Better proofs for rekeying

D. J. Bernstein

Security of AES-256 key k is far below 2^{256} in most protocols: $(AES_k(0), ..., AES_k(n-1))$ is distinguishable from uniform with probability $n(n-1)/2^{129}$, plus tiny key-guessing probability. Yes, distinguishers matter.

Attacker actually has T targets: independent keys k_1, \ldots, k_T . Success chance $\approx Tn(n-1)/2^{129}$. "Rekeying" seems less dangerous.

Expand k into F(k) =(AES_k(0),..., AES_k(999999)).

Split F(k) into 500000 "subkeys".

Output F(k') for each subkey k': i.e., $F(AES_k(0), AES_k(1))$; $F(AES_k(2), AES_k(3))$; ... $F(AES_k(999998), AES_k(999999))$. "Rekeying" seems less dangerous.

Expand k into F(k) =(AES_k(0),..., AES_k(999999)).

Split F(k) into 500000 "subkeys".

Output F(k') for each subkey k': i.e., $F(AES_k(0), AES_k(1))$; $F(AES_k(2), AES_k(3))$; ... $F(AES_k(999998), AES_k(999999))$.

Repeat for k_1, \ldots, k_T . What is attacker's success chance p_T ?

"Rekeying" seems less dangerous.

Expand k into F(k) =(AES_k(0),..., AES_k(999999)).

Split F(k) into 500000 "subkeys".

Output F(k') for each subkey k': i.e., $F(AES_k(0), AES_k(1))$; $F(AES_k(2), AES_k(3))$; ... $F(AES_k(999998), AES_k(999999))$.

Repeat for k_1, \ldots, k_T . What is attacker's success chance p_T ?

Intuitively clear that $p_T \leq T p_1$. So let's analyze p_1 . Attack strategy 1: Attack the master key k. Distinguish F(k) from a uniform random string.

Years of cryptanalysis say: hard to distinguish AES outputs from uniform string of distinct blocks. Distinctness loses $\approx 1/2^{89}$. Attack strategy 1: Attack the master key k. Distinguish F(k) from a uniform random string.

Years of cryptanalysis say: hard to distinguish AES outputs from uniform string of distinct blocks. Distinctness loses $\approx 1/2^{89}$.

Attack strategy 2: Attack a subkey k'. Distinguish F(k') from uniform, assuming k' is uniform.

Attack strategy 1: Attack the master key k. Distinguish F(k) from a uniform random string.

Years of cryptanalysis say: hard to distinguish AES outputs from uniform string of distinct blocks. Distinctness loses $\approx 1/2^{89}$.

Attack strategy 2: Attack a subkey k'. Distinguish F(k') from uniform, assuming k' is uniform.

Intuition: No other attacks exist. But where is this proven? FOCS 1996 Bellare–Canetti– Krawczyk claims to prove security of *l*-level "cascade".

2-level cascade: key k; input (N_1, N_2) ; output $S(S(k, N_1), N_2)$.

FOCS 1996 Bellare–Canetti– Krawczyk claims to prove security of *l*-level "cascade".

2-level cascade: key k; input (N_1, N_2) ; output $S(S(k, N_1), N_2)$.

Example: Define S(k, N) =(AES_k(2N), AES_k(2N + 1)), with $N \in \{0, 1, ..., 499999\}$. S expands AES-256 key k into (AES_k(0), ..., AES_k(999999)). FOCS 1996 Bellare–Canetti– Krawczyk claims to prove security of *l*-level "cascade".

2-level cascade: key k; input (N_1, N_2) ; output $S(S(k, N_1), N_2)$.

Example: Define S(k, N) =(AES_k(2N), AES_k(2N + 1)), with $N \in \{0, 1, ..., 499999\}$. S expands AES-256 key k into (AES_k(0), ..., AES_k(999999)).

Paper credits 1986 Goldwasser– Goldreich–Micali for 1-bit N_i : S expands k into S(k, 0), S(k, 1). Theorem statement is wrong: omits factor *q*. Fixed in 2005.

Here *q* is the number of queries. The intuition didn't notice *q*; why does *q* matter for the proof? Theorem statement is wrong: omits factor *q*. Fixed in 2005.

Here *q* is the number of queries. The intuition didn't notice *q*; why does *q* matter for the proof?

Proof outline: Take any cascade attack *A* using at most *q* queries.

Proof has q + 1 steps.

Theorem statement is wrong: omits factor *q*. Fixed in 2005.

Here *q* is the number of queries. The intuition didn't notice *q*; why does *q* matter for the proof?

Proof outline: Take any cascade attack *A* using at most *q* queries.

Proof has q + 1 steps.

Step 0: Replace outputs from master key k with independent uniform random outputs.

Distinguisher for this step \Rightarrow attack against *S*.

Step 1: Replace cascade outputs for *first* subkey with independent uniform random outputs.

- Distinguisher for this step
- \Rightarrow attack against S.

