Challenges in
quantum algorithms for
integer factorization
D. J. Bernstein

University of Illinois at Chicago

Prelude: What is the fastest algorithm to sort an array?
def blindsort(x):
while not issorted(x):
permuterandomly(x)
def bubblesort(x):

```
for j in range(len(x)):
    for i in reversed(range(j)):
        x[i],x[i+1] = (
        min(x[i],x[i+1]),
        max(x[i],x[i+1])
    )
```

bubblesort takes poly time. $\Theta\left(n^{2}\right)$ comparisons.
Huge speedup over blindsort!
Is this the end of the story?

Challenges in
quantum algorithms for
integer factorization
D. J. Bernstein

University of Illinois at Chicago

Prelude: What is the fastest algorithm to sort an array?
def blindsort(x):
while not issorted(x):
permuterandomly(x)
def bubblesort(x):

```
for j in range(len(x)):
    for i in reversed(range(j)):
        x[i],x[i+1] = (
        min(x[i],x[i+1]),
        max(x[i],x[i+1])
    )
```

bubblesort takes poly time. $\Theta\left(n^{2}\right)$ comparisons. Huge speedup over blindsort!

Is this the end of the story?
No, still not optimal.
es in
algorithms for actorization
rnstein
ty of Illinois at Chicago

What is the fastest
n to sort an array?
ndsort(x):
not issorted(x):
nuterandomly(x)
def bubblesort(x):

```
for j in range(len(x)):
for i in reversed(range(j)):
x[i],x[i+1] = (
    min(x[i],x[i+1]),
        max(x[i],x[i+1])
        )
```

bubblesort takes poly time. $\Theta\left(n^{2}\right)$ comparisons.
Huge speedup over blindsort!
Is this the end of the story?
No, still not optimal.

Analogo algorithr Shor's a Huge sp $b^{2}(\log b$ to facto using st for fast Is this th
the fastest
an array?
rted (x) :
mly (x)
is at Chicago
def bubblesort(x):

$$
\begin{aligned}
& \text { for } j \text { in range }(\text { len }(x)) \text { : } \\
& \text { for } i \text { in reversed(range }(j)) \text { : } \\
& \qquad \begin{array}{l}
x[i], x[i+1]=(\\
\\
\quad \min (x[i], x[i+1]) \\
\\
\max (x[i], x[i+1])
\end{array}
\end{aligned}
$$

bubblesort takes poly time. $\Theta\left(n^{2}\right)$ comparisons.
Huge speedup over blindsort!
Is this the end of the story?
No, still not optimal.

Analogous: What algorithm to facto

Shor's algorithm t Huge speedup ove
$b^{2}(\log b)^{1+o(1)}$ to factor b-bit int using standard sub for fast integer ari

Is this the end of
def bubblesort(x):

```
    for \(j\) in range(len(x)):
        for \(i\) in reversed (range (j)):
        \(x[i], x[i+1]=(\)
            \(\min (x[i], x[i+1])\),
            \(\max (x[i], x[i+1])\)
        )
```

bubblesort takes poly time. $\Theta\left(n^{2}\right)$ comparisons.
Huge speedup over blindsort!
Is this the end of the story?
No, still not optimal.

Analogous: What is the fast algorithm to factor integers?

Shor's algorithm takes poly Huge speedup over NFS!
$b^{2}(\log b)^{1+o(1)}$ qubit operat to factor b-bit integer, using standard subroutines for fast integer arithmetic.

Is this the end of the story?
def bubblesort(x):

```
for \(j\) in range(len(x)):
        for i in reversed(range(j)):
        \(x[i], x[i+1]=(\)
        \(\min (x[i], x[i+1])\),
        \(\max (x[i], x[i+1])\)
    )
```

bubblesort takes poly time. $\Theta\left(n^{2}\right)$ comparisons. Huge speedup over blindsort!

Is this the end of the story? No, still not optimal.

Analogous: What is the fastest algorithm to factor integers?

Shor's algorithm takes poly time. Huge speedup over NFS!
$b^{2}(\log b)^{1+o(1)}$ qubit operations to factor b-bit integer, using standard subroutines for fast integer arithmetic.

Is this the end of the story?
def bubblesort(x):

```
for \(j\) in range(len(x)):
        for i in reversed(range(j)):
        \(x[i], x[i+1]=(\)
        \(\min (x[i], x[i+1])\),
        \(\max (x[i], x[i+1])\)
    )
```

bubblesort takes poly time. $\Theta\left(n^{2}\right)$ comparisons. Huge speedup over blindsort!

Is this the end of the story? No, still not optimal.

Analogous: What is the fastest algorithm to factor integers?

Shor's algorithm takes poly time. Huge speedup over NFS!
$b^{2}(\log b)^{1+o(1)}$ qubit operations to factor b-bit integer, using standard subroutines for fast integer arithmetic.

Is this the end of the story?
No, still not optimal.
"Shor's algorithm: the bubble sort of integer factorization."
blesort(x):
in range(len(x)):
i in reversed(range(j)):
[i],x[i+1] =
$\min (x[i], x[i+1])$, $\max (x[i], x[i+1])$
ort takes poly time. omparisons.
eedup over blindsort!
ne end of the story?
not optimal.

Analogous: What is the fastest algorithm to factor integers?

Shor's algorithm takes poly time. Huge speedup over NFS!
$b^{2}(\log b)^{1+o(1)}$ qubit operations
to factor b-bit integer, using standard subroutines
for fast integer arithmetic.
Is this the end of the story?
No, still not optimal.
"Shor's algorithm: the bubble sort of integer factorization."

A simple suboptir
Find a p

314159265358979323 986280348253421170 284102701938521105 527120190914564856 748815209209628292 433057270365759591 489122793818301194 705392171762931767 173637178721468440 086403441815981362 950244594553469083 381420617177669147 217122680661300192 682303019520353018 950829533116861727 285836160356370766 462080466842590694 035587640247496473 028618297455570674 602364806654991198 081647060016145249 843852332390739414 904946016534668049 225125205117392984 504712371378696095 994657640789512694 136394437455305068 741059788595977297 499725246808459872 780797715691435997 601684273945226746 355936345681743241 560101503308617928 168299894872265880 210511413547357395 403742007310578539 10053706146806749 195618146751426912

$(\operatorname{len}(x)):$

ersed (range (j)) :
] $=($
$, x[i+1])$,
, $x[i+1])$
poly time.
S.
r blindsort!
the story?
al.

