let's try NTRU on the com
Debian: apt install sage Fedora: yum install sage Source: www.sagemath.or\& Web: sagecell.sagemath

Sage is Python 2

+ many math libraries
+ a few syntax differences:
sage: 10^6 \# power, not
1000000
sage: factor(314159265358 317213509 * 990371647
sage:

1996 paper converted NTRU attack problem into a lattice problem (suboptimally), and then applied LLL (not state of the art) to attack the lattice problem.

Coppersmith-Shamir, Eurocrypt 1997: better conversion + better attacks than LLL. Quantitative impact? Unclear.

NTRU paper, ANTS 1998:
proposed 147-byte or 503-byte keys for 2^{77} or 2^{170} security.

Let's try NTRU on the computer.
Debian: apt install sagemath
Fedora: yum install sagemath Source: www.sagemath.org Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries
+ a few syntax differences:
sage: 10~6 \# power, not xor 1000000
sage: factor(314159265358979323)
317213509 * 990371647
sage:
per converted NTRU roblem into a lattice (suboptimally), and then LLL (not state of the art) k the lattice problem.
mith-Shamir, Eurocrypt etter conversion + ttacks than LLL. ative impact? Unclear. aper, ANTS 1998:
d 147-byte or 503-byte 2^{77} or 2^{170} security.

Let's try NTRU on the computer.
Debian: apt install sagemath
Fedora: yum install sagemath
Source: www.sagemath.org
Web: sagecell.sagemath.org
sage: Z sage: \# sage: \# sage: \# sage:

Sage is Python 2

+ many math libraries
+ a few syntax differences:

```
sage: 10^6 # power, not xor
1000000
sage: factor(314159265358979323)
317213509 * 990371647
sage:
```

ted NTRU
: a lattice nally), and then tate of the art) ce problem.
nir, Eurocrypt
ersion +
n LLL.
ct? Unclear.
TS 1998:
or 503-byte
security.

Let's try NTRU on the computer.
Debian: apt install sagemath
Fedora: yum install sagemath
Source: www.sagemath.org
Web: sagecell.sagemath.org
Sage is Python 2

+ many math libraries
+ a few syntax differences:

```
sage: 10^6 # power, not xor
1000000
sage: factor(314159265358979323)
317213509 * 990371647
sage:
```

sage: $\mathrm{Zx} .\langle\mathrm{x}\rangle=\mathrm{Z}$ sage: \# now Zx i sage: \# Zx objec sage: \# in x wit sage:

sage: $\mathrm{Zx} .\langle\mathrm{x}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class
sage: \# Zx objects are po
sage: \# in x with int coe
sage:

Let's try NTRU on the computer.
Debian: apt install sagemath Fedora: yum install sagemath Source: www.sagemath.org Web: sagecell.sagemath.org Sage is Python 2

+ many math libraries
+ a few syntax differences:

```
sage: 10^6 # power, not xor
1000000
sage: factor(314159265358979323)
317213509 * 990371647
sage:
```

sage: $\mathrm{Zx} .\langle\mathrm{x}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class
sage: \# Zx objects are polys sage: \# in x with int coeffs sage:

Let's try NTRU on the computer.
Debian: apt install sagemath Fedora: yum install sagemath Source: www.sagemath.org Web: sagecell.sagemath.org

Sage is Python 2

+ many math libraries
+ a few syntax differences:

```
sage: 10^6 # power, not xor
1000000
sage: factor(314159265358979323)
317213509 * 990371647
sage:
```

sage: Zx.<x> = ZZ[]
sage: \# now Zx is a class
sage: \# Zx objects are polys
sage: \# in x with int coeffs
sage: $f=\operatorname{Zx}([3,1,4])$
sage:

Let's try NTRU on the computer.
Debian: apt install sagemath Fedora: yum install sagemath Source: www.sagemath.org Web: sagecell.sagemath.org Sage is Python 2

+ many math libraries
+ a few syntax differences:

```
sage: 10^6 # power, not xor
1000000
sage: factor(314159265358979323)
317213509 * 990371647
sage:
```

sage: Zx.<x> = ZZ[]
sage: \# now Zx is a class
sage: \# Zx objects are polys
sage: \# in x with int coeffs
sage: $f=\operatorname{Zx}([3,1,4])$
sage: f
$4 * x^{\wedge} 2+x+3$
sage:

Let's try NTRU on the computer.
Debian: apt install sagemath Fedora: yum install sagemath Source: www.sagemath.org Web: sagecell.sagemath.org Sage is Python 2

+ many math libraries
+ a few syntax differences:
sage: $10^{\wedge} 6$ \# power, not xor 1000000
sage: factor(314159265358979323) 317213509 * 990371647 sage:

```
sage: Zx.<x> = ZZ[]
sage: # now Zx is a class
sage: # Zx objects are polys
sage: # in x with int coeffs
sage: f = Zx([3,1,4])
sage: f
4*x^2 + x + 3
sage: g = Zx([2,7,1])
sage:
```

Let's try NTRU on the computer.
Debian: apt install sagemath Fedora: yum install sagemath Source: www.sagemath.org Web: sagecell.sagemath.org Sage is Python 2

+ many math libraries
+ a few syntax differences:

```
sage: 10^6 # power, not xor
1000000
sage: factor(314159265358979323)
317213509 * 990371647
sage:
```

```
sage: Zx.<x> = ZZ[]
sage: # now Zx is a class
sage: # Zx objects are polys
sage: # in x with int coeffs
sage: f = Zx([3,1,4])
sage: f
4*x^2 + x + 3
sage: g = Zx([2,7,1])
sage: g
x^2 + 7*x + 2
sage:
```

Let's try NTRU on the computer.
Debian: apt install sagemath Fedora: yum install sagemath Source: www.sagemath.org Web: sagecell.sagemath.org Sage is Python 2

+ many math libraries
+ a few syntax differences:

```
sage: 10^6 # power, not xor
1000000
sage: factor(314159265358979323)
317213509 * 990371647
sage:
```

```
sage: Zx.<x> = ZZ[]
sage: # now Zx is a class
sage: # Zx objects are polys
sage: # in x with int coeffs
sage: f = Zx([3,1,4])
sage: f
4*x^2 + x + 3
sage: g = Zx([2,7,1])
sage: g
x^2 + 7*x + 2
sage: f+g # built-in add
5*x^2 + 8*x + 5
sage:
```

NTRU on the computer. apt install sagemath yum install sagemath www.sagemath.org agecell.sagemath.org

Python 2
math libraries
syntax differences:
0^6 \# power, not xor
actor (314159265358979323)
09 * 990371647

```
sage: \(\mathrm{Zx} .\langle\mathrm{x}\rangle=\mathrm{ZZ}[]\)
sage: \# now Zx is a class
sage: \# Zx objects are polys
sage: \# in \(x\) with int coeffs
sage: \(f=\operatorname{Zx}([3,1,4])\)
sage: f
\(4 * x^{\wedge} 2+x+3\)
sage: \(g=\operatorname{Zx}([2,7,1])\)
sage: g
\(x^{\wedge} 2+7 * x+2\)
sage: f+g \# built-in add
\(5 * x^{\wedge} 2+8 * x+5\)
sage:
```

sage: f
$4 * x^{\wedge} 3+$
sage:

I the computer.
all sagemath
all sagemath
math.org
sagemath. org
aries
fferences:
er, not xor
159265358979323)

71647
sage: $\mathrm{Zx} .\langle\mathrm{x}>=\mathrm{ZZ}[]$
sage: \# now Zx is a class
sage: \# Zx objects are polys
sage: \# in x with int coeffs
sage: $f=\operatorname{Zx}([3,1,4])$
sage: f
$4 * x^{\wedge} 2+x+3$
sage: $g=\operatorname{Zx}([2,7,1])$
sage: g
$x^{\wedge} 2+7 * x+2$
sage: f+g \# built-in add
$5 * x^{\wedge} 2+8 * x+5$
sage:
sage: f*x \# bu
$4 * x^{\wedge} 3+x^{\wedge} 2+3 *$
sage:

5
puter. sage: $\mathrm{Zx} .\langle\mathrm{x}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class
sage: \# Zx objects are polys
sage: \# in x with int coeffs
sage: $f=\operatorname{Zx}([3,1,4])$
sage: f
$4 * x^{\wedge} 2+x+3$
sage: $g=\operatorname{Zx}([2,7,1])$
sage: g
$x^{\wedge} 2+7 * x+2$
sage: f+g \# built-in add
$5 * x^{\wedge} 2+8 * x+5$
sage:
sage: f*x \# built-in mu
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage:
sage: $\mathrm{Zx} .\langle\mathrm{x}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class
sage: \# Zx objects are polys
sage: \# in x with int coeffs
sage: $f=\operatorname{Zx}([3,1,4])$
sage: f
$4 * x^{\wedge} 2+x+3$
sage: $g=Z x([2,7,1])$
sage: g
$x^{\wedge} 2+7 * x+2$
sage: f+g \# built-in add
$5 * x^{\wedge} 2+8 * x+5$
sage:
sage: $f * x \quad \#$ built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage:
sage: $\mathrm{Zx} .\langle\mathrm{x}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class
sage: \# Zx objects are polys
sage: \# in x with int coeffs
sage: $f=\operatorname{Zx}([3,1,4])$
sage: f
$4 * x^{\wedge} 2+x+3$
sage: $g=\operatorname{Zx}([2,7,1])$
sage: g
$x^{\wedge} 2+7 * x+2$
sage: f+g \# built-in add
$5 * x^{\wedge} 2+8 * x+5$
sage:
sage: $f * x$ \# built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage: $f * x^{\wedge} 2$
$4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2$
sage:
sage: $\mathrm{Zx} .\langle\mathrm{x}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class
sage: \# Zx objects are polys
sage: \# in x with int coeffs
sage: $f=\operatorname{Zx}([3,1,4])$
sage: f
$4 * x^{\wedge} 2+x+3$
sage: $g=\operatorname{Zx}([2,7,1])$
sage: g
$x^{\wedge} 2+7 * x+2$
sage: f+g \# built-in add
$5 * x^{\wedge} 2+8 * x+5$
sage:
sage: $f * x \quad \#$ built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage: $f * x^{\wedge} 2$
$4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2$
sage: $f * 2$
$8 * x^{\wedge} 2+2 * x+6$
sage:
sage: $\mathrm{Zx} .\langle\mathrm{x}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class
sage: \# Zx objects are polys
sage: \# in x with int coeffs
sage: $f=\operatorname{Zx}([3,1,4])$
sage: f
$4 * x^{\wedge} 2+x+3$
sage: $g=\operatorname{Zx}([2,7,1])$
sage: g
$x^{\wedge} 2+7 * x+2$
sage: f+g \# built-in add
$5 * x^{\wedge} 2+8 * x+5$
sage:
sage: $f * x \quad \#$ built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage: $f * x^{\wedge} 2$
$4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2$
sage: $f * 2$
$8 * x^{\wedge} 2+2 * x+6$
sage: $f *(7 * x)$
$28 * x^{\wedge} 3+7 * x^{\wedge} 2+21 * x$
sage:
sage: $\mathrm{Zx} .\langle\mathrm{x}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class
sage: \# Zx objects are polys
sage: \# in x with int coeffs
sage: $f=\operatorname{Zx}([3,1,4])$
sage: f
$4 * x^{\wedge} 2+x+3$
sage: $g=\operatorname{Zx}([2,7,1])$
sage: g
$x^{\wedge} 2+7 * x+2$
sage: f+g \# built-in add
$5 * x^{\wedge} 2+8 * x+5$
sage:
sage: $f * x \quad \#$ built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage: $f * x^{\wedge} 2$
$4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2$
sage: $f * 2$
$8 * x^{\wedge} 2+2 * x+6$
sage: $f *(7 * x)$
$28 * x^{\wedge} 3+7 * x^{\wedge} 2+21 * x$
sage: $f * g$
$4 * x^{\wedge} 4+29 * x^{\wedge} 3+18 * x^{\wedge} 2+23 * x$
$+6$
sage:
sage: $\mathrm{Zx} .\langle\mathrm{x}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class
sage: \# Zx objects are polys
sage: \# in x with int coeffs
sage: $f=\operatorname{Zx}([3,1,4])$
sage: f
$4 * x^{\wedge} 2+x+3$
sage: $g=\operatorname{Zx}([2,7,1])$
sage: g
$x^{\wedge} 2+7 * x+2$
sage: f+g \# built-in add
$5 * x^{\wedge} 2+8 * x+5$
sage:
sage: $f * x \quad \#$ built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage: $f * x^{\wedge} 2$
$4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2$
sage: $f * 2$
$8 * x^{\wedge} 2+2 * x+6$
sage: $f *(7 * x)$
$28 * x^{\wedge} 3+7 * x^{\wedge} 2+21 * x$
sage: $f * g$
$4 * x^{\wedge} 4+29 * x^{\wedge} 3+18 * x^{\wedge} 2+23 * x$
$+6$
sage: $f * g==f * 2+f *(7 * x)+f * x^{\wedge} 2$
True
sage:

6
$X .\langle X\rangle=Z Z[]$
now Zx is a class
Zx objects are polys in x with int coeffs $=\operatorname{Zx}([3,1,4])$
$x+3$
$=\mathrm{Zx}([2,7,1])$
$* x+2$
+g \# built-in add
$8 * x+5$
sage: $f * x \quad \#$ built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage: $f * x^{\wedge} 2$
$4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2$
sage: f*2
$8 * x^{\wedge} 2+2 * x+6$
sage: f*(7*x)
$28 * x^{\wedge} 3+7 * x^{\wedge} 2+21 * x$
sage: f*g
$4 * x^{\wedge} 4+29 * x^{\wedge} 3+18 * x^{\wedge} 2+23 * x$
+6
sage: $4 * g==f * 2+f *(7 * x)+f * x^{\wedge} 2$
True
sage:
sage: $f * x \quad \#$ built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage: $f * x^{\wedge} 2$
$4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2$
sage: $f * 2$
$8 * x^{\wedge} 2+2 * x+6$
sage: $f *(7 * x)$
$28 * x^{\wedge} 3+7 * x^{\wedge} 2+21 * x$
sage: $f * g$
$4 * x^{\wedge} 4+29 * x^{\wedge} 3+18 * x^{\wedge} 2+23 * x$
$+6$
sage: $f * g==f * 2+f *(7 * x)+f * x^{\wedge} 2$
True
sage:
sage: \# sage: \# sage: d
. . . .:
. . . . :
sage:
s a class
ts are polys h int coeffs $1,4]$)
$7,1])$
uilt-in add

```
sage: \(f * x \quad \#\) built-in mul
\(4 * x^{\wedge} 3+x^{\wedge} 2+3 * x\)
sage: \(f * x^{\wedge} 2\)
\(4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2\)
sage: f*2
\(8 * x^{\wedge} 2+2 * x+6\)
sage: \(f *(7 * x)\)
\(28 * x^{\wedge} 3+7 * x^{\wedge} 2+21 * x\)
sage: f*g
\(4 * x^{\wedge} 4+29 * x^{\wedge} 3+18 * x^{\wedge} 2+23 * x\)
    \(+6\)
sage: \(f * g==f * 2+f *(7 * x)+f * x^{\wedge} 2\)
True
sage:
```

sage: \# replace sage: \# $\mathrm{x}^{\wedge}(\mathrm{n}+1)$ sage: def convol
....: return
. . . :
sage:
sage: f*x \# built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage: $f * x^{\wedge} 2$
$4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2$
sage: f*2
$8 * x^{\wedge} 2+2 * x+6$
sage: $f *(7 * x)$
$28 * x^{\wedge} 3+7 * x^{\wedge} 2+21 * x$
sage: f*g
$4 * x^{\wedge} 4+29 * x^{\wedge} 3+18 * x^{\wedge} 2+23 * x$
$+6$
sage: $f * g==f * 2+f *(7 * x)+f * x^{\wedge} 2$
True
sage:
sage: \# replace x^n with sage: \# x^(n+1) with x, e sage: def convolution(f,g \ldots... return (f*g) \% (x :
sage:

$$
\begin{aligned}
& \text { sage: f*x \# built-in mul } \\
& 4 * x^{\wedge} 3+x^{\wedge} 2+3 * x \\
& \text { sage: f*x^2 } \\
& 4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2 \\
& \text { sage: f*2 } \\
& 8 * x^{\wedge} 2+2 * x+6 \\
& \text { sage: f*(7*x) } \\
& 28 * x^{\wedge} 3+7 * x^{\wedge} 2+21 * x \\
& \text { sage: f*g } \\
& 4 * x \wedge 4+29 * x^{\wedge} 3+18 * x^{\wedge} 2+23 * x \\
& +6 \\
& \text { sage: f*g = } \quad 4 * 2+f *(7 * x)+f * x^{\wedge} 2 \\
& \text { True } \\
& \text { sage: }
\end{aligned}
$$

sage: \# replace $x^{\wedge} n$ with 1, sage: \# x^(n+1) with x, etc. sage: def convolution(f,g):
....: return $(f * g) \%\left(x^{\wedge} n-1\right)$
... . :
sage:

$$
\begin{aligned}
& \text { sage: f*x \# built-in mul } \\
& 4 * x^{\wedge} 3+x^{\wedge} 2+3 * x \\
& \text { sage: f*x^2 } \\
& 4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2 \\
& \text { sage: f*2 } \\
& 8 * x^{\wedge} 2+2 * x+6 \\
& \text { sage: f*(7*x) } \\
& 28 * x^{\wedge} 3+7 * x^{\wedge} 2+21 * x \\
& \text { sage: f*g } \\
& 4 * x^{\wedge} 4+29 * x^{\wedge} 3+18 * x \wedge 2+23 * x \\
& +6 \\
& \text { sage: f*g == f*2+f*(7*x)+f*x^2} \\
& \text { True } \\
& \text { sage: }
\end{aligned}
$$

sage: \# replace $x^{\wedge} n$ with 1, sage: \# $x^{\wedge}(n+1)$ with $x, ~ e t c$. sage: def convolution(f,g):
....: return (f*g) \% ($x^{\wedge} n-1$)
.... :
sage: $\mathrm{n}=3$ \# global variable sage:

$$
\begin{aligned}
& \text { sage: f*x \# builtin mul } \\
& 4 * x^{\wedge} 3+x^{\wedge} 2+3 * x \\
& \text { sage: f*x^2 } \\
& 4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2 \\
& \text { sage: f*2 } \\
& 8 * x^{\wedge} 2+2 * x+6 \\
& \text { sage: f*(7*x) } \\
& 28 * x^{\wedge} 3+7 * x^{\wedge} 2+21 * x \\
& \text { sage: f*g } \\
& 4 * x \wedge 4+29 * x^{\wedge} 3+18 * x^{\wedge} 2+23 * x \\
& +6 \\
& \text { sage: fog = } \quad 4 * 2+f *(7 * x)+f * x^{\wedge} 2 \\
& \text { True } \\
& \text { sage: }
\end{aligned}
$$

sage: \# replace $x^{\wedge} n$ with 1, sage: \# $\mathrm{x}^{\wedge}(\mathrm{n}+1)$ with x, etc. sage: def convolution (fog):
....: return (f*g) \% ($x^{\wedge} n-1$)
. . . . :

```
sage: n = 3 # global variable
sage: convolution(f,x)
x^2+3*x + 4
sage:
```

$$
\begin{aligned}
& \text { sage: f*x \# builtin mul } \\
& 4 * x^{\wedge} 3+x^{\wedge} 2+3 * x \\
& \text { sage: f*x^2 } \\
& 4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2 \\
& \text { sage: f*2 } \\
& 8 * x^{\wedge} 2+2 * x+6 \\
& \text { sage: f*(7*x) } \\
& 28 * x^{\wedge} 3+7 * x^{\wedge} 2+21 * x \\
& \text { sage: fog } \\
& 4 * x^{\wedge} 4+29 * x^{\wedge} 3+18 * x^{\wedge} 2+23 * x \\
& +6 \\
& \text { sage: fog == } \\
& \text { True } \\
& \text { sage: }
\end{aligned}
$$

sage: \# replace $x^{\wedge} n$ with 1 , sage: \# $\mathrm{x}^{\wedge}(\mathrm{n}+1)$ with x , etc. sage: def convolution (fog):
....: return (f*g) \% ($x^{\wedge} n-1$)
.... :
sage: $\mathrm{n}=3$ \# global variable
sage: convolution (fax)
$x^{\wedge} 2+3 * x+4$
sage: convolution (f, $x^{\wedge} 2$)
$3 * x^{\wedge} 2+4 * x+1$
sage:

$$
\begin{aligned}
& \text { sage: } f * x \quad \# \text { builtin mul } \\
& 4 * x^{\wedge} 3+x^{\wedge} 2+3 * x \\
& \text { sage: } f * x^{\wedge} 2 \\
& 4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2 \\
& \text { sage: } f * 2 \\
& 8 * x^{\wedge} 2+2 * x+6 \\
& \text { sage: } f *(7 * x) \\
& 28 * x^{\wedge} 3+7 * x^{\wedge} 2+21 * x \\
& \text { sage: } f * g \\
& 4 * x^{\wedge} 4+29 * x^{\wedge} 3+18 * x^{\wedge} 2+23 * x \\
& +6 \\
& \text { sage: } f * g==f * 2+f *(7 * x)+f * x^{\wedge} 2 \\
& \text { True } \\
& \text { sage: }
\end{aligned}
$$

sage: \# replace x^n with 1, sage: \# x^(n+1) with x, etc. sage: def convolution (fig):
....: return ($\mathrm{f} * \mathrm{~g}$) \% ($\mathrm{x}^{\wedge} \mathrm{n}-1$)
.... :
sage: $\mathrm{n}=3$ \# global variable
sage: convolution (fax)
$x^{\wedge} 2+3 * x+4$
sage: convolution (f, $x^{\wedge} 2$)
$3 * x^{\wedge} 2+4 * x+1$
sage: convolution (fag)
$18 * x^{\wedge} 2+27 * x+35$
sage:
*x \# built-in mul

$$
x^{\wedge} 2+3 * x
$$

$$
* x^{\wedge} 2
$$

$$
x^{\wedge} 3+3 * x^{\wedge} 2
$$

*2

$$
2 * x+6
$$

$$
*(7 * x)
$$

$$
+7 * x^{\wedge} 2+21 * x
$$

$$
* g
$$

$$
29 * x^{\wedge} 3+18 * x^{\wedge} 2+23 * x
$$

$$
* g==f * 2+f *(7 * x)+f * x^{\wedge} 2
$$

sage: \# replace $\mathrm{x}^{\wedge} \mathrm{n}$ with 1 ,
sage: \# $x^{\wedge}(n+1)$ with $x, ~ e t c$.
sage: def convolution(f,g):
....: return (f*g) \% ($x^{\wedge} n-1$)
. . . . :

$$
\text { sage: } \mathrm{n}=3 \text { \# global variable } \quad \text { sage: }
$$

```
            sage: d
```

 :
 :
. . . . :
. . . . :
sage: convolution(f,x)

$$
x^{\wedge} 2+3 * x+4
$$

sage: convolution(f,x^2)

$$
3 * x^{\wedge} 2+4 * x+1
$$

sage: convolution(f,g)

$$
18 * x^{\wedge} 2+27 * x+35
$$

sage:
ilt-in mul
$x^{\wedge} 2$
$21 * x$
$18 * x^{\wedge} 2+23 * x$
$+\mathrm{f} *(7 * \mathrm{x})+\mathrm{f} * \mathrm{x}^{\wedge} 2$
sage: \# replace $x \wedge n$ with 1 , sage: \# $x^{\wedge}(n+1)$ with x, etc.
sage: def convolution(f,g):
....: return ($f * g$) \% ($x^{\wedge} n-1$)
sage: $\mathrm{n}=3$ \# global variable
sage: convolution(f,x)
$x^{\wedge} 2+3 * x+4$
sage: convolution(f, $x^{\wedge} 2$)
$3 * x^{\wedge} 2+4 * x+1$
sage: convolution(f,g)
$18 * x^{\wedge} 2+27 * x+35$
sage:
sage: def random
....: f = list
....: for j
....: return Z
.... :
sage:
sage: \# replace $x^{\wedge} n$ with 1,
sage: \# $\mathrm{x}^{\wedge}(\mathrm{n}+1)$ with x , etc.
sage: def convolution (f,g):
....: return (f*g) \% ($x^{\wedge} n-1$)
sage: $\mathrm{n}=3$ \# global variable
sage: convolution (f,x)
$x^{\wedge} 2+3 * x+4$
sage: convolution (f, $x^{\wedge} 2$)
$3 * x^{\wedge} 2+4 * x+1$
sage: convolution (f,g)
$18 * x^{\wedge} 2+27 * x+35$
sage:
sage: def randompoly():
....: f = list(randrang for j in range return $\mathrm{Zx}(\mathrm{f})$
sage:

$$
\begin{aligned}
& \text { sage: \# replace } x^{\wedge} n \text { with } 1, \\
& \text { sage: \# } x^{\wedge}(n+1) \text { with } x, \text { etc. } \\
& \text { sage: def convolution }(f, g): \\
& \ldots . . \text { return }(f * g) \%\left(x^{\wedge} n-1\right)
\end{aligned}
$$

$$
\text { sage: } n=3 \text { \# global variable }
$$

sage: convolution(f,x)

$$
x^{\wedge} 2+3 * x+4
$$

sage: convolution(f,x^2)

$$
3 * x^{\wedge} 2+4 * x+1
$$

sage: convolution(f,g)

$$
18 * x^{\wedge} 2+27 * x+35
$$

sage:
sage: def randompoly():

$$
\begin{array}{ll}
\ldots: & f=\text { list (randrange }(3)-1 \\
\ldots: & \text { for } j \text { in range }(n)) \\
\ldots: & \text { return } \mathrm{Zx}(\mathrm{f})
\end{array}
$$

sage:

$$
\begin{aligned}
& \text { sage: \# replace } x^{\wedge} n \text { with } 1, \\
& \text { sage: \# } x^{\wedge}(n+1) \text { with } x, \text { etc. } \\
& \text { sage: def convolution }(f, g): \\
& \ldots . . \text { return }(f * g) \%\left(x^{\wedge} n-1\right)
\end{aligned}
$$

$$
\text { sage: } \mathrm{n}=3 \text { \# global variable }
$$

sage: convolution(f,x)

$$
x^{\wedge} 2+3 * x+4
$$

$$
\text { sage: convolution(f, } \left.x^{\wedge} 2\right)
$$

$$
3 * x^{\wedge} 2+4 * x+1
$$

sage: convolution(f,g)

$$
18 * x^{\wedge} 2+27 * x+35
$$

sage:
sage: def randompoly():
....: $f=$ list (randrange (3)-1
....: for j in range(n))
....: return $\mathrm{Zx}(\mathrm{f})$
sage: $\mathrm{n}=7$
sage:

$$
\begin{aligned}
& \text { sage: \# replace } x^{\wedge} n \text { with } 1, \\
& \text { sage: \# } x^{\wedge}(n+1) \text { with } x, \text { etc. } \\
& \text { sage: def convolution }(f, g): \\
& \ldots . . \text { return }(f * g) \%\left(x^{\wedge} n-1\right)
\end{aligned}
$$

sage: $n=3$ \# global variable sage: convolution(f,x)

$$
x^{\wedge} 2+3 * x+4
$$

$$
\text { sage: convolution(f, } \left.x^{\wedge} 2\right)
$$

$$
3 * x^{\wedge} 2+4 * x+1
$$

sage: convolution(f,g)

$$
18 * x^{\wedge} 2+27 * x+35
$$

sage:
sage: def randompoly():
....: $\quad \mathrm{f}=$ list (randrange (3)-1
for j in range(n))
....: return $\mathrm{Zx}(\mathrm{f})$
sage: $\mathrm{n}=7$
sage: randompoly()
$-x^{\wedge} 3-x^{\wedge} 2-x-1$
sage:

$$
\begin{aligned}
& \text { sage: \# replace } x^{\wedge} n \text { with } 1, \\
& \text { sage: \# } x^{\wedge}(n+1) \text { with } x, \text { etc. } \\
& \text { sage: def convolution }(f, g): \\
& \ldots . . \text { return }(f * g) \%\left(x^{\wedge} n-1\right)
\end{aligned}
$$

$$
\text { sage: } n=3 \text { \# global variable }
$$

sage: convolution(f,x)

$$
x^{\wedge} 2+3 * x+4
$$

sage: convolution(f,x^2)

$$
3 * x^{\wedge} 2+4 * x+1
$$

sage: convolution(f,g)

$$
18 * x^{\wedge} 2+27 * x+35
$$

sage:
sage: def randompoly():
....: $f=$ list (randrange (3)-1
for j in range (n))
....: return $\mathrm{Zx}(\mathrm{f})$
sage: $\mathrm{n}=7$
sage: randompoly()
$-x^{\wedge} 3-x^{\wedge} 2-x-1$
sage: randompoly()
$x^{\wedge} 6+x^{\wedge} 5+x^{\wedge} 3-x$
sage:
sage: \# replace $x^{\wedge} n$ with 1 , sage: \# $\mathrm{x}^{\wedge}(\mathrm{n}+1)$ with x , etc. sage: def convolution(f,g):: return (f*g) \% ($x^{\wedge} n-1$)
sage: $\mathrm{n}=3$ \# global variable
sage: convolution(f,x)
$x^{\wedge} 2+3 * x+4$
sage: convolution(f, $x^{\wedge} 2$)
$3 * x^{\wedge} 2+4 * x+1$
sage: convolution (f,g)
$18 * x^{\wedge} 2+27 * x+35$
sage:
sage: def randompoly():
....: $f=$ list (randrange (3)-1
for j in range(n))
....: return $\mathrm{Zx}(f)$
sage: $\mathrm{n}=7$
sage: randompoly()
$-x^{\wedge} 3-x^{\wedge} 2-x-1$
sage: randompoly()
$x^{\wedge} 6+x^{\wedge} 5+x^{\wedge} 3-x$
sage: randompoly()
$-x^{\wedge} 6+x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2+$ $\mathrm{x}+1$
sage:
replace $x \wedge n$ with 1 , $x^{\wedge}(n+1)$ with $x, ~ e t c$.
ef convolution(f,g):

```
return (f*g) % (x^n-1)
```

$=3$ \# global variable onvolution(f,x)
*x +4
onvolution(f, $x^{\wedge} 2$)
$4 * x+1$
onvolution(f,g)
$+27 * x+35$
sage: def randompoly():
....: $f=$ list(randrange(3)-1
....: for j in range (n))
....: return $\mathrm{Zx}(\mathrm{f})$

$$
\begin{aligned}
& \text { sage: } n=7 \\
& \text { sage: randompoly }() \\
& -x^{\wedge} 3-x^{\wedge} 2-x-1 \\
& \text { sage: randompoly }() \\
& x^{\wedge} 6+x^{\wedge} 5+x^{\wedge} 3-x \\
& \text { sage : randompoly }() \\
& -x^{\wedge} 6+x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2+ \\
& x+1 \\
& \text { sage : }
\end{aligned}
$$

Will use
Some ch in subm
$n=701$
$n=743$
$n=761$
$x^{\wedge} n$ with 1, with x, etc.
ution(f,g):
$f * g) ~ \% ~(x \wedge n-1)$
lobal variable n(f,x)
$n\left(f, x^{\wedge} 2\right)$
n (f , g)
35
sage: def randompoly():
....: $\quad \mathrm{f}=$ list (randrange (3)-1
....: for j in range (n))
....: return $\mathrm{Zx}(\mathrm{f})$
.... :

$$
\begin{aligned}
& \text { sage: } n=7 \\
& \text { sage: randompoly() } \\
& -x^{\wedge} 3-x^{\wedge} 2-x-1 \\
& \text { sage: randompoly() } \\
& x^{\wedge} 6+x^{\wedge} 5+x^{\wedge} 3-x \\
& \text { sage: randompoly }() \\
& -x^{\wedge} 6+x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2+ \\
& x+1 \\
& \text { sage: }
\end{aligned}
$$

Will use bigger n
Some choices of n in submissions to $n=701$ for NTRL $n=743$ for NTRL $n=761$ for sntru

```
sage: def randompoly():
```

 : f = list (randrange (3)-1
 : for \(j\) in range(\(n\)))
 : return \(\mathrm{Zx}(\mathrm{f})\)
 sage: $\mathrm{n}=7$
sage: randompoly()
$-x^{\wedge} 3-x^{\wedge} 2-x-1$
sage: randompoly()
$\mathrm{x}^{\wedge} 6+\mathrm{x}^{\wedge} 5+\mathrm{x}^{\wedge} 3-\mathrm{x}$
sage: randompoly()
$-x^{\wedge} 6+x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2+$
$\mathrm{x}+1$
sage:

Will use bigger n for securit
Some choices of n in submissions to NIST:
$n=701$ for NTRU HRSS.
$n=743$ for NTRUEncrypt. $n=761$ for sntrup4591761
sage: def randompoly():
....: $\quad \mathrm{f}=$ list (randrange (3)-1
for j in range(n))
....: return $\mathrm{Zx}(\mathrm{f})$
sage: $\mathrm{n}=7$
sage: randompoly()
$-x^{\wedge} 3-x^{\wedge} 2-x-1$
sage: randompoly()
$\mathrm{x}^{\wedge} 6+\mathrm{x}^{\wedge} 5+\mathrm{x}^{\wedge} 3-\mathrm{x}$
sage: randompoly()
$-x^{\wedge} 6+x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2+$ $\mathrm{x}+1$
sage:

Will use bigger n for security.
Some choices of n in submissions to NIST:
$n=701$ for NTRU HRSS.
$n=743$ for NTRUEncrypt.
$n=761$ for sntrup4591761.

```
sage: def randompoly():
....: f = list(randrange(3)-1
    for j in range(n))
....: return Zx(f)
```

```
sage: n = 7
sage: randompoly()
-x^3 - x^2 - x - 1
sage: randompoly()
x^6 + x^5 + x^3 - x
sage: randompoly()
-x^6 + x^5 + x^4 - x^3 - x^2 +
    x + 1
sage:
```

Will use bigger n for security.
Some choices of n in submissions to NIST:
$n=701$ for NTRU HRSS.
$n=743$ for NTRUEncrypt.
$n=761$ for sntrup4591761.
Overkill against attack algorithms known today, even for future attacker with quantum computer.

```
sage: def randompoly():
....: f = list(randrange(3)-1
    for j in range(n))
....: return Zx(f)
```

```
sage: n = 7
sage: randompoly()
-x^3 - x^2 - x - 1
sage: randompoly()
x^6 + x^5 + x^3 - x
sage: randompoly()
-x^6 + x^5 + x^4 - x^3 - x^2 +
    x + 1
sage:
```

Will use bigger n for security.
Some choices of n in submissions to NIST:
$n=701$ for NTRU HRSS.
$n=743$ for NTRUEncrypt.
$n=761$ for sntrup4591761.
Overkill against attack algorithms known today, even for future attacker with quantum computer.

