
1

Classic McEliece: conservative

code-based cryptography

D. J. Bernstein

classic.mceliece.org

Fundamental literature:

1962 Prange (attack)

+ many more attack papers.

1968 Berlekamp (decoder).

1970–1971 Goppa (codes).

1978 McEliece (cryptosystem).

1986 Niederreiter (dual)

+ many more optimizations.

2

Submission is joint work with:

Tung Chou, osaka-u.ac.jp

Tanja Lange, tue.nl*

Ingo von Maurich

Rafael Misoczki, intel.com

Ruben Niederhagen,

fraunhofer.de

Edoardo Persichetti, fau.edu

Christiane Peters

Peter Schwabe, ru.nl*

Nicolas Sendrier, inria.fr*

Jakub Szefer, yale.edu

Wen Wang, yale.edu

*: PQCRYPTO institutions.



1

Classic McEliece: conservative

code-based cryptography

D. J. Bernstein

classic.mceliece.org

Fundamental literature:

1962 Prange (attack)

+ many more attack papers.

1968 Berlekamp (decoder).

1970–1971 Goppa (codes).

1978 McEliece (cryptosystem).

1986 Niederreiter (dual)

+ many more optimizations.

2

Submission is joint work with:

Tung Chou, osaka-u.ac.jp

Tanja Lange, tue.nl*

Ingo von Maurich

Rafael Misoczki, intel.com

Ruben Niederhagen,

fraunhofer.de

Edoardo Persichetti, fau.edu

Christiane Peters

Peter Schwabe, ru.nl*

Nicolas Sendrier, inria.fr*

Jakub Szefer, yale.edu

Wen Wang, yale.edu

*: PQCRYPTO institutions.

3

mceliece6960119 parameter set:

1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:

1357824 bytes for public key.

14080 bytes for secret key.



1

Classic McEliece: conservative

code-based cryptography

D. J. Bernstein

classic.mceliece.org

Fundamental literature:

1962 Prange (attack)

+ many more attack papers.

1968 Berlekamp (decoder).

1970–1971 Goppa (codes).

1978 McEliece (cryptosystem).

1986 Niederreiter (dual)

+ many more optimizations.

2

Submission is joint work with:

Tung Chou, osaka-u.ac.jp

Tanja Lange, tue.nl*

Ingo von Maurich

Rafael Misoczki, intel.com

Ruben Niederhagen,

fraunhofer.de

Edoardo Persichetti, fau.edu

Christiane Peters

Peter Schwabe, ru.nl*

Nicolas Sendrier, inria.fr*

Jakub Szefer, yale.edu

Wen Wang, yale.edu

*: PQCRYPTO institutions.

3

mceliece6960119 parameter set:

1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:

1357824 bytes for public key.

14080 bytes for secret key.



1

Classic McEliece: conservative

code-based cryptography

D. J. Bernstein

classic.mceliece.org

Fundamental literature:

1962 Prange (attack)

+ many more attack papers.

1968 Berlekamp (decoder).

1970–1971 Goppa (codes).

1978 McEliece (cryptosystem).

1986 Niederreiter (dual)

+ many more optimizations.

2

Submission is joint work with:

Tung Chou, osaka-u.ac.jp

Tanja Lange, tue.nl*

Ingo von Maurich

Rafael Misoczki, intel.com

Ruben Niederhagen,

fraunhofer.de

Edoardo Persichetti, fau.edu

Christiane Peters

Peter Schwabe, ru.nl*

Nicolas Sendrier, inria.fr*

Jakub Szefer, yale.edu

Wen Wang, yale.edu

*: PQCRYPTO institutions.

3

mceliece6960119 parameter set:

1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:

1357824 bytes for public key.

14080 bytes for secret key.



2

Submission is joint work with:

Tung Chou, osaka-u.ac.jp

Tanja Lange, tue.nl*

Ingo von Maurich

Rafael Misoczki, intel.com

Ruben Niederhagen,

fraunhofer.de

Edoardo Persichetti, fau.edu

Christiane Peters

Peter Schwabe, ru.nl*

Nicolas Sendrier, inria.fr*

Jakub Szefer, yale.edu

Wen Wang, yale.edu

*: PQCRYPTO institutions.

3

mceliece6960119 parameter set:

1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:

1357824 bytes for public key.

14080 bytes for secret key.



2

Submission is joint work with:

Tung Chou, osaka-u.ac.jp

Tanja Lange, tue.nl*

Ingo von Maurich

Rafael Misoczki, intel.com

Ruben Niederhagen,

fraunhofer.de

Edoardo Persichetti, fau.edu

Christiane Peters

Peter Schwabe, ru.nl*

Nicolas Sendrier, inria.fr*

Jakub Szefer, yale.edu

Wen Wang, yale.edu

*: PQCRYPTO institutions.

3

mceliece6960119 parameter set:

1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:

1357824 bytes for public key.

14080 bytes for secret key.

Current software: billions of cycles

to generate a key; not much

optimization effort yet.



2

Submission is joint work with:

Tung Chou, osaka-u.ac.jp

Tanja Lange, tue.nl*

Ingo von Maurich

Rafael Misoczki, intel.com

Ruben Niederhagen,

fraunhofer.de

Edoardo Persichetti, fau.edu

Christiane Peters

Peter Schwabe, ru.nl*

Nicolas Sendrier, inria.fr*

Jakub Szefer, yale.edu

Wen Wang, yale.edu

*: PQCRYPTO institutions.

3

mceliece6960119 parameter set:

1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:

1357824 bytes for public key.

14080 bytes for secret key.

Current software: billions of cycles

to generate a key; not much

optimization effort yet.

Very fast in hardware:

a few million cycles at 231MHz

using 129059 modules, 1126 RAM

blocks on Altera Stratix V FPGA.



2

Submission is joint work with:

Tung Chou, osaka-u.ac.jp

Tanja Lange, tue.nl*

Ingo von Maurich

Rafael Misoczki, intel.com

Ruben Niederhagen,

fraunhofer.de

Edoardo Persichetti, fau.edu

Christiane Peters

Peter Schwabe, ru.nl*

Nicolas Sendrier, inria.fr*

Jakub Szefer, yale.edu

Wen Wang, yale.edu

*: PQCRYPTO institutions.

3

mceliece6960119 parameter set:

1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:

1357824 bytes for public key.

14080 bytes for secret key.

Current software: billions of cycles

to generate a key; not much

optimization effort yet.

Very fast in hardware:

a few million cycles at 231MHz

using 129059 modules, 1126 RAM

blocks on Altera Stratix V FPGA.

4

mceliece6960119 parameter set:

226 bytes for ciphertext.

mceliece8192128 parameter set:

240 bytes for ciphertext.



2

Submission is joint work with:

Tung Chou, osaka-u.ac.jp

Tanja Lange, tue.nl*

Ingo von Maurich

Rafael Misoczki, intel.com

Ruben Niederhagen,

fraunhofer.de

Edoardo Persichetti, fau.edu

Christiane Peters

Peter Schwabe, ru.nl*

Nicolas Sendrier, inria.fr*

Jakub Szefer, yale.edu

Wen Wang, yale.edu

*: PQCRYPTO institutions.

3

mceliece6960119 parameter set:

1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:

1357824 bytes for public key.

14080 bytes for secret key.

Current software: billions of cycles

to generate a key; not much

optimization effort yet.

Very fast in hardware:

a few million cycles at 231MHz

using 129059 modules, 1126 RAM

blocks on Altera Stratix V FPGA.

4

mceliece6960119 parameter set:

226 bytes for ciphertext.

mceliece8192128 parameter set:

240 bytes for ciphertext.



2

Submission is joint work with:

Tung Chou, osaka-u.ac.jp

Tanja Lange, tue.nl*

Ingo von Maurich

Rafael Misoczki, intel.com

Ruben Niederhagen,

fraunhofer.de

Edoardo Persichetti, fau.edu

Christiane Peters

Peter Schwabe, ru.nl*

Nicolas Sendrier, inria.fr*

Jakub Szefer, yale.edu

Wen Wang, yale.edu

*: PQCRYPTO institutions.

3

mceliece6960119 parameter set:

1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:

1357824 bytes for public key.

14080 bytes for secret key.

Current software: billions of cycles

to generate a key; not much

optimization effort yet.

Very fast in hardware:

a few million cycles at 231MHz

using 129059 modules, 1126 RAM

blocks on Altera Stratix V FPGA.

4

mceliece6960119 parameter set:

226 bytes for ciphertext.

mceliece8192128 parameter set:

240 bytes for ciphertext.



3

mceliece6960119 parameter set:

1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:

1357824 bytes for public key.

14080 bytes for secret key.

Current software: billions of cycles

to generate a key; not much

optimization effort yet.

Very fast in hardware:

a few million cycles at 231MHz

using 129059 modules, 1126 RAM

blocks on Altera Stratix V FPGA.

4

mceliece6960119 parameter set:

226 bytes for ciphertext.

mceliece8192128 parameter set:

240 bytes for ciphertext.



3

mceliece6960119 parameter set:

1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:

1357824 bytes for public key.

14080 bytes for secret key.

Current software: billions of cycles

to generate a key; not much

optimization effort yet.

Very fast in hardware:

a few million cycles at 231MHz

using 129059 modules, 1126 RAM

blocks on Altera Stratix V FPGA.

4

mceliece6960119 parameter set:

226 bytes for ciphertext.

mceliece8192128 parameter set:

240 bytes for ciphertext.

Software: 295932 cycles for enc,

355152 cycles for dec

(decoding, hashing, etc.).



3

mceliece6960119 parameter set:

1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:

1357824 bytes for public key.

14080 bytes for secret key.

Current software: billions of cycles

to generate a key; not much

optimization effort yet.

Very fast in hardware:

a few million cycles at 231MHz

using 129059 modules, 1126 RAM

blocks on Altera Stratix V FPGA.

4

mceliece6960119 parameter set:

226 bytes for ciphertext.

mceliece8192128 parameter set:

240 bytes for ciphertext.

Software: 295932 cycles for enc,

355152 cycles for dec

(decoding, hashing, etc.).

Again very fast in hardware:

17140 cycles for decoding.



3

mceliece6960119 parameter set:

1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:

1357824 bytes for public key.

14080 bytes for secret key.

Current software: billions of cycles

to generate a key; not much

optimization effort yet.

Very fast in hardware:

a few million cycles at 231MHz

using 129059 modules, 1126 RAM

blocks on Altera Stratix V FPGA.

4

mceliece6960119 parameter set:

226 bytes for ciphertext.

mceliece8192128 parameter set:

240 bytes for ciphertext.

Software: 295932 cycles for enc,

355152 cycles for dec

(decoding, hashing, etc.).

Again very fast in hardware:

17140 cycles for decoding.

Can tweak parameters for

even smaller ciphertexts,

not much penalty in key size.



3

mceliece6960119 parameter set:

1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:

1357824 bytes for public key.