Analogous: What is the fastest algorithm to factor integers?

Shor's algorithm takes poly time. Huge speedup over NFS!
$b^{2}(\log b)^{1+o(1)}$ qubit operations
to factor b-bit integer, using standard subroutines for fast integer arithmetic.

Is this the end of the story?
No, still not optimal.
"Shor's algorithm: the bubble sort of integer factorization."

A simple exercise suboptimality of
Find a prime divis

3141592653589793238462643383279502884197 9862803482534211706798214808651328230664 2841027019385211055596446229489549303819 5271201909145648566923460348610454326648 7488152092096282925409171536436789259036 4330572703657595919530921861173819326117 4891227938183011949129833673362440656643 7053921717629317675238467481846766940513 1736371787214684409012249534301465495853 0864034418159813629774771309960518707211 9502445945534690830264252230825334468503 3814206171776691473035982534904287554687 2171226806613001927876611195909216420198 6823030195203530185296899577362259941389 9508295331168617278558890750983817546374 2858361603563707660104710181942955596198 4620804668425906949129331367702898915210 0355876402474964732639141992726042699227 0286182974555706749838505494588586926995 6023648066549911988183479775356636980742 0816470600161452491921732172147723501414 8438523323907394143334547762416862518983 9049460165346680498862723279178608578438 2251252051173929848960841284886269456042 5047123713786960956364371917287467764657 9946576407895126946839835259570982582262 1363944374553050682034962524517493996514 7410597885959772975498930161753928468138 4997252468084598727364469584865383673622 7807977156914359977001296160894416948685 6016842739452267467678895252138522549954 3559363456817432411251507606947945109659 5601015033086179286809208747609178249385 1682998948722658804857564014270477555132 2105114135473573952311342716610213596953 4037420073105785390621983874478084784896 1005370614680674919278191197939952061419 1956181467514269123974894090718649423196

Analogous: What is the fastest algorithm to factor integers?

Shor's algorithm takes poly time. Huge speedup over NFS!
$b^{2}(\log b)^{1+o(1)}$ qubit operations to factor b-bit integer, using standard subroutines for fast integer arithmetic.

Is this the end of the story? No, still not optimal.
"Shor's algorithm: the bubble sort of integer factorization."

A simple exercise to illustrat suboptimality of Shor's algo Find a prime divisor of $\left\lfloor 10^{3}\right.$ 31415926535897932384626433832795028841971693993751058209749445 98628034825342117067982148086513282306647093844609550582231725 28410270193852110555964462294895493038196442881097566593344612 52712019091456485669234603486104543266482133936072602491412737 74881520920962829254091715364367892590360011330530548820466521 43305727036575959195309218611738193261179310511854807446237996 48912279381830119491298336733624406566430860213949463952247371 70539217176293176752384674818467669405132000568127145263560827 17363717872146844090122495343014654958537105079227968925892354 08640344181598136297747713099605187072113499999983729780499510 95024459455346908302642522308253344685035261931188171010003137 38142061717766914730359825349042875546873115956286388235378759 21712268066130019278766111959092164201989380952572010654858632 68230301952035301852968995773622599413891249721775283479131515 95082953311686172785588907509838175463746493931925506040092770 28583616035637076601047101819429555961989467678374494482553797 46208046684259069491293313677028989152104752162056966024058038 03558764024749647326391419927260426992279678235478163600934172 02861829745557067498385054945885869269956909272107975093029553 60236480665499119881834797753566369807426542527862551818417574 08164706001614524919217321721477235014144197356854816136115735 84385233239073941433345477624168625189835694855620992192221842 90494601653466804988627232791786085784383827967976681454100953 22512520511739298489608412848862694560424196528502221066118630 50471237137869609563643719172874677646575739624138908658326459 99465764078951269468398352595709825822620522489407726719478268 13639443745530506820349625245174939965143142980919065925093722 74105978859597729754989301617539284681382686838689427741559918 49972524680845987273644695848653836736222626099124608051243884 78079771569143599770012961608944169486855584840635342207222582 60168427394522674676788952521385225499546667278239864565961163 35593634568174324112515076069479451096596094025228879710893145 56010150330861792868092087476091782493858900971490967598526136 16829989487226588048575640142704775551323796414515237462343645 21051141354735739523113427166102135969536231442952484937187110 40374200731057853906219838744780847848968332144571386875194350 10053706146806749192781911979399520614196634287544406437451237 19561814675142691239748940907186494231961567945208

Analogous: What is the fastest algorithm to factor integers?

Shor's algorithm takes poly time. Huge speedup over NFS!
$b^{2}(\log b)^{1+o(1)}$ qubit operations to factor b-bit integer, using standard subroutines for fast integer arithmetic.

Is this the end of the story?

No, still not optimal.

"Shor's algorithm: the bubble sort of integer factorization."

A simple exercise to illustrate

suboptimality of Shor's algorithm:

$$
\text { Find a prime divisor of }\left\lfloor 10^{3009} \pi\right\rfloor \text {. }
$$