Can we find better algorithms?

$$
\begin{array}{ll}
\text { sage: } & \text { def randompoly }(): \\
\ldots . & f=\text { list (randrange (3)-1 } \\
\ldots: & \text { for } j \text { in range }(n)) \\
\ldots . . & \text { return } \mathrm{Zx}(\mathrm{f})
\end{array}
$$

Will use bigger n for security.
Some choices of n in submissions to NIST:
$n=701$ for NTRU HRSS.
$n=743$ for NTRUEncrypt.
$n=761$ for sntrup4591761.
Overkill against attack algorithms known today, even for future attacker with quantum computer.

Can we find better algorithms?
1998 NTRU paper took $n=503$.
ef randompoly():
f = list(randrange(3)-1
for j in range(n))
return $\mathrm{Zx}(\mathrm{f})$
$=7$
andompoly()
$x^{\wedge} 2-x-1$
andompoly()
${ }^{-5}+x^{\wedge} 3-x$
andompoly()
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2+$

Modular
For inte
Sage's
outputs
Matches

Overkill against attack algorithms known today, even for future attacker with quantum computer.

Can we find better algorithms?
1998 NTRU paper took $n=503$.
poly():
(randrange (3)-1
in range(n))
x (f)
$-x^{\wedge} 3-x^{\wedge} 2+$

Will use bigger n for security.
Some choices of n in submissions to NIST:
$n=701$ for NTRU HRSS.
$n=743$ for NTRUEncrypt.
$n=761$ for sntrup4591761.
Overkill against attack algorithms known today, even for future attacker with quantum computer.

Can we find better algorithms?
1998 NTRU paper took $n=503$.

Modular reduction
For integers $u, q v$ Sage's "u\%q" alwa outputs between

Matches standard

Will use bigger n for security.

Some choices of n in submissions to NIST:
$n=701$ for NTRU HRSS.
$n=743$ for NTRUEncrypt.
$n=761$ for sntrup4591761.
Overkill against attack algorithms known today, even for future attacker with quantum computer.

Can we find better algorithms?
1998 NTRU paper took $n=503$.

Modular reduction

For integers u, q with $\mathrm{q}>0$ Sage's "u\%q" always produc outputs between 0 and q -

Matches standard math defi

Will use bigger n for security.
Some choices of n in submissions to NIST:
$n=701$ for NTRU HRSS.
$n=743$ for NTRUEncrypt.
$n=761$ for sntrup4591761.
Overkill against attack algorithms known today, even for future attacker with quantum computer.

Can we find better algorithms?
1998 NTRU paper took $n=503$.

Modular reduction

For integers u, q with $\mathrm{q}>0$, Sage's "u\%q" always produces outputs between 0 and $q-1$.

Matches standard math definition.

Will use bigger n for security.
Some choices of n in submissions to NIST:
$n=701$ for NTRU HRSS.
$n=743$ for NTRUEncrypt.
$n=761$ for sntrup4591761.
Overkill against attack algorithms known today, even for future attacker with quantum computer.

Can we find better algorithms?
1998 NTRU paper took $n=503$.

Modular reduction

For integers u, q with $\mathrm{q}>0$, Sage's "u\%q" always produces outputs between 0 and $\mathrm{q}-1$.

Matches standard math definition.
Warning: Typically
$\mathrm{u}<0$ produces $\mathrm{u} \% \mathrm{q}<0$ in lower-level languages, so nonzero output leaks input sign.

Will use bigger n for security.
Some choices of n in submissions to NIST:
$n=701$ for NTRU HRSS.
$n=743$ for NTRUEncrypt.
$n=761$ for sntrup4591761.
Overkill against attack algorithms known today, even for future attacker with quantum computer.

Can we find better algorithms?
1998 NTRU paper took $n=503$.

Modular reduction

For integers u, q with $\mathrm{q}>0$, Sage's "u\%q" always produces outputs between 0 and $\mathrm{q}-1$.

Matches standard math definition.
Warning: Typically
$\mathrm{u}<0$ produces $\mathrm{u} \% \mathrm{q}<0$ in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials u, Sage can make the same mistake.
bigger n for security.
oices of n
ssions to NIST:
for NTRU HRSS. for NTRUEncrypt. for sntrup4591761.
against attack algorithms oday, even for future with quantum computer. find better algorithms?
-RU paper took $n=503$.
sage: d sage: sage:
sage:
sage:
sage:
for security.

NIST:

J HRSS.
Jncrypt. p4591761.
tack algorithms
for future
ttum computer.
algorithms?
took $n=503$.

Modular reduction

For integers u, q with $\mathrm{q}>0$, Sage's "u\%q" always produces outputs between 0 and $q-1$.

Matches standard math definition.
Warning: Typically
$\mathrm{u}<0$ produces $\mathrm{u} \% \mathrm{q}<0$
in lower-level languages, so
nonzero output leaks input sign.
Warning: For polynomials u, Sage can make the same mistake.
sage: def balanc sage: $\quad \mathrm{g}=$ list ($($ sage: -q//2 fo sage: return Z sage:
sage:

Modular reduction

For integers u, q with $\mathrm{q}>0$, Sage's "u\%q" always produces outputs between 0 and $q-1$.

Matches standard math definition.
Warning: Typically
$\mathrm{u}<0$ produces $\mathrm{u} \% \mathrm{q}<0$
in lower-level languages, so
nonzero output leaks input sign.
Warning: For polynomials u, Sage can make the same mistake.
sage: def balancedmod(f,q
sage: $\quad \mathrm{g}=\mathrm{list}\left(\left(\mathrm{f}_{\mathrm{f}} \mathrm{i}\right]+\mathrm{q} / \mathrm{l}\right.$
sage: -q//2 for i in ra
sage: return $\mathrm{Zx}(\mathrm{g})$
sage:
sage:

Modular reduction

For integers u, q with $\mathrm{q}>0$, Sage's "u\%q" always produces outputs between 0 and $q-1$.

Matches standard math definition.
Warning: Typically
$\mathrm{u}<0$ produces $u \% q<0$
in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials u, Sage can make the same mistake.

```
sage: def balancedmod(f,q):
sage: g=list(((f[i]+q//2)%q)
sage: -q//2 for i in range(n))
sage: return Zx(g)
sage:
sage:
```


Modular reduction

For integers u, q with $\mathrm{q}>0$, Sage's "u\%q" always produces outputs between 0 and $q-1$.

Matches standard math definition.
Warning: Typically
$\mathrm{u}<0$ produces $\mathrm{u} \% \mathrm{q}<0$
in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials u, Sage can make the same mistake.

```
sage: def balancedmod(f,q):
sage: g=list(((f[i]+q//2)%q)
sage: -q//2 for i in range(n))
sage: return Zx(g)
sage:
sage: u = 314-159*x
sage:
```


Modular reduction

For integers u, q with $\mathrm{q}>0$, Sage's "u\%q" always produces outputs between 0 and $q-1$.

Matches standard math definition.
Warning: Typically
$\mathrm{u}<0$ produces $\mathrm{u} \% \mathrm{q}<0$
in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials u, Sage can make the same mistake.

```
sage: def balancedmod(f,q):
sage: g=list(((f[i]+q//2)%q)
sage: -q//2 for i in range(n))
sage: return Zx(g)
sage:
sage: u = 314-159*x
sage: u % 200
-159*x + 114
sage:
```


Modular reduction

For integers u, q with $\mathrm{q}>0$, Sage's "u\%q" always produces outputs between 0 and $q-1$.

Matches standard math definition.
Warning: Typically
$\mathrm{u}<0$ produces $\mathrm{u} \% \mathrm{q}<0$ in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials u, Sage can make the same mistake.

```
sage: def balancedmod(f,q):
sage: g=list(((f[i]+q//2)%q)
sage: -q//2 for i in range(n))
sage: return Zx(g)
sage:
sage: u = 314-159*x
sage: u % 200
-159*x + 114
sage: (u - 400) % 200
-159*x - 86
sage:
```


Modular reduction

For integers u, q with $\mathrm{q}>0$, Sage's "u\%q" always produces outputs between 0 and $q-1$.

Matches standard math definition.
Warning: Typically
$\mathrm{u}<0$ produces $\mathrm{u} \% \mathrm{q}<0$ in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials u, Sage can make the same mistake.
sage: def balancedmod(f,q):
sage: g=list(((f[i]+q//2)\%q)
sage: $-q / / 2$ for i in range(n))
sage: return $\mathrm{Zx}(\mathrm{g})$
sage:
sage: u = 314-159*x
sage: u \% 200
-159*x + 114
sage: (u - 400) \% 200
-159*x - 86
sage: balancedmod (u, 200)
41*x - 86
sage:
gers u, q with $q>0$ u\%q" always produces between 0 and $q-1$.
standard math definition.
Typically
oduces u\%q < 0
level languages, so output leaks input sign.

For polynomials u, I make the same mistake.
sage: $\quad g=l i s t(((f[i]+q / / 2) \% q)$
sage: $-q / / 2$ for i in range(n))
sage: return $\mathrm{Zx}(\mathrm{g})$
sage:
sage: $u=314-159 * x$
sage: u \% 200
-159*x + 114
sage: (u - 400) \% 200
-159*x - 86
sage: balancedmod (u,200)
$41 * x-86$
sage:

```
sage: d
```

```
sage: d
```

sage: def balancedmod(f,q):
vith $q>0$, ys produces and $\mathrm{q}-1$.
math definition.
$1 \mathrm{q}<0$
uages, so
aks input sign.
nomials u,
e same mistake.
sage: def balancedmod(f,q):
sage: $\quad g=l i s t(((f[i]+q / / 2) \% q)$
sage: $-q / / 2$ for i in range(n))
sage: return $\mathrm{Zx}(\mathrm{g})$
sage:
sage: $u=314-159 * x$
sage: u \% 200
-159*x + 114
sage: (u - 400) \% 200
-159*x - 86
sage: balancedmod (u,200)
$41 * x-86$
sage:
sage: def invert \ldots... $\mathrm{Fp}=$ Int
\ldots...: $F p x=Z x$
\ldots...: $T=F p x$.
....: return Z
.... :
sage:
sage: def balancedmod(f,q):
sage: $\quad g=1 i s t(((f[i]+q / / 2) \% q)$
sage: $-q / / 2$ for i in range(n))
sage: return $\mathrm{Zx}(\mathrm{g})$
sage:
sage: $u=314-159 * x$
sage: u \% 200
-159*x + 114
sage: (u - 400) \% 200
-159*x - 86
sage: balancedmod (u,200)
$41 * x-86$
sage:
....: $F p=$ Integers (p)
....: \quad Fpx = Zx.change_r
....: \quad = Fpx.quotient
....: return Zx(lift(1)
. . . . :
sage:
sage: def balancedmod(f,q):
sage: $\quad g=l i s t(((f[i]+q / / 2) \% q)$
sage: $-q / / 2$ for i in range(n))
sage: return $\mathrm{Zx}(\mathrm{g})$
sage:
sage: $u=314-159 * x$
sage: u \% 200
-159*x + 114
sage: (u - 400) \% 200
-159*x - 86
sage: balancedmod (u,200)
$41 * \mathrm{x}-86$
sage:
sage: def invertmodprime(f,p):
....: Fp = Integers (p)
....: $\quad \mathrm{Fpx}=\mathrm{Zx}$. change_ring (Fp)
\ldots.... $T=F p x . q u o t i e n t\left(x^{\wedge} n-1\right)$
....: return $\mathrm{Zx}(\operatorname{lift}(1 / \mathrm{T}(\mathrm{f})))$
.... :
sage:
sage: def balancedmod(f,q):
sage: $\quad g=l i s t(((f[i]+q / / 2) \% q)$
sage: $-q / / 2$ for i in range(n))
sage: return $\mathrm{Zx}(\mathrm{g})$
sage:
sage: $u=314-159 * x$
sage: u \% 200
-159*x + 114
sage: (u - 400) \% 200
-159*x - 86
sage: balancedmod (u,200)
$41 * \mathrm{x}-86$
sage:
sage: def invertmodprime(f,p):
....: Fp = Integers (p)
....: $\quad \mathrm{Fpx}=\mathrm{Zx}$. change_ring (Fp)
\ldots...: $T=F p x . q u o t i e n t\left(x^{\wedge} n-1\right)$
....: return $\mathrm{Zx}(\operatorname{lift}(1 / \mathrm{T}(\mathrm{f})))$
. . . . :
sage: $n=7$
sage:
sage: def balancedmod(f,q):
sage: $\quad g=l i s t(((f[i]+q / / 2) \% q)$
sage: $-q / / 2$ for i in range(n))
sage: return $\mathrm{Zx}(\mathrm{g})$
sage:
sage: $u=314-159 * x$
sage: u \% 200
-159*x + 114
sage: (u - 400) \% 200
-159*x - 86
sage: balancedmod (u,200)
$41 * \mathrm{x}-86$
sage:
sage: def invertmodprime(f,p):
....: Fp = Integers (p)
....: $F p x=$ Zx.change_ring (Fp)
\ldots...: $T=F p x . q u o t i e n t\left(x^{\wedge} n-1\right)$
....: return $\mathrm{Zx}(\operatorname{lift}(1 / \mathrm{T}(\mathrm{f})))$
.... :
sage: $n=7$
sage: $f=$ randompoly()
sage:
sage: def balancedmod(f,q):
sage: $\quad g=l i s t(((f[i]+q / / 2) \% q)$
sage: $-q / / 2$ for i in range(n))
sage: return $\mathrm{Zx}(\mathrm{g})$
sage:
sage: $u=314-159 * x$
sage: u \% 200
-159*x + 114
sage: (u - 400) \% 200
-159*x - 86
sage: balancedmod (u,200)
$41 * \mathrm{x}-86$
sage:
sage: def invertmodprime(f,p):
....: Fp = Integers (p)
....: $\quad \mathrm{Fpx}=\mathrm{Zx}$. change_ring (Fp)
\ldots...: $T=F p x . q u o t i e n t\left(x^{\wedge} n-1\right)$
....: return $\mathrm{Zx}(\operatorname{lift}(1 / \mathrm{T}(\mathrm{f})))$
. . . . :
sage: $\mathrm{n}=7$
sage: $f=$ randompoly()
sage: f3 = invertmodprime(f,3)
sage:
sage: def balancedmod(f,q):
sage: $\quad g=l i s t(((f[i]+q / / 2) \% q)$
sage: $-q / / 2$ for i in range(n))
sage: return $\mathrm{Zx}(\mathrm{g})$
sage:
sage: $u=314-159 * x$
sage: u \% 200
-159*x + 114
sage: (u - 400) \% 200
-159*x - 86
sage: balancedmod(u,200)
$41 * \mathrm{x}-86$
sage:
sage: def invertmodprime(f,p):
....: Fp = Integers (p)
....: $\quad \mathrm{Fpx}=\mathrm{Zx}$. change_ring (Fp)
\ldots...: $T=F p x . q u o t i e n t\left(x^{\wedge} n-1\right)$
....: return $\mathrm{Zx}(\operatorname{lift}(1 / \mathrm{T}(\mathrm{f}))$)
. . . . :

```
sage: n = 7
sage: f = randompoly()
sage: f3 = invertmodprime(f,3)
sage: convolution(f,f3)
6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +
    3*x^2 + 3*x + 4
sage:
```

ef balancedmod(f,q):
$\mathrm{g}=$ list $(((\mathrm{f}[\mathrm{i}]+\mathrm{q} / / 2) \% \mathrm{q})$
-q//2 for i in range(n)) return $\mathrm{Zx}(\mathrm{g})$
$=314-159 * x$
\% 200
114
u - 400) \% 200

- 86
alancedmod (u, 200)
86
sage: def invertmodprime(f,p):
....: Fp = Integers (p)
....: $F p x=$ Zx.change_ring (Fp)
\ldots....: $T=F p x . q u o t i e n t\left(x^{\wedge} n-1\right)$
....: return $\mathrm{Zx}(\operatorname{lift}(1 / T(f)))$
.... :

```
sage: n = 7
sage: f = randompoly()
sage: f3 = invertmodprime(f,3)
sage: convolution(f,f3)
6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +
    3*x^2 + 3*x + 4
sage:
```

def inv asser $\mathrm{g}=\mathrm{i}$ $\mathrm{M}=\mathrm{b}$ $C=c$ while r = if g =

Exercise invertn Hint: C
edmod (f,q) :
$(f[i]+q / / 2) \% q)$
r i in range(n))
x (g)
$9 * x$
$\% 200$
$d(u, 200)$
sage: def invertmodprime(f,p):
....: Fp = Integers (p)
....: $\mathrm{Fpx}=\mathrm{Zx}$. change_ring (Fp)
....: $T=F p x . q u o t i e n t\left(x^{\wedge} n-1\right)$
....: return $\mathrm{Zx}(\operatorname{lift}(1 / \mathrm{T}(\mathrm{f})))$
.... :

```
sage: \(\mathrm{n}=7\)
sage: f = randompoly()
sage: \(f 3\) = invertmodprime (f,3)
sage: convolution(f,f3)
\(6 * x^{\wedge} 6+6 * x^{\wedge} 5+3 * x^{\wedge} 4+3 * x^{\wedge} 3+\)
    \(3 * x^{\wedge} 2+3 * x+4\)
sage:
```

def invertmodpow assert q.is_po g = invertmodp M = balancedmo

C = convolutio while True:

$$
\begin{aligned}
& r=M(C(g, f) \\
& i f r==1: r \\
& g=M(C(g, 2-
\end{aligned}
$$

Exercise: Figure o invertmodpower Hint: Compare r
sage: def invertmodprime(f,p):

$$
\begin{array}{ll}
\ldots .: & F p=\text { Integers }(p) \\
\ldots .: & F p x=\text { Zx.change_ring(Fp) } \\
\ldots .: & T=F p x . q u o t i e n t\left(x^{\wedge} n^{\prime}-1\right) \\
\ldots .: & \text { return } Z x(\operatorname{lift}(1 / T(f))) \\
\ldots \ldots: & \\
\text { sage: } & n=7 \\
\text { sage: } & f=\text { randompoly() } \\
\text { sage: } & f 3=\text { invertmodprime }(f, 3) \\
\text { sage: convolution }(f, f 3) \\
6 * x^{\wedge} 6+6 * x^{\wedge} 5+3 * x^{\wedge} 4+3 * x^{\wedge} 3+ \\
3 * x^{\wedge} 2+3 * x+4 \\
\text { sage: } &
\end{array}
$$

def invertmodpowerof2(f,q assert q.is_power_of (2) $\mathrm{g}=$ invertmodprime(f,2)
M = balancedmod
C = convolution while True:

$$
\begin{aligned}
& r=M(C(g, f), q) \\
& \text { if } r==1: \text { return } g \\
& g=M(C(g, 2-r), q)
\end{aligned}
$$

Exercise: Figure out how invertmodpowerof 2 works Hint: Compare r to previou

$$
\begin{array}{ll}
\text { sage: } & \text { def invertmodprime }(f, p): \\
\ldots .: & F p=\operatorname{Integers}(p) \\
\ldots .: & F p x=Z x . \operatorname{change_ ring(Fp)} \\
\ldots .: & T=F p x . q u o t i e n t\left(x^{\wedge} n-1\right) \\
\ldots .: & \text { return } Z x(\operatorname{lift}(1 / T(f)))
\end{array}
$$

```
sage: n = 7
sage: f = randompoly()
sage: f3 = invertmodprime(f,3)
sage: convolution(f,f3)
6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +
    3*x^2 + 3*x + 4
sage:
```

def invertmodpowerof2(f,q):
assert q.is_power_of(2)
$\mathrm{g}=$ invertmodprime (f,2)
M = balancedmod
C = convolution
while True:

$$
\begin{aligned}
& r=M(C(g, f), q) \\
& \text { if } r==1: r e t u r n ~ \\
& g=M(C(g, 2-r), q)
\end{aligned}
$$

Exercise: Figure out how invertmodpowerof 2 works.
Hint: Compare r to previous r.
ef invertmodprime(f,p):
Fp = Integers(p)
Fpx = Zx.change_ring (Fp)
$\mathrm{T}=\mathrm{Fpx}$. quotient $\left(\mathrm{x}^{\wedge} \mathrm{n}-1\right)$ return $\mathrm{Zx}(\operatorname{lift}(1 / T(f)))$
$=7$
= randompoly()
3 = invertmodprime(f,3)
onvolution(f,f3)
$6 * x^{\wedge} 5+3 * x^{\wedge} 4+3 * x^{\wedge} 3+$ $+3 * x+4$
def invertmodpowerof2(f,q):
assert q.is_power_of(2)
$\mathrm{g}=$ invertmodprime (f,2)
M = balancedmod
C = convolution
while True:

$$
\begin{aligned}
& r=M(C(g, f), q) \\
& \text { if } r==1: \text { return } g \\
& g=M(C(g, 2-r), q)
\end{aligned}
$$

Exercise: Figure out how invertmodpowerof 2 works.
Hint: Compare r to previous r.
sage: n

sage:

sage:
modprime(f,p):
egers (p)
. change_ring(Fp)
quotient ($x^{\wedge} n-1$)
x (lift(1/T(f)))
poly()
tmodprime (f, 3)
$n(f, f 3)$
$3 * x^{\wedge} 4+3 * x^{\wedge} 3+$
def invertmodpowerof2(f,q):
assert q.is_power_of(2)
g = invertmodprime (f,2)
M = balancedmod
C = convolution
while True:

$$
\begin{aligned}
& r=M(C(g, f), q) \\
& \text { if } r==1: \text { return } g \\
& g=M(C(g, 2-r), q)
\end{aligned}
$$

Exercise: Figure out how invertmodpowerof 2 works.
Hint: Compare r to previous r.
sage: $\mathrm{n}=7$
sage: $q=256$
sage:

f,p):	def invertmodpowerof2 (f,q): assert q.is_power_of(2)	$\begin{aligned} & \text { sage: } n=7 \\ & \text { sage: } q=256 \end{aligned}$
ing (Fp)	$g=$ invertmodprime (f,2)	sage:
$\left.\mathrm{x}^{\wedge} \mathrm{n}-1\right)$	$\mathrm{M}=\mathrm{balancedmod}$	
$\mathrm{T}(\mathrm{f}) \mathrm{)}$)	$\mathrm{C}=$ convolution	
	while True: $r=M(C(g, f), q)$	
$(\mathrm{f}, 3)$	$\begin{aligned} & \text { if } r=1: \text { return } g \\ & g=M(C(g, 2-r), q) \end{aligned}$	
* $\mathrm{X}^{\wedge} 3+$	Exercise: Figure out how invertmodpowerof2 works. Hint: Compare r to previous r.	

def invertmodpowerof2(f,q):
assert q.is_power_of(2)
$\mathrm{g}=$ invertmodprime (f,2)
M = balancedmod
C = convolution
while True:

$$
\begin{aligned}
& r=M(C(g, f), q) \\
& \text { if } r==1: \text { return } g \\
& g=M(C(g, 2-r), q)
\end{aligned}
$$

Exercise: Figure out how invertmodpowerof 2 works.
Hint: Compare r to previous r.
sage: $\mathrm{n}=7$
sage: $q=256$
sage:
def invertmodpowerof2(f,q):
assert q.is_power_of(2)
$\mathrm{g}=$ invertmodprime (f,2)
M = balancedmod
C = convolution
while True:

$$
\begin{aligned}
& r=M(C(g, f), q) \\
& \text { if } r==1: \text { return } g \\
& g=M(C(g, 2-r), q)
\end{aligned}
$$

Exercise: Figure out how invertmodpowerof 2 works.
Hint: Compare r to previous r.
sage: $\mathrm{n}=7$
sage: $q=256$
sage: $f=$ randompoly()
sage:
def invertmodpowerof2(f,q):
assert q.is_power_of(2)
$\mathrm{g}=$ invertmodprime (f,2)
M = balancedmod
C = convolution
while True:

$$
\begin{aligned}
& r=M(C(g, f), q) \\
& \text { if } r==1: \text { return } g \\
& g=M(C(g, 2-r), q)
\end{aligned}
$$

Exercise: Figure out how invertmodpowerof 2 works.
Hint: Compare r to previous r.
sage: $\mathrm{n}=7$
sage: $q=256$
sage: $f=$ randompoly()
sage: f
$-x^{\wedge} 6-x^{\wedge} 4+x^{\wedge} 2+x-1$
sage:
def invertmodpowerof2(f,q):
assert q.is_power_of(2)
$\mathrm{g}=$ invertmodprime (f,2)
M = balancedmod
C = convolution
while True:

$$
\begin{aligned}
& r=M(C(g, f), q) \\
& \text { if } r==1: \text { return } g \\
& g=M(C(g, 2-r), q)
\end{aligned}
$$

Exercise: Figure out how invertmodpowerof 2 works.
Hint: Compare r to previous r.
sage: $\mathrm{n}=7$
sage: $q=256$
sage: $f=$ randompoly()
sage: f
$-x^{\wedge} 6-x^{\wedge} 4+x^{\wedge} 2+x-1$
sage: g = invertmodpowerof2(f,q)
sage:
def invertmodpowerof2(f,q):
assert q.is_power_of(2)
$\mathrm{g}=$ invertmodprime (f,2)
M = balancedmod
C = convolution
while True:

$$
\begin{aligned}
& r=M(C(g, f), q) \\
& \text { if } r==1: \text { return } g \\
& g=M(C(g, 2-r), q)
\end{aligned}
$$

Exercise: Figure out how invertmodpowerof 2 works.
Hint: Compare r to previous r.

$$
\begin{aligned}
& \text { sage: } n=7 \\
& \text { sage: } q=256 \\
& \text { sage: } f=\text { randompoly }() \\
& \text { sage: } f \\
& -x^{\wedge} 6-x^{\wedge} 4+x^{\wedge} 2+x-1
\end{aligned}
$$

$$
\text { sage: } g \text { = invertmodpowerof2(f,q) }
$$

sage: g

$$
47 * x^{\wedge} 6+126 * x^{\wedge} 5-54 * x^{\wedge} 4-
$$

$$
87 * x^{\wedge} 3-36 * x^{\wedge} 2-58 * x+61
$$

sage:
def invertmodpowerof2(f,q):
assert q.is_power_of(2)
$\mathrm{g}=$ invertmodprime (f,2)
M = balancedmod
C = convolution
while True:

$$
\begin{aligned}
& r=M(C(g, f), q) \\
& \text { if } r==1: \text { return } g \\
& g=M(C(g, 2-r), q)
\end{aligned}
$$

Exercise: Figure out how invertmodpowerof 2 works.
Hint: Compare r to previous r.

$$
\begin{aligned}
& \text { sage: } n=7 \\
& \text { sage: } q=256 \\
& \text { sage: } f=\text { randompoly }() \\
& \text { sage: } f \\
& -x^{\wedge} 6-x^{\wedge} 4+x^{\wedge} 2+x-1
\end{aligned}
$$

$$
\text { sage: } g \text { = invertmodpowerof2(f,q) }
$$

sage: g

$$
47 * x^{\wedge} 6+126 * x^{\wedge} 5-54 * x^{\wedge} 4-
$$

$$
87 * x^{\wedge} 3-36 * x^{\wedge} 2-58 * x+61
$$

sage: convolution (f,g)
$-256 * x^{\wedge} 5-256 * x^{\wedge} 4+256 * x+257$ sage:
def invertmodpowerof2(f,q):
assert q.is_power_of(2)
$\mathrm{g}=$ invertmodprime (f,2)
M = balancedmod
C = convolution
while True:

$$
\begin{aligned}
& r=M(C(g, f), q) \\
& \text { if } r==1: \text { return } g \\
& g=M(C(g, 2-r), q)
\end{aligned}
$$

Exercise: Figure out how invertmodpowerof 2 works.
Hint: Compare r to previous r.

$$
\begin{aligned}
& \text { sage: } n=7 \\
& \text { sage: } q=256 \\
& \text { sage: } f=\text { randompoly }() \\
& \text { sage: } f \\
& -x^{\wedge} 6-x^{\wedge} 4+x^{\wedge} 2+x-1
\end{aligned}
$$

$$
\text { sage: } g \text { = invertmodpowerof2(f,q) }
$$

sage: g

$$
47 * x^{\wedge} 6+126 * x^{\wedge} 5-54 * x^{\wedge} 4-
$$

$$
87 * x^{\wedge} 3-36 * x^{\wedge} 2-58 * x+61
$$

sage: convolution(f,g)
$-256 * x^{\wedge} 5-256 * x \wedge 4+256 * x+257$
sage: balancedmod(_,q)
1
sage:
ertmodpowerof2(f,q):
t q.is_power_of (2)
nvertmodprime (f,2)
alancedmod
onvolution
True:
$M(C(g, f), q)$
r == 1: return g
$M(C(g, 2-r), q)$
Figure out how nodpowerof 2 works. ompare r to previous r.

$$
\begin{aligned}
& \text { sage: } n=7 \\
& \text { sage: } q=256 \\
& \text { sage: } f=\text { randompoly }() \\
& \text { sage: } f \\
& -x^{\wedge} 6-x^{\wedge} 4+x^{\wedge} 2+x-1 \\
& \text { sage: } g=\text { invertmodpowerof } 2(f, q) \\
& \text { sage: } g \\
& 47 * x^{\wedge} 6+126 * x^{\wedge} 5-54 * x^{\wedge} 4- \\
& 87 * x^{\wedge} 3-36 * x^{\wedge} 2-58 * x+61 \\
& \text { sage: convolution }(f, g) \\
& -256 * x^{\wedge} 5-256 * x^{\wedge} 4+256 * x+257 \\
& \text { sage: balancedmod }\left(_, q\right) \\
& 1 \\
& \text { sage: }
\end{aligned}
$$

Paramet
n, positi
q, powe
$\operatorname{erof} 2(f, q):$
wer_of (2)
rime (f,2)
eturn g
r) , q)
ut how
f2 works.
to previous r.

$$
\begin{aligned}
& \text { sage: } \mathrm{n}=7 \\
& \text { sage: } \mathrm{q}=256 \\
& \text { sage: } \mathrm{f}=\text { randompoly(} \\
& \text { sage: } \mathrm{f} \\
& -x^{\wedge} 6-x^{\wedge} 4+x^{\wedge} 2+x-1 \\
& \text { sage: } g=\text { invertmodpowerof } 2(f, q) \\
& \text { sage: } g \\
& 47 * x^{\wedge} 6+126 * x^{\wedge} 5-54 * x^{\wedge} 4- \\
& 87 * x^{\wedge} 3-36 * x^{\wedge} 2-58 * x+61 \\
& \text { sage: convolution }(f, g) \\
& -256 * x^{\wedge} 5-256 * x^{\wedge} 4+256 * x+257 \\
& \text { sage: balancedmod }\left(_, q\right) \\
& 1 \\
& \text { sage: }
\end{aligned}
$$

NTRU key genera

Parameters:

n, positive integer
q, power of 2 (e.g

```
sage: n = 7
sage: q = 256
sage: f = randompoly()
sage: f
-x^6 - x^4 + x^2 + x - 1
sage: g = invertmodpowerof2(f,q)
sage: g
47*x^6 + 126*x^5 - 54*x^4 -
    87*x^3-36*x^2 - 58*x + 61
sage: convolution(f,g)
-256*x^5 - 256*x^4 + 256*x + 257
sage: balancedmod(_,q)
1
sage:
```


NTRU key generation

Parameters:
n, positive integer (e.g., 701 q, power of 2 (e.g., 4096).

```
sage: n = 7
sage: q = 256
sage: f = randompoly()
sage: f
-x^6-x^4 + x^2 + x - 1
sage: g = invertmodpowerof2(f,q)
sage: g
47*x^6 + 126*x^5 - 54*x^4 -
    87*x^3-36*x^2 - 58*x + 61
sage: convolution(f,g)
-256*x^5 - 256*x^4 + 256*x + 257
sage: balancedmod(_, q)
1
sage:
```


NTRU key generation

Parameters:

n, positive integer (e.g., 701);
q, power of 2 (e.g., 4096).

```
sage: n = 7
sage: q = 256
sage: f = randompoly()
sage: f
-x^6-x^4 + x^2 + x - 1
sage: g = invertmodpowerof2(f,q)
sage: g
47*x^6 + 126*x^5 - 54*x^4 -
    87*x^3-36*x^2 - 58*x + 61
sage: convolution(f,g)
-256*x^5 - 256*x^4 + 256*x + 257
sage: balancedmod(_, q)
1
sage:
```


NTRU key generation

Parameters:

n, positive integer (e.g., 701); q, power of 2 (e.g., 4096).