14080 bytes for secret key.

Current software: billions of cycles

to generate a key; not much

optimization effort yet.

Very fast in hardware:

a few million cycles at 231MHz

using 129059 modules, 1126 RAM

blocks on Altera Stratix V FPGA.

4

mceliece6960119 parameter set:

226 bytes for ciphertext.

mceliece8192128 parameter set:

240 bytes for ciphertext.

Software: 295932 cycles for enc,

355152 cycles for dec

(decoding, hashing, etc.).

Again very fast in hardware:

17140 cycles for decoding.

Can tweak parameters for

even smaller ciphertexts,

not much penalty in key size.

5

Encoding and decoding

1978 McEliece public key:

matrix A over F2.

Ciphertext: vector C = Ab + e.

Ab is “codeword”; e is random

weight-w “error vector”.

Original proposal for 264 security:

1024× 512 matrix; w = 50.

Public key is secretly generated

with “binary Goppa code”

structure that allows efficient

decoding: C 7→ Ab; e.



3

mceliece6960119 parameter set:

1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:

1357824 bytes for public key.

14080 bytes for secret key.

Current software: billions of cycles

to generate a key; not much

optimization effort yet.

Very fast in hardware:

a few million cycles at 231MHz

using 129059 modules, 1126 RAM

blocks on Altera Stratix V FPGA.

4

mceliece6960119 parameter set:

226 bytes for ciphertext.

mceliece8192128 parameter set:

240 bytes for ciphertext.

Software: 295932 cycles for enc,

355152 cycles for dec

(decoding, hashing, etc.).

Again very fast in hardware:

17140 cycles for decoding.

Can tweak parameters for

even smaller ciphertexts,

not much penalty in key size.

5

Encoding and decoding

1978 McEliece public key:

matrix A over F2.

Ciphertext: vector C = Ab + e.

Ab is “codeword”; e is random

weight-w “error vector”.

Original proposal for 264 security:

1024× 512 matrix; w = 50.

Public key is secretly generated

with “binary Goppa code”

structure that allows efficient

decoding: C 7→ Ab; e.



3

mceliece6960119 parameter set:

1047319 bytes for public key.

13908 bytes for secret key.

mceliece8192128 parameter set:

1357824 bytes for public key.

14080 bytes for secret key.

Current software: billions of cycles

to generate a key; not much

optimization effort yet.

Very fast in hardware:

a few million cycles at 231MHz

using 129059 modules, 1126 RAM

blocks on Altera Stratix V FPGA.

4

mceliece6960119 parameter set:

226 bytes for ciphertext.

mceliece8192128 parameter set:

240 bytes for ciphertext.

Software: 295932 cycles for enc,

355152 cycles for dec

(decoding, hashing, etc.).

Again very fast in hardware:

17140 cycles for decoding.

Can tweak parameters for

even smaller ciphertexts,

not much penalty in key size.

5

Encoding and decoding

1978 McEliece public key:

matrix A over F2.

Ciphertext: vector C = Ab + e.

Ab is “codeword”; e is random

weight-w “error vector”.

Original proposal for 264 security:

1024× 512 matrix; w = 50.

Public key is secretly generated

with “binary Goppa code”

structure that allows efficient

decoding: C 7→ Ab; e.



4

mceliece6960119 parameter set:

226 bytes for ciphertext.

mceliece8192128 parameter set:

240 bytes for ciphertext.

Software: 295932 cycles for enc,

355152 cycles for dec

(decoding, hashing, etc.).

Again very fast in hardware:

17140 cycles for decoding.

Can tweak parameters for

even smaller ciphertexts,

not much penalty in key size.

5

Encoding and decoding

1978 McEliece public key:

matrix A over F2.

Ciphertext: vector C = Ab + e.

Ab is “codeword”; e is random

weight-w “error vector”.

Original proposal for 264 security:

1024× 512 matrix; w = 50.

Public key is secretly generated

with “binary Goppa code”

structure that allows efficient

decoding: C 7→ Ab; e.



4

mceliece6960119 parameter set:

226 bytes for ciphertext.

mceliece8192128 parameter set:

240 bytes for ciphertext.

Software: 295932 cycles for enc,

355152 cycles for dec

(decoding, hashing, etc.).

Again very fast in hardware:

17140 cycles for decoding.

Can tweak parameters for

even smaller ciphertexts,

not much penalty in key size.

5

Encoding and decoding

1978 McEliece public key:

matrix A over F2.

Ciphertext: vector C = Ab + e.

Ab is “codeword”; e is random

weight-w “error vector”.

Original proposal for 264 security:

1024× 512 matrix; w = 50.

Public key is secretly generated

with “binary Goppa code”

structure that allows efficient

decoding: C 7→ Ab; e.

6

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.



4

mceliece6960119 parameter set:

226 bytes for ciphertext.

mceliece8192128 parameter set:

240 bytes for ciphertext.

Software: 295932 cycles for enc,

355152 cycles for dec

(decoding, hashing, etc.).

Again very fast in hardware:

17140 cycles for decoding.

Can tweak parameters for

even smaller ciphertexts,

not much penalty in key size.

5

Encoding and decoding

1978 McEliece public key:

matrix A over F2.

Ciphertext: vector C = Ab + e.

Ab is “codeword”; e is random

weight-w “error vector”.

Original proposal for 264 security:

1024× 512 matrix; w = 50.

Public key is secretly generated

with “binary Goppa code”

structure that allows efficient

decoding: C 7→ Ab; e.

6

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.



4

mceliece6960119 parameter set:

226 bytes for ciphertext.

mceliece8192128 parameter set:

240 bytes for ciphertext.

Software: 295932 cycles for enc,

355152 cycles for dec

(decoding, hashing, etc.).

Again very fast in hardware:

17140 cycles for decoding.

Can tweak parameters for

even smaller ciphertexts,

not much penalty in key size.

5

Encoding and decoding

1978 McEliece public key:

matrix A over F2.

Ciphertext: vector C = Ab + e.

Ab is “codeword”; e is random

weight-w “error vector”.

Original proposal for 264 security:

1024× 512 matrix; w = 50.

Public key is secretly generated

with “binary Goppa code”

structure that allows efficient

decoding: C 7→ Ab; e.

6

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.



5

Encoding and decoding

1978 McEliece public key:

matrix A over F2.

Ciphertext: vector C = Ab + e.

Ab is “codeword”; e is random

weight-w “error vector”.

Original proposal for 264 security:

1024× 512 matrix; w = 50.

Public key is secretly generated

with “binary Goppa code”

structure that allows efficient

decoding: C 7→ Ab; e.

6

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.



5

Encoding and decoding

1978 McEliece public key:

matrix A over F2.

Ciphertext: vector C = Ab + e.

Ab is “codeword”; e is random

weight-w “error vector”.

Original proposal for 264 security:

1024× 512 matrix; w = 50.

Public key is secretly generated

with “binary Goppa code”

structure that allows efficient

decoding: C 7→ Ab; e.

6

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.

Secrets: distinct a1; : : : ; an ∈ Fq ;

monic irreducible degree-w

polynomial g ∈ Fq[x ].



5

Encoding and decoding

1978 McEliece public key:

matrix A over F2.

Ciphertext: vector C = Ab + e.

Ab is “codeword”; e is random

weight-w “error vector”.

Original proposal for 264 security:

1024× 512 matrix; w = 50.

Public key is secretly generated

with “binary Goppa code”

structure that allows efficient

decoding: C 7→ Ab; e.

6

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.

Secrets: distinct a1; : : : ; an ∈ Fq ;

monic irreducible degree-w

polynomial g ∈ Fq[x ].

Goppa code: kernel of

the map v 7→
P
i vi=(x − ai )

from Fn2 to Fq[x ]=g .

Typical dimension n − w lg q.



5

Encoding and decoding

1978 McEliece public key:

matrix A over F2.

Ciphertext: vector C = Ab + e.

Ab is “codeword”; e is random

weight-w “error vector”.

Original proposal for 264 security:

1024× 512 matrix; w = 50.

Public key is secretly generated

with “binary Goppa code”

structure that allows efficient

decoding: C 7→ Ab; e.

6

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.

Secrets: distinct a1; : : : ; an ∈ Fq ;

monic irreducible degree-w

polynomial g ∈ Fq[x ].

Goppa code: kernel of

the map v 7→
P
i vi=(x − ai )

from Fn2 to Fq[x ]=g .

Typical dimension n − w lg q.

McEliece uses random matrix A

whose image is this code.



5

Encoding and decoding

1978 McEliece public key:

matrix A over F2.

Ciphertext: vector C = Ab + e.

Ab is “codeword”; e is random

weight-w “error vector”.

Original proposal for 264 security:

1024× 512 matrix; w = 50.

Public key is secretly generated

with “binary Goppa code”

structure that allows efficient

decoding: C 7→ Ab; e.

6

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.

Secrets: distinct a1; : : : ; an ∈ Fq ;

monic irreducible degree-w

polynomial g ∈ Fq[x ].

Goppa code: kernel of

the map v 7→
P
i vi=(x − ai )

from Fn2 to Fq[x ]=g .

Typical dimension n − w lg q.

McEliece uses random matrix A

whose image is this code.

7

One-wayness (OW-CPA)

Fundamental security question:

Given random public key A and

ciphertext Ab + e for random b; e,

can attacker efficiently find b; e?



5

Encoding and decoding

1978 McEliece public key:

matrix A over F2.

Ciphertext: vector C = Ab + e.

Ab is “codeword”; e is random

weight-w “error vector”.

Original proposal for 264 security:

1024× 512 matrix; w = 50.

Public key is secretly generated

with “binary Goppa code”

structure that allows efficient

decoding: C 7→ Ab; e.

6

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.

Secrets: distinct a1; : : : ; an ∈ Fq ;

monic irreducible degree-w

polynomial g ∈ Fq[x ].

Goppa code: kernel of

the map v 7→
P
i vi=(x − ai )

from Fn2 to Fq[x ]=g .

Typical dimension n − w lg q.

McEliece uses random matrix A

whose image is this code.

7

One-wayness (OW-CPA)

Fundamental security question:

Given random public key A and

ciphertext Ab + e for random b; e,

can attacker efficiently find b; e?



5

Encoding and decoding

1978 McEliece public key:

matrix A over F2.

Ciphertext: vector C = Ab + e.

Ab is “codeword”; e is random

weight-w “error vector”.

Original proposal for 264 security:

1024× 512 matrix; w = 50.

Public key is secretly generated

with “binary Goppa code”

structure that allows efficient

decoding: C 7→ Ab; e.

6

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.

Secrets: distinct a1; : : : ; an ∈ Fq ;

monic irreducible degree-w

polynomial g ∈ Fq[x ].

Goppa code: kernel of

the map v 7→
P
i vi=(x − ai )

from Fn2 to Fq[x ]=g .

Typical dimension n − w lg q.

McEliece uses random matrix A

whose image is this code.