31415926535897932384626433832795028841971693993751058209749445923078164062862089 98628034825342117067982148086513282306647093844609550582231725359408128481117450 28410270193852110555964462294895493038196442881097566593344612847564823378678316 52712019091456485669234603486104543266482133936072602491412737245870066063155881 74881520920962829254091715364367892590360011330530548820466521384146951941511609 43305727036575959195309218611738193261179310511854807446237996274956735188575272 48912279381830119491298336733624406566430860213949463952247371907021798609437027 70539217176293176752384674818467669405132000568127145263560827785771342757789609 17363717872146844090122495343014654958537105079227968925892354201995611212902196 08640344181598136297747713099605187072113499999983729780499510597317328160963185 95024459455346908302642522308253344685035261931188171010003137838752886587533208 38142061717766914730359825349042875546873115956286388235378759375195778185778053 21712268066130019278766111959092164201989380952572010654858632788659361533818279 68230301952035301852968995773622599413891249721775283479131515574857242454150695 95082953311686172785588907509838175463746493931925506040092770167113900984882401 28583616035637076601047101819429555961989467678374494482553797747268471040475346 46208046684259069491293313677028989152104752162056966024058038150193511253382430 03558764024749647326391419927260426992279678235478163600934172164121992458631503 02861829745557067498385054945885869269956909272107975093029553211653449872027559 60236480665499119881834797753566369807426542527862551818417574672890977772793800 08164706001614524919217321721477235014144197356854816136115735255213347574184946 84385233239073941433345477624168625189835694855620992192221842725502542568876717 90494601653466804988627232791786085784383827967976681454100953883786360950680064 22512520511739298489608412848862694560424196528502221066118630674427862203919494 50471237137869609563643719172874677646575739624138908658326459958133904780275900 99465764078951269468398352595709825822620522489407726719478268482601476990902640 13639443745530506820349625245174939965143142980919065925093722169646151570985838 74105978859597729754989301617539284681382686838689427741559918559252459539594310 49972524680845987273644695848653836736222626099124608051243884390451244136549762 78079771569143599770012961608944169486855584840635342207222582848864815845602850 60168427394522674676788952521385225499546667278239864565961163548862305774564980 35593634568174324112515076069479451096596094025228879710893145669136867228748940 56010150330861792868092087476091782493858900971490967598526136554978189312978482 16829989487226588048575640142704775551323796414515237462343645428584447952658678 21051141354735739523113427166102135969536231442952484937187110145765403590279934 40374200731057853906219838744780847848968332144571386875194350643021845319104848 10053706146806749192781911979399520614196634287544406437451237181921799983910159 19561814675142691239748940907186494231961567945208
us: What is the fastest
n to factor integers?
Igorithm takes poly time.
eedup over NFS!
$)^{1+o(1)}$ qubit operations
b-bit integer, andard subroutines nteger arithmetic.

he end of the story? not optimal.

algorithm: the bubble sort er factorization."

A simple exercise to illustrate

suboptimality of Shor's algorithm: Find a prime divisor of $\left\lfloor 10^{3009} \pi\right\rfloor$.

31415926535897932384626433832795028841971693993751058209749445923078164062862089 98628034825342117067982148086513282306647093844609550582231725359408128481117450 28410270193852110555964462294895493038196442881097566593344612847564823378678316 52712019091456485669234603486104543266482133936072602491412737245870066063155881 74881520920962829254091715364367892590360011330530548820466521384146951941511609 43305727036575959195309218611738193261179310511854807446237996274956735188575272 48912279381830119491298336733624406566430860213949463952247371907021798609437027 70539217176293176752384674818467669405132000568127145263560827785771342757789609 17363717872146844090122495343014654958537105079227968925892354201995611212902196 08640344181598136297747713099605187072113499999983729780499510597317328160963185 95024459455346908302642522308253344685035261931188171010003137838752886587533208 38142061717766914730359825349042875546873115956286388235378759375195778185778053 21712268066130019278766111959092164201989380952572010654858632788659361533818279 68230301952035301852968995773622599413891249721775283479131515574857242454150695 95082953311686172785588907509838175463746493931925506040092770167113900984882401 28583616035637076601047101819429555961989467678374494482553797747268471040475346 46208046684259069491293313677028989152104752162056966024058038150193511253382430 03558764024749647326391419927260426992279678235478163600934172164121992458631503 02861829745557067498385054945885869269956909272107975093029553211653449872027559 60236480665499119881834797753566369807426542527862551818417574672890977772793800 08164706001614524919217321721477235014144197356854816136115735255213347574184946 84385233239073941433345477624168625189835694855620992192221842725502542568876717 90494601653466804988627232791786085784383827967976681454100953883786360950680064 22512520511739298489608412848862694560424196528502221066118630674427862203919494 50471237137869609563643719172874677646575739624138908658326459958133904780275900 99465764078951269468398352595709825822620522489407726719478268482601476990902640 13639443745530506820349625245174939965143142980919065925093722169646151570985838 74105978859597729754989301617539284681382686838689427741559918559252459539594310 49972524680845987273644695848653836736222626099124608051243884390451244136549762 78079771569143599770012961608944169486855584840635342207222582848864815845602850 60168427394522674676788952521385225499546667278239864565961163548862305774564980 35593634568174324112515076069479451096596094025228879710893145669136867228748940 56010150330861792868092087476091782493858900971490967598526136554978189312978482 16829989487226588048575640142704775551323796414515237462343645428584447952658678 21051141354735739523113427166102135969536231442952484937187110145765403590279934 40374200731057853906219838744780847848968332144571386875194350643021845319104848 10053706146806749192781911979399520614196634287544406437451237181921799983910159 19561814675142691239748940907186494231961567945208

is the fastest

r integers?
akes poly time.
r NFS!
bit operations
eger,
routines
thmetic.
the story?
ial.

the bubble sort ation."