Secret key:
random n-coeff polynomial a; random n-coeff polynomial d; all coefficients in $\{-1,0,1\}$.

```
sage: n = 7
sage: q = 256
sage: f = randompoly()
sage: f
-x^6-x^4 + x^2 + x - 1
sage: g = invertmodpowerof2(f,q)
sage: g
47*x^6 + 126*x^5 - 54*x^4 -
    87*x^3-36*x^2 - 58*x + 61
sage: convolution(f,g)
-256*x^5 - 256*x^4 + 256*x + 257
sage: balancedmod(_, q)
1
sage:
```


NTRU key generation

Parameters:

n, positive integer (e.g., 701);
q, power of 2 (e.g., 4096).
Secret key:
random n-coeff polynomial a; random n-coeff polynomial d; all coefficients in $\{-1,0,1\}$.

Require d invertible mod q.
Require d invertible mod 3 .

```
sage: n = 7
sage: q = 256
sage: f = randompoly()
sage: f
-x^6-x^4 + x^2 + x - 1
sage: g = invertmodpowerof2(f,q)
sage: g
47*x^6 + 126*x^5 - 54*x^4 -
    87*x^3-36*x^2 - 58*x + 61
sage: convolution(f,g)
-256*x^5 - 256*x^4 + 256*x + 257
sage: balancedmod(_, q)
1
sage:
```


NTRU key generation

Parameters:

n, positive integer (e.g., 701);
q, power of 2 (e.g., 4096).
Secret key:
random n-coeff polynomial a; random n-coeff polynomial d; all coefficients in $\{-1,0,1\}$.

Require d invertible mod q. Require d invertible mod 3 .

Public key: $A=3 a / d$ in the ring $R_{q}=(\mathbf{Z} / q)[x] /\left(x^{n}-1\right)$.
$=7$
$=256$
= randompoly()

$$
x^{\wedge} 4+x^{\wedge} 2+x-1
$$

$$
=\text { invertmodpowerof2(f,q) }
$$

$$
+126 * x^{\wedge} 5-54 * x \wedge 4-
$$

$$
-36 * x^{\wedge} 2-58 * x+61
$$

onvolution(f,g)

$$
5-256 * x \wedge 4+256 * x+257
$$

alancedmod (_ , q)

NTRU key generation

Parameters:

n, positive integer (e.g., 701);
q, power of 2 (e.g., 4096).
Secret key:
random n-coeff polynomial a;
random n-coeff polynomial d;
all coefficients in $\{-1,0,1\}$.
Require d invertible mod q. Require d invertible mod 3.

Public key: $A=3 a / d$ in the ring

$$
R_{q}=(\mathbf{Z} / q)[x] /\left(x^{n}-1\right)
$$

def key while try

NTRU key generation

Parameters:

n, positive integer (e.g., 701);
q, power of 2 (e.g., 4096).
Secret key:
random n-coeff polynomial a;
random n-coeff polynomial d; all coefficients in $\{-1,0,1\}$.

Require d invertible mod q. Require d invertible mod 3.

Public key: $A=3 a / d$ in the ring $R_{q}=(\mathbf{Z} / q)[x] /\left(x^{n}-1\right)$.
def keypair(): while True:

try:

$\mathrm{d}=$ random
d3 = inver
dq = inver
break
except:
pass
a = randompoly
publickey = ba
con
secretkey = d, return publick

NTRU key generation
Parameters:
n, positive integer (e.g., 701);
q, power of 2 (e.g., 4096).
f2 (f,q) Secret key:
random n-coeff polynomial a; random n-coeff polynomial d; all coefficients in $\{-1,0,1\}$.

Require d invertible mod q.
Require d invertible mod 3 .
Public key: $A=3 a / d$ in the ring $R_{q}=(\mathbf{Z} / q)[x] /\left(x^{n}-1\right)$.
def keypair():
while True:
try:
$\mathrm{d}=$ randompoly()
d3 = invertmodprime
dq = invertmodpower
break
except:
pass
$\mathrm{a}=$ randompoly()
publickey = balancedmod
convolution
secretkey = d,d3
return publickey,secret

NTRU key generation

Parameters:

n, positive integer (e.g., 701);
q, power of 2 (e.g., 4096).
Secret key:
random n-coeff polynomial a; random n-coeff polynomial d; all coefficients in $\{-1,0,1\}$.

Require d invertible $\bmod q$. Require d invertible mod 3.

Public key: $A=3 a / d$ in the ring $R_{q}=(\mathbf{Z} / q)[x] /\left(x^{n}-1\right)$.
def keypair():
while True:
try:
d = randompoly()
d3 = invertmodprime(d,3)
dq = invertmodpowerof2(d,q)
break
except:
pass
$\mathrm{a}=$ randompoly()
publickey = balancedmod(3 * convolution(a,dq), q)
secretkey = d,d3
return publickey,secretkey

ers:

ve integer (e.g., 701);
of 2 (e.g., 4096).
ey:
n-coeff polynomial a;
n-coeff polynomial d;
cients in $\{-1,0,1\}$.
d invertible $\bmod q$.
d invertible mod 3 .
ey: $A=3 a / d$ in the ring
/q) $[x] /\left(x^{n}-1\right)$.
def keypair():
while True:
try:
$\mathrm{d}=$ randompoly()
d3 = invertmodprime(d,3)
dq = invertmodpowerof2(d,q)
break
except:
pass
$\mathrm{a}=$ randompoly()
publickey = balancedmod(3 * convolution(a,dq), q)
secretkey = d,d3
return publickey,secretkey
(e.g., 701);
4096).
lynomial a;
lynomial d;
$\{-1,0,1\}$.
le $\bmod q$.
le $\bmod 3$.
a / d in the ring
$n-1$).
sage: A,secretke
sage:

```
def keypair():
    while True:
```

 try:
 \(\mathrm{d}=\) randompoly()
 d3 = invertmodprime (d,3)
 dq \(=\) invertmodpowerof2(d,q)
 break
 except:
 pass
 \(\mathrm{a}=\mathrm{randompoly}()\)
 publickey = balancedmod(3 *
 convolution(a,dq), q)
 secretkey = d,d3
 return publickey,secretkey
 sage: A,secretkey = keypa
sage:
def keypair():

```
while True:
    try:
        d = randompoly()
        d3 = invertmodprime(d,3)
        dq = invertmodpowerof2(d,q)
        break
    except:
        pass
a = randompoly()
publickey = balancedmod(3 *
        convolution(a,dq),q)
secretkey = d,d3
return publickey,secretkey
```

sage: A,secretkey = keypair()
sage:
def keypair():

```
while True:
    try:
        d = randompoly()
        d3 = invertmodprime(d,3)
        dq = invertmodpowerof2(d,q)
        break
    except:
    pass
a = randompoly()
publickey = balancedmod(3 *
                        convolution(a,dq),q)
secretkey = d,d3
return publickey,secretkey
```

try:
$\mathrm{d}=$ randompoly()
d3 = invertmodprime (d,3)
dq = invertmodpowerof2(d,q)
break
except:
pass
$\mathrm{a}=$ randompoly()
publickey = balancedmod(3 * convolution(a,dq), q)
secretkey = d,d3
return publickey,secretkey
sage: A,secretkey = keypair()
sage: A
$-126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4-$ $33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7$
sage:
def keypair():

```
while True:
    try:
        d = randompoly()
        d3 = invertmodprime(d,3)
        dq = invertmodpowerof2(d,q)
        break
    except:
    pass
a = randompoly()
publickey = balancedmod(3 *
                        convolution(a,dq),q)
secretkey = d,d3
return publickey,secretkey
```

try:
d = randompoly()
d3 = invertmodprime (d,3)
dq = invertmodpowerof2(d,q)
break
except:
pass
a = randompoly()
publickey = balancedmod(3 * convolution(a,dq), q)
secretkey = d,d3
return publickey,secretkey
sage: A,secretkey = keypair()
sage: A
$-126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4-$ $33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7$
sage: d,d3 = secretkey
sage:
def keypair():

```
while True:
    try:
        d = randompoly()
        d3 = invertmodprime(d,3)
        dq = invertmodpowerof2(d,q)
        break
    except:
        pass
a = randompoly()
publickey = balancedmod(3 *
                        convolution(a,dq),q)
secretkey = d,d3
return publickey,secretkey
```

sage: A,secretkey = keypair()
sage: A
$-126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4-$
$33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7$
sage: d,d3 = secretkey
sage: d
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage:
def keypair():

```
while True:
    try:
        d = randompoly()
        d3 = invertmodprime(d,3)
        dq = invertmodpowerof2(d,q)
        break
    except:
    pass
a = randompoly()
publickey = balancedmod(3 *
                        convolution(a,dq),q)
secretkey = d,d3
return publickey,secretkey
```

sage: A,secretkey = keypair()
sage: A
$-126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4-$
$33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7$
sage: d,d3 = secretkey
sage: d
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage: convolution(d,A)
$-3 * x \wedge 6+253 * x \wedge 5+253 * x^{\wedge} 3-$ $253 * x^{\wedge} 2-3 * x-3$
sage:
def keypair():

```
while True:
    try:
        \(\mathrm{d}=\) randompoly()
        d3 = invertmodprime (d,3)
        \(\mathrm{dq}=\) invertmodpowerof2(d,q)
        break
    except:
    pass
\(\mathrm{a}=\) randompoly()
publickey = balancedmod(3 *
                        convolution (a,dq), q)
secretkey = d,d3
return publickey,secretkey
```

sage: A,secretkey = keypair()
sage: A
$-126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4-$
$33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7$
sage: $d, d 3=$ secretkey
sage: d
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage: convolution(d,A)
$-3 * x^{\wedge} 6+253 * x^{\wedge} 5+253 * x^{\wedge} 3-$
$253 * x^{\wedge} 2-3 * x-3$
sage: balancedmod (_, q)
$-3 * x^{\wedge} 6-3 * x^{\wedge} 5-3 * x^{\wedge} 3+3 * x^{\wedge} 2$
- $3 * x$ - 3
sage:

pair() :

True:
$=$ randompoly()
3 = invertmodprime (d,3)
$q=i n v e r t m o d p o w e r o f 2(d, q)$
reak
ept :
ass
andompoly ()
ckey $=$ balancedmod(3 * convolution (a,dq) , q)
tkey $=\mathrm{d}, \mathrm{d} 3$
n publickey,secretkey
sage: A,secretkey = keypair()
sage: A
$-126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4-$ $33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7$
sage: $d, d 3=$ secretkey
sage: d
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage: convolution(d,A)
$-3 * x^{\wedge} 6+253 * x^{\wedge} 5+253 * x^{\wedge} 3-$
$253 * x^{\wedge} 2-3 * x-3$
sage: balancedmod (_, q)
$-3 * x^{\wedge} 6-3 * x^{\wedge} 5-3 * x^{\wedge} 3+3 * x^{\wedge} 2$

- $3 * x-3$
sage:

NTRU e
One mo
w, posit

```
poly()
tmodprime(d,3)
tmodpowerof2(d,q)
```

()
lancedmod (3 *
volution (a, dq) , q)
d3
ey, secretkey
sage: A,secretkey = keypair()
sage: A
$-126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4-$ $33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7$
sage: $d, d 3=$ secretkey sage: d
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage: convolution (d,A)
$-3 * x^{\wedge} 6+253 * x^{\wedge} 5+253 * x^{\wedge} 3-$ $253 * x^{\wedge} 2-3 * x-3$
sage: balancedmod (_, q)
$-3 * x^{\wedge} 6-3 * x^{\wedge} 5-3 * x^{\wedge} 3+3 * x^{\wedge} 2$
$-3 * x-3$
sage:

NTRU encryption
One more parame w, positive intege
sage: A,secretkey = keypair()
sage: A
$-126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4-$ $33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7$
sage: d,d3 = secretkey
sage: d
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage: convolution(d,A)
$-3 * x^{\wedge} 6+253 * x^{\wedge} 5+253 * x^{\wedge} 3-$ $253 * x^{\wedge} 2-3 * x-3$
sage: balancedmod (_, q)
$-3 * x^{\wedge} 6-3 * x^{\wedge} 5-3 * x^{\wedge} 3+3 * x^{\wedge} 2$

- $3 * x$ - 3
sage:

NTRU encryption

One more parameter:
w, positive integer (e.g., 46
sage: A,secretkey = keypair()
sage: A

$$
\begin{aligned}
& -126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4- \\
& 33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7 \\
& \text { sage: } d, d 3=\text { secretkey } \\
& \text { sage: } d \\
& -x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1 \\
& \text { sage: convolution }(d, A) \\
& -3 * x^{\wedge} 6+253 * x^{\wedge} 5+253 * x^{\wedge} 3- \\
& 253 * x^{\wedge} 2-3 * x-3 \\
& \text { sage: balancedmod }(,, q) \\
& -3 * x^{\wedge} 6-3 * x^{\wedge} 5-3 * x^{\wedge} 3+3 * x^{\wedge} 2 \\
& -3 * x-3 \\
& \text { sage: }
\end{aligned}
$$

NTRU encryption

One more parameter:
w, positive integer (e.g., 467).
sage: A,secretkey = keypair()
sage: A

$$
\begin{aligned}
& -126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4- \\
& 33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7 \\
& \text { sage: } d, d 3=\text { secretkey } \\
& \text { sage: } d \\
& -x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1 \\
& \text { sage: convolution }(d, A) \\
& -3 * x^{\wedge} 6+253 * x^{\wedge} 5+253 * x^{\wedge} 3- \\
& 253 * x^{\wedge} 2-3 * x-3 \\
& \text { sage: balancedmod }\left(_, q\right) \\
& -3 * x^{\wedge} 6-3 * x^{\wedge} 5-3 * x^{\wedge} 3+3 * x^{\wedge} 2 \\
& -3 * x-3 \\
& \text { sage: }
\end{aligned}
$$

NTRU encryption

One more parameter:
w, positive integer (e.g., 467).
Message for encryption:
n-coeff weight-w polynomial c with all coeffs in $\{-1,0,1\}$.
"Weight w": w nonzero coeffs, $n-w$ zero coeffs.
sage: A,secretkey = keypair()
sage: A

$$
\begin{aligned}
& -126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4- \\
& 33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7 \\
& \text { sage: } d, d 3=\text { secretkey } \\
& \text { sage: } d \\
& -x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1 \\
& \text { sage: convolution }(d, A) \\
& -3 * x^{\wedge} 6+253 * x^{\wedge} 5+253 * x^{\wedge} 3- \\
& 253 * x^{\wedge} 2-3 * x-3 \\
& \text { sage: balancedmod }\left(_, q\right) \\
& -3 * x^{\wedge} 6-3 * x^{\wedge} 5-3 * x^{\wedge} 3+3 * x^{\wedge} 2 \\
& -3 * x-3
\end{aligned}
$$

sage:

NTRU encryption

One more parameter:
w, positive integer (e.g., 467).
Message for encryption:
n-coeff weight- w polynomial c with all coeffs in $\{-1,0,1\}$.
"Weight w": w nonzero coeffs, $n-w$ zero coeffs.

Ciphertext: $C=A b+c$ in R_{q} where b is chosen randomly from the set of messages.
,secretkey = keypair()

$$
\begin{aligned}
& 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4- \\
& +73 * x^{\wedge} 2-16 * x+7 \\
& , d 3=\text { secretkey } \\
& x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1 \\
& \text { onvolution }(d, A) \\
& +253 * x^{\wedge} 5+253 * x^{\wedge} 3- \\
& 2-3 * x-3
\end{aligned}
$$

alancedmod (_, q)

$$
-3 * x^{\wedge} 5-3 * x \wedge 3+3 * x \wedge 2
$$

$$
3
$$

NTRU encryption

One more parameter:
w, positive integer (e.g., 467).
Message for encryption:
n-coeff weight-w polynomial c with all coeffs in $\{-1,0,1\}$.
"Weight w": w nonzero coeffs, $n-w$ zero coeffs.

Ciphertext: $C=A b+c$ in R_{q} where b is chosen randomly from the set of messages.
sage: d
.... :
.... :
.... :
.... :
. . . .
\qquad
.... :
.... : sage: w sage: r -x^6 sage:

$5-118 * x^{\wedge} 4-$

- $16 * x+7$
retkey
$+x^{\wedge} 3-1$
$\mathrm{n}(\mathrm{d}, \mathrm{A})$
$+253 * x^{\wedge} 3-$
$d\left(_, q\right)$
$3 * x^{\wedge} 3+3 * x^{\wedge} 2$

NTRU encryption

One more parameter:
w, positive integer (e.g., 467).
Message for encryption:
n-coeff weight-w polynomial c with all coeffs in $\{-1,0,1\}$.
"Weight w": w nonzero coeffs, $n-w$ zero coeffs.

Ciphertext: $C=A b+c$ in R_{q} where b is chosen randomly from the set of messages.
sage: def random
$\ldots: \quad R=$ rand
....: assert w
....: $\quad c=n *[0$
\ldots for j in
....: while
$\ldots: \quad r=$
$\begin{array}{lr}\ldots .: & \text { if } n \\ \ldots .{ }^{\ldots} \quad & c[r]=\end{array}$
....: return :
sage: w = 5
sage: randommess $-x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4$ sage:

NTRU encryption

One more parameter:
w, positive integer (e.g., 467).
Message for encryption:
n-coeff weight- w polynomial c with all coeffs in $\{-1,0,1\}$.
"Weight w": w nonzero coeffs,
$n-w$ zero coeffs.
Ciphertext: $C=A b+c$ in R_{q} where b is chosen randomly from the set of messages.
sage: def randommessage()
....: $\quad \mathrm{R}$ = randrange
....: assert w <= n
.....: c = $n *[0]$
....: for j in range(w) while True:
\ldots....: $\quad r=R(n)$
....: if not $c[r]:$ $\mathrm{c}[\mathrm{r}]=1-2 * \mathrm{R}(2)$
return $\mathrm{Zx}(\mathrm{c})$
....:
sage: w = 5
sage: randommessage()
$-x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4+x^{\wedge} 3-$
sage:

NTRU encryption

One more parameter:
w, positive integer (e.g., 467).
Message for encryption:
n-coeff weight-w polynomial c with all coeffs in $\{-1,0,1\}$.
"Weight w": w nonzero coeffs, $n-w$ zero coeffs.

Ciphertext: $C=A b+c$ in R_{q} where b is chosen randomly from the set of messages.
sage: def randommessage():
....: R = randrange
....: assert w <= n
....: $c=n *[0]$
....: for j in range(w):
....: while True:
....: r = R(n)
if not c[r]: break
$c[r]=1-2 * R(2)$
return $\mathrm{Zx}(\mathrm{c})$
.....
sage: w = 5
sage: randommessage()
$-x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4+x^{\wedge} 3-x^{\wedge} 2$
sage:
ncryption
e parameter:
ive integer (e.g., 467).
for encryption:
veight-w polynomial c coeffs in $\{-1,0,1\}$.
$w^{\prime \prime}: w n$ nonzero coeffs, ero coeffs.
xt: $C=A b+c$ in R_{q} is chosen randomly set of messages.
sage: def randommessage():
sage: d

$$
\ldots: \quad R=\text { randrange }
$$

$$
\text {: assert } \mathrm{w}<=\mathrm{n}
$$

$$
\ldots . \quad c=n *[0]
$$

$$
\ldots \text { for } j \text { in range }(w):
$$

....: while True:

$$
\ldots: \quad r=R(n)
$$

if not c[r]: break

$$
\mathrm{c}[\mathrm{r}]=1-2 * \mathrm{R}(2)
$$

$$
\ldots: \quad \text { return } \mathrm{Zx}(\mathrm{c})
$$

. . . . :

$$
\text { sage: w }=5
$$

sage: randommessage()

$$
-x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4+x^{\wedge} 3-x^{\wedge} 2
$$

sage:

ter:

(e.g., 467).
ption:
oolynomial c
$-1,0,1\}$.
onzero coeffs,
$b+c$ in R_{q}
randomly
essages.
sage: def randommessage():
....: $\quad R=$ randrange
....: assert w <= n
....: $\quad c=n *[0]$
....: for j in range(w):
....: while True:
....: $\quad r=R(n)$
if not c[r]: break
$c[r]=1-2 * R(2)$
....: return $\mathrm{Zx}(\mathrm{c})$
sage: $\mathrm{w}=5$
sage: randommessage()
$-x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4+x^{\wedge} 3-x^{\wedge} 2$
sage:
sage: def encryp
....: b = rand
$\ldots . \operatorname{Ab}=c o n$
\ldots...: $C=$ bala
....: return C
sage:

$$
\begin{aligned}
& \text { sage: def randommessage(): } \\
& \text {...: } \quad R=\text { randrange } \\
& \text {.... assert } \mathrm{w}<=\mathrm{n} \\
& \ldots=\mathrm{n} *[0] \\
& \text {....: for } j \text { in range(w): } \\
& \text { while True: } \\
& r=R(n) \\
& \text { if not } c[r]: \text { break } \\
& c[r]=1-2 * R(2) \\
& \text {....: return } \mathrm{Zx}(\mathrm{c}) \\
& \text {. . . . : } \\
& \text { sage: } w=5 \\
& \text { sage: randommessage () } \\
& -x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4+x^{\wedge} 3-x^{\wedge} 2 \\
& \text { sage: }
\end{aligned}
$$

sage: def encrypt(c,A):
....: b = randommessage
....: $\mathrm{Ab}=$ convolution
....: $\quad C=$ balancedmod (A
....: return C
. . . . :
sage:
sage: def randommessage():
....: $R=$ randrange
....: assert $\mathrm{W}<=\mathrm{n}$
$c=\mathrm{n} *[0]$
for j in range (w) :
while True:
$r=R(n)$
if not c[r]: break
$c[r]=1-2 * R(2)$
return $\mathrm{Zx}(\mathrm{c})$
sage: def encrypt(c,A):
....: $\quad b=$ randommessage ()
$\ldots: \quad \mathrm{Ab}=$ convolution (A, b)
....: $C=$ balancedmod(Ab $+c, q)$
....: return C
. . . . :
sage:
sage: def randommessage():
.... $\quad R=$ randrange
....: assert $\mathrm{W}<=\mathrm{n}$
$c=\mathrm{n} *[0]$
for j in range (w):
while True:
$r=R(n)$
if not $c[r]:$ break
$c[r]=1-2 * R(2)$
return $\mathrm{Zx}(\mathrm{c})$
sage: def encrypt(c,A):
....: $\quad b=$ randommessage ()
...: $A b=$ convolution (A, b)
....: $C=$ balancedmod(Ab $+c, q)$
....: return C
sage: A,secretkey = keypair()
sage:
sage: $w=5$
sage: randommessage ()
$-x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4+x^{\wedge} 3-x^{\wedge} 2$
sage:
sage: def randommessage():
$R=$ randrange
assert $\mathrm{w}<=\mathrm{n}$
$c=\mathrm{n} *[0]$
for j in range (w) :
while True:
$r=R(n)$
if not $c[r]:$ break
$c[r]=1-2 * R(2)$
return $\mathrm{Zx}(\mathrm{c})$
sage: def encrypt(c,A):
....: $\quad b=$ randommessage ()
...: $A b=$ convolution (A, b)
....: $C=$ balancedmod(Ab $+c, q)$
....: return C
sage: A,secretkey = keypair()
sage: $c=$ randommessage()
sage:
sage: $w=5$
sage: randommessage ()
$-x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4+x^{\wedge} 3-x^{\wedge} 2$
sage:
sage: def randommessage():
$R=$ randrange
assert $\mathrm{w}<=\mathrm{n}$
$c=\mathrm{n} *[0]$
for j in range (w):
while True:
$r=R(n)$
if not $c[r]:$ break
$c[r]=1-2 * R(2)$
return $\mathrm{Zx}(\mathrm{c})$
sage: def encrypt(c,A):
....: $\quad b=$ randommessage ()
...: $A b=$ convolution (A, b)
....: C = balancedmod(Ab + c,q)
....: return C
. . . . :
sage: A,secretkey = keypair()
sage: $c=r a n d o m m e s s a g e()$
sage: $C=$ encrypt (c, A)
sage:
sage: def randommessage():
.... $\quad R=$ randrange
assert w <= n

$$
\mathrm{c}=\mathrm{n} *[0]
$$

$$
\text { for } j \text { in range }(w) \text { : }
$$

while True:

$$
r=R(n)
$$

if not $c[r]:$ break
$c[r]=1-2 * R(2)$
return $\mathrm{Zx}(\mathrm{c})$
sage: $w=5$
sage: randommessage ()
$-x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4+x^{\wedge} 3-x^{\wedge} 2$
sage:
sage: def encrypt(c,A):
.... $\quad b=r a n d o m m e s s a g e()$
...: $A b=$ convolution (A, b)
$\ldots: \quad C=b a l a n c e d m o d(A b+c, q)$
....: return C
. . . . :
sage: A,secretkey = keypair()
sage: $c=r a n d o m m e s s a g e()$
sage: $C=$ encrypt (c, A)
sage: C
$21 * x^{\wedge} 6-48 * x^{\wedge} 5+31 * x^{\wedge} 4-$ $76 * x^{\wedge} 3-77 * x^{\wedge} 2+15 * x-113$
sage:
ef randommessage():
$\mathrm{R}=$ randrange
assert $\mathrm{w}<=\mathrm{n}$
$\mathrm{c}=\mathrm{n} *[0]$
for j in range (w) : while True:

$$
\begin{aligned}
& r=R(n) \\
& \quad \text { if not } c[r]: \text { break } \\
& c[r]=1-2 * R(2)
\end{aligned}
$$

return $\mathrm{Zx}(\mathrm{c})$
$=5$
andommessage ()
$x^{\wedge} 5+x^{\wedge} 4+x^{\wedge} 3-x^{\wedge} 2$

NTRU
Comput
message():
range
$<=\mathrm{n}$
range (w):
True:
R(n)
ot c[r]: break
$1-2 * R(2)$
x (c)
age()
$+x^{\wedge} 3-x^{\wedge} 2$
sage: def encrypt(c,A):
....: b = randommessage()
....: $\mathrm{Ab}=$ convolution (A, b)
$\ldots: \quad C=b a l a n c e d m o d(A b+c, q)$
....: return C
. . . . :

$$
\begin{aligned}
& \text { sage: } A, \text { secretkey }=\text { keypair }() \\
& \text { sage: } C=\text { randommessage () } \\
& \text { sage: } C=\operatorname{encrypt}(c, A) \\
& \text { sage: } C \\
& 21 * x^{\wedge} 6-48 * x^{\wedge} 5+31 * x^{\wedge} 4- \\
& 76 * x^{\wedge} 3-77 * x^{\wedge} 2+15 * x-113 \\
& \text { sage: }
\end{aligned}
$$

NTRU decryption
Compute $d C=3$
sage: def encrypt(c,A):
....: b = randommessage()
$\ldots: \quad \mathrm{Ab}=$ convolution (A, b)
$\ldots: \quad C=b a l \operatorname{lancedmod}(A b+c, q)$
....: return C
. . . . :
sage: A,secretkey = keypair()
sage: c = randommessage()
sage: $C=$ encrypt (c,A)
sage: C
$21 * x^{\wedge} 6-48 * x^{\wedge} 5+31 * x^{\wedge} 4-$ $76 * x^{\wedge} 3-77 * x^{\wedge} 2+15 * x-113$
sage:

NTRU decryption

Compute $d C=3 a b+d c$ in

```
sage: def encrypt(c,A):
....: b = randommessage()
....: Ab = convolution(A,b)
....: C = balancedmod (Ab + c,q)
....: return C
sage: A,secretkey = keypair()
sage: c = randommessage()
sage: C = encrypt(c,A)
sage: C
21*x^6 - 48*x^5 + 31*x^4 -
    76*x^3 - 77*x^2 + 15*x - 113
sage:
```


NTRU decryption

Compute $d C=3 a b+d c$ in R_{q}.

```
sage: def encrypt(c,A):
....: b = randommessage()
....: Ab = convolution(A,b)
....: C = balancedmod (Ab + c,q)
....: return C
```


NTRU decryption

Compute $d C=3 a b+d c$ in R_{q}.
a, b, c, d have small coeffs, so $3 a b+d c$ is not very big.

```
sage: def encrypt(c,A):
....: b = randommessage()
....: Ab = convolution(A,b)
....: C = balancedmod (Ab + c,q)
....: return C
sage: A,secretkey = keypair()
sage: c = randommessage()
sage: C = encrypt(c,A)
sage: C
21*x^6 - 48*x^5 + 31*x^4 -
    76*x^3 - 77*x^2 + 15*x - 113
sage:
```


NTRU decryption

Compute $d C=3 a b+d c$ in R_{q}. a, b, c, d have small coeffs, so $3 a b+d c$ is not very big.
Assume that coeffs of $3 a b+d c$ are between $-q / 2$ and $q / 2-1$.

```
sage: def encrypt(c,A):
....: b = randommessage()
....: Ab = convolution(A,b)
....: C = balancedmod(Ab + c,q)
....: return C
sage: A,secretkey = keypair()
sage: c = randommessage()
sage: C = encrypt(c,A)
sage: C
21*x^6 - 48*x^5 + 31*x^4 -
    76*x^3 - 77*x^2 + 15*x - 113
sage:
```


NTRU decryption

Compute $d C=3 a b+d c$ in R_{q}.
a, b, c, d have small coeffs, so $3 a b+d c$ is not very big.
Assume that coeffs of $3 a b+d c$ are between $-q / 2$ and $q / 2-1$.