7

One-wayness (OW-CPA)

Fundamental security question:

Given random public key A and

ciphertext Ab + e for random b; e,

can attacker efficiently find b; e?



6

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.

Secrets: distinct a1; : : : ; an ∈ Fq ;

monic irreducible degree-w

polynomial g ∈ Fq[x ].

Goppa code: kernel of

the map v 7→
P
i vi=(x − ai )

from Fn2 to Fq[x ]=g .

Typical dimension n − w lg q.

McEliece uses random matrix A

whose image is this code.

7

One-wayness (OW-CPA)

Fundamental security question:

Given random public key A and

ciphertext Ab + e for random b; e,

can attacker efficiently find b; e?



6

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.

Secrets: distinct a1; : : : ; an ∈ Fq ;

monic irreducible degree-w

polynomial g ∈ Fq[x ].

Goppa code: kernel of

the map v 7→
P
i vi=(x − ai )

from Fn2 to Fq[x ]=g .

Typical dimension n − w lg q.

McEliece uses random matrix A

whose image is this code.

7

One-wayness (OW-CPA)

Fundamental security question:

Given random public key A and

ciphertext Ab + e for random b; e,

can attacker efficiently find b; e?

1962 Prange: simple attack idea

guiding sizes in 1978 McEliece.



6

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.

Secrets: distinct a1; : : : ; an ∈ Fq ;

monic irreducible degree-w

polynomial g ∈ Fq[x ].

Goppa code: kernel of

the map v 7→
P
i vi=(x − ai )

from Fn2 to Fq[x ]=g .

Typical dimension n − w lg q.

McEliece uses random matrix A

whose image is this code.

7

One-wayness (OW-CPA)

Fundamental security question:

Given random public key A and

ciphertext Ab + e for random b; e,

can attacker efficiently find b; e?

1962 Prange: simple attack idea

guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against Prange’s attack.

Here c0 ≈ 0:7418860694.



6

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.

Secrets: distinct a1; : : : ; an ∈ Fq ;

monic irreducible degree-w

polynomial g ∈ Fq[x ].

Goppa code: kernel of

the map v 7→
P
i vi=(x − ai )

from Fn2 to Fq[x ]=g .

Typical dimension n − w lg q.

McEliece uses random matrix A

whose image is this code.

7

One-wayness (OW-CPA)

Fundamental security question:

Given random public key A and

ciphertext Ab + e for random b; e,

can attacker efficiently find b; e?

1962 Prange: simple attack idea

guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against Prange’s attack.

Here c0 ≈ 0:7418860694.

8

≥25 subsequent publications

analyzing one-wayness of system:

1981 Clark–Cain,

crediting Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.



6

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.

Secrets: distinct a1; : : : ; an ∈ Fq ;

monic irreducible degree-w

polynomial g ∈ Fq[x ].

Goppa code: kernel of

the map v 7→
P
i vi=(x − ai )

from Fn2 to Fq[x ]=g .

Typical dimension n − w lg q.

McEliece uses random matrix A

whose image is this code.

7

One-wayness (OW-CPA)

Fundamental security question:

Given random public key A and

ciphertext Ab + e for random b; e,

can attacker efficiently find b; e?

1962 Prange: simple attack idea

guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against Prange’s attack.

Here c0 ≈ 0:7418860694.

8

≥25 subsequent publications

analyzing one-wayness of system:

1981 Clark–Cain,

crediting Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.



6

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.

Secrets: distinct a1; : : : ; an ∈ Fq ;

monic irreducible degree-w

polynomial g ∈ Fq[x ].

Goppa code: kernel of

the map v 7→
P
i vi=(x − ai )

from Fn2 to Fq[x ]=g .

Typical dimension n − w lg q.

McEliece uses random matrix A

whose image is this code.

7

One-wayness (OW-CPA)

Fundamental security question:

Given random public key A and

ciphertext Ab + e for random b; e,

can attacker efficiently find b; e?

1962 Prange: simple attack idea

guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against Prange’s attack.

Here c0 ≈ 0:7418860694.

8

≥25 subsequent publications

analyzing one-wayness of system:

1981 Clark–Cain,

crediting Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.



7

One-wayness (OW-CPA)

Fundamental security question:

Given random public key A and

ciphertext Ab + e for random b; e,

can attacker efficiently find b; e?

1962 Prange: simple attack idea

guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against Prange’s attack.

Here c0 ≈ 0:7418860694.

8

≥25 subsequent publications

analyzing one-wayness of system:

1981 Clark–Cain,

crediting Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.



7

One-wayness (OW-CPA)

Fundamental security question:

Given random public key A and

ciphertext Ab + e for random b; e,

can attacker efficiently find b; e?

1962 Prange: simple attack idea

guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against Prange’s attack.

Here c0 ≈ 0:7418860694.

8

≥25 subsequent publications

analyzing one-wayness of system:

1981 Clark–Cain,

crediting Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

9

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Finiasz–Sendrier.

2011 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2012 Becker–Joux–May–Meurer.

2013 Hamdaoui–Sendrier.

2015 May–Ozerov.

2016 Canto Torres–Sendrier.



7

One-wayness (OW-CPA)

Fundamental security question:

Given random public key A and

ciphertext Ab + e for random b; e,

can attacker efficiently find b; e?

1962 Prange: simple attack idea

guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against Prange’s attack.

Here c0 ≈ 0:7418860694.

8

≥25 subsequent publications

analyzing one-wayness of system:

1981 Clark–Cain,

crediting Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

9

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Finiasz–Sendrier.

2011 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2012 Becker–Joux–May–Meurer.

2013 Hamdaoui–Sendrier.

2015 May–Ozerov.

2016 Canto Torres–Sendrier.



7

One-wayness (OW-CPA)

Fundamental security question:

Given random public key A and

ciphertext Ab + e for random b; e,

can attacker efficiently find b; e?

1962 Prange: simple attack idea

guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against Prange’s attack.

Here c0 ≈ 0:7418860694.

8

≥25 subsequent publications

analyzing one-wayness of system:

1981 Clark–Cain,

crediting Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

9

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Finiasz–Sendrier.

2011 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2012 Becker–Joux–May–Meurer.

2013 Hamdaoui–Sendrier.

2015 May–Ozerov.

2016 Canto Torres–Sendrier.



8

≥25 subsequent publications

analyzing one-wayness of system:

1981 Clark–Cain,

crediting Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

9

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Finiasz–Sendrier.

2011 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2012 Becker–Joux–May–Meurer.

2013 Hamdaoui–Sendrier.

2015 May–Ozerov.

2016 Canto Torres–Sendrier.



8

≥25 subsequent publications

analyzing one-wayness of system:

1981 Clark–Cain,

crediting Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

9

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Finiasz–Sendrier.

2011 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2012 Becker–Joux–May–Meurer.

2013 Hamdaoui–Sendrier.

2015 May–Ozerov.

2016 Canto Torres–Sendrier.

10

The McEliece system

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against all attacks known today.

Same c0 ≈ 0:7418860694.



8

≥25 subsequent publications

analyzing one-wayness of system:

1981 Clark–Cain,

crediting Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

9

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Finiasz–Sendrier.

2011 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2012 Becker–Joux–May–Meurer.

2013 Hamdaoui–Sendrier.

2015 May–Ozerov.

2016 Canto Torres–Sendrier.

10

The McEliece system

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against all attacks known today.

Same c0 ≈ 0:7418860694.



8

≥25 subsequent publications

analyzing one-wayness of system:

1981 Clark–Cain,

crediting Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

9

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Finiasz–Sendrier.

2011 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2012 Becker–Joux–May–Meurer.

2013 Hamdaoui–Sendrier.

2015 May–Ozerov.

2016 Canto Torres–Sendrier.

10

The McEliece system

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against all attacks known today.

Same c0 ≈ 0:7418860694.



9

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Finiasz–Sendrier.

2011 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2012 Becker–Joux–May–Meurer.

2013 Hamdaoui–Sendrier.

2015 May–Ozerov.

2016 Canto Torres–Sendrier.

10

The McEliece system

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against all attacks known today.

Same c0 ≈ 0:7418860694.



9

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Finiasz–Sendrier.

2011 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2012 Becker–Joux–May–Meurer.

2013 Hamdaoui–Sendrier.

2015 May–Ozerov.

2016 Canto Torres–Sendrier.

10

The McEliece system

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against all attacks known today.

Same c0 ≈ 0:7418860694.

Replacing – with 2–

stops all known quantum attacks

(and is probably massive overkill),

as in symmetric crypto.



9

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Finiasz–Sendrier.

2011 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2012 Becker–Joux–May–Meurer.

2013 Hamdaoui–Sendrier.

2015 May–Ozerov.

2016 Canto Torres–Sendrier.

10

The McEliece system

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against all attacks known today.

Same c0 ≈ 0:7418860694.

Replacing – with 2–

stops all known quantum attacks

(and is probably massive overkill),

as in symmetric crypto.

mceliece6960119 parameter set

(2008 Bernstein–Lange–Peters):

q = 8192, n = 6960, w = 119.

mceliece8192128 parameter set:

q = 8192, n = 8192, w = 128.



9

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Finiasz–Sendrier.

2011 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2012 Becker–Joux–May–Meurer.

2013 Hamdaoui–Sendrier.

2015 May–Ozerov.

2016 Canto Torres–Sendrier.

10

The McEliece system

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against all attacks known today.

Same c0 ≈ 0:7418860694.

Replacing – with 2–

stops all known quantum attacks

(and is probably massive overkill),

as in symmetric crypto.

mceliece6960119 parameter set

(2008 Bernstein–Lange–Peters):

q = 8192, n = 6960, w = 119.

mceliece8192128 parameter set:

q = 8192, n = 8192, w = 128.

11

McEliece’s system prompted a

huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter’s dual PKE;

e.g., many decoding speedups.

Classic McEliece uses all this.



9

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Finiasz–Sendrier.

2011 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2012 Becker–Joux–May–Meurer.

2013 Hamdaoui–Sendrier.

2015 May–Ozerov.

2016 Canto Torres–Sendrier.

10

The McEliece system

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against all attacks known today.

Same c0 ≈ 0:7418860694.

Replacing – with 2–

stops all known quantum attacks

(and is probably massive overkill),

as in symmetric crypto.

mceliece6960119 parameter set

(2008 Bernstein–Lange–Peters):

q = 8192, n = 6960, w = 119.

mceliece8192128 parameter set:

q = 8192, n = 8192, w = 128.

11

McEliece’s system prompted a

huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter’s dual PKE;

e.g., many decoding speedups.

Classic McEliece uses all this.



9

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Finiasz–Sendrier.

2011 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2012 Becker–Joux–May–Meurer.

2013 Hamdaoui–Sendrier.

2015 May–Ozerov.

2016 Canto Torres–Sendrier.

10

The McEliece system

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against all attacks known today.

Same c0 ≈ 0:7418860694.