A simple exercise to illustrate

 suboptimality of Shor's algorithm: Find a prime divisor of $\left\lfloor 10^{3009} \pi\right\rfloor$.31415926535897932384626433832795028841971693993751058209749445923078164062862089 98628034825342117067982148086513282306647093844609550582231725359408128481117450 28410270193852110555964462294895493038196442881097566593344612847564823378678316 52712019091456485669234603486104543266482133936072602491412737245870066063155881 74881520920962829254091715364367892590360011330530548820466521384146951941511609 43305727036575959195309218611738193261179310511854807446237996274956735188575272 48912279381830119491298336733624406566430860213949463952247371907021798609437027 70539217176293176752384674818467669405132000568127145263560827785771342757789609 17363717872146844090122495343014654958537105079227968925892354201995611212902196 08640344181598136297747713099605187072113499999983729780499510597317328160963185 95024459455346908302642522308253344685035261931188171010003137838752886587533208 38142061717766914730359825349042875546873115956286388235378759375195778185778053 21712268066130019278766111959092164201989380952572010654858632788659361533818279 68230301952035301852968995773622599413891249721775283479131515574857242454150695 95082953311686172785588907509838175463746493931925506040092770167113900984882401 28583616035637076601047101819429555961989467678374494482553797747268471040475346 46208046684259069491293313677028989152104752162056966024058038150193511253382430 03558764024749647326391419927260426992279678235478163600934172164121992458631503 02861829745557067498385054945885869269956909272107975093029553211653449872027559 60236480665499119881834797753566369807426542527862551818417574672890977772793800 08164706001614524919217321721477235014144197356854816136115735255213347574184946 84385233239073941433345477624168625189835694855620992192221842725502542568876717 90494601653466804988627232791786085784383827967976681454100953883786360950680064 22512520511739298489608412848862694560424196528502221066118630674427862203919494 50471237137869609563643719172874677646575739624138908658326459958133904780275900 99465764078951269468398352595709825822620522489407726719478268482601476990902640 13639443745530506820349625245174939965143142980919065925093722169646151570985838 74105978859597729754989301617539284681382686838689427741559918559252459539594310 49972524680845987273644695848653836736222626099124608051243884390451244136549762 78079771569143599770012961608944169486855584840635342207222582848864815845602850 60168427394522674676788952521385225499546667278239864565961163548862305774564980 35593634568174324112515076069479451096596094025228879710893145669136867228748940 56010150330861792868092087476091782493858900971490967598526136554978189312978482 16829989487226588048575640142704775551323796414515237462343645428584447952658678 21051141354735739523113427166102135969536231442952484937187110145765403590279934 40374200731057853906219838744780847848968332144571386875194350643021845319104848 10053706146806749192781911979399520614196634287544406437451237181921799983910159 19561814675142691239748940907186494231961567945208

Important variatio

factorization probl

- Maybe need one
- Maybe need all
- Maybe factors a
- Maybe factors a
- Maybe there are
- Maybe inputs in

Important variatio

 (even assuming pe- Qubits.
- Area ("A", inclu
- Qubit operation
- Depth.
- Time (" T ": lat

A simple exercise to illustrate suboptimality of Shor's algorithm:
Find a prime divisor of $\left\lfloor 10^{3009} \pi\right\rfloor$.
31415926535897932384626433832795028841971693993751058209749445923078164062862089 98628034825342117067982148086513282306647093844609550582231725359408128481117450 28410270193852110555964462294895493038196442881097566593344612847564823378678316 52712019091456485669234603486104543266482133936072602491412737245870066063155881 74881520920962829254091715364367892590360011330530548820466521384146951941511609 43305727036575959195309218611738193261179310511854807446237996274956735188575272 48912279381830119491298336733624406566430860213949463952247371907021798609437027 70539217176293176752384674818467669405132000568127145263560827785771342757789609 17363717872146844090122495343014654958537105079227968925892354201995611212902196 08640344181598136297747713099605187072113499999983729780499510597317328160963185 95024459455346908302642522308253344685035261931188171010003137838752886587533208 38142061717766914730359825349042875546873115956286388235378759375195778185778053 21712268066130019278766111959092164201989380952572010654858632788659361533818279 68230301952035301852968995773622599413891249721775283479131515574857242454150695 95082953311686172785588907509838175463746493931925506040092770167113900984882401 28583616035637076601047101819429555961989467678374494482553797747268471040475346 46208046684259069491293313677028989152104752162056966024058038150193511253382430 03558764024749647326391419927260426992279678235478163600934172164121992458631503 02861829745557067498385054945885869269956909272107975093029553211653449872027559 60236480665499119881834797753566369807426542527862551818417574672890977772793800 08164706001614524919217321721477235014144197356854816136115735255213347574184946 84385233239073941433345477624168625189835694855620992192221842725502542568876717 90494601653466804988627232791786085784383827967976681454100953883786360950680064 22512520511739298489608412848862694560424196528502221066118630674427862203919494 50471237137869609563643719172874677646575739624138908658326459958133904780275900 99465764078951269468398352595709825822620522489407726719478268482601476990902640 13639443745530506820349625245174939965143142980919065925093722169646151570985838 74105978859597729754989301617539284681382686838689427741559918559252459539594310 49972524680845987273644695848653836736222626099124608051243884390451244136549762 78079771569143599770012961608944169486855584840635342207222582848864815845602850 60168427394522674676788952521385225499546667278239864565961163548862305774564980 35593634568174324112515076069479451096596094025228879710893145669136867228748940 56010150330861792868092087476091782493858900971490967598526136554978189312978482 16829989487226588048575640142704775551323796414515237462343645428584447952658678 21051141354735739523113427166102135969536231442952484937187110145765403590279934 40374200731057853906219838744780847848968332144571386875194350643021845319104848 10053706146806749192781911979399520614196634287544406437451237181921799983910159 19561814675142691239748940907186494231961567945208

Important variations in the factorization problem:

- Maybe need one factor.
- Maybe need all factors.
- Maybe factors are small.
- Maybe factors are large.
- Maybe there are many inp
- Maybe inputs in superposi

Important variations in metr (even assuming perfect devi

- Qubits.
- Area ("A", including wire
- Qubit operations ("gates"
- Depth.
- Time ("T": latency).