Then $3 a b+d c$ in R_{q} reveals $3 a b+d c$ in $R=\mathbf{Z}[x] /\left(x^{n}-1\right)$.

$$
\begin{aligned}
& \text { sage: def encrypt }(c, A): \\
& \ldots .: \quad b=\text { randommessage }() \\
& \ldots .: \quad A b=\operatorname{convolution}(A, b) \\
& \ldots .: \quad C=b a l a n c e d m o d(A b+c, q) \\
& \ldots .: \quad \text { return } C
\end{aligned}
$$

sage: A,secretkey = keypair()
sage: c = randommessage()

$$
\text { sage: } C=\text { encrypt }(c, A)
$$

sage: C

$$
21 * x^{\wedge} 6-48 * x^{\wedge} 5+31 * x^{\wedge} 4-
$$

$$
76 * x^{\wedge} 3-77 * x^{\wedge} 2+15 * x-113
$$

sage:

NTRU decryption

Compute $d C=3 a b+d c$ in R_{q}.
a, b, c, d have small coeffs, so $3 a b+d c$ is not very big.
Assume that coeffs of $3 a b+d c$ are between $-q / 2$ and $q / 2-1$.

Then $3 a b+d c$ in R_{q} reveals $3 a b+d c$ in $R=\mathbf{Z}[x] /\left(x^{n}-1\right)$. Reduce modulo 3: $d c$ in R_{3}.
sage: def encrypt(c,A):
....: b = randommessage()
....: $\mathrm{Ab}=$ convolution (A, b)
$\ldots: \quad C=b a l a n c e d m o d(A b+c, q)$
....: return C
sage: A,secretkey = keypair()
sage: c = randommessage()
sage: C = encrypt(c,A)
sage: C
$21 * x^{\wedge} 6-48 * x^{\wedge} 5+31 * x^{\wedge} 4-$
$76 * x^{\wedge} 3-77 * x^{\wedge} 2+15 * x-113$
sage:

NTRU decryption

Compute $d C=3 a b+d c$ in R_{q}.
a, b, c, d have small coeffs, so $3 a b+d c$ is not very big.
Assume that coeffs of $3 a b+d c$ are between $-q / 2$ and $q / 2-1$.

Then $3 a b+d c$ in R_{q} reveals $3 a b+d c$ in $R=\mathbf{Z}[x] /\left(x^{n}-1\right)$.
Reduce modulo 3: $d c$ in R_{3}.
Multiply by $1 / d$ in R_{3} to recover message c in R_{3}.

```
sage: def encrypt(c,A):
```

....: b = randommessage()
\ldots...: $\mathrm{Ab}=$ convolution (A, b)
$\ldots: \quad C=b a l a n c e d m o d(A b+c, q)$
....: return C
sage: A,secretkey = keypair()
sage: c = randommessage()
sage: $C=$ encrypt (c, A)
sage: C
$21 * x^{\wedge} 6-48 * x^{\wedge} 5+31 * x^{\wedge} 4-$
$76 * x^{\wedge} 3-77 * x^{\wedge} 2+15 * x-113$
sage:

NTRU decryption

Compute $d C=3 a b+d c$ in R_{q}.
a, b, c, d have small coeffs, so $3 a b+d c$ is not very big.
Assume that coeffs of $3 a b+d c$ are between $-q / 2$ and $q / 2-1$.

Then $3 a b+d c$ in R_{q} reveals $3 a b+d c$ in $R=\mathbf{Z}[x] /\left(x^{n}-1\right)$. Reduce modulo 3: $d c$ in R_{3}.

Multiply by $1 / d$ in R_{3} to recover message c in R_{3}. Coeffs are between -1 and 1 , so recover c in R.
ef encrypt(c,A):
b = randommessage()
$\mathrm{Ab}=$ convolution (A, b$)$
$C=b a l a n c e d m o d(A b+c, q)$ return C
,secretkey = keypair()
= randommessage()
= encrypt(c,A)

$$
48 * x^{\wedge} 5+31 * x^{\wedge} 4-
$$

$$
-77 * x^{\wedge} 2+15 * x-113
$$

$3 a b+d c$ in $R=\mathbb{Z}[x] /\left(x^{n}-1\right)$.
Reduce modulo 3: $d c$ in R_{3}.
Multiply by $1 / d$ in R_{3}
to recover message c in R_{3}.
Coeffs are between -1 and 1 , so recover c in R.

```
sage: d
```

Compute $d C=3 a b+d c$ in R_{q}.
a, b, c, d have small coeffs, so $3 a b+d c$ is not very big.
Assume that coeffs of $3 a b+d c$ are between $-q / 2$ and $q / 2-1$.

Then $3 a b+d c$ in R_{q} reveals

NTRU decryption

$t(c, A):$
ommessage()
volution (A, b)
ncedmod $(A b+c, q)$
y = keypair()
message()
t (c, A)
$+31 * x^{\wedge} 4-$
$+15 * x-113$

NTRU decryption

Compute $d C=3 a b+d c$ in R_{q}.
a, b, c, d have small coeffs, so $3 a b+d c$ is not very big.
Assume that coeffs of $3 a b+d c$ are between $-q / 2$ and $q / 2-1$.

Then $3 a b+d c$ in R_{q} reveals $3 a b+d c$ in $R=\mathbf{Z}[x] /\left(x^{n}-1\right)$.
Reduce modulo 3: $d c$ in R_{3}.
Multiply by $1 / d$ in R_{3}
to recover message c in R_{3}.
Coeffs are between -1 and 1 ,
so recover c in R.
sage: def decryp
$\begin{array}{ll}\ldots: & M=b a \\ \ldots .: & f, r=\end{array}$
\ldots...: u=M (co
....: $\quad c=M$ (co
....: return
. . . . :
sage:

NTRU decryption
Compute $d C=3 a b+d c$ in R_{q}.
a, b, c, d have small coeffs, so $3 a b+d c$ is not very big.
Assume that coeffs of $3 a b+d c$ are between $-q / 2$ and $q / 2-1$.

Then $3 a b+d c$ in R_{q} reveals $3 a b+d c$ in $R=\mathbf{Z}[x] /\left(x^{n}-1\right)$. Reduce modulo 3: $d c$ in R_{3}.

Multiply by $1 / d$ in R_{3}
to recover message c in R_{3}.
Coeffs are between -1 and 1 , so recover c in R.
sage: def decrypt(C,secre
....: M = balancedmod
....: f,r = secretkey
.....: u=M (convolution
$\mathrm{c}=\mathrm{M}$ (convolution
return c

NTRU decryption

Compute $d C=3 a b+d c$ in R_{q}. a, b, c, d have small coeffs, so $3 a b+d c$ is not very big.
Assume that coeffs of $3 a b+d c$ are between $-q / 2$ and $q / 2-1$.

Then $3 a b+d c$ in R_{q} reveals $3 a b+d c$ in $R=\mathbf{Z}[x] /\left(x^{n}-1\right)$. Reduce modulo 3: $d c$ in R_{3}.

Multiply by $1 / d$ in R_{3} to recover message c in R_{3}. Coeffs are between -1 and 1 , so recover c in R.
sage: def decrypt(C,secretkey):
....: M = balancedmod
....: f,r = secretkey
\ldots...: $\quad u=M$ (convolution($(\mathrm{f}, \mathrm{f}), q$)
....: $\quad c=M($ convolution(u,r),3)
....: return c
sage:

NTRU decryption

Compute $d C=3 a b+d c$ in R_{q}. a, b, c, d have small coeffs, so $3 a b+d c$ is not very big.
Assume that coeffs of $3 a b+d c$ are between $-q / 2$ and $q / 2-1$.

Then $3 a b+d c$ in R_{q} reveals $3 a b+d c$ in $R=\mathbf{Z}[x] /\left(x^{n}-1\right)$. Reduce modulo 3: $d c$ in R_{3}.

Multiply by $1 / d$ in R_{3} to recover message c in R_{3}. Coeffs are between -1 and 1 , so recover c in R.
sage: def decrypt(C,secretkey):
....: $\quad \mathrm{M}=$ balancedmod
....: f,r = secretkey
\ldots...: u=M (convolution (C,f), q)
$\ldots=1 \quad c=M($ convolution $(u, r), 3)$
....: return c
. . . . :
sage: c
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x+1$
sage:

NTRU decryption

Compute $d C=3 a b+d c$ in R_{q}. a, b, c, d have small coeffs, so $3 a b+d c$ is not very big.
Assume that coeffs of $3 a b+d c$ are between $-q / 2$ and $q / 2-1$.

Then $3 a b+d c$ in R_{q} reveals $3 a b+d c$ in $R=\mathbf{Z}[x] /\left(x^{n}-1\right)$. Reduce modulo 3: $d c$ in R_{3}.

Multiply by $1 / d$ in R_{3} to recover message c in R_{3}. Coeffs are between -1 and 1 , so recover c in R.
sage: def decrypt(C,secretkey):
....: $\quad \mathrm{M}=$ balancedmod
....: f,r = secretkey
\ldots.... $u=M$ (convolution (C, f), q)
$\ldots=1 \quad c=M($ convolution $(u, r), 3)$
....: return c
. . . . :
sage: c
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x+1$
sage: decrypt(C,secretkey)
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x+1$
sage:
lecryption
$d C=3 a b+d c$ in R_{q}
have small coeffs,
$-d c$ is not very big.
that coeffs of $3 a b+d c$
een $-q / 2$ and $q / 2-1$.
$b+d c$ in R_{q} reveals
c in $R=\mathbf{Z}[x] /\left(x^{n}-1\right)$. modulo 3: $d c$ in R_{3}.
by $1 / d$ in R_{3}
er message c in R_{3}.
re between -1 and 1 , er c in R.

$$
b+d c \text { in } R_{q}
$$

Ill coeffs, very big.
fs of $3 a b+d c$ and $q / 2-1$.
R_{q} reveals
$Z[x] /\left(x^{n}-1\right)$.
$d c$ in R_{3}.
R_{3}
e c in R_{3}.
-1 and 1 ,
sage: def decrypt(C,secretkey):
....: $\quad \mathrm{M}=$ balancedmod
....: f,r = secretkey
....: $\quad u=M$ (convolution(C, f), q)
....: $\quad c=M(c o n v o l u t i o n(u, r), 3)$
....: return c
sage: c
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x+1$
sage: decrypt (C,secretkey)
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x+1$
sage:
sage: $\mathrm{n}=7$
sage: $w=5$
sage: $q=256$
sage:

sage: def decrypt(C,secretkey):	sage: $n=7$	
$\ldots .$.	$M=$ balancedmod	sage: $w=5$
$\ldots .$.	$f, r=$ secretkey	sage: $q=256$
$\ldots .$.	$u=M(\operatorname{convolution}(C, f), q)$	sage:

```
sage: def decrypt(C,secretkey):
```

 M = balancedmod
 f,r = secretkey
 \(u=M\) (convolution(C,f),q)
 \(\mathrm{c}=\mathrm{M}\) (convolution (\(\mathrm{u}, \mathrm{r}\)) , 3)
 return c
 : return c
sage: $\mathrm{n}=7$
sage: w = 5
sage: q = 256
sage:
. . . . :
sage: c
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x+1$
sage: decrypt(C,secretkey)
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x+1$
sage:

```
sage: def decrypt(C,secretkey):
```

 M = balancedmod
 f,r = secretkey
 \(u=M\) (convolution(C,f), q)
 \(c=M\) (convolution (u,r), 3)
 return c
 sage: $\mathrm{n}=7$
sage: w = 5
sage: $q=256$
sage: A,secretkey = keypair()
sage:

sage: def decrypt(C,secretkey):	
$\ldots . .:$	$M=$ balancedmod
$\ldots . .:$	$f, r=$ secretkey
$\ldots . .:$	$u=M($ convolution $(C, f), q)$
$\ldots .$.	$c=M(\operatorname{convolution}(u, r), 3)$
$\ldots . .:$	return c

. . . . :
sage: c
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x+1$
sage: decrypt(C,secretkey)
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x+1$
sage:

```
sage: def decrypt(C,secretkey)
....: M = balancedmod
    f,r = secretkey
    u=M(convolution(C,f),q)
    c=M(convolution(u,r),3)
    return c
sage: c
x^5+x^4- x^3 + x + + 1
```

sage: decrypt(C,secretkey)
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x+1$
sage:

sage: def decrypt(C,secretkey):	
$\ldots . .:$	$M=$ balancedmod
$\ldots . .:$	$f, r=$ secretkey
$\ldots . .:$	$u=M($ convolution $(C, f), q)$
$\ldots .:$	$c=M(\operatorname{convolution}(u, r), 3)$
$\ldots . .:$	$r e t u r n c$

\qquad
sage: c
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x+1$
sage: decrypt(C,secretkey)
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x+1$
sage:

sage: def decrypt(C,secretkey):	
$\ldots . .:$	$M=$ balancedmod
$\ldots . .:$	$f, r=$ secretkey
$\ldots . .:$	$u=M($ convolution $(C, f), q)$
$\ldots .:$	$c=M(\operatorname{convolution}(u, r), 3)$
$\ldots . .:$	$r e t u r n c$

\qquad
sage: c
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x+1$
sage: decrypt(C,secretkey)
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x+1$
sage:

t(C,secretkey):
lancedmod
secretkey
nvolution(C,f), q)
nvolution(u,r),3) c
sage: $\mathrm{n}=7$
sage: w = 5
sage: $q=256$
sage: A,secretkey = keypair()
sage: A
$-101 * x^{\wedge} 6-76 * x^{\wedge} 5-90 * x^{\wedge} 4-$
$83 * x^{\wedge} 3+40 * x^{\wedge} 2+108 * x-54$
sage: d,d3 = secretkey
sage: d
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x-1$
sage: conv = convolution
sage: M = balancedmod
sage: $a 3=M(\operatorname{conv}(d, A), q)$
sage: a3
$3 * x^{\wedge} 2-3 * x$
sage: c = random
sage:
tkey): sage: $n=7$
sage: w = 5
sage: $q=256$
sage: A,secretkey = keypair()
sage: A
$-101 * x \wedge 6-76 * x \wedge 5-90 * x \wedge 4-$
$83 * x^{\wedge} 3+40 * x^{\wedge} 2+108 * x-54$
sage: d,d3 = secretkey
sage: d
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x-1$
sage: conv = convolution
sage: M = balancedmod
sage: $a 3=M(\operatorname{conv}(d, A), q)$
sage: a3
$3 * x^{\wedge} 2-3 * x$
sage: c = randommessage() sage:
sage: c = randommessage()
sage:
sage: $\mathrm{n}=7$
sage: $w=5$
sage: $q=256$
sage: A,secretkey = keypair()
sage: A
$-101 * x^{\wedge} 6-76 * x^{\wedge} 5-90 * x^{\wedge} 4-$
$83 * x^{\wedge} 3+40 * x^{\wedge} 2+108 * x-54$
sage: d,d3 = secretkey
sage: d
$x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x-1$
sage: conv = convolution
sage: $M=$ balancedmod
sage: $a 3=M(\operatorname{conv}(d, A), q)$
sage: a3
$3 * x^{\wedge} 2-3 * x$
sage: $c=$ randommessage ()
sage: $\mathrm{b}=$ randommessage()
sage:

$$
\begin{aligned}
& \text { sage: } \mathrm{n}=7 \\
& \text { sage: } w=5 \\
& \text { sage: } q=256 \\
& \text { sage: A,secretkey = keypair() } \\
& \text { sage: A } \\
& -101 * x^{\wedge} 6-76 * x^{\wedge} 5-90 * x^{\wedge} 4- \\
& 83 * x^{\wedge} 3+40 * x^{\wedge} 2+108 * x-54 \\
& \text { sage: d,d3 = secretkey } \\
& \text { sage: d } \\
& x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x-1 \\
& \text { sage: conv = convolution } \\
& \text { sage: } M=\text { balancedmod } \\
& \text { sage: } a 3=M(\operatorname{conv}(d, A), q) \\
& \text { sage: a3 } \\
& 3 * x^{\wedge} 2-3 * x
\end{aligned}
$$

$$
\begin{aligned}
& \text { sage: } \mathrm{n}=7 \\
& \text { sage: } w=5 \\
& \text { sage: } q=256 \\
& \text { sage: A,secretkey = keypair() } \\
& \text { sage: A } \\
& -101 * x^{\wedge} 6-76 * x^{\wedge} 5-90 * x^{\wedge} 4- \\
& 83 * x^{\wedge} 3+40 * x^{\wedge} 2+108 * x-54 \\
& \text { sage: d,d3 = secretkey } \\
& \text { sage: d } \\
& x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x-1 \\
& \text { sage: conv = convolution } \\
& \text { sage: } M=\text { balancedmod } \\
& \text { sage: } a 3=M(\operatorname{conv}(d, A), q) \\
& \text { sage: a3 } \\
& 3 * x^{\wedge} 2-3 * x
\end{aligned}
$$

$$
\begin{aligned}
& \text { sage: } \mathrm{n}=7 \\
& \text { sage: } w=5 \\
& \text { sage: } q=256 \\
& \text { sage: A,secretkey = keypair() } \\
& \text { sage: A } \\
& -101 * x^{\wedge} 6-76 * x^{\wedge} 5-90 * x^{\wedge} 4- \\
& 83 * x^{\wedge} 3+40 * x^{\wedge} 2+108 * x-54 \\
& \text { sage: d,d3 = secretkey } \\
& \text { sage: d } \\
& x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3+x-1 \\
& \text { sage: conv = convolution } \\
& \text { sage: } M=\text { balancedmod } \\
& \text { sage: } a 3=M(\operatorname{conv}(d, A), q) \\
& \text { sage: a3 } \\
& 3 * x^{\wedge} 2-3 * x
\end{aligned}
$$

$$
\begin{aligned}
& \text { sage: } \mathrm{n}=7 \\
& \text { sage: } \mathrm{w}=5 \\
& \text { sage: } \mathrm{q}=256 \\
& \text { sage: } \mathrm{A}, \text { secretkey }=\text { keypair }() \\
& \text { sage: } A \\
& -101 * x^{\wedge} 6-76 * x^{\wedge} 5-90 * x^{\wedge} 4- \\
& 83 * x^{\wedge} 3+40 * x^{\wedge} 2+108 * x-54 \\
& \text { sage: } d, d 3=\text { secretkey } \\
& \text { sage: } d \\
& \text { x^5 }+x^{\wedge} 4-x^{\wedge} 3+x-1 \\
& \text { sage: conv = convolution } \\
& \text { sage: } M=\text { balancedmod } \\
& \text { sage: } a 3=M(\text { conv }(d, A), q) \\
& \text { sage: } a 3 \\
& 3 * x \wedge 2 ~-3 * x
\end{aligned}
$$

$$
\begin{aligned}
& \text { sage: } \mathrm{n}=7 \\
& \text { sage: } \mathrm{w}=5 \\
& \text { sage: } \mathrm{q}=256 \\
& \text { sage: } \mathrm{A}, \text { secretkey }=\text { keypair }() \\
& \text { sage: } A \\
& -101 * x^{\wedge} 6-76 * x^{\wedge} 5-90 * x^{\wedge} 4- \\
& 83 * x^{\wedge} 3+40 * x^{\wedge} 2+108 * x-54 \\
& \text { sage: } d, d 3=\text { secretkey } \\
& \text { sage: } d \\
& \text { x^5 }+x^{\wedge} 4-x^{\wedge} 3+x-1 \\
& \text { sage: conv = convolution } \\
& \text { sage: } M=\text { balancedmod } \\
& \text { sage: } a 3=M(\text { conv }(d, A), q) \\
& \text { sage: } a 3 \\
& 3 * x \wedge 2 ~-3 * x
\end{aligned}
$$

$=7$
$=5$
$=256$
, secretkey = keypair()

6 - 76*x^5 - 90*x^4 -
$+40 * x^{\wedge} 2+108 * x-54$, d3 = secretkey
$-4-x^{\wedge} 3+x-1$
onv = convolution
= balancedmod
$3=M(\operatorname{conv}(d, A), q)$
sage: $c=$ randommessage()
sage: $\mathrm{b}=$ randommessage()
sage: $C=M(\operatorname{conv}(A, b)+c, q)$
sage: C
$-57 * x^{\wedge} 6+28 * x^{\wedge} 5+114 * x^{\wedge} 4+$

$$
72 * x^{\wedge} 3-37 * x^{\wedge} 2+16 * x+119
$$

$$
\text { sage: } u=M(\operatorname{conv}(C, d), q)
$$

sage: u

$$
\begin{aligned}
& -8 * x^{\wedge} 6+2 * x^{\wedge} 5+4 * x^{\wedge} 4-x^{\wedge} 3- \\
& 4 * x^{\wedge} 2+5 * x+1 \\
& \text { sage }: \operatorname{conv}(a 3, b)+\operatorname{conv}(c, d) \\
& -8 * x^{\wedge} 6+2 * x^{\wedge} 5+4 * x^{\wedge} 4-x^{\wedge} 3- \\
& 4 * x^{\wedge} 2+5 * x+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { sage }: c=r a n d o m m e s s a g e() \\
& \text { sage: } b=r a n d o m m e s s a g e() \\
& \text { sage: } C=M(\operatorname{conv}(A, b)+c, q) \\
& \text { sage: } C \\
& -57 * x^{\wedge} 6+28 * x^{\wedge} 5+114 * x^{\wedge} 4+ \\
& 72 * x^{\wedge} 3-37 * x^{\wedge} 2+16 * x+119 \\
& \text { sage: } u=M(\operatorname{conv}(C, d), q) \\
& \text { sage: } u \\
& -8 * x^{\wedge} 6+2 * x^{\wedge} 5+4 * x^{\wedge} 4-x^{\wedge} 3- \\
& 4 * x^{\wedge} 2+5 * x+1 \\
& \text { sage: conv(a3,b)+conv(c,d)} \\
& -8 * x^{\wedge} 6+2 * x^{\wedge} 5+4 * x^{\wedge} 4-x^{\wedge} 3- \\
& 4 * x^{\wedge} 2+5 * x+1
\end{aligned}
$$

sage: $M(u, 3)$

$$
\begin{aligned}
& x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x \\
& +1
\end{aligned}
$$

sage:

$$
\begin{aligned}
& \text { sage }: c=\text { randommessage }() \\
& \text { sage: } b=\text { randommessage }() \\
& \text { sage: } C=M(\operatorname{conv}(A, b)+c, q) \\
& \text { sage: } C \\
& -57 * x^{\wedge} 6+28 * x^{\wedge} 5+114 * x^{\wedge} 4+ \\
& 72 * x^{\wedge} 3-37 * x^{\wedge} 2+16 * x+119 \\
& \text { sage: } u=M(\operatorname{conv}(C, d), q) \\
& \text { sage }: u \\
& -8 * x^{\wedge} 6+2 * x^{\wedge} 5+4 * x^{\wedge} 4-x^{\wedge} 3- \\
& 4 * x^{\wedge} 2+5 * x+1 \\
& \text { sage: conv }(a 3, b)+c o n v(c, d) \\
& -8 * x^{\wedge} 6+2 * x^{\wedge} 5+4 * x^{\wedge} 4-x^{\wedge} 3- \\
& 4 * x^{\wedge} 2+5 * x+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { sage: } c=\text { randommessage }() \\
& \text { sage: } b=\text { randommessage }() \\
& \text { sage: } C=M(\operatorname{conv}(A, b)+c, q) \\
& \text { sage: } C \\
& -57 * x^{\wedge} 6+28 * x^{\wedge} 5+114 * x^{\wedge} 4+ \\
& 72 * x^{\wedge} 3-37 * x^{\wedge} 2+16 * x+119 \\
& \text { sage: } u=M(\operatorname{conv}(C, d), q) \\
& \text { sage: } u \\
& -8 * x^{\wedge} 6+2 * x^{\wedge} 5+4 * x^{\wedge} 4-x^{\wedge} 3- \\
& 4 * x^{\wedge} 2+5 * x+1 \\
& \text { sage: conv(a3,b)+conv(c,d)} \\
& -8 * x^{\wedge} 6+2 * x^{\wedge} 5+4 * x^{\wedge} 4-x^{\wedge} 3- \\
& 4 * x^{\wedge} 2+5 * x+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { sage }: c=r a n d o m m e s s a g e() \\
& \text { sage: } b=r a n d o m m e s s a g e() \\
& \text { sage: } C=M(\operatorname{conv}(A, b)+c, q) \\
& \text { sage: } C \\
& -57 * x^{\wedge} 6+28 * x^{\wedge} 5+114 * x^{\wedge} 4+ \\
& 72 * x^{\wedge} 3-37 * x^{\wedge} 2+16 * x+119 \\
& \text { sage: } u=M(\operatorname{conv}(C, d), q) \\
& \text { sage: u } \\
& -8 * x^{\wedge} 6+2 * x^{\wedge} 5+4 * x^{\wedge} 4-x^{\wedge} 3- \\
& 4 * x^{\wedge} 2+5 * x+1 \\
& \text { sage }: c o n v(a 3, b)+c o n v(c, d) \\
& -8 * x^{\wedge} 6+2 * x^{\wedge} 5+4 * x^{\wedge} 4-x^{\wedge} 3- \\
& 4 * x^{\wedge} 2+5 * x+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { sage }: c=\text { randommessage }() \\
& \text { sage: } b=\text { randommessage }() \\
& \text { sage: } C=M(\operatorname{conv}(A, b)+c, q) \\
& \text { sage: } C \\
& -57 * x^{\wedge} 6+28 * x^{\wedge} 5+114 * x^{\wedge} 4+ \\
& 72 * x^{\wedge} 3-37 * x^{\wedge} 2+16 * x+119 \\
& \text { sage: u }=M(\operatorname{conv}(C, d), q) \\
& \text { sage: u } \\
& -8 * x^{\wedge} 6+2 * x^{\wedge} 5+4 * x^{\wedge} 4-x^{\wedge} 3- \\
& 4 * x^{\wedge} 2+5 * x+1 \\
& \text { sage }: \operatorname{conv}(a 3, b)+c o n v(c, d) \\
& -8 * x^{\wedge} 6+2 * x^{\wedge} 5+4 * x^{\wedge} 4-x^{\wedge} 3- \\
& 4 * x^{\wedge} 2+5 * x+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { sage: } c=r a n d o m m e s s a g e() \\
& \text { sage: } \mathrm{b}=\text { randommessage () } \\
& \text { sage: } C=M(\operatorname{conv}(A, b)+c, q) \\
& \text { sage: C } \\
& -57 * x^{\wedge} 6+28 * x^{\wedge} 5+114 * x^{\wedge} 4+ \\
& 72 * x^{\wedge} 3-37 * x^{\wedge} 2+16 * x+119 \\
& \text { sage: } u=M(\operatorname{conv}(C, d), q) \\
& \text { sage: u }
\end{aligned}
$$

= randommessage()
= randommessage()
$=M(\operatorname{conv}(A, b)+c, q)$
$+28 * x^{\wedge} 5+114 * x^{\wedge} 4+$
$-37 * x^{\wedge} 2+16 * x+119$
$=M(\operatorname{conv}(C, d), q)$
$2 * x^{\wedge} 5+4 * x^{\wedge} 4-x^{\wedge} 3-$
$+5 * x+1$
onv $(a 3, b)+\operatorname{conv}(c, d)$
$+2 * x^{\wedge} 5+4 * x^{\wedge} 4-x \wedge 3-$
$+5 * x+1$

```
sage: M(u,3)
x^6 - x^5 + x^4 - x^3 - x^2 - x
```

 \(+1\)
 sage: $M(\operatorname{conv}(c, d), 3)$
$x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x$
$+1$
sage: conv (M(u,3),d3)
$x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-3 * x^{\wedge} 3-x^{\wedge} 2+$
$\mathrm{x}-3$
sage: $M\left(_, 3\right)$
$x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x$
sage: c
$x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x$
sage:

Does de
All coeff All coeff and exa
sage: $M(u, 3)$
$x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x$

$$
+1
$$

$$
\begin{aligned}
& \text { sage: } M(\operatorname{conv}(c, d), 3) \\
& x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x \\
& +1 \\
& \text { sage : conv }(M(u, 3), d 3) \\
& x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-3 * x^{\wedge} 3-x^{\wedge} 2+ \\
& x-3
\end{aligned}
$$

All coeffs of a are All coeffs of b are and exactly w are

$$
\text { sage: } M\left(_, 3\right)
$$

$$
x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x
$$

sage: c

$$
x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x
$$

sage:
sage: $M(u, 3)$
$x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x$ $+1$
sage: $M(\operatorname{conv}(c, d), 3)$
$x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x$ $+1$
sage: conv(M(u,3),d3)
$x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-3 * x^{\wedge} 3-x^{\wedge} 2+$

$$
x-3
$$

sage: $M\left(_, 3\right)$
$x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x$
sage: c
$x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x$
sage:

Does decryption always wor
All coeffs of a are in $\{-1,0$, All coeffs of b are in $\{-1,0$, and exactly w are nonzero.

$$
\begin{aligned}
& \text { sage: } M(u, 3) \\
& x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x \\
& +1 \\
& \text { sage : } M(\operatorname{conv}(c, d), 3) \\
& x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x \\
& +1 \\
& \text { sage : conv }(M(u, 3), d 3) \\
& x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-3 * x^{\wedge} 3-x^{\wedge} 2+ \\
& x-3 \\
& \text { sage : } M(-, 3) \\
& x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x \\
& \text { sage : } x^{\prime} \\
& x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x \\
& \text { sage: }
\end{aligned}
$$

Does decryption always work?

All coeffs of a are in $\{-1,0,1\}$. All coeffs of b are in $\{-1,0,1\}$, and exactly w are nonzero.

$$
\begin{aligned}
& \text { sage: } M(u, 3) \\
& x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x \\
& +1 \\
& \text { sage: } M(\operatorname{conv}(c, d), 3) \\
& x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x \\
& +1 \\
& \text { sage: } \operatorname{conv}(M(u, 3), d 3) \\
& x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-3 * x^{\wedge} 3-x^{\wedge} 2+ \\
& x-3 \\
& \text { sage: } M\left(_, 3\right) \\
& x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x \\
& \text { sage: c } \\
& x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x \\
& \text { sage: }
\end{aligned}
$$

Does decryption always work?

All coeffs of a are in $\{-1,0,1\}$. All coeffs of b are in $\{-1,0,1\}$, and exactly w are nonzero.

Each coeff of $a b$ in R has absolute value at most w.

$$
\begin{aligned}
& \text { sage: } M(u, 3) \\
& x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x \\
& +1 \\
& \text { sage: } M(\operatorname{conv}(c, d), 3) \\
& x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x \\
& +1 \\
& \text { sage : conv }(M(u, 3), d 3) \\
& x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-3 * x^{\wedge} 3-x^{\wedge} 2+ \\
& x-3 \\
& \text { sage : } M(-, 3) \\
& x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x \\
& \text { sage : } x^{\prime} \\
& x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x \\
& \text { sage: }
\end{aligned}
$$

Does decryption always work?

All coeffs of a are in $\{-1,0,1\}$. All coeffs of b are in $\{-1,0,1\}$, and exactly w are nonzero.