Replacing – with 2–

stops all known quantum attacks

(and is probably massive overkill),

as in symmetric crypto.

mceliece6960119 parameter set

(2008 Bernstein–Lange–Peters):

q = 8192, n = 6960, w = 119.

mceliece8192128 parameter set:

q = 8192, n = 8192, w = 128.

11

McEliece’s system prompted a

huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter’s dual PKE;

e.g., many decoding speedups.

Classic McEliece uses all this.



10

The McEliece system

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against all attacks known today.

Same c0 ≈ 0:7418860694.

Replacing – with 2–

stops all known quantum attacks

(and is probably massive overkill),

as in symmetric crypto.

mceliece6960119 parameter set

(2008 Bernstein–Lange–Peters):

q = 8192, n = 6960, w = 119.

mceliece8192128 parameter set:

q = 8192, n = 8192, w = 128.

11

McEliece’s system prompted a

huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter’s dual PKE;

e.g., many decoding speedups.

Classic McEliece uses all this.



10

The McEliece system

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against all attacks known today.

Same c0 ≈ 0:7418860694.

Replacing – with 2–

stops all known quantum attacks

(and is probably massive overkill),

as in symmetric crypto.

mceliece6960119 parameter set

(2008 Bernstein–Lange–Peters):

q = 8192, n = 6960, w = 119.

mceliece8192128 parameter set:

q = 8192, n = 8192, w = 128.

11

McEliece’s system prompted a

huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter’s dual PKE;

e.g., many decoding speedups.

Classic McEliece uses all this.

Classic McEliece does not use

variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes

with other families of codes;

e.g., lattice-based cryptography.



10

The McEliece system

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against all attacks known today.

Same c0 ≈ 0:7418860694.

Replacing – with 2–

stops all known quantum attacks

(and is probably massive overkill),

as in symmetric crypto.

mceliece6960119 parameter set

(2008 Bernstein–Lange–Peters):

q = 8192, n = 6960, w = 119.

mceliece8192128 parameter set:

q = 8192, n = 8192, w = 128.

11

McEliece’s system prompted a

huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter’s dual PKE;

e.g., many decoding speedups.

Classic McEliece uses all this.

Classic McEliece does not use

variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes

with other families of codes;

e.g., lattice-based cryptography.

12

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k:

n × k matrix G with Γ = G · Fk2 .

McEliece public key: G times

random k × k invertible matrix.



10

The McEliece system

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against all attacks known today.

Same c0 ≈ 0:7418860694.

Replacing – with 2–

stops all known quantum attacks

(and is probably massive overkill),

as in symmetric crypto.

mceliece6960119 parameter set

(2008 Bernstein–Lange–Peters):

q = 8192, n = 6960, w = 119.

mceliece8192128 parameter set:

q = 8192, n = 8192, w = 128.

11

McEliece’s system prompted a

huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter’s dual PKE;

e.g., many decoding speedups.

Classic McEliece uses all this.

Classic McEliece does not use

variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes

with other families of codes;

e.g., lattice-based cryptography.

12

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k:

n × k matrix G with Γ = G · Fk2 .

McEliece public key: G times

random k × k invertible matrix.



10

The McEliece system

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against all attacks known today.

Same c0 ≈ 0:7418860694.

Replacing – with 2–

stops all known quantum attacks

(and is probably massive overkill),

as in symmetric crypto.

mceliece6960119 parameter set

(2008 Bernstein–Lange–Peters):

q = 8192, n = 6960, w = 119.

mceliece8192128 parameter set:

q = 8192, n = 8192, w = 128.

11

McEliece’s system prompted a

huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter’s dual PKE;

e.g., many decoding speedups.

Classic McEliece uses all this.

Classic McEliece does not use

variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes

with other families of codes;

e.g., lattice-based cryptography.

12

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k:

n × k matrix G with Γ = G · Fk2 .

McEliece public key: G times

random k × k invertible matrix.



11

McEliece’s system prompted a

huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter’s dual PKE;

e.g., many decoding speedups.

Classic McEliece uses all this.

Classic McEliece does not use

variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes

with other families of codes;

e.g., lattice-based cryptography.

12

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k:

n × k matrix G with Γ = G · Fk2 .

McEliece public key: G times

random k × k invertible matrix.



11

McEliece’s system prompted a

huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter’s dual PKE;

e.g., many decoding speedups.

Classic McEliece uses all this.

Classic McEliece does not use

variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes

with other families of codes;

e.g., lattice-based cryptography.

12

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k:

n × k matrix G with Γ = G · Fk2 .

McEliece public key: G times

random k × k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix

in “systematic form”: bottom k

rows are k × k identity matrix Ik .

Public key T is top n − k rows.



11

McEliece’s system prompted a

huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter’s dual PKE;

e.g., many decoding speedups.

Classic McEliece uses all this.

Classic McEliece does not use

variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes

with other families of codes;

e.g., lattice-based cryptography.

12

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k:

n × k matrix G with Γ = G · Fk2 .

McEliece public key: G times

random k × k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix

in “systematic form”: bottom k

rows are k × k identity matrix Ik .

Public key T is top n − k rows.

Pr ≈29% that systematic form

exists. Security loss: <2 bits.



11

McEliece’s system prompted a

huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter’s dual PKE;

e.g., many decoding speedups.

Classic McEliece uses all this.

Classic McEliece does not use

variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes

with other families of codes;

e.g., lattice-based cryptography.

12

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k:

n × k matrix G with Γ = G · Fk2 .

McEliece public key: G times

random k × k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix

in “systematic form”: bottom k

rows are k × k identity matrix Ik .

Public key T is top n − k rows.

Pr ≈29% that systematic form

exists. Security loss: <2 bits.

13

Niederreiter ciphertext compression

Use Niederreiter key A =

„
T
Ik

«
.

McEliece ciphertext: Ab+ e ∈ Fn2.



11

McEliece’s system prompted a

huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter’s dual PKE;

e.g., many decoding speedups.

Classic McEliece uses all this.

Classic McEliece does not use

variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes

with other families of codes;

e.g., lattice-based cryptography.

12

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k:

n × k matrix G with Γ = G · Fk2 .

McEliece public key: G times

random k × k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix

in “systematic form”: bottom k

rows are k × k identity matrix Ik .

Public key T is top n − k rows.

Pr ≈29% that systematic form

exists. Security loss: <2 bits.

13

Niederreiter ciphertext compression

Use Niederreiter key A =

„
T
Ik

«
.

McEliece ciphertext: Ab+ e ∈ Fn2.



11

McEliece’s system prompted a

huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter’s dual PKE;

e.g., many decoding speedups.

Classic McEliece uses all this.

Classic McEliece does not use

variants whose security has not

been studied as thoroughly:

e.g., replacing binary Goppa codes

with other families of codes;

e.g., lattice-based cryptography.

12

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k:

n × k matrix G with Γ = G · Fk2 .

McEliece public key: G times

random k × k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix

in “systematic form”: bottom k

rows are k × k identity matrix Ik .

Public key T is top n − k rows.

Pr ≈29% that systematic form

exists. Security loss: <2 bits.

13

Niederreiter ciphertext compression

Use Niederreiter key A =

„
T
Ik

«
.

McEliece ciphertext: Ab+ e ∈ Fn2.



12

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k:

n × k matrix G with Γ = G · Fk2 .

McEliece public key: G times

random k × k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix

in “systematic form”: bottom k

rows are k × k identity matrix Ik .

Public key T is top n − k rows.

Pr ≈29% that systematic form

exists. Security loss: <2 bits.

13

Niederreiter ciphertext compression

Use Niederreiter key A =

„
T
Ik

«
.

McEliece ciphertext: Ab+ e ∈ Fn2.



12

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k:

n × k matrix G with Γ = G · Fk2 .

McEliece public key: G times

random k × k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix

in “systematic form”: bottom k

rows are k × k identity matrix Ik .

Public key T is top n − k rows.

Pr ≈29% that systematic form

exists. Security loss: <2 bits.

13

Niederreiter ciphertext compression

Use Niederreiter key A =

„
T
Ik

«
.

McEliece ciphertext: Ab+ e ∈ Fn2.

Niederreiter ciphertext, shorter:

He ∈ Fn−k2 where H = (In−k |T ).



12

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k:

n × k matrix G with Γ = G · Fk2 .

McEliece public key: G times

random k × k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix

in “systematic form”: bottom k

rows are k × k identity matrix Ik .

Public key T is top n − k rows.

Pr ≈29% that systematic form

exists. Security loss: <2 bits.

13

Niederreiter ciphertext compression

Use Niederreiter key A =

„
T
Ik

«
.

McEliece ciphertext: Ab+ e ∈ Fn2.

Niederreiter ciphertext, shorter:

He ∈ Fn−k2 where H = (In−k |T ).

Given H and Niederreiter’s He,

can attacker efficiently find e?



12

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k:

n × k matrix G with Γ = G · Fk2 .

McEliece public key: G times

random k × k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix

in “systematic form”: bottom k

rows are k × k identity matrix Ik .

Public key T is top n − k rows.

Pr ≈29% that systematic form

exists. Security loss: <2 bits.

13

Niederreiter ciphertext compression

Use Niederreiter key A =

„
T
Ik

«
.

McEliece ciphertext: Ab+ e ∈ Fn2.

Niederreiter ciphertext, shorter:

He ∈ Fn−k2 where H = (In−k |T ).

Given H and Niederreiter’s He,

can attacker efficiently find e?

If so, attacker can efficiently

find b; e given A and Ab + e:

compute H(Ab + e) = He;

find e; compute b from Ab.



12

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k:

n × k matrix G with Γ = G · Fk2 .

McEliece public key: G times

random k × k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix

in “systematic form”: bottom k

rows are k × k identity matrix Ik .

Public key T is top n − k rows.

Pr ≈29% that systematic form

exists. Security loss: <2 bits.

13

Niederreiter ciphertext compression

Use Niederreiter key A =

„
T
Ik

«
.

McEliece ciphertext: Ab+ e ∈ Fn2.

Niederreiter ciphertext, shorter:

He ∈ Fn−k2 where H = (In−k |T ).

Given H and Niederreiter’s He,

can attacker efficiently find e?

If so, attacker can efficiently

find b; e given A and Ab + e:

compute H(Ab + e) = He;

find e; compute b from Ab.

14

Sampling via sorting

How to generate

random permutation of Fq?

One answer (see, e.g., Knuth):

generate q random numbers,

sort them together with Fq .



12

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k:

n × k matrix G with Γ = G · Fk2 .

McEliece public key: G times

random k × k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix

in “systematic form”: bottom k

rows are k × k identity matrix Ik .

Public key T is top n − k rows.

Pr ≈29% that systematic form

exists. Security loss: <2 bits.

13

Niederreiter ciphertext compression

Use Niederreiter key A =

„
T
Ik

«
.

McEliece ciphertext: Ab+ e ∈ Fn2.