A simple exercise to illustrate

 suboptimality of Shor's algorithm: Find a prime divisor of $\left\lfloor 10^{3009} \pi\right\rfloor$. 31415926535897932384626433832795028841971693993751058209749445923078164062862089 98628034825342117067982148086513282306647093844609550582231725359408128481117450 28410270193852110555964462294895493038196442881097566593344612847564823378678316 52712019091456485669234603486104543266482133936072602491412737245870066063155881 74881520920962829254091715364367892590360011330530548820466521384146951941511609 43305727036575959195309218611738193261179310511854807446237996274956735188575272 48912279381830119491298336733624406566430860213949463952247371907021798609437027 70539217176293176752384674818467669405132000568127145263560827785771342757789609 17363717872146844090122495343014654958537105079227968925892354201995611212902196 08640344181598136297747713099605187072113499999983729780499510597317328160963185 95024459455346908302642522308253344685035261931188171010003137838752886587533208 38142061717766914730359825349042875546873115956286388235378759375195778185778053 21712268066130019278766111959092164201989380952572010654858632788659361533818279 68230301952035301852968995773622599413891249721775283479131515574857242454150695 95082953311686172785588907509838175463746493931925506040092770167113900984882401 28583616035637076601047101819429555961989467678374494482553797747268471040475346 46208046684259069491293313677028989152104752162056966024058038150193511253382430 03558764024749647326391419927260426992279678235478163600934172164121992458631503 02861829745557067498385054945885869269956909272107975093029553211653449872027559 60236480665499119881834797753566369807426542527862551818417574672890977772793800 08164706001614524919217321721477235014144197356854816136115735255213347574184946 84385233239073941433345477624168625189835694855620992192221842725502542568876717 90494601653466804988627232791786085784383827967976681454100953883786360950680064 22512520511739298489608412848862694560424196528502221066118630674427862203919494 50471237137869609563643719172874677646575739624138908658326459958133904780275900 99465764078951269468398352595709825822620522489407726719478268482601476990902640 13639443745530506820349625245174939965143142980919065925093722169646151570985838 74105978859597729754989301617539284681382686838689427741559918559252459539594310 49972524680845987273644695848653836736222626099124608051243884390451244136549762 78079771569143599770012961608944169486855584840635342207222582848864815845602850 60168427394522674676788952521385225499546667278239864565961163548862305774564980 35593634568174324112515076069479451096596094025228879710893145669136867228748940 56010150330861792868092087476091782493858900971490967598526136554978189312978482 16829989487226588048575640142704775551323796414515237462343645428584447952658678 21051141354735739523113427166102135969536231442952484937187110145765403590279934 40374200731057853906219838744780847848968332144571386875194350643021845319104848 10053706146806749192781911979399520614196634287544406437451237181921799983910159 19561814675142691239748940907186494231961567945208
Important variations in the

factorization problem:

- Maybe need one factor.
- Maybe need all factors.
- Maybe factors are small.
- Maybe factors are large.
- Maybe there are many inputs.
- Maybe inputs in superposition.

Important variations in metrics

 (even assuming perfect devices):- Qubits.
- Area (" A ", including wire area).
- Qubit operations ("gates").
- Depth.
- Time ("T": latency).

exercise to illustrate

nality of Shor's algorithm: rime divisor of $\left\lfloor 10^{3009} \pi\right\rfloor$.

84626433832795028841971693993751058209749445923078164062862089 67982148086513282306647093844609550582231725359408128481117450 55964462294895493038196442881097566593344612847564823378678316 69234603486104543266482133936072602491412737245870066063155881 54091715364367892590360011330530548820466521384146951941511609 95309218611738193261179310511854807446237996274956735188575272 91298336733624406566430860213949463952247371907021798609437027 52384674818467669405132000568127145263560827785771342757789609 90122495343014654958537105079227968925892354201995611212902196 97747713099605187072113499999983729780499510597317328160963185 02642522308253344685035261931188171010003137838752886587533208 30359825349042875546873115956286388235378759375195778185778053 78766111959092164201989380952572010654858632788659361533818279 52968995773622599413891249721775283479131515574857242454150695 85588907509838175463746493931925506040092770167113900984882401 01047101819429555961989467678374494482553797747268471040475346 91293313677028989152104752162056966024058038150193511253382430 26391419927260426992279678235478163600934172164121992458631503 98385054945885869269956909272107975093029553211653449872027559 81834797753566369807426542527862551818417574672890977772793800 19217321721477235014144197356854816136115735255213347574184946 33345477624168625189835694855620992192221842725502542568876717 88627232791786085784383827967976681454100953883786360950680064 89608412848862694560424196528502221066118630674427862203919494 63643719172874677646575739624138908658326459958133904780275900 68398352595709825822620522489407726719478268482601476990902640 20349625245174939965143142980919065925093722169646151570985838 54989301617539284681382686838689427741559918559252459539594310 73644695848653836736222626099124608051243884390451244136549762 70012961608944169486855584840635342207222582848864815845602850 76788952521385225499546667278239864565961163548862305774564980 12515076069479451096596094025228879710893145669136867228748940 68092087476091782493858900971490967598526136554978189312978482 48575640142704775551323796414515237462343645428584447952658678 23113427166102135969536231442952484937187110145765403590279934 06219838744780847848968332144571386875194350643021845319104848 92781911979399520614196634287544406437451237181921799983910159 39748940907186494231961567945208

Short-te

1995 Ki

Barenco

Chari-D 1998 Za 2000 Pa 2002 Ki

- Time ("T": latency).
to illustrate
hor's algorithm: or of $\left\lfloor 10^{3009} \pi\right\rfloor$.

1693993751058209749445923078164062862089 7093844609550582231725359408128481117450 6442881097566593344612847564823378678316 2133936072602491412737245870066063155881 0011330530548820466521384146951941511609 9310511854807446237996274956735188575272 0860213949463952247371907021798609437027 2000568127145263560827785771342757789609 7105079227968925892354201995611212902196 3499999983729780499510597317328160963185 5261931188171010003137838752886587533208 3115956286388235378759375195778185778053 9380952572010654858632788659361533818279 1249721775283479131515574857242454150695 6493931925506040092770167113900984882401 9467678374494482553797747268471040475346 4752162056966024058038150193511253382430 9678235478163600934172164121992458631503 6909272107975093029553211653449872027559 6542527862551818417574672890977772793800 4197356854816136115735255213347574184946 5694855620992192221842725502542568876717 3827967976681454100953883786360950680064 4196528502221066118630674427862203919494 5739624138908658326459958133904780275900 0522489407726719478268482601476990902640 3142980919065925093722169646151570985838 2686838689427741559918559252459539594310 2626099124608051243884390451244136549762 5584840635342207222582848864815845602850 6667278239864565961163548862305774564980 6094025228879710893145669136867228748940 8900971490967598526136554978189312978482 3796414515237462343645428584447952658678 6231442952484937187110145765403590279934 8332144571386875194350643021845319104848 6634287544406437451237181921799983910159 1567945208

Important variations in the factorization problem:

- Maybe need one factor.
- Maybe need all factors.
- Maybe factors are small.
- Maybe factors are large.
- Maybe there are many inputs.
- Maybe inputs in superposition.