Step 1: Replace cascade outputs for *first* subkey with independent uniform random outputs.

Distinguisher for this step \Rightarrow attack against *S*.

Step 2: Replace cascade outputs from next (distinct) subkey. ... Step q: Replace cascade outputs from qth (distinct) subkey. Could skip steps if $q > \#\{N\}$. Step 1: Replace cascade outputs for *first* subkey with independent uniform random outputs.

Distinguisher for this step \Rightarrow attack against *S*.

Step 2: Replace cascade outputs from next (distinct) subkey. ... Step q: Replace cascade outputs from qth (distinct) subkey. Could skip steps if $q > \#\{N\}$.

Further complications in proof to monolithically handle *l* levels. 2011 Bernstein: simpler to compose better 2-level theorem. Not happy with cascade proofs?

A different proof appears in Crypto 1996 Bellare–Canetti– Krawczyk NMAC/HMAC paper. Not happy with cascade proofs?

A different proof appears in Crypto 1996 Bellare–Canetti– Krawczyk NMAC/HMAC paper.

Given key k and input (N_1, N_2) , NMAC computes $S(S(k, N_1), N_2)$, where S is a stream cipher "compression function".

(Tweaks: output is encrypted; no prefix-free requirement.) Not happy with cascade proofs?

A different proof appears in Crypto 1996 Bellare–Canetti– Krawczyk NMAC/HMAC paper.

Given key k and input (N_1, N_2) , NMAC computes $S(S(k, N_1), N_2)$, where S is a stream cipher "compression function".

(Tweaks: output is encrypted; no prefix-free requirement.)

Proof has weird assumptions. Crypto 2006 Bellare proof: more reasonable-sounding assumptions.

2012 Koblitz–Menezes: Bellare's assumptions are wrong.

2012 Koblitz–Menezes: Bellare's assumptions are wrong.

2012 Katz-Lindell: public denials.

2012 Koblitz–Menezes: Bellare's assumptions are wrong. 2012 Katz–Lindell: public denials.

2012 Bernstein–Lange: Bellare's assumptions are wrong.

2012 Koblitz–Menezes:
Bellare's assumptions are wrong.
2012 Katz–Lindell: public denials.
2012 Bernstein–Lange:
Bellare's assumptions are wrong.
2013 Pietrzak: fixed theorem
from Koblitz–Menezes is wrong.

2012 Koblitz-Menezes: Bellare's assumptions are wrong. 2012 Katz–Lindell: public denials. 2012 Bernstein–Lange: Bellare's assumptions are wrong. 2013 Pietrzak: fixed theorem from Koblitz-Menezes is wrong. 2013 Pietrzak, 2013 Koblitz-Menezes, 2014 Gaži–Pietrzak– Rybár: another NMAC proof, as complicated as cascade proof.

Hmmm. CCS 2005 Barak–Halevi "A model and architecture for pseudo-random generation with applications to /dev/random"? RNG outputs F(k), F(G(k)), etc. Another complicated proof. Hmmm. CCS 2005 Barak–Halevi "A model and architecture for pseudo-random generation with applications to /dev/random"? RNG outputs F(k), F(G(k)), etc. Another complicated proof.

How about 2006 Campagna "Security bounds for the NIST codebook-based deterministic random bit generator"? Doesn't prove anything about rekeying. Hmmm. CCS 2005 Barak–Halevi "A model and architecture for pseudo-random generation with applications to /dev/random"? RNG outputs F(k), F(G(k)), etc. Another complicated proof.

How about 2006 Campagna "Security bounds for the NIST codebook-based deterministic random bit generator"? Doesn't prove anything about rekeying.

2017 AES-GCM-SIV bounds? Big errors found by Iwata–Seurin.

A simple tight new proof

Remember the goal: analyze p_T .

There are T keys.

Cipher 1: key \mapsto many subkeys.

Cipher 2: subkey \mapsto outputs.

<u>A simple tight new proof</u>

Remember the goal: analyze p_T .

There are *T* keys.

Cipher 1: key \mapsto many subkeys.

Cipher 2: subkey \mapsto outputs.

New proof has just two steps.

<u>A simple tight new proof</u>

Remember the goal: analyze p_T .

There are T keys.

Cipher 1: key \mapsto many subkeys.

Cipher 2: subkey \mapsto outputs.

New proof has just two steps.

Step 1. Replace all subkeys. Distinguisher \Rightarrow *T*-target attack against cipher 1.

<u>A simple tight new proof</u>

Remember the goal: analyze p_T .

There are T keys. Cipher 1: key \mapsto many subkeys.

Cipher 2: subkey \mapsto outputs.

New proof has just two steps.

Step 1. Replace all subkeys. Distinguisher \Rightarrow *T*-target attack against cipher 1.

Step 2. Replace all outputs. Distinguisher \Rightarrow ($T \cdot$ many)-target attack against cipher 2.

11

X: FOCS 1996 Bellare–Canetti– Krawczyk Lemma 3.2. Harder; not suitable for induction.