Niederreiter ciphertext, shorter:

He ∈ Fn−k2 where H = (In−k |T ).

Given H and Niederreiter’s He,

can attacker efficiently find e?

If so, attacker can efficiently

find b; e given A and Ab + e:

compute H(Ab + e) = He;

find e; compute b from Ab.

14

Sampling via sorting

How to generate

random permutation of Fq?

One answer (see, e.g., Knuth):

generate q random numbers,

sort them together with Fq .



12

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k :

n × k matrix G with Γ = G · Fk2 .

McEliece public key: G times

random k × k invertible matrix.

Niederreiter instead reduces G

to the unique generator matrix

in “systematic form”: bottom k

rows are k × k identity matrix Ik .

Public key T is top n − k rows.

Pr ≈29% that systematic form

exists. Security loss: <2 bits.

13

Niederreiter ciphertext compression

Use Niederreiter key A =

„
T
Ik

«
.

McEliece ciphertext: Ab+ e ∈ Fn2.

Niederreiter ciphertext, shorter:

He ∈ Fn−k2 where H = (In−k |T ).

Given H and Niederreiter’s He,

can attacker efficiently find e?

If so, attacker can efficiently

find b; e given A and Ab + e:

compute H(Ab + e) = He;

find e; compute b from Ab.

14

Sampling via sorting

How to generate

random permutation of Fq?

One answer (see, e.g., Knuth):

generate q random numbers,

sort them together with Fq .



13

Niederreiter ciphertext compression

Use Niederreiter key A =

„
T
Ik

«
.

McEliece ciphertext: Ab+ e ∈ Fn2.

Niederreiter ciphertext, shorter:

He ∈ Fn−k2 where H = (In−k |T ).

Given H and Niederreiter’s He,

can attacker efficiently find e?

If so, attacker can efficiently

find b; e given A and Ab + e:

compute H(Ab + e) = He;

find e; compute b from Ab.

14

Sampling via sorting

How to generate

random permutation of Fq?

One answer (see, e.g., Knuth):

generate q random numbers,

sort them together with Fq .



13

Niederreiter ciphertext compression

Use Niederreiter key A =

„
T
Ik

«
.

McEliece ciphertext: Ab+ e ∈ Fn2.

Niederreiter ciphertext, shorter:

He ∈ Fn−k2 where H = (In−k |T ).

Given H and Niederreiter’s He,

can attacker efficiently find e?

If so, attacker can efficiently

find b; e given A and Ab + e:

compute H(Ab + e) = He;

find e; compute b from Ab.

14

Sampling via sorting

How to generate

random permutation of Fq?

One answer (see, e.g., Knuth):

generate q random numbers,

sort them together with Fq .

How to generate

random weight-w vector e ∈ Fn2?

One answer:

generate n random numbers,

sort them together with

(1; 1; : : : ; 1; 0; 0; : : : ; 0).



13

Niederreiter ciphertext compression

Use Niederreiter key A =

„
T
Ik

«
.

McEliece ciphertext: Ab+ e ∈ Fn2.

Niederreiter ciphertext, shorter:

He ∈ Fn−k2 where H = (In−k |T ).

Given H and Niederreiter’s He,

can attacker efficiently find e?

If so, attacker can efficiently

find b; e given A and Ab + e:

compute H(Ab + e) = He;

find e; compute b from Ab.

14

Sampling via sorting

How to generate

random permutation of Fq?

One answer (see, e.g., Knuth):

generate q random numbers,

sort them together with Fq .

How to generate

random weight-w vector e ∈ Fn2?

One answer:

generate n random numbers,

sort them together with

(1; 1; : : : ; 1; 0; 0; : : : ; 0).

Divergence analysis ⇒ use 32-bit

random numbers for typical n.



13

Niederreiter ciphertext compression

Use Niederreiter key A =

„
T
Ik

«
.

McEliece ciphertext: Ab+ e ∈ Fn2.

Niederreiter ciphertext, shorter:

He ∈ Fn−k2 where H = (In−k |T ).

Given H and Niederreiter’s He,

can attacker efficiently find e?

If so, attacker can efficiently

find b; e given A and Ab + e:

compute H(Ab + e) = He;

find e; compute b from Ab.

14

Sampling via sorting

How to generate

random permutation of Fq?

One answer (see, e.g., Knuth):

generate q random numbers,

sort them together with Fq .

How to generate

random weight-w vector e ∈ Fn2?

One answer:

generate n random numbers,

sort them together with

(1; 1; : : : ; 1; 0; 0; : : : ; 0).

Divergence analysis ⇒ use 32-bit

random numbers for typical n.

15

Similar computations are

used in other NIST submissions.



13

Niederreiter ciphertext compression

Use Niederreiter key A =

„
T
Ik

«
.

McEliece ciphertext: Ab+ e ∈ Fn2.

Niederreiter ciphertext, shorter:

He ∈ Fn−k2 where H = (In−k |T ).

Given H and Niederreiter’s He,

can attacker efficiently find e?

If so, attacker can efficiently

find b; e given A and Ab + e:

compute H(Ab + e) = He;

find e; compute b from Ab.

14

Sampling via sorting

How to generate

random permutation of Fq?

One answer (see, e.g., Knuth):

generate q random numbers,

sort them together with Fq .

How to generate

random weight-w vector e ∈ Fn2?

One answer:

generate n random numbers,

sort them together with

(1; 1; : : : ; 1; 0; 0; : : : ; 0).

Divergence analysis ⇒ use 32-bit

random numbers for typical n.

15

Similar computations are

used in other NIST submissions.



13

Niederreiter ciphertext compression

Use Niederreiter key A =

„
T
Ik

«
.

McEliece ciphertext: Ab+ e ∈ Fn2.

Niederreiter ciphertext, shorter:

He ∈ Fn−k2 where H = (In−k |T ).

Given H and Niederreiter’s He,

can attacker efficiently find e?

If so, attacker can efficiently

find b; e given A and Ab + e:

compute H(Ab + e) = He;

find e; compute b from Ab.

14

Sampling via sorting

How to generate

random permutation of Fq?

One answer (see, e.g., Knuth):

generate q random numbers,

sort them together with Fq .

How to generate

random weight-w vector e ∈ Fn2?

One answer:

generate n random numbers,

sort them together with

(1; 1; : : : ; 1; 0; 0; : : : ; 0).

Divergence analysis ⇒ use 32-bit

random numbers for typical n.

15

Similar computations are

used in other NIST submissions.



14

Sampling via sorting

How to generate

random permutation of Fq?

One answer (see, e.g., Knuth):

generate q random numbers,

sort them together with Fq .

How to generate

random weight-w vector e ∈ Fn2?

One answer:

generate n random numbers,

sort them together with

(1; 1; : : : ; 1; 0; 0; : : : ; 0).

Divergence analysis ⇒ use 32-bit

random numbers for typical n.

15

Similar computations are

used in other NIST submissions.



14

Sampling via sorting

How to generate

random permutation of Fq?

One answer (see, e.g., Knuth):

generate q random numbers,

sort them together with Fq .

How to generate

random weight-w vector e ∈ Fn2?

One answer:

generate n random numbers,

sort them together with

(1; 1; : : : ; 1; 0; 0; : : : ; 0).

Divergence analysis ⇒ use 32-bit

random numbers for typical n.

15

Similar computations are

used in other NIST submissions.

To avoid timing attacks, use

constant-time sorting networks.



14

Sampling via sorting

How to generate

random permutation of Fq?

One answer (see, e.g., Knuth):

generate q random numbers,

sort them together with Fq .

How to generate

random weight-w vector e ∈ Fn2?

One answer:

generate n random numbers,

sort them together with

(1; 1; : : : ; 1; 0; 0; : : : ; 0).

Divergence analysis ⇒ use 32-bit

random numbers for typical n.

15

Similar computations are

used in other NIST submissions.

To avoid timing attacks, use

constant-time sorting networks.

NTRU Prime (Bernstein,

Chuengsatiansup, Lange, van

Vredendaal): new vectorized

constant-time sorting software

using Batcher’s merge exchange.



14

Sampling via sorting

How to generate

random permutation of Fq?

One answer (see, e.g., Knuth):

generate q random numbers,

sort them together with Fq .

How to generate

random weight-w vector e ∈ Fn2?

One answer:

generate n random numbers,

sort them together with

(1; 1; : : : ; 1; 0; 0; : : : ; 0).

Divergence analysis ⇒ use 32-bit

random numbers for typical n.

15

Similar computations are

used in other NIST submissions.

To avoid timing attacks, use

constant-time sorting networks.

NTRU Prime (Bernstein,

Chuengsatiansup, Lange, van

Vredendaal): new vectorized

constant-time sorting software

using Batcher’s merge exchange.

Optimized non-constant-time

radix sort in Intel’s Integrated

Performance Primitives library

is : : :



14

Sampling via sorting

How to generate

random permutation of Fq?

One answer (see, e.g., Knuth):

generate q random numbers,

sort them together with Fq .

How to generate

random weight-w vector e ∈ Fn2?

One answer:

generate n random numbers,

sort them together with

(1; 1; : : : ; 1; 0; 0; : : : ; 0).

Divergence analysis ⇒ use 32-bit

random numbers for typical n.

15

Similar computations are

used in other NIST submissions.

To avoid timing attacks, use

constant-time sorting networks.

NTRU Prime (Bernstein,

Chuengsatiansup, Lange, van

Vredendaal): new vectorized

constant-time sorting software

using Batcher’s merge exchange.

Optimized non-constant-time

radix sort in Intel’s Integrated

Performance Primitives library

is : : : 5× slower than this.



14

Sampling via sorting

How to generate

random permutation of Fq?

One answer (see, e.g., Knuth):

generate q random numbers,

sort them together with Fq .

How to generate

random weight-w vector e ∈ Fn2?

One answer:

generate n random numbers,

sort them together with

(1; 1; : : : ; 1; 0; 0; : : : ; 0).

Divergence analysis ⇒ use 32-bit

random numbers for typical n.

15

Similar computations are

used in other NIST submissions.

To avoid timing attacks, use

constant-time sorting networks.

NTRU Prime (Bernstein,

Chuengsatiansup, Lange, van

Vredendaal): new vectorized

constant-time sorting software

using Batcher’s merge exchange.

Optimized non-constant-time

radix sort in Intel’s Integrated

Performance Primitives library

is : : : 5× slower than this.

16

Much more on performance

See, e.g., the following papers

and references cited therein:

2013 Bernstein–Chou–Schwabe

“McBits: fast constant-time

code-based cryptography”.

2017 Chou “McBits revisited”.

2017 Wang–Szefer–Niederhagen

“FPGA-based key generator for

the Niederreiter cryptosystem

using binary Goppa codes”.

2018 Wang–Szefer–Niederhagen,

FPGA cryptosystem, to appear.



14

Sampling via sorting

How to generate

random permutation of Fq?