Important variations in metrics (even assuming perfect devices):

- Qubits.
- Area (" A ", including wire area).
- Qubit operations ("gates").
- Depth.
- Time ("T": latency).

Short-term RSA s
1995 Kitaev, 1996 Barenco-Ekert, 19 Chari-Devabhaktu 1998 Zalka, 1999 2000 Parker-Pleni 2002 Kitaev-Shen Beauregard, 2006 Kunihiro, 2010 Ah 2014 Svore-Hastir 2015 Grosshans-L Smith, 2016 Häne Svore, 2017 Ekerå Johnston: try to s factors out of Sho

Important variations in the factorization problem:

- Maybe need one factor.
- Maybe need all factors.
- Maybe factors are small.
- Maybe factors are large.
- Maybe there are many inputs.
- Maybe inputs in superposition.

Important variations in metrics (even assuming perfect devices):

- Qubits.
- Area (" A ", including wire area).
- Qubit operations ("gates").
- Depth.
- Time ("T": latency).

Short-term RSA security

1995 Kitaev, 1996 Vedral-Barenco-Ekert, 1996 Beckm Chari-Devabhaktuni-Preskil 1998 Zalka, 1999 Mosca-Ek 2000 Parker-Plenio, 2001 S 2002 Kitaev-Shen-Vyalyi, 2 Beauregard, 2006 Takahashi Kunihiro, 2010 Ahmadi-Chi 2014 Svore-Hastings-Freedr 2015 Grosshans-Lawson-Mc Smith, 2016 Häner-Roettel Svore, 2017 Ekerå-Håstad, Johnston: try to squeeze co factors out of Shor's algorith

Important variations in the factorization problem:

- Maybe need one factor.
- Maybe need all factors.
- Maybe factors are small.
- Maybe factors are large.
- Maybe there are many inputs.
- Maybe inputs in superposition.

Important variations in metrics (even assuming perfect devices):

- Qubits.
- Area (" A ", including wire area).
- Qubit operations ("gates").
- Depth.
- Time ("T": latency).

Short-term RSA security

1995 Kitaev, 1996 Vedral-Barenco-Ekert, 1996 Beckman-Chari-Devabhaktuni-Preskill, 1998 Zalka, 1999 Mosca-Ekert, 2000 Parker-Plenio, 2001 Seifert, 2002 Kitaev-Shen-Vyalyi, 2003 Beauregard, 2006 TakahashiKunihiro, 2010 Ahmadi-Chiang, 2014 Svore-Hastings-Freedman, 2015 Grosshans-Lawson-MorainSmith, 2016 Häner-RoettelerSvore, 2017 Ekerå-Håstad, 2017 Johnston: try to squeeze constant factors out of Shor's algorithm.
nt variations in the tion problem:
need one factor. need all factors.
factors are small.
factors are large. there are many inputs. inputs in superposition.
at variations in metrics suming perfect devices):
" A ", including wire area). operations ("gates").
("T": latency).

Short-term RSA security

1995 Kitaev, 1996 Vedral-
Barenco-Ekert, 1996 Beckman-
Chari-Devabhaktuni-Preskill, 1998 Zalka, 1999 Mosca-Ekert, 2000 Parker-Plenio, 2001 Seifert, 2002 Kitaev-Shen-Vyalyi, 2003 Beauregard, 2006 TakahashiKunihiro, 2010 Ahmadi-Chiang, 2014 Svore-Hastings-Freedman, 2015 Grosshans-Lawson-MorainSmith, 2016 Häner-RoettelerSvore, 2017 Ekerå-Håstad, 2017 Johnston: try to squeeze constant factors out of Shor's algorithm.

2003 Be
... 2016
$2 b+2$
Toffoli g
CNOT

Short-term RSA security

1995 Kitaev, 1996 Vedral-
Barenco-Ekert, 1996 Beckman-Chari-Devabhaktuni-Preskill, 1998 Zalka, 1999 Mosca-Ekert, 2000 Parker-Plenio, 2001 Seifert, 2002 Kitaev-Shen-Vyalyi, 2003 Beauregard, 2006 TakahashiKunihiro, 2010 Ahmadi-Chiang, 2014 Svore-Hastings-Freedman, 2015 Grosshans-Lawson-MorainSmith, 2016 Häner-Roetteler-
Svore, 2017 Ekerå-Håstad, 2017
Johnston: try to squeeze constant factors out of Shor's algorithm.

2003 Beauregard:
... 2016 Häner-R
$2 b+2$ qubits; 64 Toffoli gates; simi
CNOT gates; dept

Short-term RSA security
1995 Kitaev, 1996 Vedral-
Barenco-Ekert, 1996 Beckman-Chari-Devabhaktuni-Preskill, 1998 Zalka, 1999 Mosca-Ekert, 2000 Parker-Plenio, 2001 Seifert, 2002 Kitaev-Shen-Vyalyi, 2003 Beauregard, 2006 TakahashiKunihiro, 2010 Ahmadi-Chiang, 2014 Svore-Hastings-Freedman, 2015 Grosshans-Lawson-MorainSmith, 2016 Häner-RoettelerSvore, 2017 Ekerå-Håstad, 2017 Johnston: try to squeeze constant factors out of Shor's algorithm.

2003 Beauregard: $2 b+3$ q
. . 2016 Häner-Roetteler-S $2 b+2$ qubits; $64 b^{3}(\lg b+$ Toffoli gates; similar numbe CNOT gates; depth $O\left(b^{3}\right)$.

Short-term RSA security

1995 Kitaev, 1996 Vedral-Barenco-Ekert, 1996 Beckman-Chari-Devabhaktuni-Preskill, 1998 Zalka, 1999 Mosca-Ekert, 2000 Parker-Plenio, 2001 Seifert, 2002 Kitaev-Shen-Vyalyi, 2003 Beauregard, 2006 TakahashiKunihiro, 2010 Ahmadi-Chiang, 2014 Svore-Hastings-Freedman, 2015 Grosshans-Lawson-MorainSmith, 2016 Häner-RoettelerSvore, 2017 Ekerå-Håstad, 2017 Johnston: try to squeeze constant factors out of Shor's algorithm.