Each coeff of $a b$ in R has absolute value at most w. (Same argument would work for b of any weight, a of weight w.)
sage: conv(M(u,3),d3)
x^6 - x^5 - x^4 - 3*x^3 - x^2 +
x - 3
sage:M(_,3)
x^6- x^5 - x^4 - x^2 + x
sage: c
x^6 - x^5 - x^4 - x^2 + + x
sage:

```
```

```
sage:M(u,3)
```

```
sage:M(u,3)
x^6-x^5 + (x^4- x^3- x^2 - x
x^6-x^5 + (x^4- x^3- x^2 - x
    +1
```

 +1
    ```
```

sage: $M(\operatorname{conv}(c, d), 3)$

```
sage: \(M(\operatorname{conv}(c, d), 3)\)
\(x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x\)
\(x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x\)
    \(+1\)
```

 \(+1\)
    ```
\[
\begin{aligned}
& \text { sage: } M(u, 3) \\
& x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x \\
& +1 \\
& \text { sage: } M(\operatorname{conv}(c, d), 3) \\
& x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x \\
& +1 \\
& \text { sage : conv }(M(u, 3), d 3) \\
& x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-3 * x^{\wedge} 3-x^{\wedge} 2+ \\
& x-3 \\
& \text { sage : } M(-3) \\
& x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x \\
& \text { sage : } x^{\prime} \\
& x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x \\
& \text { sage: }
\end{aligned}
\]

\section*{Does decryption always work?}

All coeffs of \(a\) are in \(\{-1,0,1\}\). All coeffs of \(b\) are in \(\{-1,0,1\}\), and exactly \(w\) are nonzero.

Each coeff of \(a b\) in \(R\) has absolute value at most \(w\). (Same argument would work for \(b\) of any weight, \(a\) of weight w.)

Similar comments for \(d, c\).
Each coeff of \(3 a b+d c\) in \(R\) has absolute value at most \(4 w\).
e.g. \(w=467\) : at most 1868 .

Decryption works for \(q=4096\).
\((u, 3)\)
\(5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x\)
(conv \((c, d), 3)\)
\(5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2-x\)
onv (M (u, 3) , d3)
-5 - \(\mathrm{x}^{\wedge} 4-3 * x^{\wedge} 3-x^{\wedge} 2+\)
\(\left(\_, 3\right)\)
\({ }^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x\)
\({ }^{\wedge} 5-x^{\wedge} 4-x^{\wedge} 2+x\)

Does decryption always work?
All coeffs of \(a\) are in \(\{-1,0,1\}\).
All coeffs of \(b\) are in \(\{-1,0,1\}\), and exactly \(w\) are nonzero.

Each coeff of \(a b\) in \(R\)
has absolute value at most \(w\).
(Same argument would work for \(b\) of any weight, \(a\) of weight \(w\).)

Similar comments for \(d, c\).
Each coeff of \(3 a b+d c\) in \(R\) has absolute value at most \(4 w\).
e.g. \(w=467\) : at most 1868 .

Decryption works for \(q=4096\).
\(-x^{\wedge} 3-x^{\wedge} 2-x\)
\(, 3)\)
\(-x^{\wedge} 3-x^{\wedge} 2-x\)
), d3)
\(-3 * x^{\wedge} 3-x^{\wedge} 2+\)
\(-x^{\wedge} 2+x\)
\(-x^{\wedge} 2+x\)

Does decryption always work?
All coeffs of \(a\) are in \(\{-1,0,1\}\). All coeffs of \(b\) are in \(\{-1,0,1\}\), and exactly \(w\) are nonzero.

Each coeff of \(a b\) in \(R\)
has absolute value at most \(w\).
(Same argument would work for \(b\) of any weight, \(a\) of weight \(w\).)

Similar comments for \(d, c\).
Each coeff of \(3 a b+d c\) in \(R\)
has absolute value at most \(4 w\).
e.g. \(w=467\) : at most 1868 .

Decryption works for \(q=4096\).

What about \(w=\)

Does decryption always work?
What about \(w=467, q=\)
All coeffs of \(a\) are in \(\{-1,0,1\}\).
All coeffs of \(b\) are in \(\{-1,0,1\}\), and exactly \(w\) are nonzero.

Each coeff of \(a b\) in \(R\)
has absolute value at most \(w\).
\(x^{\wedge} 2+\quad\) (Same argument would work for \(b\) of any weight, \(a\) of weight \(w\).)

Similar comments for \(d, c\).
Each coeff of \(3 a b+d c\) in \(R\)
has absolute value at most 4 w .
e.g. \(w=467\) : at most 1868.

Decryption works for \(q=4096\).

\section*{Does decryption always work?}

What about \(w=467, q=2048\) ?
All coeffs of \(a\) are in \(\{-1,0,1\}\). All coeffs of \(b\) are in \(\{-1,0,1\}\), and exactly \(w\) are nonzero.

Each coeff of \(a b\) in \(R\)
has absolute value at most \(w\). (Same argument would work for \(b\) of any weight, \(a\) of weight \(w\).)

Similar comments for \(d, c\).
Each coeff of \(3 a b+d c\) in \(R\) has absolute value at most \(4 w\).
e.g. \(w=467\) : at most 1868 .

Decryption works for \(q=4096\).

\section*{Does decryption always work?}

All coeffs of \(a\) are in \(\{-1,0,1\}\). All coeffs of \(b\) are in \(\{-1,0,1\}\), and exactly \(w\) are nonzero.

Each coeff of \(a b\) in \(R\)
has absolute value at most \(w\). (Same argument would work for \(b\) of any weight, \(a\) of weight \(w\).)

Similar comments for \(d, c\).
Each coeff of \(3 a b+d c\) in \(R\) has absolute value at most \(4 w\).
e.g. \(w=467\) : at most 1868.

Decryption works for \(q=4096\).
What about \(w=467, q=2048\) ?
Same argument doesn't work.
\(a=b=c=d=\)
\(1+x+x^{2}+\cdots+x^{w-1}\) :
\(3 a b+d c\) has a coeff \(4 w>q / 2\).

\section*{Does decryption always work?}

All coeffs of \(a\) are in \(\{-1,0,1\}\). All coeffs of \(b\) are in \(\{-1,0,1\}\), and exactly \(w\) are nonzero.

Each coeff of \(a b\) in \(R\) has absolute value at most \(w\). (Same argument would work for \(b\) of any weight, \(a\) of weight \(w\).)

Similar comments for \(d, c\).
Each coeff of \(3 a b+d c\) in \(R\) has absolute value at most \(4 w\).
e.g. \(w=467\) : at most 1868.

Decryption works for \(q=4096\).
What about \(w=467, q=2048\) ?
Same argument doesn't work.
\(a=b=c=d=\)
\(1+x+x^{2}+\cdots+x^{w-1}\) :
\(3 a b+d c\) has a coeff \(4 w>q / 2\).
But coeffs are usually \(<1024\)
when \(a, d\) are chosen randomly.

\section*{Does decryption always work?}

All coeffs of \(a\) are in \(\{-1,0,1\}\).
All coeffs of \(b\) are in \(\{-1,0,1\}\), and exactly \(w\) are nonzero.

Each coeff of \(a b\) in \(R\) has absolute value at most \(w\). (Same argument would work for \(b\) of any weight, \(a\) of weight \(w\).)

Similar comments for \(d, c\).
Each coeff of \(3 a b+d c\) in \(R\) has absolute value at most 4 w .
e.g. \(w=467\) : at most 1868 .

Decryption works for \(q=4096\).

What about \(w=467, q=2048\) ?
Same argument doesn't work.
\(a=b=c=d=\) \(1+x+x^{2}+\cdots+x^{w-1}\) :
\(3 a b+d c\) has a coeff \(4 w>q / 2\).
But coeffs are usually \(<1024\) when \(a, d\) are chosen randomly.

1996 NTRU handout mentioned no-decryption-failure option, but recommended smaller \(q\) with some chance of failures. 1998 NTRU paper: decryption failure "will occur so rarely that it can be ignored in practice".
s of \(a\) are in \(\{-1,0,1\}\).
s of \(b\) are in \(\{-1,0,1\}\),
ctly \(w\) are nonzero.
eff of \(a b\) in \(R\)
lute value at most \(w\). rgument would work for weight, a of weight w.)
comments for \(d, c\).
eff of \(3 a b+d c\) in \(R\)
lute value at most \(4 w\).
467: at most 1868. on works for \(q=4096\).

What about \(w=467, q=2048\) ?
Same argument doesn't work.
\(a=b=c=d=\)
\(1+x+x^{2}+\cdots+x^{w-1}\) :
\(3 a b+d c\) has a coeff \(4 w>q / 2\).
But coeffs are usually \(<1024\) when \(a, d\) are chosen randomly.

1996 NTRU handout mentioned no-decryption-failure option, but recommended smaller \(q\) with some chance of failures. 1998 NTRU paper: decryption failure "will occur so rarely that it can be ignored in practice".

Crypto 2
Nguyen-
Silverma "The im decrypti security

Decrypt "all the for vario not be v

\section*{lways work?}
in \(\{-1,0,1\}\).
in \(\{-1,0,1\}\),
nonzero.
n \(R\)
at most \(w\).
vould work for of weight w.)
for \(d, c\).
\(+d c\) in \(R\)
at most \(4 w\).
most 1868.
for \(q=4096\).

What about \(w=467, q=2048\) ?
Same argument doesn't work.
\(a=b=c=d=\)
\(1+x+x^{2}+\cdots+x^{w-1}\) :
\(3 a b+d c\) has a coeff \(4 w>q / 2\).
But coeffs are usually \(<1024\) when \(a, d\) are chosen randomly.

1996 NTRU handout mentioned no-decryption-failure option, but recommended smaller \(q\) with some chance of failures. 1998 NTRU paper: decryption failure "will occur so rarely that it can be ignored in practice".

Crypto 2003 How Nguyen-Pointchev Silverman-Singer"The impact of decryption failures security of NTRU

Decryption failure "all the security p for various NTRU not be valid after

What about \(w=467, q=2048 ?\)
Same argument doesn't work.
\(a=b=c=d=\)
\(1+x+x^{2}+\cdots+x^{w-1}\) :
\(3 a b+d c\) has a coeff \(4 w>q / 2\).
But coeffs are usually \(<1024\) when \(a, d\) are chosen randomly.

1996 NTRU handout mentioned no-decryption-failure option, but recommended smaller \(q\) with some chance of failures. 1998 NTRU paper: decryption failure "will occur so rarely that it can be ignored in practice".

Crypto 2003 Howgrave-Grał Nguyen-Pointcheval-Proos-Silverman-Singer-Whyte "The impact of decryption failures on the security of NTRU encryptior

Decryption failures imply th "all the security proofs know for various NTRU paddings not be valid after all".

What about \(w=467, q=2048\) ?
Same argument doesn't work.
\(a=b=c=d=\)
\(1+x+x^{2}+\cdots+x^{w-1}\) :
\(3 a b+d c\) has a coeff \(4 w>q / 2\).
But coeffs are usually \(<1024\) when \(a, d\) are chosen randomly.

1996 NTRU handout mentioned no-decryption-failure option, but recommended smaller \(q\) with some chance of failures. 1998 NTRU paper: decryption failure "will occur so rarely that it can be ignored in practice".

Crypto 2003 Howgrave-Graham-Nguyen-Pointcheval-Proos-Silverman-Singer-Whyte "The impact of decryption failures on the security of NTRU encryption":

Decryption failures imply that "all the security proofs known... for various NTRU paddings may not be valid after all".

What about \(w=467, q=2048\) ?
Same argument doesn't work.
\(a=b=c=d=\) \(1+x+x^{2}+\cdots+x^{w-1}\) :
\(3 a b+d c\) has a coeff \(4 w>q / 2\).
But coeffs are usually \(<1024\) when \(a, d\) are chosen randomly.

1996 NTRU handout mentioned no-decryption-failure option, but recommended smaller \(q\) with some chance of failures. 1998 NTRU paper: decryption failure "will occur so rarely that it can be ignored in practice".

Crypto 2003 Howgrave-Graham-Nguyen-Pointcheval-Proos-Silverman-Singer-Whyte "The impact of decryption failures on the security of NTRU encryption":

Decryption failures imply that "all the security proofs known... for various NTRU paddings may not be valid after all".

Even worse: Attacker who sees some random decryption failures can figure out the secret key!
out \(w=467, q=2048 ?\)
gument doesn't work.
\(c=d=\)
\(x^{2}+\cdots+x^{w-1}:\)
\(c\) has a coeff \(4 w>q / 2\).
ffs are usually \(<1024\)
\(d\) are chosen randomly.
-RU handout mentioned ption-failure option, mmended smaller \(q\) ne chance of failures.
-RU paper: decryption will occur so rarely that e ignored in practice".

Coeff of
\(c_{0} d_{n-1}\)
This coe \(c_{0}, c_{1}\). . high cor \(d_{n-1}, d_{n}\)

Crypto 2003 Howgrave-Graham-
Nguyen-Pointcheval-Proos-
Silverman-Singer-Whyte
"The impact of
decryption failures on the security of NTRU encryption":

Decryption failures imply that "all the security proofs known... for various NTRU paddings may not be valid after all".

Even worse: Attacker who sees some random decryption failures can figure out the secret key!
eiplu
|

\(467, q=2048 ?\) besn't work.
\[
-x^{w-1}
\]
eff \(4 w>q / 2\).
ally \(<1024\)
sen randomly.
out mentioned re option, smaller \(q\) of failures.
: decryption so rarely that n practice".

Crypto 2003 Howgrave-Graham-Nguyen-Pointcheval-Proos-
Silverman-Singer-Whyte
"The impact of
decryption failures on the security of NTRU encryption":

Decryption failures imply that "all the security proofs known... for various NTRU paddings may not be valid after all".

Even worse: Attacker who sees some random decryption failures can figure out the secret key!

Coeff of \(x^{n-1}\) in \(c\) \(c_{0} d_{n-1}+c_{1} d_{n-2}\)

This coeff is large \(c_{0}, c_{1}, \ldots, c_{n-1}\) ha high correlation w \(d_{n-1}, d_{n-2}, \ldots, d_{0}\)

Decryption failures imply that "all the security proofs known... for various NTRU paddings may not be valid after all".

Even worse: Attacker who sees some random decryption failures can figure out the secret key!

Coeff of \(x^{n-1}\) in \(c d\) is
\(c_{0} d_{n-1}+c_{1} d_{n-2}+\ldots+c_{n}\)
This coeff is large \(\Leftrightarrow\)
\(c_{0}, c_{1}, \ldots, c_{n-1}\) has
high correlation with \(d_{n-1}, d_{n-2}, \ldots, d_{0}\).

Crypto 2003 Howgrave-Graham-Nguyen-Pointcheval-Proos-Silverman-Singer-Whyte
"The impact of
decryption failures on the security of NTRU encryption":

Decryption failures imply that "all the security proofs known ... for various NTRU paddings may not be valid after all".

Even worse: Attacker who sees some random decryption failures can figure out the secret key!

Coeff of \(x^{n-1}\) in \(c d\) is
\(c_{0} d_{n-1}+c_{1} d_{n-2}+\ldots+c_{n-1} d_{0}\).
This coeff is large \(\Leftrightarrow\)
\(c_{0}, c_{1}, \ldots, c_{n-1}\) has
high correlation with
\[
d_{n-1}, d_{n-2}, \ldots, d_{0} .
\]

Crypto 2003 Howgrave-Graham-Nguyen-Pointcheval-Proos-Silverman-Singer-Whyte
"The impact of decryption failures on the security of NTRU encryption":

Decryption failures imply that "all the security proofs known... for various NTRU paddings may not be valid after all".

Even worse: Attacker who sees some random decryption failures can figure out the secret key!

Coeff of \(x^{n-1}\) in \(c d\) is
\(c_{0} d_{n-1}+c_{1} d_{n-2}+\ldots+c_{n-1} d_{0}\).
This coeff is large \(\Leftrightarrow\)
\(c_{0}, c_{1}, \ldots, c_{n-1}\) has
high correlation with \(d_{n-1}, d_{n-2}, \ldots, d_{0}\).

Some coeff is large \(\Leftrightarrow\) \(c_{0}, c_{1}, \ldots, c_{n-1}\) has high correlation with some rotation of \(d_{n-1}, d_{n-2}, \ldots, d_{0}\).

Crypto 2003 Howgrave-Graham-Nguyen-Pointcheval-Proos-Silverman-Singer-Whyte
"The impact of decryption failures on the security of NTRU encryption":

Decryption failures imply that "all the security proofs known ... for various NTRU paddings may not be valid after all".

Even worse: Attacker who sees some random decryption failures can figure out the secret key!

Coeff of \(x^{n-1}\) in \(c d\) is
\(c_{0} d_{n-1}+c_{1} d_{n-2}+\ldots+c_{n-1} d_{0}\).
This coeff is large \(\Leftrightarrow\)
\(c_{0}, c_{1}, \ldots, c_{n-1}\) has
high correlation with
\(d_{n-1}, d_{n-2}, \ldots, d_{0}\).
Some coeff is large \(\Leftrightarrow\) \(c_{0}, c_{1}, \ldots, c_{n-1}\) has high correlation with some rotation of \(d_{n-1}, d_{n-2}, \ldots, d_{0}\).
i.e. \(c\) is correlated with
\(x^{i} \operatorname{rev}(d)\) for some \(i\), where
\(\operatorname{rev}(d)=d_{0}+d_{1} x^{n-1}+\cdots+d_{n-1} x\).

003 Howgrave-Graham--Pointcheval-Proos-n-Singer-Whyte
pact of
on failures on the of NTRU encryption":
on failures imply that security proofs known ... us NTRU paddings may alid after all".
rse: Attacker who sees ndom decryption failures
re out the secret key!

Coeff of \(x^{n-1}\) in \(c d\) is
\(c_{0} d_{n-1}+c_{1} d_{n-2}+\ldots+c_{n-1} d_{0}\).
This coeff is large \(\Leftrightarrow\)
\(c_{0}, c_{1}, \ldots, c_{n-1}\) has
high correlation with
\(d_{n-1}, d_{n-2}, \ldots, d_{0}\).
Some coeff is large \(\Leftrightarrow\)
\(c_{0}, c_{1}, \ldots, c_{n-1}\) has high
correlation with some rotation of \(d_{n-1}, d_{n-2}, \ldots, d_{0}\).
i.e. \(c\) is correlated with
\(x^{i} \operatorname{rev}(d)\) for some \(i\), where
\(\operatorname{rev}(d)=d_{0}+d_{1} x^{n-1}+\cdots+d_{n-1} x\).

Reasona random
c correla
rave-Graham-
al-Proos-
Whyte
on the encryption":
simply that roofs known . . . paddings may all".
ker who sees yption failures secret key!

Coeff of \(x^{n-1}\) in \(c d\) is
\(c_{0} d_{n-1}+c_{1} d_{n-2}+\ldots+c_{n-1} d_{0}\).
This coeff is large \(\Leftrightarrow\)
\(c_{0}, c_{1}, \ldots, c_{n-1}\) has
high correlation with
\(d_{n-1}, d_{n-2}, \ldots, d_{0}\).
Some coeff is large \(\Leftrightarrow\)
\(c_{0}, c_{1}, \ldots, c_{n-1}\) has high
correlation with some rotation of \(d_{n-1}, d_{n-2}, \ldots, d_{0}\).
i.e. \(c\) is correlated with
\(x^{i} \operatorname{rev}(d)\) for some \(i\), where
\(\operatorname{rev}(d)=d_{0}+d_{1} x^{n-1}+\cdots+d_{n-1} x\).

Reasonable guesse random decryptior
c correlated with

Coeff of \(x^{n-1}\) in \(c d\) is
\(c_{0} d_{n-1}+c_{1} d_{n-2}+\ldots+c_{n-1} d_{0}\).
This coeff is large \(\Leftrightarrow\)
\(c_{0}, c_{1}, \ldots, c_{n-1}\) has
high correlation with
\(d_{n-1}, d_{n-2}, \ldots, d_{0}\).
Some coeff is large \(\Leftrightarrow\)
\(c_{0}, c_{1}, \ldots, c_{n-1}\) has high
correlation with some rotation of \(d_{n-1}, d_{n-2}, \ldots, d_{0}\).
i.e. \(c\) is correlated with
\(x^{i} \operatorname{rev}(d)\) for some \(i\), where \(\operatorname{rev}(d)=d_{0}+d_{1} x^{n-1}+\cdots+d_{n-1} x\).

Coeff of \(x^{n-1}\) in \(c d\) is
\(c_{0} d_{n-1}+c_{1} d_{n-2}+\ldots+c_{n-1} d_{0}\).
This coeff is large \(\Leftrightarrow\)
\(c_{0}, c_{1}, \ldots, c_{n-1}\) has
high correlation with
\(d_{n-1}, d_{n-2}, \ldots, d_{0}\).
Some coeff is large \(\Leftrightarrow\)
\(c_{0}, c_{1}, \ldots, c_{n-1}\) has high
correlation with some rotation of \(d_{n-1}, d_{n-2}, \ldots, d_{0}\).
i.e. \(c\) is correlated with
\(x^{i} \operatorname{rev}(d)\) for some \(i\), where \(\operatorname{rev}(d)=d_{0}+d_{1} x^{n-1}+\cdots+d_{n-1} x\).

Reasonable guesses given a random decryption failure: c correlated with some \(x^{i} \operatorname{rev}(d)\).

Coeff of \(x^{n-1}\) in \(c d\) is
\(c_{0} d_{n-1}+c_{1} d_{n-2}+\ldots+c_{n-1} d_{0}\).
This coeff is large \(\Leftrightarrow\)
\(c_{0}, c_{1}, \ldots, c_{n-1}\) has
high correlation with
\(d_{n-1}, d_{n-2}, \ldots, d_{0}\).
Some coeff is large \(\Leftrightarrow\)
\(c_{0}, c_{1}, \ldots, c_{n-1}\) has high
correlation with some rotation of \(d_{n-1}, d_{n-2}, \ldots, d_{0}\).
i.e. \(c\) is correlated with
\(x^{i} \operatorname{rev}(d)\) for some \(i\), where \(\operatorname{rev}(d)=d_{0}+d_{1} x^{n-1}+\cdots+d_{n-1} x\).

Reasonable guesses given a random decryption failure: \(c\) correlated with some \(x^{i} \operatorname{rev}(d)\). \(\operatorname{rev}(c)\) correlated with \(x^{-i} d\).

Coeff of \(x^{n-1}\) in \(c d\) is
\(c_{0} d_{n-1}+c_{1} d_{n-2}+\ldots+c_{n-1} d_{0}\).
This coeff is large \(\Leftrightarrow\)
\(c_{0}, c_{1}, \ldots, c_{n-1}\) has
high correlation with
\(d_{n-1}, d_{n-2}, \ldots, d_{0}\).
Some coeff is large \(\Leftrightarrow\)
\(c_{0}, c_{1}, \ldots, c_{n-1}\) has high
correlation with some rotation of \(d_{n-1}, d_{n-2}, \ldots, d_{0}\).
i.e. \(c\) is correlated with
\(x^{i} \operatorname{rev}(d)\) for some \(i\), where \(\operatorname{rev}(d)=d_{0}+d_{1} x^{n-1}+\cdots+d_{n-1} x\).

Reasonable guesses given a random decryption failure: \(c\) correlated with some \(x^{i} \operatorname{rev}(d)\). \(\operatorname{rev}(c)\) correlated with \(x^{-i} d\). \(c \operatorname{rev}(c)\) correlated with \(d \operatorname{rev}(d)\).

Coeff of \(x^{n-1}\) in \(c d\) is
\(c_{0} d_{n-1}+c_{1} d_{n-2}+\ldots+c_{n-1} d_{0}\).
This coeff is large \(\Leftrightarrow\)
\(c_{0}, c_{1}, \ldots, c_{n-1}\) has
high correlation with
\(d_{n-1}, d_{n-2}, \ldots, d_{0}\).
Some coeff is large \(\Leftrightarrow\) \(c_{0}, c_{1}, \ldots, c_{n-1}\) has high correlation with some rotation of \(d_{n-1}, d_{n-2}, \ldots, d_{0}\).
i.e. \(c\) is correlated with
\(x^{i} \operatorname{rev}(d)\) for some \(i\), where \(\operatorname{rev}(d)=d_{0}+d_{1} x^{n-1}+\cdots+d_{n-1} x\).

Reasonable guesses given a random decryption failure: c correlated with some \(x^{i} \operatorname{rev}(d)\). \(\operatorname{rev}(c)\) correlated with \(x^{-i} d\). \(c \operatorname{rev}(c)\) correlated with \(d \operatorname{rev}(d)\).

Experimentally confirmed:
Average of \(c \operatorname{rev}(c)\)
over some decryption failures
is close to \(d \operatorname{rev}(d)\).
Round to integers: \(d \operatorname{rev}(d)\).

Coeff of \(x^{n-1}\) in \(c d\) is
\(c_{0} d_{n-1}+c_{1} d_{n-2}+\ldots+c_{n-1} d_{0}\).
This coeff is large \(\Leftrightarrow\)
\(c_{0}, c_{1}, \ldots, c_{n-1}\) has
high correlation with
\(d_{n-1}, d_{n-2}, \ldots, d_{0}\).
Some coeff is large \(\Leftrightarrow\) \(c_{0}, c_{1}, \ldots, c_{n-1}\) has high correlation with some rotation of \(d_{n-1}, d_{n-2}, \ldots, d_{0}\).
i.e. \(c\) is correlated with
\(x^{i} \operatorname{rev}(d)\) for some \(i\), where \(\operatorname{rev}(d)=d_{0}+d_{1} x^{n-1}+\cdots+d_{n-1} x\).

Reasonable guesses given a random decryption failure: c correlated with some \(x^{i} \operatorname{rev}(d)\). \(\operatorname{rev}(c)\) correlated with \(x^{-i} d\). \(c \operatorname{rev}(c)\) correlated with \(d \operatorname{rev}(d)\).

Experimentally confirmed:
Average of \(c \operatorname{rev}(c)\)
over some decryption failures
is close to \(d \operatorname{rev}(d)\).
Round to integers: \(d \operatorname{rev}(d)\).
Eurocrypt 2002 Gentry-Szydlo algorithm then finds \(d\).
\(x^{n-1}\) in \(c d\) is
\(c_{1} d_{n-2}+\ldots+c_{n-1} d_{0}\).
ff is large \(\Leftrightarrow\)
., \(c_{n-1}\) has
relation with
\(-2, \ldots, d_{0}\).
eff is large \(\Leftrightarrow\)
., \(c_{n-1}\) has high
on with some rotation
\(d_{n-2}, \ldots, d_{0}\).
correlated with
for some \(i\), where
\(=d_{0}+d_{1} x^{n-1}+\cdots+d_{n-1} x\).

Reasonable guesses given a random decryption failure:
\(c\) correlated with some \(x^{i} \operatorname{rev}(d)\). \(\operatorname{rev}(c)\) correlated with \(x^{-i} d\). \(c \operatorname{rev}(c)\) correlated with \(d \operatorname{rev}(d)\).

1999 Ha 2000 Ja Hoffsteir Fluhrer, using in

Experimentally confirmed:
Average of \(c r e v(c)\)
over some decryption failures
is close to \(d \operatorname{rev}(d)\).
Round to integers: \(d \operatorname{rev}(d)\).
Eurocrypt 2002 Gentry-Szydlo algorithm then finds \(d\).
\(d\) is
\(+\ldots+c_{n-1} d_{0}\).
s high
me rotation
\(d_{0}\)
with
\(i\), where
\({ }^{-1}+\cdots+d_{n-1} x\)

Reasonable guesses given a random decryption failure:
\(c\) correlated with some \(x^{i} \operatorname{rev}(d)\). \(\operatorname{rev}(c)\) correlated with \(x^{-i} d\). \(c \operatorname{rev}(c)\) correlated with \(d \operatorname{rev}(d)\).

Experimentally confirmed:
Average of \(c \operatorname{rev}(c)\)
over some decryption failures
is close to \(d \operatorname{rev}(d)\).
Round to integers: \(d \operatorname{rev}(d)\).
Eurocrypt 2002 Gentry-Szydlo algorithm then finds \(d\).

1999 Hall-Goldbe 2000 Jaulmes-Jou Hoffstein-Silverma
Fluhrer, etc.: EveI using invalid mess

Reasonable guesses given a \(-1 d_{0}\). random decryption failure: \(c\) correlated with some \(x^{i} \operatorname{rev}(d)\). \(\operatorname{rev}(c)\) correlated with \(x^{-i} d\). \(c \operatorname{rev}(c)\) correlated with \(d \operatorname{rev}(d)\).

Experimentally confirmed:
Average of \(c \operatorname{rev}(c)\)
over some decryption failures
is close to \(d \operatorname{rev}(d)\).
Round to integers: \(d \operatorname{rev}(d)\).
Eurocrypt 2002 Gentry-Szydlo algorithm then finds \(d\).

1999 Hall-Goldberg-Schnei 2000 Jaulmes-Joux, 2000 Hoffstein-Silverman, 2016 Fluhrer, etc.: Even easier at using invalid messages.

Reasonable guesses given a random decryption failure: \(c\) correlated with some \(x^{i} \operatorname{rev}(d)\). \(\operatorname{rev}(c)\) correlated with \(x^{-i} d\). \(c \operatorname{rev}(c)\) correlated with \(d \operatorname{rev}(d)\).

Experimentally confirmed:
Average of \(c \operatorname{rev}(c)\)
over some decryption failures is close to \(d \operatorname{rev}(d)\).
Round to integers: \(d \operatorname{rev}(d)\).
Eurocrypt 2002 Gentry-Szydlo algorithm then finds \(d\).

1999 Hall-Goldberg-Schneier, 2000 Jaulmes-Joux, 2000 Hoffstein-Silverman, 2016
Fluhrer, etc.: Even easier attacks using invalid messages.

Reasonable guesses given a random decryption failure: \(c\) correlated with some \(x^{i} \operatorname{rev}(d)\). \(\operatorname{rev}(c)\) correlated with \(x^{-i} d\). \(c \operatorname{rev}(c)\) correlated with \(d \operatorname{rev}(d)\).

Experimentally confirmed:
Average of \(c \operatorname{rev}(c)\)
over some decryption failures is close to \(d \operatorname{rev}(d)\).
Round to integers: \(d \operatorname{rev}(d)\).
Eurocrypt 2002 Gentry-Szydlo algorithm then finds \(d\).

1999 Hall-Goldberg-Schneier, 2000 Jaulmes-Joux, 2000 Hoffstein-Silverman, 2016
Fluhrer, etc.: Even easier attacks using invalid messages.

Attacker changes \(c\) to
\(c \pm 1, c \pm x, \ldots, c \pm x^{n-1}\);
\(c \pm 2, c \pm 2 x, \ldots, c \pm 2 x^{n-1}\);
\(c \pm 3\), etc.

Reasonable guesses given a random decryption failure: \(c\) correlated with some \(x^{i} \operatorname{rev}(d)\). \(\operatorname{rev}(c)\) correlated with \(x^{-i} d\). \(c \operatorname{rev}(c)\) correlated with \(d \operatorname{rev}(d)\).

Experimentally confirmed:
Average of \(c r e v(c)\)
over some decryption failures is close to \(d \operatorname{rev}(d)\).
Round to integers: \(d \operatorname{rev}(d)\).
Eurocrypt 2002 Gentry-Szydlo algorithm then finds \(d\).

1999 Hall-Goldberg-Schneier, 2000 Jaulmes-Joux, 2000 Hoffstein-Silverman, 2016
Fluhrer, etc.: Even easier attacks using invalid messages.

Attacker changes \(c\) to
\(c \pm 1, c \pm x, \ldots, c \pm x^{n-1}\);
\(c \pm 2, c \pm 2 x, \ldots, c \pm 2 x^{n-1}\);
\(c \pm 3\), etc.
This changes \(3 a b+d c\) : adds
\(\pm d, \pm x d, \ldots, \pm x^{n-1} d\);
\(\pm 2 d, \pm 2 x d, \ldots, \pm 2 x^{n-1} d\);
\(\pm 3 d\), etc.
ble guesses given a decryption failure:
ted with some \(x^{i} \operatorname{rev}(d)\). orrelated with \(x^{-i} d\). correlated with \(d \operatorname{rev}(d)\).
entally confirmed:
of \(c \operatorname{rev}(c)\)
ee decryption failures
to \(d \operatorname{rev}(d)\).
o integers: \(d \operatorname{rev}(d)\).
ot 2002 Gentry-Szydlo
n then finds \(d\).

1999 Hall-Goldberg-Schneier, 2000 Jaulmes-Joux, 2000 Hoffstein-Silverman, 2016
Fluhrer, etc.: Even easier attacks using invalid messages.

Attacker changes \(c\) to
\(c \pm 1, c \pm x, \ldots, c \pm x^{n-1}\);
\(c \pm 2, c \pm 2 x, \ldots, c \pm 2 x^{n-1}\);
\(c \pm 3\), etc.
This changes \(3 a b+d c\) : adds
\(\pm d, \pm x d, \ldots, \pm x^{n-1} d\);
\(\pm 2 d, \pm 2 x d, \ldots, \pm 2 x^{n-1} d\);
\(\pm 3 d\), etc.
e.g. \(3 a b\) all other and \(d=\)
s given a
failure:
some \(x^{i} \operatorname{rev}(d)\). vith \(x^{-i} d\). with \(d \operatorname{rev}(d)\).
firmed:
ion failures
\(d \operatorname{rev}(d)\).
entry-Szydlo ds \(d\).

1999 Hall-Goldberg-Schneier, 2000 Jaulmes-Joux, 2000
Hoffstein-Silverman, 2016
Fluhrer, etc.: Even easier attacks using invalid messages.

Attacker changes \(c\) to
\(c \pm 1, c \pm x, \ldots, c \pm x^{n-1}\);
\(c \pm 2, c \pm 2 x, \ldots, c \pm 2 x^{n-1}\);
\(c \pm 3\), etc.
This changes \(3 a b+d c\) : adds
\(\pm d, \pm x d, \ldots, \pm x^{n-1} d\);
\(\pm 2 d, \pm 2 x d, \ldots, \pm 2 x^{n-1} d\);
\(\pm 3 d\), etc.
e.g. \(3 a b+d c=\). all other coeffs in and \(d=\cdots+x^{47}\)

1999 Hall-Goldberg-Schneier, 2000 Jaulmes-Joux, 2000
Hoffstein-Silverman, 2016
Fluhrer, etc.: Even easier attacks using invalid messages.

Attacker changes \(c\) to
\(c \pm 1, c \pm x, \ldots, c \pm x^{n-1}\);
\(c \pm 2, c \pm 2 x, \ldots, c \pm 2 x^{n-1}\);
\(c \pm 3\), etc.
This changes \(3 a b+d c\) : adds
\(\pm d, \pm x d, \ldots, \pm x^{n-1} d\);