One answer (see, e.g., Knuth):

generate q random numbers,

sort them together with Fq .

How to generate

random weight-w vector e ∈ Fn2?

One answer:

generate n random numbers,

sort them together with

(1; 1; : : : ; 1; 0; 0; : : : ; 0).

Divergence analysis ⇒ use 32-bit

random numbers for typical n.

15

Similar computations are

used in other NIST submissions.

To avoid timing attacks, use

constant-time sorting networks.

NTRU Prime (Bernstein,

Chuengsatiansup, Lange, van

Vredendaal): new vectorized

constant-time sorting software

using Batcher’s merge exchange.

Optimized non-constant-time

radix sort in Intel’s Integrated

Performance Primitives library

is : : : 5× slower than this.

16

Much more on performance

See, e.g., the following papers

and references cited therein:

2013 Bernstein–Chou–Schwabe

“McBits: fast constant-time

code-based cryptography”.

2017 Chou “McBits revisited”.

2017 Wang–Szefer–Niederhagen

“FPGA-based key generator for

the Niederreiter cryptosystem

using binary Goppa codes”.

2018 Wang–Szefer–Niederhagen,

FPGA cryptosystem, to appear.



14

Sampling via sorting

How to generate

random permutation of Fq?

One answer (see, e.g., Knuth):

generate q random numbers,

sort them together with Fq .

How to generate

random weight-w vector e ∈ Fn2?

One answer:

generate n random numbers,

sort them together with

(1; 1; : : : ; 1; 0; 0; : : : ; 0).

Divergence analysis ⇒ use 32-bit

random numbers for typical n.

15

Similar computations are

used in other NIST submissions.

To avoid timing attacks, use

constant-time sorting networks.

NTRU Prime (Bernstein,

Chuengsatiansup, Lange, van

Vredendaal): new vectorized

constant-time sorting software

using Batcher’s merge exchange.

Optimized non-constant-time

radix sort in Intel’s Integrated

Performance Primitives library

is : : : 5× slower than this.

16

Much more on performance

See, e.g., the following papers

and references cited therein:

2013 Bernstein–Chou–Schwabe

“McBits: fast constant-time

code-based cryptography”.

2017 Chou “McBits revisited”.

2017 Wang–Szefer–Niederhagen

“FPGA-based key generator for

the Niederreiter cryptosystem

using binary Goppa codes”.

2018 Wang–Szefer–Niederhagen,

FPGA cryptosystem, to appear.



15

Similar computations are

used in other NIST submissions.

To avoid timing attacks, use

constant-time sorting networks.

NTRU Prime (Bernstein,

Chuengsatiansup, Lange, van

Vredendaal): new vectorized

constant-time sorting software

using Batcher’s merge exchange.

Optimized non-constant-time

radix sort in Intel’s Integrated

Performance Primitives library

is : : : 5× slower than this.

16

Much more on performance

See, e.g., the following papers

and references cited therein:

2013 Bernstein–Chou–Schwabe

“McBits: fast constant-time

code-based cryptography”.

2017 Chou “McBits revisited”.

2017 Wang–Szefer–Niederhagen

“FPGA-based key generator for

the Niederreiter cryptosystem

using binary Goppa codes”.

2018 Wang–Szefer–Niederhagen,

FPGA cryptosystem, to appear.



15

Similar computations are

used in other NIST submissions.

To avoid timing attacks, use

constant-time sorting networks.

NTRU Prime (Bernstein,

Chuengsatiansup, Lange, van

Vredendaal): new vectorized

constant-time sorting software

using Batcher’s merge exchange.

Optimized non-constant-time

radix sort in Intel’s Integrated

Performance Primitives library

is : : : 5× slower than this.

16

Much more on performance

See, e.g., the following papers

and references cited therein:

2013 Bernstein–Chou–Schwabe

“McBits: fast constant-time

code-based cryptography”.

2017 Chou “McBits revisited”.

2017 Wang–Szefer–Niederhagen

“FPGA-based key generator for

the Niederreiter cryptosystem

using binary Goppa codes”.

2018 Wang–Szefer–Niederhagen,

FPGA cryptosystem, to appear.

17

IND-CCA2 conversions

Classic McEliece aims for

stronger security goal than

original McEliece paper:

indistinguishability vs. adaptive

chosen-ciphertext attacks.

Many protocols need this.



15

Similar computations are

used in other NIST submissions.

To avoid timing attacks, use

constant-time sorting networks.

NTRU Prime (Bernstein,

Chuengsatiansup, Lange, van

Vredendaal): new vectorized

constant-time sorting software

using Batcher’s merge exchange.

Optimized non-constant-time

radix sort in Intel’s Integrated

Performance Primitives library

is : : : 5× slower than this.

16

Much more on performance

See, e.g., the following papers

and references cited therein:

2013 Bernstein–Chou–Schwabe

“McBits: fast constant-time

code-based cryptography”.

2017 Chou “McBits revisited”.

2017 Wang–Szefer–Niederhagen

“FPGA-based key generator for

the Niederreiter cryptosystem

using binary Goppa codes”.

2018 Wang–Szefer–Niederhagen,

FPGA cryptosystem, to appear.

17

IND-CCA2 conversions

Classic McEliece aims for

stronger security goal than

original McEliece paper:

indistinguishability vs. adaptive

chosen-ciphertext attacks.

Many protocols need this.



15

Similar computations are

used in other NIST submissions.

To avoid timing attacks, use

constant-time sorting networks.

NTRU Prime (Bernstein,

Chuengsatiansup, Lange, van

Vredendaal): new vectorized

constant-time sorting software

using Batcher’s merge exchange.

Optimized non-constant-time

radix sort in Intel’s Integrated

Performance Primitives library

is : : : 5× slower than this.

16

Much more on performance

See, e.g., the following papers

and references cited therein:

2013 Bernstein–Chou–Schwabe

“McBits: fast constant-time

code-based cryptography”.

2017 Chou “McBits revisited”.

2017 Wang–Szefer–Niederhagen

“FPGA-based key generator for

the Niederreiter cryptosystem

using binary Goppa codes”.

2018 Wang–Szefer–Niederhagen,

FPGA cryptosystem, to appear.

17

IND-CCA2 conversions

Classic McEliece aims for

stronger security goal than

original McEliece paper:

indistinguishability vs. adaptive

chosen-ciphertext attacks.

Many protocols need this.



16

Much more on performance

See, e.g., the following papers

and references cited therein:

2013 Bernstein–Chou–Schwabe

“McBits: fast constant-time

code-based cryptography”.

2017 Chou “McBits revisited”.

2017 Wang–Szefer–Niederhagen

“FPGA-based key generator for

the Niederreiter cryptosystem

using binary Goppa codes”.

2018 Wang–Szefer–Niederhagen,

FPGA cryptosystem, to appear.

17

IND-CCA2 conversions

Classic McEliece aims for

stronger security goal than

original McEliece paper:

indistinguishability vs. adaptive

chosen-ciphertext attacks.

Many protocols need this.



16

Much more on performance

See, e.g., the following papers

and references cited therein:

2013 Bernstein–Chou–Schwabe

“McBits: fast constant-time

code-based cryptography”.

2017 Chou “McBits revisited”.

2017 Wang–Szefer–Niederhagen

“FPGA-based key generator for

the Niederreiter cryptosystem

using binary Goppa codes”.

2018 Wang–Szefer–Niederhagen,

FPGA cryptosystem, to appear.

17

IND-CCA2 conversions

Classic McEliece aims for

stronger security goal than

original McEliece paper:

indistinguishability vs. adaptive

chosen-ciphertext attacks.

Many protocols need this.

Useful simplification: Encrypt

user’s plaintext with AES-GCM.

Goal for public-key system:

transmit random AES-GCM key.

i.e. obtain IND-CCA2 PKE

by designing IND-CCA2 KEM.



16

Much more on performance

See, e.g., the following papers

and references cited therein:

2013 Bernstein–Chou–Schwabe

“McBits: fast constant-time

code-based cryptography”.

2017 Chou “McBits revisited”.

2017 Wang–Szefer–Niederhagen

“FPGA-based key generator for

the Niederreiter cryptosystem

using binary Goppa codes”.

2018 Wang–Szefer–Niederhagen,

FPGA cryptosystem, to appear.

17

IND-CCA2 conversions

Classic McEliece aims for

stronger security goal than

original McEliece paper:

indistinguishability vs. adaptive

chosen-ciphertext attacks.

Many protocols need this.

Useful simplification: Encrypt

user’s plaintext with AES-GCM.

Goal for public-key system:

transmit random AES-GCM key.

i.e. obtain IND-CCA2 PKE

by designing IND-CCA2 KEM.

18

Want future auditors to be

confident in long-term security.

Classic McEliece follows best

practices from literature:

1. Session key: feed random e

through standard hash function.



16

Much more on performance

See, e.g., the following papers

and references cited therein:

2013 Bernstein–Chou–Schwabe

“McBits: fast constant-time

code-based cryptography”.

2017 Chou “McBits revisited”.

2017 Wang–Szefer–Niederhagen

“FPGA-based key generator for

the Niederreiter cryptosystem

using binary Goppa codes”.

2018 Wang–Szefer–Niederhagen,

FPGA cryptosystem, to appear.

17

IND-CCA2 conversions

Classic McEliece aims for

stronger security goal than

original McEliece paper:

indistinguishability vs. adaptive

chosen-ciphertext attacks.

Many protocols need this.

Useful simplification: Encrypt

user’s plaintext with AES-GCM.

Goal for public-key system:

transmit random AES-GCM key.

i.e. obtain IND-CCA2 PKE

by designing IND-CCA2 KEM.

18

Want future auditors to be

confident in long-term security.

Classic McEliece follows best

practices from literature:

1. Session key: feed random e

through standard hash function.



16

Much more on performance

See, e.g., the following papers

and references cited therein:

2013 Bernstein–Chou–Schwabe

“McBits: fast constant-time

code-based cryptography”.

2017 Chou “McBits revisited”.

2017 Wang–Szefer–Niederhagen

“FPGA-based key generator for

the Niederreiter cryptosystem

using binary Goppa codes”.

2018 Wang–Szefer–Niederhagen,

FPGA cryptosystem, to appear.

17

IND-CCA2 conversions

Classic McEliece aims for

stronger security goal than

original McEliece paper:

indistinguishability vs. adaptive

chosen-ciphertext attacks.

Many protocols need this.

Useful simplification: Encrypt

user’s plaintext with AES-GCM.

Goal for public-key system:

transmit random AES-GCM key.

i.e. obtain IND-CCA2 PKE

by designing IND-CCA2 KEM.

18

Want future auditors to be

confident in long-term security.

Classic McEliece follows best

practices from literature:

1. Session key: feed random e

through standard hash function.



17

IND-CCA2 conversions

Classic McEliece aims for

stronger security goal than

original McEliece paper:

indistinguishability vs. adaptive

chosen-ciphertext attacks.