2003 Beauregard: $2 b+3$ qubits.
... 2016 Häner-Roetteler-Svore:
$2 b+2$ qubits; $64 b^{3}(\lg b+O(1))$
Toffoli gates; similar number of
CNOT gates; depth $O\left(b^{3}\right)$.

Short-term RSA security

1995 Kitaev, 1996 Vedral-Barenco-Ekert, 1996 Beckman-Chari-Devabhaktuni-Preskill, 1998 Zalka, 1999 Mosca-Ekert, 2000 Parker-Plenio, 2001 Seifert, 2002 Kitaev-Shen-Vyalyi, 2003 Beauregard, 2006 TakahashiKunihiro, 2010 Ahmadi-Chiang, 2014 Svore-Hastings-Freedman, 2015 Grosshans-Lawson-MorainSmith, 2016 Häner-RoettelerSvore, 2017 Ekerå-Håstad, 2017 Johnston: try to squeeze constant factors out of Shor's algorithm.

2003 Beauregard: $2 b+3$ qubits.
... 2016 Häner-Roetteler-Svore: $2 b+2$ qubits; $64 b^{3}(\lg b+O(1))$ Toffoli gates; similar number of CNOT gates; depth $O\left(b^{3}\right)$.

Conventional wisdom: cannot avoid $2 b$ qubits for controlled mulmod.
e.g. 4096 qubits for $b=2048$, very common RSA key size.

So 2048-bit factorization needs 4096 qubits?

Short-term RSA security

1995 Kitaev, 1996 Vedral-Barenco-Ekert, 1996 Beckman-Chari-Devabhaktuni-Preskill, 1998 Zalka, 1999 Mosca-Ekert, 2000 Parker-Plenio, 2001 Seifert, 2002 Kitaev-Shen-Vyalyi, 2003 Beauregard, 2006 TakahashiKunihiro, 2010 Ahmadi-Chiang, 2014 Svore-Hastings-Freedman, 2015 Grosshans-Lawson-MorainSmith, 2016 Häner-RoettelerSvore, 2017 Ekerå-Håstad, 2017 Johnston: try to squeeze constant factors out of Shor's algorithm.

2003 Beauregard: $2 b+3$ qubits.
... 2016 Häner-Roetteler-Svore: $2 b+2$ qubits; $64 b^{3}(\lg b+O(1))$ Toffoli gates; similar number of CNOT gates; depth $O\left(b^{3}\right)$.

Conventional wisdom: cannot avoid $2 b$ qubits for controlled mulmod.
e.g. 4096 qubits for $b=2048$, very common RSA key size.

So 2048-bit factorization needs 4096 qubits?
No: NFS uses 0 qubits.
iaev, 1996 Vedral-
-Ekert, 1996 Beckman-evabhaktuni-Preskill, Ika, 1999 Mosca-Ekert, rker-Plenio, 2001 Seifert, taev-Shen-Vyalyi, 2003 ard, 2006 Takahashi, 2010 Ahmadi-Chiang, ore-Hastings-Freedman, osshans-Lawson-Morain016 Häner-Roetteler017 Ekerå-Håstad, 2017 : try to squeeze constant ut of Shor's algorithm.

2003 Beauregard: $2 b+3$ qubits.
... 2016 Häner-Roetteler-Svore: $2 b+2$ qubits; $64 b^{3}(\lg b+O(1))$ Toffoli gates; similar number of CNOT gates; depth $O\left(b^{3}\right)$.

Conventional wisdom: cannot avoid $2 b$ qubits for controlled mulmod.
e.g. 4096 qubits for $b=2048$, very common RSA key size.

So 2048-bit factorization needs 4096 qubits?
No: NFS uses 0 qubits.

NFS tak with $p=$ $\log L=$ Analysis very rou

2003 Beauregard: $2 b+3$ qubits.
... 2016 Häner-Roetteler-Svore:
$2 b+2$ qubits; $64 b^{3}(\lg b+O(1))$ Toffoli gates; similar number of
CNOT gates; depth $O\left(b^{3}\right)$.
Conventional wisdom:
cannot avoid $2 b$ qubits for controlled mulmod.
e.g. 4096 qubits for $b=2048$, very common RSA key size.

So 2048-bit factorization needs 4096 qubits?
No: NFS uses 0 qubits.

Vedral-

 96 Beckman-ni-Preskill, Mosca-Ekert, o, 2001 Seifert, -Vyalyi, 2003 Takahashi-madi-Chiang, ngs-Freedman, awson-Morain-r-Roetteler-
-Håstad, 2017
queeze constant r's algorithm.

NFS takes $L^{p+o(1)}$ with $p=\sqrt[3]{92+}$ $\log L=\left(\log 2^{b}\right)^{1 /}$

Analysis for $b=2$ very roughly 2^{112}

2003 Beauregard: $2 b+3$ qubits.
... 2016 Häner-Roetteler-Svore:
$2 b+2$ qubits; $64 b^{3}(\lg b+O(1))$ Toffoli gates; similar number of
CNOT gates; depth $O\left(b^{3}\right)$.
Conventional wisdom:
cannot avoid $2 b$ qubits for controlled mulmod.
e.g. 4096 qubits for $b=2048$, very common RSA key size.

So 2048-bit factorization needs 4096 qubits?
No: NFS uses 0 qubits.

NFS takes $L^{p+o(1)}$ operatio with $p=\sqrt[3]{92+26 \sqrt{13}} / 3$ $\log L=\left(\log 2^{b}\right)^{1 / 3}\left(\log \log 2^{L}\right.$ Analysis for $b=2048$ (not very roughly 2^{112} operations

2003 Beauregard: $2 b+3$ qubits.
... 2016 Häner-Roetteler-Svore: $2 b+2$ qubits; $64 b^{3}(\lg b+O(1))$ Toffoli gates; similar number of CNOT gates; depth $O\left(b^{3}\right)$.

Conventional wisdom: cannot avoid $2 b$ qubits for controlled mulmod.
e.g. 4096 qubits for $b=2048$, very common RSA key size.