\(\pm 2 d, \pm 2 x d, \ldots, \pm 2 x^{n-1} d\);
\(\pm 3 d\), etc.
e.g. \(3 a b+d c=\cdots+390 x^{47}\) all other coeffs in \([-389,38\) and \(d=\cdots+x^{478}+\cdots\).

1999 Hall-Goldberg-Schneier, 2000 Jaulmes-Joux, 2000 Hoffstein-Silverman, 2016
Fluhrer, etc.: Even easier attacks using invalid messages.

Attacker changes \(c\) to \(c \pm 1, c \pm x, \ldots, c \pm x^{n-1}\); \(c \pm 2, c \pm 2 x, \ldots, c \pm 2 x^{n-1}\); \(c \pm 3\), etc.

This changes \(3 a b+d c\) : adds \(\pm d, \pm x d, \ldots, \pm x^{n-1} d\);
\(\pm 2 d, \pm 2 x d, \ldots, \pm 2 x^{n-1} d\);
\(\pm 3 d\), etc.
e.g. \(3 a b+d c=\cdots+390 x^{478}+\cdots\), all other coeffs in \([-389,389]\); and \(d=\cdots+x^{478}+\cdots\).

1999 Hall-Goldberg-Schneier, 2000 Jaulmes-Joux, 2000 Hoffstein-Silverman, 2016
Fluhrer, etc.: Even easier attacks using invalid messages.

Attacker changes \(c\) to \(c \pm 1, c \pm x, \ldots, c \pm x^{n-1}\); \(c \pm 2, c \pm 2 x, \ldots, c \pm 2 x^{n-1}\); \(c \pm 3\), etc.

This changes \(3 a b+d c\) : adds \(\pm d, \pm x d, \ldots, \pm x^{n-1} d\); \(\pm 2 d, \pm 2 x d, \ldots, \pm 2 x^{n-1} d\); \(\pm 3 d\), etc.
e.g. \(3 a b+d c=\cdots+390 x^{478}+\cdots\), all other coeffs in \([-389,389]\); and \(d=\cdots+x^{478}+\cdots\).

Then \(3 a b+d c+k d=\)
\(\cdots+(390+k) x^{478}+\cdots\).
Decryption fails for big \(k\).

1999 Hall-Goldberg-Schneier, 2000 Jaulmes-Joux, 2000 Hoffstein-Silverman, 2016
Fluhrer, etc.: Even easier attacks using invalid messages.

Attacker changes \(c\) to \(c \pm 1, c \pm x, \ldots, c \pm x^{n-1}\); \(c \pm 2, c \pm 2 x, \ldots, c \pm 2 x^{n-1}\); \(c \pm 3\), etc.

This changes \(3 a b+d c\) : adds \(\pm d, \pm x d, \ldots, \pm x^{n-1} d\); \(\pm 2 d, \pm 2 x d, \ldots, \pm 2 x^{n-1} d\); \(\pm 3 d\), etc.
e.g. \(3 a b+d c=\cdots+390 x^{478}+\cdots\), all other coeffs in \([-389,389]\); and \(d=\cdots+x^{478}+\cdots\).

Then \(3 a b+d c+k d=\)
\(\cdots+(390+k) x^{478}+\cdots\).
Decryption fails for big \(k\).
Search for smallest \(k\) that falis.

1999 Hall-Goldberg-Schneier, 2000 Jaulmes-Joux, 2000 Hoffstein-Silverman, 2016
Fluhrer, etc.: Even easier attacks using invalid messages.

Attacker changes \(c\) to \(c \pm 1, c \pm x, \ldots, c \pm x^{n-1}\); \(c \pm 2, c \pm 2 x, \ldots, c \pm 2 x^{n-1}\); \(c \pm 3\), etc.

This changes \(3 a b+d c\) : adds \(\pm d, \pm x d, \ldots, \pm x^{n-1} d\); \(\pm 2 d, \pm 2 x d, \ldots, \pm 2 x^{n-1} d\); \(\pm 3 d\), etc.
e.g. \(3 a b+d c=\cdots+390 x^{478}+\cdots\), all other coeffs in [-389, 389]; and \(d=\cdots+x^{478}+\cdots\).

Then \(3 a b+d c+k d=\) \(\cdots+(390+k) x^{478}+\cdots\).
Decryption fails for big \(k\).
Search for smallest \(k\) that falis.
Does \(3 a b+d c+k x d\) also fail?
Yes if \(x d=\cdots+x^{478}+\cdots\),
i.e., if \(d=\cdots+x^{477}+\cdots\).

1999 Hall-Goldberg-Schneier, 2000 Jaulmes-Joux, 2000 Hoffstein-Silverman, 2016
Fluhrer, etc.: Even easier attacks using invalid messages.

Attacker changes \(c\) to \(c \pm 1, c \pm x, \ldots, c \pm x^{n-1}\); \(c \pm 2, c \pm 2 x, \ldots, c \pm 2 x^{n-1}\); \(c \pm 3\), etc.

This changes \(3 a b+d c\) : adds \(\pm d, \pm x d, \ldots, \pm x^{n-1} d\); \(\pm 2 d, \pm 2 x d, \ldots, \pm 2 x^{n-1} d\); \(\pm 3 d\), etc.
e.g. \(3 a b+d c=\cdots+390 x^{478}+\cdots\), all other coeffs in \([-389,389]\); and \(d=\cdots+x^{478}+\cdots\).

Then \(3 a b+d c+k d=\) \(\cdots+(390+k) x^{478}+\cdots\).
Decryption fails for big \(k\).
Search for smallest \(k\) that falis.
Does \(3 a b+d c+k x d\) also fail?
Yes if \(x d=\cdots+x^{478}+\cdots\),
i.e., if \(d=\cdots+x^{477}+\cdots\).

Try \(x^{2} k d, x^{3} k d\), etc.
See pattern of \(d\) coeffs.

II-Goldberg-Schneier, ulmes-Joux, 2000
--Silverman, 2016
etc.: Even easier attacks ralid messages.
changes \(c\) to
\(\pm x, \ldots, c \pm x^{n-1}\);
\(\pm 2 x, \ldots, c \pm 2 x^{n-1}\);
tc.
nges \(3 a b+d c\) : adds
\(d, \ldots, \pm x^{n-1} d ;\)
\(2 x d, \ldots, \pm 2 x^{n-1} d ;\)
e.g. \(3 a b+d c=\cdots+390 x^{478}+\cdots\), all other coeffs in [ \(-389,389\) ]; and \(d=\cdots+x^{478}+\cdots\).

Then \(3 a b+d c+k d=\)
\(\cdots+(390+k) x^{478}+\cdots\).
Decryption fails for big \(k\).
Search for smallest \(k\) that falis.
Does \(3 a b+d c+k x d\) also fail?
Yes if \(x d=\cdots+x^{478}+\cdots\), i.e., if \(d=\cdots+x^{477}+\cdots\).

Try \(x^{2} k d, x^{3} k d\), etc.
See pattern of \(d\) coeffs.

How to
Approac constant

For each generate Use sign that not
g-Schneier,
x, 2000
n, 2016
ר easier attacks ages.
\(c\) to
\(c \pm x^{n-1}\);
\(c \pm 2 x^{n-1}\);
\(+d c\) : adds
\({ }^{n-1} d\);
\(\pm 2 x^{n-1} d\);

Does \(3 a b+d c+k x d\) also fail?
Yes if \(x d=\cdots+x^{478}+\cdots\),
i.e., if \(d=\cdots+x^{477}+\cdots\).

Try \(x^{2} k d, x^{3} k d\), etc.
See pattern of \(d\) coeffs.

How to handle inv
Approach 1: Tell constantly switch

For each new senc generate new publ Use signatures to that nobody else

33
e.g. \(3 a b+d c=\cdots+390 x^{478}+\cdots\), all other coeffs in [-389, 389]; and \(d=\cdots+x^{478}+\cdots\).

Then \(3 a b+d c+k d=\)
\(\cdots+(390+k) x^{478}+\cdots\).
Decryption fails for big \(k\).
Search for smallest \(k\) that falis.
e.g. \(3 a b+d c=\cdots+390 x^{478}+\cdots\), all other coeffs in [-389, 389]; and \(d=\cdots+x^{478}+\cdots\).

Then \(3 a b+d c+k d=\)
\(\cdots+(390+k) x^{478}+\cdots\).
Decryption fails for big \(k\).
Search for smallest \(k\) that falis.
Does \(3 a b+d c+k x d\) also fail?
Yes if \(x d=\cdots+x^{478}+\cdots\), i.e., if \(d=\cdots+x^{477}+\cdots\).

Try \(x^{2} k d, x^{3} k d\), etc.
See pattern of \(d\) coeffs.

How to handle invalid messages
Approach 1: Tell user to constantly switch keys.

For each new sender, generate new public key. Use signatures to ensure that nobody else uses key.
e.g. \(3 a b+d c=\cdots+390 x^{478}+\cdots\), all other coeffs in \([-389,389]\);
and \(d=\cdots+x^{478}+\cdots\).
Then \(3 a b+d c+k d=\)
\(\cdots+(390+k) x^{478}+\cdots\).
Decryption fails for big \(k\).
Search for smallest \(k\) that falis.
Does \(3 a b+d c+k x d\) also fail?
Yes if \(x d=\cdots+x^{478}+\cdots\),
i.e., if \(d=\cdots+x^{477}+\cdots\).

Try \(x^{2} k d, x^{3} k d\), etc.
See pattern of \(d\) coeffs.

How to handle invalid messages
Approach 1: Tell user to constantly switch keys.

For each new sender, generate new public key. Use signatures to ensure that nobody else uses key.
e.g. original "IND-CPA" version of New Hope; Ding.
e.g. \(3 a b+d c=\cdots+390 x^{478}+\cdots\), all other coeffs in \([-389,389]\);
and \(d=\cdots+x^{478}+\cdots\).
Then \(3 a b+d c+k d=\)
\(\cdots+(390+k) x^{478}+\cdots\).
Decryption fails for big \(k\).
Search for smallest \(k\) that falis.
Does \(3 a b+d c+k x d\) also fail?
Yes if \(x d=\cdots+x^{478}+\cdots\),
i.e., if \(d=\cdots+x^{477}+\cdots\).

Try \(x^{2} k d, x^{3} k d\), etc.
See pattern of \(d\) coeffs.
e.g. \(3 a b+d c=\cdots+390 x^{478}+\cdots\), all other coeffs in [-389, 389];
and \(d=\cdots+x^{478}+\cdots\).
Then \(3 a b+d c+k d=\)
\(\cdots+(390+k) x^{478}+\cdots\).
Decryption fails for big \(k\).
Search for smallest \(k\) that falis.
Does \(3 a b+d c+k x d\) also fail?
Yes if \(x d=\cdots+x^{478}+\cdots\),
i.e., if \(d=\cdots+x^{477}+\cdots\).

Try \(x^{2} k d, x^{3} k d\), etc.
See pattern of \(d\) coeffs.

How to handle invalid messages
Approach 1: Tell user to constantly switch keys.

For each new sender, generate new public key. Use signatures to ensure that nobody else uses key.
e.g. original "IND-CPA" version of New Hope; Ding.

If user reuses a key:
Blame user for the attacks.
\[
\begin{aligned}
& +d c=\cdots+390 x^{478}+ \\
& \text { coeffs in }[-389,389] ;
\end{aligned}
\]
\[
\cdots+x^{478}+\cdots
\]
\[
b+d c+k d=
\]
\[
90+k) x^{478}+\cdots
\]
on fails for big \(k\).
or smallest \(k\) that falis.
\(b+d c+k x d\) also fail?
\(d=\cdots+x^{478}+\cdots\),
\(=\cdots+x^{477}+\cdots\).
\(d, x^{3} k d\), etc.
ern of \(d\) coeffs.

How to handle invalid messages
Approach 1: Tell user to constantly switch keys.

For each new sender, generate new public key.
Use signatures to ensure that nobody else uses key.
e.g. original "IND-CPA" version of New Hope; Ding.

If user reuses a key:
Blame user for the attacks.

Approac encrypti eliminat

\section*{\(\cdot+390 x^{478}+\cdots\), \\ How to handle invalid messages}
[-389, 389];
\(8+\cdots\).
\(k d=\)
78
\(r\) big \(k\).
\(\mathrm{t} k\) that falis.
kxd also fail?
\(x^{478}+\cdots\),
477
tc.
oeffs.

Approach 1: Tell user to constantly switch keys.

For each new sender, generate new public key. Use signatures to ensure that nobody else uses key.
e.g. original "IND-CPA" version of New Hope; Ding.

If user reuses a key:
Blame user for the attacks.

Approach 2: Mod encryption and de eliminate invalid \(n\)

How to handle invalid messages
Approach 1: Tell user to constantly switch keys.

For each new sender, generate new public key. Use signatures to ensure that nobody else uses key.
e.g. original "IND-CPA" version of New Hope; Ding.

If user reuses a key:
Blame user for the attacks.

Approach 2: Modify encryption and decryption t eliminate invalid messages.

How to handle invalid messages
Approach 1: Tell user to constantly switch keys.

For each new sender, generate new public key. Use signatures to ensure that nobody else uses key.
e.g. original "IND-CPA" version of New Hope; Ding.

If user reuses a key:
Blame user for the attacks.

Approach 2: Modify encryption and decryption to eliminate invalid messages.

How to handle invalid messages
Approach 1: Tell user to constantly switch keys.

For each new sender, generate new public key. Use signatures to ensure that nobody else uses key.
e.g. original "IND-CPA" version of New Hope; Ding.

If user reuses a key:
Blame user for the attacks.

Approach 2: Modify encryption and decryption to eliminate invalid messages.
e.g. "IND-CCA" New Hope submission; most submissions.

How to handle invalid messages
Approach 1: Tell user to constantly switch keys.

For each new sender, generate new public key. Use signatures to ensure that nobody else uses key.
e.g. original "IND-CPA" version of New Hope; Ding.

If user reuses a key:
Blame user for the attacks.

Approach 2: Modify encryption and decryption to eliminate invalid messages.
e.g. "IND-CCA" New Hope submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After decrypting message, check whether (1) message is valid and (2) ciphertext matches reencryption of message.

How to handle invalid messages
Approach 1: Tell user to constantly switch keys.

For each new sender, generate new public key. Use signatures to ensure that nobody else uses key.
e.g. original "IND-CPA" version of New Hope; Ding.

If user reuses a key:
Blame user for the attacks.

Approach 2: Modify encryption and decryption to eliminate invalid messages.
e.g. "IND-CCA" New Hope submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After decrypting message, check whether (1) message is valid and (2) ciphertext matches reencryption of message.

But encryption is randomized!
Reencryption won't match.
handle invalid messages
h 1: Tell user to
ly switch keys.
new sender, new public key. atures to ensure ody else uses key. inal "IND-CPA" version Hope; Ding.
euses a key:
ser for the attacks.

Approach 2: Modify
encryption and decryption to eliminate invalid messages.
e.g. "IND-CCA" New Hope submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After
decrypting message, check whether (1) message is valid and (2) ciphertext matches reencryption of message.

But encryption is randomized! Reencryption won't match.

Solution randomr
e.g. afte comput

\section*{alid messages}

\section*{user to}
keys.
ler,
ic key.
ensure
ıses key.
CPA" version
attacks.

Approach 2: Modify
encryption and decryption to eliminate invalid messages.
e.g. "IND-CCA" New Hope submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After decrypting message, check whether (1) message is valid and (2) ciphertext matches reencryption of message.

But encryption is randomized! Reencryption won't match.

Solution: Comput randomness that
e.g. after computi compute \(b\) from 3

Approach 2: Modify
encryption and decryption to eliminate invalid messages.
e.g. "IND-CCA" New Hope submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After decrypting message, check whether (1) message is valid and (2) ciphertext matches reencryption of message.

But encryption is randomized! Reencryption won't match.

Solution: Compute all randomness that was used.
e.g. after computing \(c\) in \(\mathrm{N}^{-}\) compute \(b\) from \(3 a b+d c\).

Approach 2: Modify encryption and decryption to eliminate invalid messages.
e.g. "IND-CCA" New Hope submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After decrypting message, check whether (1) message is valid and (2) ciphertext matches reencryption of message.

But encryption is randomized!
Reencryption won't match.
Solution: Compute all randomness that was used.
e.g. after computing \(c\) in NTRU, compute \(b\) from \(3 a b+d c\).

Approach 2: Modify encryption and decryption to eliminate invalid messages.
e.g. "IND-CCA" New Hope submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After decrypting message, check whether (1) message is valid and (2) ciphertext matches reencryption of message.

But encryption is randomized! Reencryption won't match.

Approach 2: Modify encryption and decryption to eliminate invalid messages.
e.g. "IND-CCA" New Hope submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After decrypting message, check whether (1) message is valid and (2) ciphertext matches reencryption of message.

But encryption is randomized! Reencryption won't match.

Solution: Compute all randomness that was used.
e.g. after computing \(c\) in NTRU, compute \(b\) from \(3 a b+d c\).

Can view ( \(b, c\) ) as message, no further randomness.
"Deterministic encryption."
"Product NTRU" variant
is not naturally deterministic.

Approach 2: Modify encryption and decryption to eliminate invalid messages.
e.g. "IND-CCA" New Hope submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After decrypting message, check whether (1) message is valid and (2) ciphertext matches reencryption of message.

But encryption is randomized! Reencryption won't match.

Solution: Compute all randomness that was used.
e.g. after computing \(c\) in NTRU, compute \(b\) from \(3 a b+d c\).

Can view ( \(b, c\) ) as message, no further randomness.
"Deterministic encryption."
"Product NTRU" variant is not naturally deterministic.

Generic Fujisaki-Okamoto solution: Require sender to compute randomness as standard hash of message.
h 2: Modify
on and decryption to e invalid messages.

D-CCA" New Hope on; most submissions.
ea, from Crypto 1999
-Okamoto: After ng message, check
(1) message is valid ciphertext matches tion of message.
yption is randomized! ption won't match.

Solution: Compute all randomness that was used.
e.g. after computing \(c\) in NTRU, compute \(b\) from \(3 a b+d c\).

Can view ( \(b, c\) ) as message, no further randomness.
"Deterministic encryption."
"Product NTRU" variant
is not naturally deterministic.
Generic Fujisaki-Okamoto solution: Require sender to compute randomness as standard hash of message.

How to
Eliminat not enol using de random
cryption to
nessages.
Jew Hope submissions.
rypto 1999
After
e, check
ge is valid matches essage.
randomized!
t match.

Solution: Compute all randomness that was used.
e.g. after computing \(c\) in NTRU, compute \(b\) from \(3 a b+d c\).

Can view ( \(b, c\) ) as message, no further randomness.
"Deterministic encryption."
"Product NTRU" variant is not naturally deterministic.

Generic Fujisaki-Okamoto solution: Require sender to compute randomness as
standard hash of message.

How to handle de
Eliminating invalic not enough: reme using decryption \(f\) random valid mess

Solution: Compute all randomness that was used.
e.g. after computing \(c\) in NTRU, compute \(b\) from \(3 a b+d c\).

Can view ( \(b, c\) ) as message,
no further randomness.
"Deterministic encryption."
"Product NTRU" variant
is not naturally deterministic.
Generic Fujisaki-Okamoto
solution: Require sender to
compute randomness as
standard hash of message.

Eliminating invalid messages not enough: remember atta using decryption failures for random valid messages.

Solution: Compute all randomness that was used.
e.g. after computing \(c\) in NTRU, compute \(b\) from \(3 a b+d c\).

Can view \((b, c)\) as message, no further randomness.
"Deterministic encryption."
"Product NTRU" variant is not naturally deterministic.

Generic Fujisaki-Okamoto solution: Require sender to compute randomness as standard hash of message.

\section*{How to handle decryption failures}

Eliminating invalid messages is not enough: remember attack using decryption failures for random valid messages.

Solution: Compute all randomness that was used.
e.g. after computing \(c\) in NTRU, compute \(b\) from \(3 a b+d c\).

Can view ( \(b, c\) ) as message, no further randomness.
"Deterministic encryption."
"Product NTRU" variant is not naturally deterministic.

Generic Fujisaki-Okamoto solution: Require sender to compute randomness as standard hash of message.

\section*{How to handle decryption failures}

Eliminating invalid messages is not enough: remember attack using decryption failures for random valid messages.

NIST encryption submissions vary in failure rates.

NTRU HRSS, NTRU Prime, Odd Manhattan choose \(q\) to eliminate decryption failures.

Solution: Compute all randomness that was used.
e.g. after computing \(c\) in NTRU, compute \(b\) from \(3 a b+d c\).

Can view ( \(b, c\) ) as message, no further randomness.
"Deterministic encryption."
"Product NTRU" variant is not naturally deterministic.

Generic Fujisaki-Okamoto solution: Require sender to compute randomness as standard hash of message.

\section*{How to handle decryption failures}

Eliminating invalid messages is not enough: remember attack using decryption failures for random valid messages.

NIST encryption submissions vary in failure rates.

NTRU HRSS, NTRU Prime, Odd Manhattan choose \(q\) to eliminate decryption failures.

LIMA tried to eliminate decryption failures, but failed.

Compute all eess that was used.
r computing \(c\) in NTRU,
\(b\) from \(3 a b+d c\).
\((b, c)\) as message, er randomness. inistic encryption."
t NTRU" variant turally deterministic.

Fujisaki-Okamoto
Require sender to randomness as hash of message.

How to handle decryption failures
Eliminating invalid messages is not enough: remember attack using decryption failures for random valid messages.

NIST encryption submissions vary in failure rates.

NTRU HRSS, NTRU Prime, Odd Manhattan choose \(q\) to eliminate decryption failures.

LIMA tried to eliminate decryption failures, but failed.

More cla LOTUS:
New Ho KINDI: :

NTRUE
KCL: \(\approx\) Ding: \(\approx\)

Current what de is small decrypti were cal
terministic.
kamoto sender to
ess as
nessage.

\section*{How to handle decryption failures}

Eliminating invalid messages is not enough: remember attack using decryption failures for random valid messages.

NIST encryption submissions vary in failure rates.

NTRU HRSS, NTRU Prime,
Odd Manhattan choose \(q\) to eliminate decryption failures.

LIMA tried to eliminate decryption failures, but failed.

More claimed failı LOTUS: \(<2^{-256}\).
New Hope submis KINDI: \(2^{-165}\).
:
NTRUEncrypt:
\(\mathrm{KCL}: \approx 2^{-60}\).
Ding: \(\approx 2^{-60}\), only
Current debates a what decryption \(f\) is small enough; \(n\) decryption failure were calculated co

How to handle decryption failures
Eliminating invalid messages is not enough: remember attack using decryption failures for random valid messages.

NIST encryption submissions vary in failure rates.

NTRU HRSS, NTRU Prime, Odd Manhattan choose \(q\) to eliminate decryption failures.

LIMA tried to eliminate decryption failures, but failed.

More claimed failure rates: LOTUS: \(<2^{-256}\).
New Hope submission: \(<2^{-}\) KINDI: \(2^{-165}\).
:
NTRUEncrypt: \(<2^{-80}\).
KCL: \(\approx 2^{-60}\).
Ding: \(\approx 2^{-60}\), only IND-CPA
Current debates about what decryption failure prob is small enough; whether decryption failure probabiliti were calculated correctly; et

\section*{How to handle decryption failures}

Eliminating invalid messages is not enough: remember attack using decryption failures for random valid messages.

NIST encryption submissions vary in failure rates.

NTRU HRSS, NTRU Prime, Odd Manhattan choose \(q\) to eliminate decryption failures.

LIMA tried to eliminate decryption failures, but failed.

More claimed failure rates:
LOTUS: \(<2^{-256}\).
New Hope submission: \(<2^{-213}\).
KINDI: \(2^{-165}\).

NTRUEncrypt: \(<2^{-80}\).
\(\mathrm{KCL}: \approx 2^{-60}\).
Ding: \(\approx 2^{-60}\), only IND-CPA.
Current debates about what decryption failure probability is small enough; whether decryption failure probabilities were calculated correctly; etc.
handle decryption failures
ing invalid messages is
ıgh: remember attack
cryption failures for valid messages.
cryption submissions ailure rates.

HRSS, NTRU Prime, nhattan choose \(q\) to e decryption failures.
ied to eliminate
on failures, but failed.

More claimed failure rates:
LOTUS: \(<2^{-256}\).
New Hope submission: \(<2^{-213}\).
KINDI: \(2^{-165 .}\)
.

NTRUEncrypt: \(<2^{-80}\).
\(\mathrm{KCL}: \approx 2^{-60}\).
Ding: \(\approx 2^{-60}\), only IND-CPA.
Current debates about what decryption failure probability is small enough; whether decryption failure probabilities were calculated correctly; etc.

How to
If messa Attacker
a guess

\section*{cryption failures}
messages is mber attack ailures for sages.
ubmissions
s.

RU Prime, hoose \(q\) to on failures. inate
but failed.

More claimed failure rates:
LOTUS: \(<2^{-256}\).
New Hope submission: \(<2^{-213}\). KINDI: \(2^{-165}\).
:
NTRUEncrypt: \(<2^{-80}\).
\(\mathrm{KCL}: \approx 2^{-60}\).
Ding: \(\approx 2^{-60}\), only IND-CPA.
Current debates about what decryption failure probability is small enough; whether decryption failure probabilities were calculated correctly; etc.

How to randomize
If message is gues Attacker can chec a guess matches a

More claimed failure rates:
LOTUS: \(<2^{-256}\).
New Hope submission: \(<2^{-213}\).
KINDI: \(2^{-165}\).
:
NTRUEncrypt: \(<2^{-80}\).
KCL: \(\approx 2^{-60}\).
Ding: \(\approx 2^{-60}\), only IND-CPA.
Current debates about what decryption failure probability is small enough; whether decryption failure probabilities were calculated correctly; etc.

More claimed failure rates:
LOTUS: \(<2^{-256}\).
New Hope submission: \(<2^{-213}\).
KINDI: \(2^{-165}\).
:
NTRUEncrypt: \(<2^{-80}\).
KCL: \(\approx 2^{-60}\).
Ding: \(\approx 2^{-60}\), only IND-CPA.
Current debates about what decryption failure probability is small enough; whether decryption failure probabilities were calculated correctly; etc.

\section*{How to randomize messages}

If message is guessable:
Attacker can check whether
a guess matches a ciphertext.

More claimed failure rates:
LOTUS: \(<2^{-256}\).
New Hope submission: \(<2^{-213}\).
KINDI: \(2^{-165}\).

NTRUEncrypt: \(<2^{-80}\).
KCL: \(\approx 2^{-60}\).
Ding: \(\approx 2^{-60}\), only IND-CPA.
Current debates about what decryption failure probability is small enough; whether decryption failure probabilities were calculated correctly; etc.

\section*{How to randomize messages}

If message is guessable:
Attacker can check whether
a guess matches a ciphertext.
Also various attacks using guesses of portion of message.

More claimed failure rates:
LOTUS: \(<2^{-256}\).
New Hope submission: \(<2^{-213}\).
KINDI: \(2^{-165}\).

NTRUEncrypt: \(<2^{-80}\).
\(\mathrm{KCL}: \approx 2^{-60}\).
Ding: \(\approx 2^{-60}\), only IND-CPA.
Current debates about what decryption failure probability is small enough; whether decryption failure probabilities were calculated correctly; etc.

\section*{How to randomize messages}

If message is guessable:
Attacker can check whether
a guess matches a ciphertext.
Also various attacks using guesses of portion of message.

Modern "KEM-DEM" solution, from Eurocrypt 2000 Shoup:
Choose random message.
Use hash of message as (e.g.)
AES-256-GCM key to encrypt and authenticate user data.
imed failure rates:
\(<2^{-256}\)
pe submission: \(<2^{-213}\).
\(2^{-165}\).
ncrypt: \(<2^{-80}\)
-60
\(2^{-60}\), only IND-CPA.
debates about
cryption failure probability
enough; whether
on failure probabilities culated correctly; etc.

\section*{How to randomize messages}

If message is guessable:
Attacker can check whether
a guess matches a ciphertext.
Also various attacks using guesses of portion of message.

Modern "KEM-DEM" solution, from Eurocrypt 2000 Shoup:
Choose random message. Use hash of message as (e.g.) AES-256-GCM key to encrypt and authenticate user data.

Central Can att
a randor public \(k\)
ire rates:
sion: \(<2^{-213}\).
\(2^{-80}\)

IND-CPA.
bout
ailure probability
hether
probabilities
rrectly; etc.

\section*{How to randomize messages}

If message is guessable:
Attacker can check whether
a guess matches a ciphertext.
Also various attacks using guesses of portion of message.

Modern "KEM-DEM" solution, from Eurocrypt 2000 Shoup: Choose random message. Use hash of message as (e.g.) AES-256-GCM key to encrypt and authenticate user data.

Central "one-wayr Can attacker figur a random message public key and cip

How to randomize messages
If message is guessable:
Attacker can check whether
a guess matches a ciphertext.
Also various attacks using guesses of portion of message.

Modern "KEM-DEM" solution, from Eurocrypt 2000 Shoup:
Choose random message.
Use hash of message as (e.g.)
AES-256-GCM key to encrypt and authenticate user data.

Central "one-wayness" ques Can attacker figure out a random message given public key and ciphertext?
c.

How to randomize messages
If message is guessable:
Attacker can check whether
a guess matches a ciphertext.
Also various attacks using guesses of portion of message.

Modern "KEM-DEM" solution, from Eurocrypt 2000 Shoup:
Choose random message.
Use hash of message as (e.g.)
AES-256-GCM key to encrypt and authenticate user data.

Central "one-wayness" question:
Can attacker figure out
a random message given public key and ciphertext?

How to randomize messages
If message is guessable:
Attacker can check whether
a guess matches a ciphertext.
Also various attacks using guesses of portion of message.

Modern "KEM-DEM" solution, from Eurocrypt 2000 Shoup:
Choose random message. Use hash of message as (e.g.) AES-256-GCM key to encrypt and authenticate user data.

Central "one-wayness" question:
Can attacker figure out
a random message given public key and ciphertext?

Fujisaki-Okamoto and many newer papers try to prove that all chosen-ciphertext distinguishers ("IND-CCA attacks") are as difficult as breaking one-wayness.

\section*{How to randomize messages}