Many protocols need this.

Useful simplification: Encrypt

user’s plaintext with AES-GCM.

Goal for public-key system:

transmit random AES-GCM key.

i.e. obtain IND-CCA2 PKE

by designing IND-CCA2 KEM.

18

Want future auditors to be

confident in long-term security.

Classic McEliece follows best

practices from literature:

1. Session key: feed random e

through standard hash function.



17

IND-CCA2 conversions

Classic McEliece aims for

stronger security goal than

original McEliece paper:

indistinguishability vs. adaptive

chosen-ciphertext attacks.

Many protocols need this.

Useful simplification: Encrypt

user’s plaintext with AES-GCM.

Goal for public-key system:

transmit random AES-GCM key.

i.e. obtain IND-CCA2 PKE

by designing IND-CCA2 KEM.

18

Want future auditors to be

confident in long-term security.

Classic McEliece follows best

practices from literature:

1. Session key: feed random e

through standard hash function.

2. Ciphertext includes another

hash of e (“confirmation”).



17

IND-CCA2 conversions

Classic McEliece aims for

stronger security goal than

original McEliece paper:

indistinguishability vs. adaptive

chosen-ciphertext attacks.

Many protocols need this.

Useful simplification: Encrypt

user’s plaintext with AES-GCM.

Goal for public-key system:

transmit random AES-GCM key.

i.e. obtain IND-CCA2 PKE

by designing IND-CCA2 KEM.

18

Want future auditors to be

confident in long-term security.

Classic McEliece follows best

practices from literature:

1. Session key: feed random e

through standard hash function.

2. Ciphertext includes another

hash of e (“confirmation”).

3. Dec includes recomputation

and verification of ciphertext.



17

IND-CCA2 conversions

Classic McEliece aims for

stronger security goal than

original McEliece paper:

indistinguishability vs. adaptive

chosen-ciphertext attacks.

Many protocols need this.

Useful simplification: Encrypt

user’s plaintext with AES-GCM.

Goal for public-key system:

transmit random AES-GCM key.

i.e. obtain IND-CCA2 PKE

by designing IND-CCA2 KEM.

18

Want future auditors to be

confident in long-term security.

Classic McEliece follows best

practices from literature:

1. Session key: feed random e

through standard hash function.

2. Ciphertext includes another

hash of e (“confirmation”).

3. Dec includes recomputation

and verification of ciphertext.

4. KEM never fails: if inversion

fails or ciphertext does not match,

return hash of (secret; ciphertext).



17

IND-CCA2 conversions

Classic McEliece aims for

stronger security goal than

original McEliece paper:

indistinguishability vs. adaptive

chosen-ciphertext attacks.

Many protocols need this.

Useful simplification: Encrypt

user’s plaintext with AES-GCM.

Goal for public-key system:

transmit random AES-GCM key.

i.e. obtain IND-CCA2 PKE

by designing IND-CCA2 KEM.

18

Want future auditors to be

confident in long-term security.

Classic McEliece follows best

practices from literature:

1. Session key: feed random e

through standard hash function.

2. Ciphertext includes another

hash of e (“confirmation”).

3. Dec includes recomputation

and verification of ciphertext.

4. KEM never fails: if inversion

fails or ciphertext does not match,

return hash of (secret; ciphertext).

19

Further features of system

that simplify attack analysis:

5. Ciphertext is deterministic

function of input e: i.e.,

inversion recovers all randomness

used to create ciphertexts.



17

IND-CCA2 conversions

Classic McEliece aims for

stronger security goal than

original McEliece paper:

indistinguishability vs. adaptive

chosen-ciphertext attacks.

Many protocols need this.

Useful simplification: Encrypt

user’s plaintext with AES-GCM.

Goal for public-key system:

transmit random AES-GCM key.

i.e. obtain IND-CCA2 PKE

by designing IND-CCA2 KEM.

18

Want future auditors to be

confident in long-term security.

Classic McEliece follows best

practices from literature:

1. Session key: feed random e

through standard hash function.

2. Ciphertext includes another

hash of e (“confirmation”).

3. Dec includes recomputation

and verification of ciphertext.

4. KEM never fails: if inversion

fails or ciphertext does not match,

return hash of (secret; ciphertext).

19

Further features of system

that simplify attack analysis:

5. Ciphertext is deterministic

function of input e: i.e.,

inversion recovers all randomness

used to create ciphertexts.



17

IND-CCA2 conversions

Classic McEliece aims for

stronger security goal than

original McEliece paper:

indistinguishability vs. adaptive

chosen-ciphertext attacks.

Many protocols need this.

Useful simplification: Encrypt

user’s plaintext with AES-GCM.

Goal for public-key system:

transmit random AES-GCM key.

i.e. obtain IND-CCA2 PKE

by designing IND-CCA2 KEM.

18

Want future auditors to be

confident in long-term security.

Classic McEliece follows best

practices from literature:

1. Session key: feed random e

through standard hash function.

2. Ciphertext includes another

hash of e (“confirmation”).

3. Dec includes recomputation

and verification of ciphertext.

4. KEM never fails: if inversion

fails or ciphertext does not match,

return hash of (secret; ciphertext).

19

Further features of system

that simplify attack analysis:

5. Ciphertext is deterministic

function of input e: i.e.,

inversion recovers all randomness

used to create ciphertexts.



18

Want future auditors to be

confident in long-term security.

Classic McEliece follows best

practices from literature:

1. Session key: feed random e

through standard hash function.

2. Ciphertext includes another

hash of e (“confirmation”).

3. Dec includes recomputation

and verification of ciphertext.

4. KEM never fails: if inversion

fails or ciphertext does not match,

return hash of (secret; ciphertext).

19

Further features of system

that simplify attack analysis:

5. Ciphertext is deterministic

function of input e: i.e.,

inversion recovers all randomness

used to create ciphertexts.



18

Want future auditors to be

confident in long-term security.

Classic McEliece follows best

practices from literature:

1. Session key: feed random e

through standard hash function.

2. Ciphertext includes another

hash of e (“confirmation”).

3. Dec includes recomputation

and verification of ciphertext.

4. KEM never fails: if inversion

fails or ciphertext does not match,

return hash of (secret; ciphertext).

19

Further features of system

that simplify attack analysis:

5. Ciphertext is deterministic

function of input e: i.e.,

inversion recovers all randomness

used to create ciphertexts.

6. There are no inversion failures

for legitimate ciphertexts.



18

Want future auditors to be

confident in long-term security.

Classic McEliece follows best

practices from literature:

1. Session key: feed random e

through standard hash function.

2. Ciphertext includes another

hash of e (“confirmation”).

3. Dec includes recomputation

and verification of ciphertext.

4. KEM never fails: if inversion

fails or ciphertext does not match,

return hash of (secret; ciphertext).

19

Further features of system

that simplify attack analysis:

5. Ciphertext is deterministic

function of input e: i.e.,

inversion recovers all randomness

used to create ciphertexts.

6. There are no inversion failures

for legitimate ciphertexts.

Intuition for attackers:

can’t predict session key

without knowing e in advance;

can’t generate fake ciphertexts;

dec doesn’t reveal anything.



18

Want future auditors to be

confident in long-term security.

Classic McEliece follows best

practices from literature:

1. Session key: feed random e

through standard hash function.

2. Ciphertext includes another

hash of e (“confirmation”).

3. Dec includes recomputation

and verification of ciphertext.

4. KEM never fails: if inversion

fails or ciphertext does not match,

return hash of (secret; ciphertext).

19

Further features of system

that simplify attack analysis:

5. Ciphertext is deterministic

function of input e: i.e.,

inversion recovers all randomness

used to create ciphertexts.

6. There are no inversion failures

for legitimate ciphertexts.

Intuition for attackers:

can’t predict session key

without knowing e in advance;

can’t generate fake ciphertexts;

dec doesn’t reveal anything.

20

To some extent, intuition is

captured by security proofs.

Attack of type T against KEM

implies attack against P .



18

Want future auditors to be

confident in long-term security.

Classic McEliece follows best

practices from literature:

1. Session key: feed random e

through standard hash function.

2. Ciphertext includes another

hash of e (“confirmation”).

3. Dec includes recomputation

and verification of ciphertext.

4. KEM never fails: if inversion

fails or ciphertext does not match,

return hash of (secret; ciphertext).

19

Further features of system

that simplify attack analysis:

5. Ciphertext is deterministic

function of input e: i.e.,

inversion recovers all randomness

used to create ciphertexts.

6. There are no inversion failures

for legitimate ciphertexts.

Intuition for attackers:

can’t predict session key

without knowing e in advance;

can’t generate fake ciphertexts;

dec doesn’t reveal anything.

20

To some extent, intuition is

captured by security proofs.

Attack of type T against KEM

implies attack against P .



18

Want future auditors to be

confident in long-term security.

Classic McEliece follows best

practices from literature:

1. Session key: feed random e

through standard hash function.

2. Ciphertext includes another

hash of e (“confirmation”).

3. Dec includes recomputation

and verification of ciphertext.

4. KEM never fails: if inversion

fails or ciphertext does not match,

return hash of (secret; ciphertext).

19

Further features of system

that simplify attack analysis:

5. Ciphertext is deterministic

function of input e: i.e.,

inversion recovers all randomness

used to create ciphertexts.

6. There are no inversion failures

for legitimate ciphertexts.

Intuition for attackers:

can’t predict session key

without knowing e in advance;

can’t generate fake ciphertexts;

dec doesn’t reveal anything.

20

To some extent, intuition is

captured by security proofs.

Attack of type T against KEM

implies attack against P .



19

Further features of system

that simplify attack analysis:

5. Ciphertext is deterministic

function of input e: i.e.,

inversion recovers all randomness

used to create ciphertexts.

6. There are no inversion failures

for legitimate ciphertexts.

Intuition for attackers:

can’t predict session key

without knowing e in advance;

can’t generate fake ciphertexts;

dec doesn’t reveal anything.

20

To some extent, intuition is

captured by security proofs.

Attack of type T against KEM

implies attack against P .



19

Further features of system

that simplify attack analysis:

5. Ciphertext is deterministic

function of input e: i.e.,

inversion recovers all randomness

used to create ciphertexts.

6. There are no inversion failures

for legitimate ciphertexts.

Intuition for attackers:

can’t predict session key

without knowing e in advance;

can’t generate fake ciphertexts;

dec doesn’t reveal anything.

20

To some extent, intuition is

captured by security proofs.

Attack of type T against KEM

implies attack against P .

Measuring quality of proofs:

• Security of P .

Useless if P is weak;

questionable if P is unstudied.



19

Further features of system

that simplify attack analysis:

5. Ciphertext is deterministic

function of input e: i.e.,

inversion recovers all randomness

used to create ciphertexts.

6. There are no inversion failures

for legitimate ciphertexts.

Intuition for attackers:

can’t predict session key

without knowing e in advance;

can’t generate fake ciphertexts;

dec doesn’t reveal anything.

