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Prelude: What is the fastest

algorithm to sort an array?

def blindsort(x):

while not issorted(x):

permuterandomly(x)
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def bubblesort(x):

for j in range(len(x)):

for i in reversed(range(j)):

x[i],x[i+1] = (

min(x[i],x[i+1]),

max(x[i],x[i+1])

)

bubblesort takes poly time.

Θ(n2) comparisons.

Huge speedup over blindsort!

Is this the end of the story?
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Short-term RSA security

1995 Kitaev, 1996 Vedral–

Barenco–Ekert, 1996 Beckman–

Chari–Devabhaktuni–Preskill,

1998 Zalka, 1999 Mosca–Ekert,

2000 Parker–Plenio, 2001 Seifert,

2002 Kitaev–Shen–Vyalyi, 2003

Beauregard, 2006 Takahashi–

Kunihiro, 2010 Ahmadi–Chiang,

2014 Svore–Hastings–Freedman,

2015 Grosshans–Lawson–Morain–

Smith, 2016 Häner–Roetteler–

Svore, 2017 Eker̊a–Håstad, 2017

Johnston: try to squeeze constant

factors out of Shor’s algorithm.
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: : : 2016 Häner–Roetteler–Svore:

2b + 2 qubits; 64b3(lg b + O(1))

Toffoli gates; similar number of

CNOT gates; depth O(b3).
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: : : 2016 Häner–Roetteler–Svore:

2b + 2 qubits; 64b3(lg b + O(1))

Toffoli gates; similar number of

CNOT gates; depth O(b3).



5

Important variations in the

factorization problem:

• Maybe need one factor.

• Maybe need all factors.

• Maybe factors are small.

• Maybe factors are large.

• Maybe there are many inputs.

• Maybe inputs in superposition.

Important variations in metrics

(even assuming perfect devices):

• Qubits.

• Area (“A”, including wire area).

• Qubit operations (“gates”).

• Depth.

• Time (“T”: latency).

6

Short-term RSA security

1995 Kitaev, 1996 Vedral–

Barenco–Ekert, 1996 Beckman–

Chari–Devabhaktuni–Preskill,

1998 Zalka, 1999 Mosca–Ekert,

2000 Parker–Plenio, 2001 Seifert,

2002 Kitaev–Shen–Vyalyi, 2003

Beauregard, 2006 Takahashi–

Kunihiro, 2010 Ahmadi–Chiang,

2014 Svore–Hastings–Freedman,

2015 Grosshans–Lawson–Morain–

Smith, 2016 Häner–Roetteler–
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NFS takes Lp+o(1) operations

with p =
3
p
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√

13=3 > 1:9,

log L = (log 2b)1=3(log log 2b)2=3.

Analysis for b = 2048 (not easy!):

very roughly 2112 operations.
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(and many non-quantum bits).
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even if reversible computation

avoids FTL impossibility proofs.)
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These methods use >b qubits.

Didn’t we claim b2=3+o(1) qubits?

We actually use Grover’s method

to search for smooth b2=3+o(1)-bit

numbers in NFS.

Oracle for Grover’s method:

factor thoroughly enough

to recognize smooth inputs.

We tweak (improved) Shor to

work in superposition. Careful

with qubit budget for continued

fractions, power detection, etc.
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These methods use >b qubits.

Didn’t we claim b2=3+o(1) qubits?

We actually use Grover’s method

to search for smooth b2=3+o(1)-bit

numbers in NFS.

Oracle for Grover’s method:

factor thoroughly enough

to recognize smooth inputs.

We tweak (improved) Shor to
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with qubit budget for continued
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(Z=N)∗ with E(Z=N)

for a random elliptic curve E.
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A different way to improve

randomness of factorizations in

Shor’s algorithm: replace group

(Z=N)∗ with E(Z=N)

for a random elliptic curve E.

Gal Dor suggests unifying

Grover+ECM with Shor: e.g.,

compute esP on E(Z=N) where

e is superposition of scalars,

s is smooth scalar,

E is superposition of curves.

Open: What are minimum costs

for this unification?