If message is guessable:
Attacker can check whether
a guess matches a ciphertext.
Also various attacks using guesses of portion of message.

Modern "KEM-DEM" solution, from Eurocrypt 2000 Shoup:
Choose random message. Use hash of message as (e.g.) AES-256-GCM key to encrypt and authenticate user data.

Central "one-wayness" question:
Can attacker figure out
a random message given public key and ciphertext?

Fujisaki-Okamoto and many newer papers try to prove that all chosen-ciphertext distinguishers ("IND-CCA attacks") are as difficult as breaking one-wayness.

Many limitations to proofs: bugs; looseness; assumptions of "ROM" or "QROM" attacks; assumptions on failure probability; etc.
randomize messages
ge is guessable:
can check whether matches a ciphertext.
ious attacks using of portion of message.
"KEM-DEM" solution, rocrypt 2000 Shoup: random message. ) of message as (e.g.) j-GCM key to encrypt nenticate user data.

Brute-fo
Attacker
\(A=3 a\)
Can atta

Fujisaki-Okamoto and many newer papers try to prove that all chosen-ciphertext distinguishers ("IND-CCA attacks") are as difficult as breaking one-wayness.

Many limitations to proofs: bugs; looseness; assumptions of "ROM" or "QROM" attacks; assumptions on failure probability; etc.
sable:
k whether ciphertext.
ks using of message.

EM" solution, 00 Shoup: essage.
ge as (e.g.) to encrypt user data.

Central "one-wayness" question:
Can attacker figure out
a random message given public key and ciphertext?

Fujisaki-Okamoto and many newer papers try to prove that all chosen-ciphertext distinguishers ("IND-CCA attacks") are as difficult as breaking one-wayness.

Many limitations to proofs: bugs; looseness; assumptions of "ROM" or "QROM" attacks; assumptions on failure probability; etc.

\section*{Brute-force search}

Attacker is given \(A=3 a / d\), ciphert
Can attacker find

Central "one-wayness" question:
Can attacker figure out
a random message given public key and ciphertext?

Fujisaki-Okamoto and many newer papers try to prove that all chosen-ciphertext distinguishers ("IND-CCA attacks") are as difficult as breaking one-wayness.

Many limitations to proofs: bugs; looseness; assumptions of "ROM" or "QROM" attacks; assumptions on failure probability; etc.

\section*{Brute-force search}

Attacker is given public key \(A=3 a / d\), ciphertext \(C=A\)
Can attacker find \(c\) ?

Central "one-wayness" question:
Can attacker figure out
a random message given public key and ciphertext?

Fujisaki-Okamoto and many newer papers try to prove that all chosen-ciphertext distinguishers ("IND-CCA attacks") are as difficult as breaking one-wayness.

Many limitations to proofs: bugs; looseness; assumptions of "ROM" or "QROM" attacks; assumptions on failure probability; etc.

\section*{Brute-force search}

Attacker is given public key \(A=3 a / d\), ciphertext \(C=A b+c\).
Can attacker find \(c\) ?

Central "one-wayness" question:
Can attacker figure out
a random message given public key and ciphertext?

Fujisaki-Okamoto and many newer papers try to prove that all chosen-ciphertext distinguishers ("IND-CCA attacks") are as difficult as breaking one-wayness.

Many limitations to proofs: bugs; looseness; assumptions of "ROM" or "QROM" attacks; assumptions on failure probability; etc.

\section*{Brute-force search}

Attacker is given public key \(A=3 a / d\), ciphertext \(C=A b+c\).
Can attacker find \(c\) ?
Search \(\binom{n}{w} 2^{w}\) choices of \(b\). If \(c=C-A b\) is small: done!

Central "one-wayness" question:
Can attacker figure out
a random message given public key and ciphertext?

Fujisaki-Okamoto and many newer papers try to prove that all chosen-ciphertext distinguishers ( "IND-CCA attacks") are as difficult as breaking one-wayness.

Many limitations to proofs: bugs; looseness; assumptions of "ROM" or "QROM" attacks; assumptions on failure probability; etc.

\section*{Brute-force search}

Attacker is given public key \(A=3 a / d\), ciphertext \(C=A b+c\).
Can attacker find \(c\) ?
Search \(\binom{n}{w} 2^{w}\) choices of \(b\). If \(c=C-A b\) is small: done!
(Can this find two different messages \(c\) ? Unlikely. This would also stop legitimate decryption.)

Central "one-wayness" question:
Can attacker figure out
a random message given public key and ciphertext?

Fujisaki-Okamoto and many newer papers try to prove that all chosen-ciphertext distinguishers ( "IND-CCA attacks") are as difficult as breaking one-wayness.

Many limitations to proofs: bugs; looseness; assumptions of "ROM" or "QROM" attacks; assumptions on failure probability; etc.

\section*{Brute-force search}

Attacker is given public key \(A=3 a / d\), ciphertext \(C=A b+c\).
Can attacker find \(c\) ?
Search \(\binom{n}{w} 2^{w}\) choices of \(b\). If \(c=C-A b\) is small: done!
(Can this find two different messages \(c\) ? Unlikely. This would also stop legitimate decryption.)

Or search \(3^{n}\) choices of \(d\). If \(a=d A / 3\) is small, use \((a, d)\) to decrypt. Slightly slower but can be reused for many ciphertexts.
"one-wayness" question:
acker figure out
n message given
ey and ciphertext?
-Okamoto and many apers try to prove that all iphertext distinguishers (A attacks") are as as breaking one-wayness. nitations to proofs: bugs; s; assumptions of "ROM" M" attacks; assumptions e probability; etc.

Brute-force search
Attacker is given public key
\(A=3 a / d\), ciphertext \(C=A b+c\).
Can attacker find \(c\) ?
Search \(\binom{n}{w} 2^{w}\) choices of \(b\).
If \(c=C-A b\) is small: done!
(Can this find two different messages c? Unlikely. This would also stop legitimate decryption.)

Or search \(3^{n}\) choices of \(d\).
If \(a=d A / 3\) is small, use \((a, d)\) to decrypt. Slightly slower but can be reused for many ciphertexts.

Equivale
Secret k secret \(k\) secret \(k\)
ess" question:
e out
given
hertext?
and many
o prove that all distinguishers
ss") are as
g one-wayness.
o proofs: bugs; tions of "ROM" ks; assumptions ity; etc.

\section*{Brute-force search}

Attacker is given public key
\(A=3 a / d\), ciphertext \(C=A b+c\).
Can attacker find \(c\) ?
Search \(\binom{n}{w} 2^{w}\) choices of \(b\).
If \(c=C-A b\) is small: done!
(Can this find two different messages c? Unlikely. This would also stop legitimate decryption.)

Or search \(3^{n}\) choices of \(d\).
If \(a=d A / 3\) is small, use \((a, d)\) to decrypt. Slightly slower but can be reused for many ciphertexts.

Equivalent keys
Secret key \((a, d)\) secret key ( \(x a, x d\) secret key ( \(x^{2} a, x^{2}\)

\section*{ness.}
bugs;
ROM"
ptions

\section*{Brute-force search}

Attacker is given public key \(A=3 a / d\), ciphertext \(C=A b+c\).
Can attacker find \(c\) ?
Search \(\binom{n}{w} 2^{w}\) choices of \(b\).
If \(c=C-A b\) is small: done!
(Can this find two different messages c? Unlikely. This would also stop legitimate decryption.)

Or search \(3^{n}\) choices of \(d\). If \(a=d A / 3\) is small, use \((a, d)\) to decrypt. Slightly slower but can be reused for many ciphertexts.

\section*{Equivalent keys}

Secret key \((a, d)\) is equivale secret key ( \(x a, x d\) ), secret key \(\left(x^{2} a, x^{2} d\right)\), etc.

\section*{Brute-force search}

Attacker is given public key \(A=3 a / d\), ciphertext \(C=A b+c\). Can attacker find \(c\) ?

Search \(\binom{n}{w} 2^{w}\) choices of \(b\). If \(c=C-A b\) is small: done!
(Can this find two different messages c? Unlikely. This would also stop legitimate decryption.)

Or search \(3^{n}\) choices of \(d\). If \(a=d A / 3\) is small, use \((a, d)\) to decrypt. Slightly slower but can be reused for many ciphertexts.

\section*{Equivalent keys}

Secret key \((a, d)\) is equivalent to secret key \((x a, x d)\),
secret key \(\left(x^{2} a, x^{2} d\right)\), etc.

\section*{Brute-force search}

Attacker is given public key \(A=3 a / d\), ciphertext \(C=A b+c\). Can attacker find \(c\) ?

Search \(\binom{n}{w} 2^{w}\) choices of \(b\). If \(c=C-A b\) is small: done!
(Can this find two different messages c? Unlikely. This would also stop legitimate decryption.)

Or search \(3^{n}\) choices of \(d\). If \(a=d A / 3\) is small, use \((a, d)\) to decrypt. Slightly slower but can be reused for many ciphertexts.

\section*{Equivalent keys}

Secret key \((a, d)\) is equivalent to secret key \((x a, x d)\),
secret key \(\left(x^{2} a, x^{2} d\right)\), etc.
Search only about \(3^{n} / n\) choices.

\section*{Brute-force search}

Attacker is given public key \(A=3 a / d\), ciphertext \(C=A b+c\). Can attacker find \(c\) ?

Search \(\binom{n}{w} 2^{w}\) choices of \(b\). If \(c=C-A b\) is small: done!
(Can this find two different messages c? Unlikely. This would also stop legitimate decryption.)

Or search \(3^{n}\) choices of \(d\). If \(a=d A / 3\) is small, use ( \(a, d\) ) to decrypt. Slightly slower but can be reused for many ciphertexts.

\section*{Equivalent keys}

Secret key \((a, d)\) is equivalent to secret key \((x a, x d)\),
secret key \(\left(x^{2} a, x^{2} d\right)\), etc.
Search only about \(3^{n} / n\) choices.
\[
n=701, w=467
\]
\[
\begin{aligned}
\binom{n}{w} 2^{w} & \approx 2^{1106.09} \\
3^{n} & \approx 2^{1111.06} \\
3^{n} / n & \approx 2^{1101.61}
\end{aligned}
\]

\section*{Brute-force search}

Attacker is given public key \(A=3 a / d\), ciphertext \(C=A b+c\). Can attacker find \(c\) ?

Search \(\binom{n}{w} 2^{w}\) choices of \(b\). If \(c=C-A b\) is small: done!
(Can this find two different messages c? Unlikely. This would also stop legitimate decryption.)

Or search \(3^{n}\) choices of \(d\). If \(a=d A / 3\) is small, use ( \(a, d\) ) to decrypt. Slightly slower but can be reused for many ciphertexts.

\section*{Equivalent keys}

Secret key \((a, d)\) is equivalent to secret key \((x a, x d)\),
secret key \(\left(x^{2} a, x^{2} d\right)\), etc.
Search only about \(3^{n} / n\) choices.
\(n=701, w=467:\)
\[
\begin{aligned}
\binom{n}{w} 2^{w} & \approx 2^{1106.09} ; \\
3^{n} & \approx 2^{1111.06} ; \\
3^{n} / n & \approx 2^{1101.61} .
\end{aligned}
\]

Exercise: Find more equivalences!

\section*{Brute-force search}

Attacker is given public key \(A=3 a / d\), ciphertext \(C=A b+c\). Can attacker find \(c\) ?

Search \(\binom{n}{w} 2^{w}\) choices of \(b\). If \(c=C-A b\) is small: done!
(Can this find two different messages \(c\) ? Unlikely. This would also stop legitimate decryption.)

Or search \(3^{n}\) choices of \(d\). If \(a=d A / 3\) is small, use ( \(a, d\) ) to decrypt. Slightly slower but can be reused for many ciphertexts.

\section*{Equivalent keys}

Secret key \((a, d)\) is equivalent to secret key \((x a, x d)\),
secret key \(\left(x^{2} a, x^{2} d\right)\), etc.
Search only about \(3^{n} / n\) choices.
\(n=701, w=467:\)
\[
\begin{aligned}
\binom{n}{w} 2^{w} & \approx 2^{1106.09} ; \\
3^{n} & \approx 2^{1111.06} ; \\
3^{n} / n & \approx 2^{1101.61} .
\end{aligned}
\]

Exercise: Find more equivalences!
But if \(w\) is chosen smaller then \(\binom{n}{w} 2^{w}\) search will be faster.
is given public key
\(d\), ciphertext \(C=A b+c\).
cker find \(c\) ?
\(\left.\begin{array}{l}n \\ w\end{array}\right) 2^{w}\) choices of \(b\).
- \(A b\) is small: done!
s find two different
s c? Unlikely. This would legitimate decryption.)
h \(3^{n}\) choices of \(d\).
\(A / 3\) is small, use \((a, d)\) to Slightly slower but can d for many ciphertexts.

\section*{Equivalent keys}

Secret key \((a, d)\) is equivalent to secret key ( \(x a, x d\) ),
secret key \(\left(x^{2} a, x^{2} d\right)\), etc.
Search only about \(3^{n} / n\) choices.
\(n=701, w=467\) :
\[
\begin{aligned}
\binom{n}{w} 2^{w} & \approx 2^{1106.09} ; \\
3^{n} & \approx 2^{1111.06} ; \\
3^{n} / n & \approx 2^{1101.61} .
\end{aligned}
\]

Exercise: Find more equivalences!
But if \(w\) is chosen smaller then \(\binom{n}{w} 2^{w}\) search will be faster.

Collision
Write d \(d_{1}=\) bo \(d_{2}=r e r\)

Equivalent keys
Secret key \((a, d)\) is equivalent to secret key ( \(x a, x d\) ),
secret key \(\left(x^{2} a, x^{2} d\right)\), etc.
Search only about \(3^{n} / n\) choices.
\(n=701, w=467\) :
\[
\begin{aligned}
\binom{n}{w} 2^{w} & \approx 2^{1106.09} ; \\
3^{n} & \approx 2^{1111.06} ; \\
3^{n} / n & \approx 2^{1101.61} .
\end{aligned}
\]

Exercise: Find more equivalences!
But if \(w\) is chosen smaller then \(\binom{n}{w} 2^{w}\) search will be faster.

Collision attacks
Write \(d\) as \(d_{1}+d\) \(d_{1}=\) bottom \(\lceil n / 2\)
\(d_{2}=\) remaining te
ees of \(d\).
all, use \((a, d)\) to
lower but can y ciphertexts.

Equivalent keys
Secret key \((a, d)\) is equivalent to secret key \((x a, x d)\),
secret key \(\left(x^{2} a, x^{2} d\right)\), etc.
Search only about \(3^{n} / n\) choices.
\(n=701, w=467:\)
\[
\begin{aligned}
\binom{n}{w} 2^{w} & \approx 2^{1106.09} ; \\
3^{n} & \approx 2^{1111.06} ; \\
3^{n} / n & \approx 2^{1101.61} .
\end{aligned}
\]

Exercise: Find more equivalences!
But if \(w\) is chosen smaller then \(\binom{n}{w} 2^{w}\) search will be faster.

\section*{Collision attacks}

Write \(d\) as \(d_{1}+d_{2}\) where \(d_{1}=\) bottom \(\lceil n / 2\rceil\) terms o \(d_{2}=\) remaining terms of \(d\).

\section*{Equivalent keys}

Secret key \((a, d)\) is equivalent to secret key \((x a, x d)\),
secret key \(\left(x^{2} a, x^{2} d\right)\), etc.
Search only about \(3^{n} / n\) choices.
\[
n=701, w=467:
\]
\[
\begin{aligned}
\binom{n}{w} 2^{w} & \approx 2^{1106.09} ; \\
3^{n} & \approx 2^{1111.06} ; \\
3^{n} / n & \approx 2^{1101.61} .
\end{aligned}
\]

Exercise: Find more equivalences!
But if \(w\) is chosen smaller then \(\binom{n}{w} 2^{w}\) search will be faster.

\section*{Collision attacks}

Write \(d\) as \(d_{1}+d_{2}\) where \(d_{1}=\) bottom \(\lceil n / 2\rceil\) terms of \(d\), \(d_{2}=\) remaining terms of \(d\).

\section*{Equivalent keys}

Secret key \((a, d)\) is equivalent to secret key \((x a, x d)\),
secret key \(\left(x^{2} a, x^{2} d\right)\), etc.
Search only about \(3^{n} / n\) choices.
\[
n=701, w=467:
\]
\[
\begin{aligned}
\binom{n}{w} 2^{w} & \approx 2^{1106.09} ; \\
3^{n} & \approx 2^{1111.06} ; \\
3^{n} / n & \approx 2^{1101.61} .
\end{aligned}
\]

Exercise: Find more equivalences!
But if \(w\) is chosen smaller then \(\binom{n}{w} 2^{w}\) search will be faster.

\section*{Collision attacks}

Write \(d\) as \(d_{1}+d_{2}\) where \(d_{1}=\) bottom \(\lceil n / 2\rceil\) terms of \(d\), \(d_{2}=\) remaining terms of \(d\).
\[
\begin{aligned}
& a=(A / 3) d=(A / 3) d_{1}+(A / 3) d_{2} \\
& \text { so } a-(A / 3) d_{2}=(A / 3) d_{1} .
\end{aligned}
\]

\section*{Equivalent keys}

Secret key \((a, d)\) is equivalent to secret key \((x a, x d)\),
secret key \(\left(x^{2} a, x^{2} d\right)\), etc.
Search only about \(3^{n} / n\) choices.
\(n=701, w=467:\)
\[
\begin{aligned}
\binom{n}{w} 2^{w} & \approx 2^{1106.09} ; \\
3^{n} & \approx 2^{1111.06} ; \\
3^{n} / n & \approx 2^{1101.61} .
\end{aligned}
\]

Exercise: Find more equivalences!
But if \(w\) is chosen smaller then \(\binom{n}{w} 2^{w}\) search will be faster.

\section*{Collision attacks}

Write \(d\) as \(d_{1}+d_{2}\) where \(d_{1}=\) bottom \(\lceil n / 2\rceil\) terms of \(d\), \(d_{2}=\) remaining terms of \(d\).
\(a=(A / 3) d=(A / 3) d_{1}+(A / 3) d_{2}\)
so \(a-(A / 3) d_{2}=(A / 3) d_{1}\).
Eliminate a: almost certainly \(H\left(-(A / 3) d_{2}\right)=H\left((A / 3) d_{1}\right)\) for \(H(f)=\left(\left[f_{0}<0\right], \ldots,\left[f_{k-1}<0\right]\right)\).

\section*{Equivalent keys}

Secret key \((a, d)\) is equivalent to secret key \((x a, x d)\),
secret key \(\left(x^{2} a, x^{2} d\right)\), etc.
Search only about \(3^{n} / n\) choices.
\(n=701, w=467\) :
\[
\begin{aligned}
\binom{n}{w} 2^{w} & \approx 2^{1106.09} ; \\
3^{n} & \approx 2^{1111.06} ; \\
3^{n} / n & \approx 2^{1101.61} .
\end{aligned}
\]

Exercise: Find more equivalences!
But if \(w\) is chosen smaller then \(\binom{n}{w} 2^{w}\) search will be faster.

\section*{Collision attacks}

Write \(d\) as \(d_{1}+d_{2}\) where \(d_{1}=\) bottom \(\lceil n / 2\rceil\) terms of \(d\), \(d_{2}=\) remaining terms of \(d\).
\(a=(A / 3) d=(A / 3) d_{1}+(A / 3) d_{2}\)
so \(a-(A / 3) d_{2}=(A / 3) d_{1}\).
Eliminate a: almost certainly \(H\left(-(A / 3) d_{2}\right)=H\left((A / 3) d_{1}\right)\) for \(H(f)=\left(\left[f_{0}<0\right], \ldots,\left[f_{k-1}<0\right]\right)\).

Enumerate all \(H\left(-(A / 3) d_{2}\right)\).
Enumerate all \(H\left((A / 3) d_{1}\right)\).
Search for collisions.
Only about \(3^{n / 2}\) computations; but beware cost of memory.
nt keys
ey \((a, d)\) is equivalent to y \((x a, x d)\),
ey \(\left(x^{2} a, x^{2} d\right)\), etc.
nly about \(3^{n} / n\) choices.
\(w=467\) :
\[
\begin{aligned}
\binom{n}{w} 2^{w} & \approx 2^{1106.09} ; \\
3^{n} & \approx 2^{1111.06} ; \\
3^{n} / n & \approx 2^{1101.61} .
\end{aligned}
\]

Find more equivalences!
is chosen smaller then
earch will be faster.

Collision attacks
Write \(d\) as \(d_{1}+d_{2}\) where \(d_{1}=\) bottom \(\lceil n / 2\rceil\) terms of \(d\), \(d_{2}=\) remaining terms of \(d\).
\(a=(A / 3) d=(A / 3) d_{1}+(A / 3) d_{2}\)
so \(a-(A / 3) d_{2}=(A / 3) d_{1}\).
Eliminate a: almost certainly
\(H\left(-(A / 3) d_{2}\right)=H\left((A / 3) d_{1}\right)\) for
\(H(f)=\left(\left[f_{0}<0\right], \ldots,\left[f_{k-1}<0\right]\right)\).
Enumerate all \(H\left(-(A / 3) d_{2}\right)\).
Enumerate all \(H\left((A / 3) d_{1}\right)\).
Search for collisions.
Only about \(3^{n / 2}\) computations; but beware cost of memory.

Collision attacks
s equivalent to
d), etc.
\(3^{n} / n\) choices.
\(\left.\begin{array}{l}n \\ n\end{array}\right) 2^{w} \approx 2^{1106.09}\)
\(3^{n} \approx 2^{1111.06}\)
\(3^{n} / n \approx 2^{1101.61}\)
re equivalences!
smaller then
be faster.

Write \(d\) as \(d_{1}+d_{2}\) where
\(d_{1}=\) bottom \(\lceil n / 2\rceil\) terms of \(d\), \(d_{2}=\) remaining terms of \(d\).
\(a=(A / 3) d=(A / 3) d_{1}+(A / 3) d_{2}\)
so \(a-(A / 3) d_{2}=(A / 3) d_{1}\).
Eliminate a: almost certainly
\(H\left(-(A / 3) d_{2}\right)=H\left((A / 3) d_{1}\right)\) for
\(H(f)=\left(\left[f_{0}<0\right], \ldots,\left[f_{k-1}<0\right]\right)\).
Enumerate all \(H\left(-(A / 3) d_{2}\right)\).
Enumerate all \(H\left((A / 3) d_{1}\right)\).
Search for collisions.
Only about \(3^{n / 2}\) computations;
but beware cost of memory.

Collision attacks
Write \(d\) as \(d_{1}+d_{2}\) where
\(d_{1}=\) bottom \(\lceil n / 2\rceil\) terms of \(d\), \(d_{2}=\) remaining terms of \(d\).
\(a=(A / 3) d=(A / 3) d_{1}+(A / 3) d_{2}\)
so \(a-(A / 3) d_{2}=(A / 3) d_{1}\).
Eliminate a: almost certainly
\(H\left(-(A / 3) d_{2}\right)=H\left((A / 3) d_{1}\right)\) for
\(H(f)=\left(\left[f_{0}<0\right], \ldots,\left[f_{k-1}<0\right]\right)\).
Enumerate all \(H\left(-(A / 3) d_{2}\right)\).
Enumerate all \(H\left((A / 3) d_{1}\right)\).
Search for collisions.
Only about \(3^{n / 2}\) computations;
but beware cost of memory.

Write \(d\) as \(d_{1}+d_{2}\) where \(d_{1}=\) bottom \(\lceil n / 2\rceil\) terms of \(d\), \(d_{2}=\) remaining terms of \(d\).
\(a=(A / 3) d=(A / 3) d_{1}+(A / 3) d_{2}\)
so \(a-(A / 3) d_{2}=(A / 3) d_{1}\).
Eliminate a: almost certainly
\(H\left(-(A / 3) d_{2}\right)=H\left((A / 3) d_{1}\right)\) for
\(H(f)=\left(\left[f_{0}<0\right], \ldots,\left[f_{k-1}<0\right]\right)\).
Enumerate all \(H\left(-(A / 3) d_{2}\right)\).
Enumerate all \(H\left((A / 3) d_{1}\right)\).
Search for collisions.
Only about \(3^{n / 2}\) computations; but beware cost of memory.

Collision attacks
Write \(d\) as \(d_{1}+d_{2}\) where \(d_{1}=\) bottom \(\lceil n / 2\rceil\) terms of \(d\), \(d_{2}=\) remaining terms of \(d\).
\(a=(A / 3) d=(A / 3) d_{1}+(A / 3) d_{2}\)
so \(a-(A / 3) d_{2}=(A / 3) d_{1}\).
Eliminate a: almost certainly
\(H\left(-(A / 3) d_{2}\right)=H\left((A / 3) d_{1}\right)\) for
\(H(f)=\left(\left[f_{0}<0\right], \ldots,\left[f_{k-1}<0\right]\right)\).
Enumerate all \(H\left(-(A / 3) d_{2}\right)\).
Enumerate all \(H\left((A / 3) d_{1}\right)\).
Search for collisions.
Only about \(3^{n / 2}\) computations; but beware cost of memory.

\section*{Lattices}

This is a lettuce:


Collision attacks
Write \(d\) as \(d_{1}+d_{2}\) where \(d_{1}=\) bottom \(\lceil n / 2\rceil\) terms of \(d\), \(d_{2}=\) remaining terms of \(d\).
\(a=(A / 3) d=(A / 3) d_{1}+(A / 3) d_{2}\)
so \(a-(A / 3) d_{2}=(A / 3) d_{1}\).
Eliminate a: almost certainly \(H\left(-(A / 3) d_{2}\right)=H\left((A / 3) d_{1}\right)\) for \(H(f)=\left(\left[f_{0}<0\right], \ldots,\left[f_{k-1}<0\right]\right)\).

Enumerate all \(H\left(-(A / 3) d_{2}\right)\). Enumerate all \(H\left((A / 3) d_{1}\right)\).
Search for collisions.
Only about \(3^{n / 2}\) computations; but beware cost of memory.

\section*{\(\underline{\text { Lattices }}\)}

This is a lettuce:


This is a lattice:


\section*{attacks}
as \(d_{1}+d_{2}\) where ttom \(\lceil n / 2\rceil\) terms of \(d\), naining terms of \(d\).
\[
\begin{aligned}
& 3) d=(A / 3) d_{1}+(A / 3) d_{2} \\
& A / 3) d_{2}=(A / 3) d_{1}
\end{aligned}
\]
e a: almost certainly
\(\left.3) d_{2}\right)=H\left((A / 3) d_{1}\right)\) for \(\left(\left[f_{0}<0\right], \ldots,\left[f_{k-1}<0\right]\right)\).
te all \(H\left(-(A / 3) d_{2}\right)\).
ate all \(H\left((A / 3) d_{1}\right)\).
or collisions.
out \(3^{n / 2}\) computations;
are cost of memory.

\section*{Lattices}

This is a lettuce:


This is a lattice:


Lattices
Assume are R-lir
i.e., \(\mathbf{R} b_{1}\) \(\left\{r_{1} b_{1}+\right.\) is a \(k\)-di

\section*{Lattices}

This is a lettuce:


This is a lattice:


Lattices, mathem
Assume that \(b_{1}, b\) are \(\mathbf{R}\)-linearly inde
i.e., \(\mathbf{R} b_{1}+\ldots+\mathbf{F}\) \(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}\right.\) is a \(k\)-dimensional
\(\left.-(A / 3) d_{2}\right)\).
\(\left.A / 3) d_{1}\right)\).
1 S.
omputations;
memory.

This is a lettuce:


This is a lattice:


Assume that \(b_{1}, b_{2}, \ldots, b_{k}\) are \(\mathbf{R}\)-linearly independent, i.e., \(\mathbf{R} b_{1}+\ldots+\mathbf{R} b_{k}=\) \(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots\right.\), is a \(k\)-dimensional vector sp

\section*{Lattices}

This is a lettuce:


This is a lattice:


Lattices, mathematically
Assume that \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{R}^{n}\) are \(\mathbf{R}\)-linearly independent, i.e., \(\mathbf{R} b_{1}+\ldots+\mathbf{R} b_{k}=\) \(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{R}\right\}\) is a \(k\)-dimensional vector space.

\section*{Lattices}

This is a lettuce:


This is a lattice:


Lattices, mathematically
Assume that \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{R}^{n}\) are \(\mathbf{R}\)-linearly independent, i.e., \(\mathbf{R} b_{1}+\ldots+\mathbf{R} b_{k}=\) \(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{R}\right\}\) is a \(k\)-dimensional vector space.
\(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}=\)
\(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{Z}\right\}\) is a rank- \(k\) length- \(n\) lattice.

\section*{Lattices}

This is a lettuce:


This is a lattice:


Lattices, mathematically
Assume that \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{R}^{n}\) are \(\mathbf{R}\)-linearly independent, i.e., \(\mathbf{R} b_{1}+\ldots+\mathbf{R} b_{k}=\) \(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{R}\right\}\) is a \(k\)-dimensional vector space.
\(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}=\)
\(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{Z}\right\}\) is a rank- \(k\) length- \(n\) lattice.
\(b_{1}, \ldots, b_{k}\)
is a basis of this lattice.

Lattices, mathematically
Assume that \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{R}^{n}\) are \(\mathbf{R}\)-linearly independent,
i.e., \(\mathbf{R} b_{1}+\ldots+\mathbf{R} b_{k}=\)
\(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{R}\right\}\)
is a \(k\)-dimensional vector space.
\(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}=\)
\(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{Z}\right\}\) is a rank- \(k\) length- \(n\) lattice.
\(b_{1}, \ldots, b_{k}\)
is a basis of this lattice.

\section*{Short ve}

Given \(b_{1}\) what is in \(\mathbf{Z} b_{1}\)
lattice:


Lattices, mathematically
Assume that \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{R}^{n}\) are \(\mathbf{R}\)-linearly independent,
i.e., \(\mathbf{R} b_{1}+\ldots+\mathbf{R} b_{k}=\)
\(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{R}\right\}\)
is a \(k\)-dimensional vector space.
\(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}=\)
\(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{Z}\right\}\)
is a rank- \(k\) length- \(n\) lattice.
\(b_{1}, \ldots, b_{k}\)
is a basis of this lattice.

Short vectors in la
Given \(b_{1}, b_{2}, \ldots, t\) what is shortest ve in \(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b\)

Assume that \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{R}^{n}\) are \(\mathbf{R}\)-linearly independent,
i.e., \(\mathbf{R} b_{1}+\ldots+\mathbf{R} b_{k}=\)
\(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{R}\right\}\)
is a \(k\)-dimensional vector space.
\(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}=\)
\(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{Z}\right\}\)
is a rank- \(k\) length- \(n\) lattice.
\(b_{1}, \ldots, b_{k}\)
is a basis of this lattice.

Lattices, mathematically
Assume that \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{R}^{n}\) are \(\mathbf{R}\)-linearly independent,
i.e., \(\mathbf{R} b_{1}+\ldots+\mathbf{R} b_{k}=\)
\(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{R}\right\}\) is a \(k\)-dimensional vector space.
\(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}=\)
\(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{Z}\right\}\) is a rank- \(k\) length- \(n\) lattice.
\(b_{1}, \ldots, b_{k}\)
is a basis of this lattice.

Short vectors in lattices
Given \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{Z}^{n}\), what is shortest vector in \(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}\) ?

Lattices, mathematically
Assume that \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{R}^{n}\) are \(\mathbf{R}\)-linearly independent,
i.e., \(\mathbf{R} b_{1}+\ldots+\mathbf{R} b_{k}=\)
\(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{R}\right\}\) is a \(k\)-dimensional vector space.
\(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}=\)
\(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{Z}\right\}\) is a rank- \(k\) length- \(n\) lattice.
\(b_{1}, \ldots, b_{k}\)
is a basis of this lattice.

Short vectors in lattices
Given \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{Z}^{n}\), what is shortest vector in \(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}\) ?
0.

Lattices, mathematically
Assume that \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{R}^{n}\) are \(\mathbf{R}\)-linearly independent,
i.e., \(\mathbf{R} b_{1}+\ldots+\mathbf{R} b_{k}=\)