20

To some extent, intuition is

captured by security proofs.

Attack of type T against KEM

implies attack against P .

Measuring quality of proofs:

• Security of P .

Useless if P is weak;

questionable if P is unstudied.

• Tightness of implication.

Most proofs are not tight.



19

Further features of system

that simplify attack analysis:

5. Ciphertext is deterministic

function of input e: i.e.,

inversion recovers all randomness

used to create ciphertexts.

6. There are no inversion failures

for legitimate ciphertexts.

Intuition for attackers:

can’t predict session key

without knowing e in advance;

can’t generate fake ciphertexts;

dec doesn’t reveal anything.

20

To some extent, intuition is

captured by security proofs.

Attack of type T against KEM

implies attack against P .

Measuring quality of proofs:

• Security of P .

Useless if P is weak;

questionable if P is unstudied.

• Tightness of implication.

Most proofs are not tight.

• Breadth of T .

ROM? QROM? etc.



19

Further features of system

that simplify attack analysis:

5. Ciphertext is deterministic

function of input e: i.e.,

inversion recovers all randomness

used to create ciphertexts.

6. There are no inversion failures

for legitimate ciphertexts.

Intuition for attackers:

can’t predict session key

without knowing e in advance;

can’t generate fake ciphertexts;

dec doesn’t reveal anything.

20

To some extent, intuition is

captured by security proofs.

Attack of type T against KEM

implies attack against P .

Measuring quality of proofs:

• Security of P .

Useless if P is weak;

questionable if P is unstudied.

• Tightness of implication.

Most proofs are not tight.

• Breadth of T .

ROM? QROM? etc.

• Level of verification of proof.



19

Further features of system

that simplify attack analysis:

5. Ciphertext is deterministic

function of input e: i.e.,

inversion recovers all randomness

used to create ciphertexts.

6. There are no inversion failures

for legitimate ciphertexts.

Intuition for attackers:

can’t predict session key

without knowing e in advance;

can’t generate fake ciphertexts;

dec doesn’t reveal anything.

20

To some extent, intuition is

captured by security proofs.

Attack of type T against KEM

implies attack against P .

Measuring quality of proofs:

• Security of P .

Useless if P is weak;

questionable if P is unstudied.

• Tightness of implication.

Most proofs are not tight.

• Breadth of T .

ROM? QROM? etc.

• Level of verification of proof.

21

Reasonable near-future goal:

formally verified tight proof

of IND-CCA2 security of KEM

against all ROM attacks

(maybe all QROM attacks)

assuming OW-CPA for McEliece.



19

Further features of system

that simplify attack analysis:

5. Ciphertext is deterministic

function of input e: i.e.,

inversion recovers all randomness

used to create ciphertexts.

6. There are no inversion failures

for legitimate ciphertexts.

Intuition for attackers:

can’t predict session key

without knowing e in advance;

can’t generate fake ciphertexts;

dec doesn’t reveal anything.

20

To some extent, intuition is

captured by security proofs.

Attack of type T against KEM

implies attack against P .

Measuring quality of proofs:

• Security of P .

Useless if P is weak;

questionable if P is unstudied.

• Tightness of implication.

Most proofs are not tight.

• Breadth of T .

ROM? QROM? etc.

• Level of verification of proof.

21

Reasonable near-future goal:

formally verified tight proof

of IND-CCA2 security of KEM

against all ROM attacks

(maybe all QROM attacks)

assuming OW-CPA for McEliece.



19

Further features of system

that simplify attack analysis:

5. Ciphertext is deterministic

function of input e: i.e.,

inversion recovers all randomness

used to create ciphertexts.

6. There are no inversion failures

for legitimate ciphertexts.

Intuition for attackers:

can’t predict session key

without knowing e in advance;

can’t generate fake ciphertexts;

dec doesn’t reveal anything.

20

To some extent, intuition is

captured by security proofs.

Attack of type T against KEM

implies attack against P .

Measuring quality of proofs:

• Security of P .

Useless if P is weak;

questionable if P is unstudied.

• Tightness of implication.

Most proofs are not tight.

• Breadth of T .

ROM? QROM? etc.

• Level of verification of proof.

21

Reasonable near-future goal:

formally verified tight proof

of IND-CCA2 security of KEM

against all ROM attacks

(maybe all QROM attacks)

assuming OW-CPA for McEliece.



20

To some extent, intuition is

captured by security proofs.

Attack of type T against KEM

implies attack against P .

Measuring quality of proofs:

• Security of P .

Useless if P is weak;

questionable if P is unstudied.

• Tightness of implication.

Most proofs are not tight.

• Breadth of T .

ROM? QROM? etc.

• Level of verification of proof.

21

Reasonable near-future goal:

formally verified tight proof

of IND-CCA2 security of KEM

against all ROM attacks

(maybe all QROM attacks)

assuming OW-CPA for McEliece.



20

To some extent, intuition is

captured by security proofs.

Attack of type T against KEM

implies attack against P .

Measuring quality of proofs:

• Security of P .

Useless if P is weak;

questionable if P is unstudied.

• Tightness of implication.

Most proofs are not tight.

• Breadth of T .

ROM? QROM? etc.

• Level of verification of proof.

21

Reasonable near-future goal:

formally verified tight proof

of IND-CCA2 security of KEM

against all ROM attacks

(maybe all QROM attacks)

assuming OW-CPA for McEliece.

2002 Dent (Theorem 8)

uses 1, 2, 3, 5, 6.

Proves tight IND-CCA2 security

against ROM attacks

under OW-CPA assumption.



20

To some extent, intuition is

captured by security proofs.

Attack of type T against KEM

implies attack against P .

Measuring quality of proofs:

• Security of P .

Useless if P is weak;

questionable if P is unstudied.

• Tightness of implication.

Most proofs are not tight.

• Breadth of T .

ROM? QROM? etc.

• Level of verification of proof.

21

Reasonable near-future goal:

formally verified tight proof

of IND-CCA2 security of KEM

against all ROM attacks

(maybe all QROM attacks)

assuming OW-CPA for McEliece.

2002 Dent (Theorem 8)

uses 1, 2, 3, 5, 6.

Proves tight IND-CCA2 security

against ROM attacks

under OW-CPA assumption.

2012 Persichetti (Theorem 5.1):

4 allows simpler proof strategy.



20

To some extent, intuition is

captured by security proofs.

Attack of type T against KEM

implies attack against P .

Measuring quality of proofs:

• Security of P .

Useless if P is weak;

questionable if P is unstudied.

• Tightness of implication.

Most proofs are not tight.

• Breadth of T .

ROM? QROM? etc.

• Level of verification of proof.

21

Reasonable near-future goal:

formally verified tight proof

of IND-CCA2 security of KEM

against all ROM attacks

(maybe all QROM attacks)

assuming OW-CPA for McEliece.

2002 Dent (Theorem 8)

uses 1, 2, 3, 5, 6.

Proves tight IND-CCA2 security

against ROM attacks

under OW-CPA assumption.

2012 Persichetti (Theorem 5.1):

4 allows simpler proof strategy.

22

2017 Saito–Xagawa–Yamakawa

(“XYZ” thm) uses 1, 3, 4, 5, 6.

Proves tight IND-CCA2 security

against QROM attacks

under stronger assumptions.

Our KEM has 1, 2, 3, 4, 5, 6;

all of these proof strategies

appear to be applicable. See

Classic McEliece submission.

Ongoing work to modularize,

generalize, merge, verify proofs.

2017 Hofheinz–Hövelmanns–Kiltz:

improved modularization.



20

To some extent, intuition is

captured by security proofs.

Attack of type T against KEM

implies attack against P .

Measuring quality of proofs:

• Security of P .

Useless if P is weak;

questionable if P is unstudied.

• Tightness of implication.

Most proofs are not tight.

• Breadth of T .

ROM? QROM? etc.

• Level of verification of proof.

21

Reasonable near-future goal:

formally verified tight proof

of IND-CCA2 security of KEM

against all ROM attacks

(maybe all QROM attacks)

assuming OW-CPA for McEliece.

2002 Dent (Theorem 8)

uses 1, 2, 3, 5, 6.

Proves tight IND-CCA2 security

against ROM attacks

under OW-CPA assumption.

2012 Persichetti (Theorem 5.1):

4 allows simpler proof strategy.

22

2017 Saito–Xagawa–Yamakawa

(“XYZ” thm) uses 1, 3, 4, 5, 6.

Proves tight IND-CCA2 security

against QROM attacks

under stronger assumptions.

Our KEM has 1, 2, 3, 4, 5, 6;

all of these proof strategies

appear to be applicable. See

Classic McEliece submission.

Ongoing work to modularize,

generalize, merge, verify proofs.

2017 Hofheinz–Hövelmanns–Kiltz:

improved modularization.



20

To some extent, intuition is

captured by security proofs.

Attack of type T against KEM

implies attack against P .

Measuring quality of proofs:

• Security of P .

Useless if P is weak;

questionable if P is unstudied.

• Tightness of implication.

Most proofs are not tight.

• Breadth of T .

ROM? QROM? etc.

• Level of verification of proof.

21

Reasonable near-future goal:

formally verified tight proof

of IND-CCA2 security of KEM

against all ROM attacks

(maybe all QROM attacks)

assuming OW-CPA for McEliece.

2002 Dent (Theorem 8)

uses 1, 2, 3, 5, 6.

Proves tight IND-CCA2 security

against ROM attacks

under OW-CPA assumption.

2012 Persichetti (Theorem 5.1):

4 allows simpler proof strategy.

22

2017 Saito–Xagawa–Yamakawa

(“XYZ” thm) uses 1, 3, 4, 5, 6.

Proves tight IND-CCA2 security

against QROM attacks

under stronger assumptions.

Our KEM has 1, 2, 3, 4, 5, 6;

all of these proof strategies

appear to be applicable. See

Classic McEliece submission.

Ongoing work to modularize,

generalize, merge, verify proofs.

2017 Hofheinz–Hövelmanns–Kiltz:

improved modularization.



21

Reasonable near-future goal:

formally verified tight proof

of IND-CCA2 security of KEM

against all ROM attacks

(maybe all QROM attacks)

assuming OW-CPA for McEliece.

2002 Dent (Theorem 8)

uses 1, 2, 3, 5, 6.

Proves tight IND-CCA2 security

against ROM attacks

under OW-CPA assumption.

2012 Persichetti (Theorem 5.1):

4 allows simpler proof strategy.

22

2017 Saito–Xagawa–Yamakawa

(“XYZ” thm) uses 1, 3, 4, 5, 6.

Proves tight IND-CCA2 security

against QROM attacks

under stronger assumptions.

Our KEM has 1, 2, 3, 4, 5, 6;

all of these proof strategies

appear to be applicable. See

Classic McEliece submission.

Ongoing work to modularize,

generalize, merge, verify proofs.

2017 Hofheinz–Hövelmanns–Kiltz:

improved modularization.