\(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{R}\right\}\) is a \(k\)-dimensional vector space.
\(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}=\)
\(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{Z}\right\}\) is a rank- \(k\) length- \(n\) lattice.
\(b_{1}, \ldots, b_{k}\)
is a basis of this lattice.

Short vectors in lattices
Given \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{Z}^{n}\),
what is shortest vector in \(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}\) ?
0.

What is shortest nonzero vector?

Lattices, mathematically
Assume that \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{R}^{n}\) are \(\mathbf{R}\)-linearly independent,
i.e., \(\mathbf{R} b_{1}+\ldots+\mathbf{R} b_{k}=\)
\(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{R}\right\}\) is a \(k\)-dimensional vector space.
\(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}=\)
\(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{Z}\right\}\) is a rank- \(k\) length- \(n\) lattice.
\(b_{1}, \ldots, b_{k}\)
is a basis of this lattice.

Short vectors in lattices
Given \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{Z}^{n}\),
what is shortest vector in \(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}\) ?
0.

What is shortest nonzero vector?
LLL algorithm runs in poly time, computes a vector whose length is at most \(2^{n / 2}\) times length of shortest nonzero vector.

Lattices, mathematically
Assume that \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{R}^{n}\) are \(\mathbf{R}\)-linearly independent,
i.e., \(\mathbf{R} b_{1}+\ldots+\mathbf{R} b_{k}=\)
\(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{R}\right\}\) is a \(k\)-dimensional vector space.
\(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}=\)
\(\left\{r_{1} b_{1}+\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{Z}\right\}\) is a rank- \(k\) length- \(n\) lattice.
\(b_{1}, \ldots, b_{k}\)
is a basis of this lattice.

\section*{Short vectors in lattices}

Given \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{Z}^{n}\), what is shortest vector in \(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}\) ?
0.

What is shortest nonzero vector?
LLL algorithm runs in poly time, computes a vector whose length is at most \(2^{n / 2}\) times length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ) compute shorter vectors at surprisingly high speed.

\section*{mathematically}
that \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{R}^{n}\)
early independent,
\(+\ldots+\mathbf{R} b_{k}=\)
\(\left.\ldots+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{R}\right\}\)
mensional vector space.
\(.+\mathbf{Z} b_{k}=\) \(\left.+r_{k} b_{k}: r_{1}, \ldots, r_{k} \in \mathbf{Z}\right\}\) k length- \(n\) lattice.
s of this lattice.

Short vectors in lattices
Given \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{Z}^{n}\), what is shortest vector in \(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}\) ?
0.

What is shortest nonzero vector?
LLL algorithm runs in poly time, computes a vector whose length is at most \(2^{n / 2}\) times length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ) compute shorter vectors at surprisingly high speed.

Lattice
Given pı
Comput

\section*{tically}
\(2, \ldots, b_{k} \in \mathbf{R}^{n}\)
pendent,
\(b_{k}=\)
\(\left.: r_{1}, \ldots, r_{k} \in \mathbf{R}\right\}\)
vector space.
\(\left.: r_{1}, \ldots, r_{k} \in \mathbf{Z}\right\}\)
\(n\) lattice.
attice.

Short vectors in lattices
Given \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{Z}^{n}\), what is shortest vector in \(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}\) ?
0.

What is shortest nonzero vector?
LLL algorithm runs in poly time, computes a vector whose length is at most \(2^{n / 2}\) times
length of shortest nonzero vector.
Fancier algorithms (e.g., BKZ)
compute shorter vectors
at surprisingly high speed.

Lattice view of N7
Given public key
Compute \(A / 3=a\)

Short vectors in lattices
Given \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{Z}^{n}\), what is shortest vector in \(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}\) ?
0.

What is shortest nonzero vector?
LLL algorithm runs in poly time, computes a vector whose length is at most \(2^{n / 2}\) times length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ) compute shorter vectors at surprisingly high speed.

Given public key \(A=3 a / d\). Compute \(A / 3=a / d\).

Short vectors in lattices
Given \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{Z}^{n}\),
what is shortest vector
in \(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}\) ?
0.

What is shortest nonzero vector?
LLL algorithm runs in poly time, computes a vector whose length is at most \(2^{n / 2}\) times
length of shortest nonzero vector.
Fancier algorithms (e.g., BKZ) compute shorter vectors at surprisingly high speed.

Given public key \(A=3 a / d\).
Compute \(A / 3=a / d\).

Short vectors in lattices
Given \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{Z}^{n}\),
what is shortest vector
in \(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}\) ?
0.

What is shortest nonzero vector?
LLL algorithm runs in poly time, computes a vector whose length is at most \(2^{n / 2}\) times
length of shortest nonzero vector.
Fancier algorithms (e.g., BKZ) compute shorter vectors at surprisingly high speed.

Lattice view of NTRU
Given public key \(A=3 a / d\).
Compute \(A / 3=a / d\).
\(d\) is obtained from
\(1, x, \ldots, x^{n-1}\)
by a few additions, subtractions.

\section*{Short vectors in lattices}

Given \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{Z}^{n}\),
what is shortest vector
in \(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}\) ?
0.

What is shortest nonzero vector?
LLL algorithm runs in poly time, computes a vector whose length is at most \(2^{n / 2}\) times length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ) compute shorter vectors at surprisingly high speed.

Lattice view of NTRU
Given public key \(A=3 a / d\).
Compute \(A / 3=a / d\).
\(d\) is obtained from
\(1, x, \ldots, x^{n-1}\)
by a few additions, subtractions.
\(d(A / 3)\) is obtained from
\(A / 3, x A / 3, \ldots, x^{n-1} A / 3\)
by a few additions, subtractions.

\section*{Short vectors in lattices}

Given \(b_{1}, b_{2}, \ldots, b_{k} \in \mathbf{Z}^{n}\),
what is shortest vector
in \(\mathbf{Z} b_{1}+\ldots+\mathbf{Z} b_{k}\) ?
0.

What is shortest nonzero vector?
LLL algorithm runs in poly time, computes a vector whose length is at most \(2^{n / 2}\) times length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ) compute shorter vectors at surprisingly high speed.

Lattice view of NTRU
Given public key \(A=3 a / d\).
Compute \(A / 3=a / d\).
\(d\) is obtained from
\(1, x, \ldots, x^{n-1}\)
by a few additions, subtractions.
\(d(A / 3)\) is obtained from
\(A / 3, x A / 3, \ldots, x^{n-1} A / 3\)
by a few additions, subtractions.
\(a\) is obtained from
\(q, q x, q x^{2}, \ldots, q x^{n-1}\),
\(A / 3, x A / 3, \ldots, x^{n-1} A / 3\)
by a few additions, subtractions.

\section*{ctors in lattices}
\(, b_{2}, \ldots, b_{k} \in \mathbf{Z}^{n}\),
shortest vector
\(-\ldots+\mathbf{Z} b_{k} ?\)
shortest nonzero vector?
rithm runs in poly time,
a vector whose length st \(2^{n / 2}\) times
f shortest nonzero vector.
algorithms (e.g., BKZ)
shorter vectors
singly high speed.

\section*{Lattice view of NTRU}

Given public key \(A=3 a / d\).
Compute \(A / 3=a / d\).
\(d\) is obtained from
\(1, x, \ldots, x^{n-1}\)
by a few additions, subtractions.
\(d(A / 3)\) is obtained from
\(A / 3, x A / 3, \ldots, x^{n-1} A / 3\)
by a few additions, subtractions.
\(a\) is obtained from
\(q, q x, q x^{2}, \ldots, q x^{n-1}\),
\(A / 3, x A / 3, \ldots, x^{n-1} A / 3\)
by a few additions, subtractions.
\((a, d)\) is
\((q, 0)\),
\(\left(q x^{n-1}\right.\),
\((A / 3,1)\)
\((x A / 3, x\)
\(\left(x^{n-1} A\right)\)
by a few
ttices
\(\mathbf{o}_{k} \in \mathbf{Z}^{n}\),
ector
\(k\) ? onzero vector?
s in poly time, whose length nes
nonzero vector.
(e.g., BKZ)
ectors
ר speed.

\section*{Lattice view of NTRU}

Given public key \(A=3 a / d\).
Compute \(A / 3=a / d\).
\(d\) is obtained from
\(1, x, \ldots, x^{n-1}\)
by a few additions, subtractions.
\(d(A / 3)\) is obtained from
\(A / 3, x A / 3, \ldots, x^{n-1} A / 3\)
by a few additions, subtractions.
\(a\) is obtained from
\(q, q x, q x^{2}, \ldots, q x^{n-1}\),
\(A / 3, x A / 3, \ldots, x^{n-1} A / 3\)
by a few additions, subtractions.
\((a, d)\) is obtained \((q, 0)\), \((q x, 0)\),
\(\left(q x^{n-1}, 0\right)\),
\((A / 3,1)\),
\((x A / 3, x)\),
\(\left(x^{n-1} A / 3, x^{n-1}\right)\)
by a few additions

Lattice view of NTRU
Given public key \(A=3 a / d\).
Compute \(A / 3=a / d\).
\(d\) is obtained from
\(1, x, \ldots, x^{n-1}\)
by a few additions, subtractions.
\(d(A / 3)\) is obtained from
\(A / 3, x A / 3, \ldots, x^{n-1} A / 3\)
by a few additions, subtractions.
\(a\) is obtained from
\(q, q x, q x^{2}, \ldots, q x^{n-1}\),
\(A / 3, x A / 3, \ldots, x^{n-1} A / 3\)
by a few additions, subtractions.
\((a, d)\) is obtained from \((q, 0)\), \((q x, 0)\),
\(\left(q x^{n-1}, 0\right)\),
\((A / 3,1)\),
( \(x A / 3, x\) ),
\(\left(x^{n-1} A / 3, x^{n-1}\right)\)
by a few additions, subtract

Lattice view of NTRU
Given public key \(A=3 a / d\).
Compute \(A / 3=a / d\).
\(d\) is obtained from
\(1, x, \ldots, x^{n-1}\)
by a few additions, subtractions.
\(d(A / 3)\) is obtained from
\(A / 3, x A / 3, \ldots, x^{n-1} A / 3\)
by a few additions, subtractions.
\(a\) is obtained from
\(q, q x, q x^{2}, \ldots, q x^{n-1}\),
\(A / 3, x A / 3, \ldots, x^{n-1} A / 3\)
by a few additions, subtractions.
\((a, d)\) is obtained from
\((q, 0)\),
\((q x, 0)\),
\(\left(q x^{n-1}, 0\right)\),
\((A / 3,1)\),
( \(x A / 3, x\) ),
\[
\left(x^{n-1} A / 3, x^{n-1}\right)
\]
by a few additions, subtractions.

Lattice view of NTRU
Given public key \(A=3 a / d\).
Compute \(A / 3=a / d\).
\(d\) is obtained from
\(1, x, \ldots, x^{n-1}\)
by a few additions, subtractions.
\(d(A / 3)\) is obtained from
\(A / 3, x A / 3, \ldots, x^{n-1} A / 3\)
by a few additions, subtractions.
\(a\) is obtained from
\(q, q x, q x^{2}, \ldots, q x^{n-1}\),
\(A / 3, x A / 3, \ldots, x^{n-1} A / 3\)
by a few additions, subtractions.
\((a, d)\) is obtained from
\((q, 0)\),
\((q x, 0)\),
\(\left(q x^{n-1}, 0\right)\),
\((A / 3,1)\),
\((x A / 3, x)\),
\[
\left(x^{n-1} A / 3, x^{n-1}\right)
\]
by a few additions, subtractions.
Write \(A / 3\) as
\(H_{0}+H_{1} x+\ldots+H_{n-1} x^{n-1}\).
\((a, d)\) is obtained from
\((q, 0)\),
\((q x, 0)\),
\(\left(q x^{n-1}, 0\right)\),
\((A / 3,1)\),
( \(x A / 3, x\) ),
\(\left(x^{n-1} A / 3, x^{n-1}\right)\)
by a few additions, subtractions.
Write \(A / 3\) as
\((0,0, \ldots\)
\(\left(H_{0}, H_{1}\right.\),
\(\left(H_{n-1}\right.\),
\((0,0, \ldots\)
\(\left(H_{0}, H_{1}\right.\),
\(\left(H_{n-1}\right.\),
\((0,0, \ldots\)
\(\left(H_{0}, H_{1}\right.\),
\(\left(H_{n-1}\right.\),
\(\left(H_{1}, H_{2}\right.\),
by a few
\(\left(H_{1}, H_{2}\right.\),
by a few
\(\left(a_{0}, a_{1},\right.\). is obtain \((q, 0, \ldots\) \((0, q, \ldots\)
: :
\(A=3 a / d\).
/d.
subtractions.
d from
\({ }^{-1}\) A/3
subtractions.
\(n-1\)
\({ }^{n-1}\) A/3
subtractions.
\((a, d)\) is obtained from
\((q, 0)\),
\((q x, 0)\),
\(\left(q x^{n-1}, 0\right)\),
\((A / 3,1)\),
\((x A / 3, x)\),
\(\left(x^{n-1} A / 3, x^{n-1}\right)\)
by a few additions, subtractions.
Write \(A / 3\) as
\(H_{0}+H_{1} x+\ldots+H_{n-1} x^{n-1}\).
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}\right.\), is obtained from ( \(q, 0, \ldots, 0,0,0\), . \((0, q, \ldots, 0,0,0,\). :
\((0,0, \ldots, q, 0,0,\). \(\left(H_{0}, H_{1}, \ldots, H_{n-1}\right.\) \(\left(H_{n-1}, H_{0}, \ldots, H_{n}\right.\) :
\(\left(H_{1}, H_{2}, \ldots, H_{0}, 0\right.\) by a few additions
\((a, d)\) is obtained from
\((q, 0)\),
\((q x, 0)\),
:
\(\left(q x^{n-1}, 0\right)\),
\((A / 3,1)\),
( \(x A / 3, x\) ),
\(\left(x^{n-1} A / 3, x^{n-1}\right)\)
by a few additions, subtractions.
Write \(A / 3\) as
\(H_{0}+H_{1} x+\ldots+H_{n-1} x^{n-1}\).
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots\right.\) is obtained from
\((q, 0, \ldots, 0,0,0, \ldots, 0)\),
\((0, q, \ldots, 0,0,0, \ldots, 0)\),
\((0,0, \ldots, q, 0,0, \ldots, 0)\),
\(\left(H_{0}, H_{1}, \ldots, H_{n-1}, 1,0, \ldots\right.\), \(\left(H_{n-1}, H_{0}, \ldots, H_{n-2}, 0,1, \ldots\right.\) :
\(\left(H_{1}, H_{2}, \ldots, H_{0}, 0,0, \ldots, 1\right)\) by a few additions, subtract
\((a, d)\) is obtained from
\((q, 0)\),
\((q x, 0)\),
\(\left(q x^{n-1}, 0\right)\),
\((A / 3,1)\),
\((x A / 3, x)\),
\[
\left(x^{n-1} A / 3, x^{n-1}\right)
\]
by a few additions, subtractions.
Write \(A / 3\) as
\(H_{0}+H_{1} x+\ldots+H_{n-1} x^{n-1}\).
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\)
is obtained from
\((q, 0, \ldots, 0,0,0, \ldots, 0)\),
\((0, q, \ldots, 0,0,0, \ldots, 0)\),
\((0,0, \ldots, q, 0,0, \ldots, 0)\),
\(\left(H_{0}, H_{1}, \ldots, H_{n-1}, 1,0, \ldots, 0\right)\),
\(\left(H_{n-1}, H_{0}, \ldots, H_{n-2}, 0,1, \ldots, 0\right)\),
\(\left(H_{1}, H_{2}, \ldots, H_{0}, 0,0, \ldots, 1\right)\)
by a few additions, subtractions.
obtained from
\(0)\),
(),
\(\left(3, x^{n-1}\right)\)
additions, subtractions.
/3 as
\(x+\ldots+H_{n-1} x^{n-1}\).

\section*{is obtained from}
\[
\begin{aligned}
& (q, 0, \ldots, 0,0,0, \ldots, 0) \\
& (0, q, \ldots, 0,0,0, \ldots, 0),
\end{aligned}
\]
\[
(0,0, \ldots, q, 0,0, \ldots, 0)
\]
\[
\left(H_{0}, H_{1}, \ldots, H_{n-1}, 1,0, \ldots, 0\right)
\]
\[
\left(H_{n-1}, H_{0}, \ldots, H_{n-2}, 0,1, \ldots, 0\right)
\]
\[
\left(H_{1}, H_{2}, \ldots, H_{0}, 0,0, \ldots, 1\right)
\]
by a few additions, subtractions.
is a surp in lattic ( \(q, 0, \ldots\)
from
subtractions.
\(H_{n-1} x^{n-1}\)
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\) is obtained from
\((q, 0, \ldots, 0,0,0, \ldots, 0)\),
\((0, q, \ldots, 0,0,0, \ldots, 0)\),
\((0,0, \ldots, q, 0,0, \ldots, 0)\),
\(\left(H_{0}, H_{1}, \ldots, H_{n-1}, 1,0, \ldots, 0\right)\),
\(\left(H_{n-1}, H_{0}, \ldots, H_{n-2}, 0,1, \ldots, 0\right)\), \(\vdots\)
\(\left(H_{1}, H_{2}, \ldots, H_{0}, 0,0, \ldots, 1\right)\)
by a few additions, subtractions.
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}\right.\), is a surprisingly sh in lattice generate \((q, 0, \ldots, 0,0,0,\).
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\) is obtained from
\[
\begin{aligned}
& (q, 0, \ldots, 0,0,0, \ldots, 0) \\
& (0, q, \ldots, 0,0,0, \ldots, 0)
\end{aligned}
\]
\[
\vdots
\]
\[
(0,0, \ldots, q, 0,0, \ldots, 0)
\]
\[
\left(H_{0}, H_{1}, \ldots, H_{n-1}, 1,0, \ldots, 0\right)
\]
\[
\left(H_{n-1}, H_{0}, \ldots, H_{n-2}, 0,1, \ldots, 0\right)
\]
!
\[
\left(H_{1}, H_{2}, \ldots, H_{0}, 0,0, \ldots, 1\right)
\]
by a few additions, subtractions.
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots\right.\) is a surprisingly short vector in lattice generated by \((q, 0, \ldots, 0,0,0, \ldots, 0)\) etc.
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\) is obtained from
\((q, 0, \ldots, 0,0,0, \ldots, 0)\),
\((0, q, \ldots, 0,0,0, \ldots, 0)\),
\((0,0, \ldots, q, 0,0, \ldots, 0)\),
\(\left(H_{0}, H_{1}, \ldots, H_{n-1}, 1,0, \ldots, 0\right)\), \(\left(H_{n-1}, H_{0}, \ldots, H_{n-2}, 0,1, \ldots, 0\right)\),
\[
\left(H_{1}, H_{2}, \ldots, H_{0}, 0,0, \ldots, 1\right)
\]
by a few additions, subtractions.
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\)
is a surprisingly short vector in lattice generated by
\((q, 0, \ldots, 0,0,0, \ldots, 0)\) etc.
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\) is obtained from
\((q, 0, \ldots, 0,0,0, \ldots, 0)\),
\((0, q, \ldots, 0,0,0, \ldots, 0)\),
\((0,0, \ldots, q, 0,0, \ldots, 0)\),
\(\left(H_{0}, H_{1}, \ldots, H_{n-1}, 1,0, \ldots, 0\right)\), \(\left(H_{n-1}, H_{0}, \ldots, H_{n-2}, 0,1, \ldots, 0\right)\),
\[
\left(H_{1}, H_{2}, \ldots, H_{0}, 0,0, \ldots, 1\right)
\]
by a few additions, subtractions.
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\) is a surprisingly short vector in lattice generated by \((q, 0, \ldots, 0,0,0, \ldots, 0)\) etc.

Attacker searches for short vector in this lattice using LLL etc.
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\) is obtained from
\[
\begin{aligned}
& (q, 0, \ldots, 0,0,0, \ldots, 0) \\
& (0, q, \ldots, 0,0,0, \ldots, 0)
\end{aligned}
\]
\((0,0, \ldots, q, 0,0, \ldots, 0)\),
\(\left(H_{0}, H_{1}, \ldots, H_{n-1}, 1,0, \ldots, 0\right)\), \(\left(H_{n-1}, H_{0}, \ldots, H_{n-2}, 0,1, \ldots, 0\right)\),
\(\left(H_{1}, H_{2}, \ldots, H_{0}, 0,0, \ldots, 1\right)\)
by a few additions, subtractions.
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\)
is a surprisingly short vector in lattice generated by
\((q, 0, \ldots, 0,0,0, \ldots, 0)\) etc.
Attacker searches for short vector in this lattice using LLL etc.

1997 Coppersmith-Shamir balancing: e.g., set up lattice to contain (10a, d)
if \(d\) is chosen \(10 \times\) larger than \(a\).
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\) is obtained from
\((q, 0, \ldots, 0,0,0, \ldots, 0)\),
\((0, q, \ldots, 0,0,0, \ldots, 0)\),
\((0,0, \ldots, q, 0,0, \ldots, 0)\),
\(\left(H_{0}, H_{1}, \ldots, H_{n-1}, 1,0, \ldots, 0\right)\), \(\left(H_{n-1}, H_{0}, \ldots, H_{n-2}, 0,1, \ldots, 0\right)\),
\(\left(H_{1}, H_{2}, \ldots, H_{0}, 0,0, \ldots, 1\right)\)
by a few additions, subtractions.
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\)
is a surprisingly short vector in lattice generated by
\((q, 0, \ldots, 0,0,0, \ldots, 0)\) etc.
Attacker searches for short vector in this lattice using LLL etc.

1997 Coppersmith-Shamir balancing: e.g., set up lattice to contain (10a, d)
if \(d\) is chosen \(10 \times\) larger than \(a\).
Exercise: Describe search for ( \(b, c\) ) as a problem of finding a vector close to a lattice.
\(\left.a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\)
ed from
\[
\begin{aligned}
& , 0,0,0, \ldots, 0) \\
& , 0,0,0, \ldots, 0)
\end{aligned}
\]
\(, q, 0,0, \ldots, 0)\),
\(\left.\ldots, H_{n-1}, 1,0, \ldots, 0\right)\),
\(\left.H_{0}, \ldots, H_{n-2}, 0,1, \ldots, 0\right)\),
\(\left.\ldots, H_{0}, 0,0, \ldots, 1\right)\)
additions, subtractions.
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\)
is a surprisingly short vector in lattice generated by
\((q, 0, \ldots, 0,0,0, \ldots, 0)\) etc.
Attacker searches for short vector in this lattice using LLL etc.

1997 Coppersmith-Shamir
balancing: e.g., set up lattice
to contain (10a, d)
if \(d\) is chosen \(10 \times\) larger than \(a\).
Exercise: Describe search for ( \(b, c\) ) as a problem of finding a vector close to a lattice.

Quotien
"Quotie is the \(s t\)

Alice ge for smal i.e., \(d A\)
\(\left.d_{0}, d_{1}, \ldots, d_{n-1}\right)\)
\(., 0)\)
., 0 ),
, 0),
, 1, 0, ..., 0),
\(-2,0,1, \ldots, 0)\)
, \(0, \ldots, 1)\)
subtractions.
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\) is a surprisingly short vector in lattice generated by \((q, 0, \ldots, 0,0,0, \ldots, 0)\) etc.

Attacker searches for short vector in this lattice using LLL etc.

1997 Coppersmith-Shamir balancing: e.g., set up lattice to contain (10a, d) if \(d\) is chosen \(10 \times\) larger than \(a\).

Exercise: Describe search for ( \(b, c\) ) as a problem of finding a vector close to a lattice.

Quotient NTRU v
"Quotient NTRU" is the structure we Alice generates \(A\) for small random i.e., \(d A-3 a=0\)
\(\left.d_{n-1}\right) \quad\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\) is a surprisingly short vector in lattice generated by \((q, 0, \ldots, 0,0,0, \ldots, 0)\) etc.

Attacker searches for short vector in this lattice using LLL etc.

1997 Coppersmith-Shamir balancing: e.g., set up lattice to contain (10a, d)
if \(d\) is chosen \(10 \times\) larger than \(a\).
Exercise: Describe search for ( \(b, c\) ) as a problem of finding a vector close to a lattice.

\section*{Quotient NTRU vs. product}
"Quotient NTRU" (new nar is the structure we've seen:

Alice generates \(A=3 a / d\) in for small random \(a, d\) :
i.e., \(d A-3 a=0\) in \(R_{q}\).
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\)
is a surprisingly short vector in lattice generated by \((q, 0, \ldots, 0,0,0, \ldots, 0)\) etc.

Attacker searches for short vector in this lattice using LLL etc.

1997 Coppersmith-Shamir balancing: e.g., set up lattice to contain (10a, d) if \(d\) is chosen \(10 \times\) larger than \(a\).

Exercise: Describe search for \((b, c)\) as a problem of finding a vector close to a lattice.

\section*{Quotient NTRU vs. product NTRU}
"Quotient NTRU" (new name)
is the structure we've seen:
Alice generates \(A=3 a / d\) in \(R_{q}\) for small random \(a, d\) :
i.e., \(d A-3 a=0\) in \(R_{q}\).
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\)
is a surprisingly short vector in lattice generated by \((q, 0, \ldots, 0,0,0, \ldots, 0)\) etc.

Attacker searches for short vector in this lattice using LLL etc.

1997 Coppersmith-Shamir balancing: e.g., set up lattice to contain (10a, d) if \(d\) is chosen \(10 \times\) larger than \(a\).

Exercise: Describe search for \((b, c)\) as a problem of finding a vector close to a lattice.

\section*{Quotient NTRU vs. product NTRU}
"Quotient NTRU" (new name)
is the structure we've seen:
Alice generates \(A=3 a / d\) in \(R_{q}\) for small random \(a, d\) :
i.e., \(d A-3 a=0\) in \(R_{q}\).

Bob sends \(C=A b+c\) in \(R_{q}\).
Alice computes \(d C\) in \(R_{q}\),
i.e., \(3 a b+d c\) in \(R_{q}\).
\(\left(a_{0}, a_{1}, \ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\)
is a surprisingly short vector in lattice generated by \((q, 0, \ldots, 0,0,0, \ldots, 0)\) etc.

Attacker searches for short vector in this lattice using LLL etc.

1997 Coppersmith-Shamir balancing: e.g., set up lattice to contain (10a, d) if \(d\) is chosen \(10 \times\) larger than \(a\).

Exercise: Describe search for \((b, c)\) as a problem of finding a vector close to a lattice.

\section*{Quotient NTRU vs. product NTRU}
"Quotient NTRU" (new name) is the structure we've seen:

Alice generates \(A=3 a / d\) in \(R_{q}\) for small random \(a, d\) :
i.e., \(d A-3 a=0\) in \(R_{q}\).

Bob sends \(C=A b+c\) in \(R_{q}\).
Alice computes \(d C\) in \(R_{q}\),
i.e., \(3 a b+d c\) in \(R_{q}\).

Alice reconstructs \(3 a b+d c\) in \(R\), using smallness of \(a, b, d, c\). Alice computes \(d c\) in \(R_{3}\), deduces \(c\), deduces \(b\).
\(\left.\ldots, a_{n-1}, d_{0}, d_{1}, \ldots, d_{n-1}\right)\)
risingly short vector generated by
\(, 0,0,0, \ldots, 0)\) etc.
searches for short vector ttice using LLL etc.
ppersmith-Shamir
g: e.g., set up lattice
in (10a, d)
nosen \(10 \times\) larger than \(a\).
Describe search for a problem of finding close to a lattice.
"Produc 2010 Ly

Everyon Alice ge for smal
for small random \(a, d\) :
i.e., \(d A-3 a=0\) in \(R_{q}\).

Bob sends \(C=A b+c\) in \(R_{q}\).
Alice computes \(d C\) in \(R_{q}\),
i.e., \(3 a b+d c\) in \(R_{q}\).

Alice reconstructs \(3 a b+d c\) in \(R\), using smallness of \(a, b, d, c\).
Alice computes \(d c\) in \(R_{3}\), deduces \(c\), deduces \(b\).
Quotient NTRU vs. product NTRU
"Quotient NTRU" (new name)
is the structure we've seen:
Alice generates \(A=3 a / d\) in \(R_{q}\)
\(\left.d_{0}, d_{1}, \ldots, d_{n-1}\right)\)
ort vector
d by
. , 0) etc.
for short vector
g LLL etc.
-Shamir
t up lattice
larger than a.
search for
n of finding
lattice.

\section*{Quotient NTRU vs. product NTRU}
"Quotient NTRU" (new name)
is the structure we've seen:
Alice generates \(A=3 a / d\) in \(R_{q}\) for small random a, \(d\) :
i.e., \(d A-3 a=0\) in \(R_{q}\).

Bob sends \(C=A b+c\) in \(R_{q}\). Alice computes \(d C\) in \(R_{q}\),
i.e., \(3 a b+d c\) in \(R_{q}\).

Alice reconstructs \(3 a b+d c\) in \(R\), using smallness of \(a, b, d, c\).
Alice computes \(d c\) in \(R_{3}\), deduces \(c\), deduces \(b\).
"Product NTRU" 2010 Lyubashevsk

Everyone knows ra Alice generates \(A\) for small random
\(\left.d_{n-1}\right) \quad\) Quotient NTRU vs. product NTRU
"Quotient NTRU" (new name) is the structure we've seen:

Alice generates \(A=3 a / d\) in \(R_{q}\) for small random \(a, d\) :
i.e., \(d A-3 a=0\) in \(R_{q}\).

Bob sends \(C=A b+c\) in \(R_{q}\). Alice computes \(d C\) in \(R_{q}\), i.e., \(3 a b+d c\) in \(R_{q}\).

Alice reconstructs \(3 a b+d c\) in \(R\), using smallness of \(a, b, d, c\).
Alice computes \(d c\) in \(R_{3}\), deduces \(c\), deduces \(b\).
"Product NTRU" (new nam 2010 Lyubashevsky-Peikert-

Everyone knows random \(G\) Alice generates \(A=a G+d\) for small random \(a, d\).

Quotient NTRU vs. product NTRU
"Quotient NTRU" (new name) is the structure we've seen:

Alice generates \(A=3 a / d\) in \(R_{q}\) for small random \(a, d\) :
i.e., \(d A-3 a=0\) in \(R_{q}\).

Bob sends \(C=A b+c\) in \(R_{q}\).
Alice computes \(d C\) in \(R_{q}\),
i.e., \(3 a b+d c\) in \(R_{q}\).

Alice reconstructs \(3 a b+d c\) in \(R\), using smallness of \(a, b, d, c\). Alice computes \(d c\) in \(R_{3}\), deduces \(c\), deduces \(b\).
"Product NTRU" (new name), 2010 Lyubashevsky-Peikert-Regev:

Everyone knows random \(G \in R_{q}\). Alice generates \(A=a G+d\) in \(R_{q}\) for small random a,d.

Quotient NTRU vs. product NTRU
"Quotient NTRU" (new name) is the structure we've seen:

Alice generates \(A=3 a / d\) in \(R_{q}\) for small random a, \(d\) :
i.e., \(d A-3 a=0\) in \(R_{q}\).

Bob sends \(C=A b+c\) in \(R_{q}\).
Alice computes \(d C\) in \(R_{q}\),
i.e., \(3 a b+d c\) in \(R_{q}\).

Alice reconstructs \(3 a b+d c\) in \(R\), using smallness of \(a, b, d, c\). Alice computes \(d c\) in \(R_{3}\), deduces \(c\), deduces \(b\).
"Product NTRU" (new name), 2010 Lyubashevsky-Peikert-Regev:

Everyone knows random \(G \in R_{q}\). Alice generates \(A=a G+d\) in \(R_{q}\) for small random \(a, d\).

Bob sends \(B=G b+e\) in \(R_{q}\) and \(C=m+A b+c\) in \(R_{q}\) where \(b, c, e\) are small and each coefficient of \(m\) is 0 or \(q / 2\).

Quotient NTRU vs. product NTRU
"Quotient NTRU" (new name) is the structure we've seen:

Alice generates \(A=3 a / d\) in \(R_{q}\) for small random a, \(d\) :
i.e., \(d A-3 a=0\) in \(R_{q}\).

Bob sends \(C=A b+c\) in \(R_{q}\).
Alice computes \(d C\) in \(R_{q}\),
i.e., \(3 a b+d c\) in \(R_{q}\).

Alice reconstructs \(3 a b+d c\) in \(R\), using smallness of \(a, b, d, c\). Alice computes \(d c\) in \(R_{3}\), deduces \(c\), deduces \(b\).
"Product NTRU" (new name), 2010 Lyubashevsky-Peikert-Regev:

Everyone knows random \(G \in R_{q}\). Alice generates \(A=a G+d\) in \(R_{q}\) for small random \(a, d\).

Bob sends \(B=G b+e\) in \(R_{q}\) and \(C=m+A b+c\) in \(R_{q}\) where \(b, c, e\) are small and each coefficient of \(m\) is 0 or \(q / 2\).

Alice computes \(C-a B\) in \(R_{q}\), i.e., \(m+d b+c-a e\) in \(R_{q}\).

Alice reconstructs \(m\), using smallness of \(d, b, c, a, e\).```