So 2048-bit factorization needs 4096 qubits?
No: NFS uses 0 qubits.

NFS takes $L^{p+o(1)}$ operations with $p=\sqrt[3]{92+26 \sqrt{13}} / 3>1.9$, $\log L=\left(\log 2^{b}\right)^{1 / 3}\left(\log \log 2^{b}\right)^{2 / 3}$.

Analysis for $b=2048$ (not easy!): very roughly 2^{112} operations.

2003 Beauregard: $2 b+3$ qubits.
... 2016 Häner-Roetteler-Svore: $2 b+2$ qubits; $64 b^{3}(\lg b+O(1))$ Toffoli gates; similar number of CNOT gates; depth $O\left(b^{3}\right)$.

Conventional wisdom:
cannot avoid $2 b$ qubits for controlled mulmod.
e.g. 4096 qubits for $b=2048$, very common RSA key size.

So 2048-bit factorization needs 4096 qubits?
No: NFS uses 0 qubits.

NFS takes $L^{p+o(1)}$ operations with $p=\sqrt[3]{92+26 \sqrt{13}} / 3>1.9$, $\log L=\left(\log 2^{b}\right)^{1 / 3}\left(\log \log 2^{b}\right)^{2 / 3}$.

Analysis for $b=2048$ (not easy!): very roughly 2^{112} operations.

2017 Bernstein-Biasse-Mosca:
$L^{q+o(1)}$ operations
with $q=\sqrt[3]{8 / 3} \approx 1.387$, using $b^{2 / 3+o(1)}$ qubits (and many non-quantum bits).

2003 Beauregard: $2 b+3$ qubits.
... 2016 Häner-Roetteler-Svore: $2 b+2$ qubits; $64 b^{3}(\lg b+O(1))$ Toffoli gates; similar number of CNOT gates; depth $O\left(b^{3}\right)$.

Conventional wisdom:
cannot avoid $2 b$ qubits for controlled mulmod.
e.g. 4096 qubits for $b=2048$, very common RSA key size.

So 2048-bit factorization needs 4096 qubits?
No: NFS uses 0 qubits.

NFS takes $L^{p+o(1)}$ operations with $p=\sqrt[3]{92+26 \sqrt{13}} / 3>1.9$, $\log L=\left(\log 2^{b}\right)^{1 / 3}\left(\log \log 2^{b}\right)^{2 / 3}$.

Analysis for $b=2048$ (not easy!): very roughly 2^{112} operations.

2017 Bernstein-Biasse-Mosca:
$L^{q+o(1)}$ operations
with $q=\sqrt[3]{8 / 3} \approx 1.387$, using $b^{2 / 3+o(1)}$ qubits (and many non-quantum bits).

Open: Analyze for $b=2048$.
Fewer than 4096 qubits?
Fewer than 2048 qubits?
auregard: $2 b+3$ qubits.
Häner-Roetteler-Svore: qubits; $64 b^{3}(\lg b+O(1))$ ates; similar number of sates; depth $O\left(b^{3}\right)$.
ional wisdom:
void $2 b$ qubits
rolled mulmod.
6 qubits for $b=2048$, imon RSA key size.
-bit factorization
96 qubits?
5 uses 0 qubits.

NFS takes $L^{p+o(1)}$ operations with $p=\sqrt[3]{92+26 \sqrt{13}} / 3>1.9$, $\log L=\left(\log 2^{b}\right)^{1 / 3}\left(\log \log 2^{b}\right)^{2 / 3}$.

Analysis for $b=2048$ (not easy!): very roughly 2^{112} operations.

2017 Bernstein-Biasse-Mosca:
$L^{q+o(1)}$ operations
with $q=\sqrt[3]{8 / 3} \approx 1.387$,
using $b^{2 / 3+o(1)}$ qubits
(and many non-quantum bits).
Open: Analyze for $b=2048$.
Fewer than 4096 qubits?
Fewer than 2048 qubits?

Countin oversim commur See, e.g. theorem
$2 b+3$ qubits.
oetteler-Svore:
$3^{3}(\lg b+O(1))$
ar number of
h $O\left(b^{3}\right)$.
om:
ubits
mod.
or $b=2048$,
key size.
ization
ubits.

NFS takes $L^{p+o(1)}$ operations with $p=\sqrt[3]{92+26 \sqrt{13}} / 3>1.9$, $\log L=\left(\log 2^{b}\right)^{1 / 3}\left(\log \log 2^{b}\right)^{2 / 3}$.

Analysis for $b=2048$ (not easy!): very roughly 2^{112} operations.

2017 Bernstein-Biasse-Mosca:
$L^{q+o(1)}$ operations
with $q=\sqrt[3]{8 / 3} \approx 1.387$,
using $b^{2 / 3+o(1)}$ qubits
(and many non-quantum bits).
Open: Analyze for $b=2048$.
Fewer than 4096 qubits?
Fewer than 2048 qubits?

Counting operatio oversimplified cost communication co See, e.g., 1981 Br theorem for realist

NFS takes $L^{p+o(1)}$ operations with $p=\sqrt[3]{92+26 \sqrt{13}} / 3>1.9$, $\log L=\left(\log 2^{b}\right)^{1 / 3}\left(\log \log 2^{b}\right)^{2 / 3}$.

Analysis for $b=2048$ (not easy!): very roughly 2^{112} operations.

2017 Bernstein-Biasse-Mosca:
$L^{q+o(1)}$ operations
with $q=\sqrt[3]{8 / 3} \approx 1.387$,
using $b^{2 / 3+o(1)}$ qubits
(and many non-quantum bits).
Open: Analyze for $b=2048$.
Fewer than 4096 qubits?
Fewer than 2048 qubits?

Counting operations is an oversimplified cost model: communication costs, parall See, e.g., 1981 Brent-Kung theorem for realistic chip mc

NFS takes $L^{p+o(1)}$ operations with $p=\sqrt[3]{92+26 \sqrt{13}} / 3>1.9$, $\log L=\left(\log 2^{b}\right)^{1 / 3}\left(\log \log 2^{b}\right)^{2 / 3}$.

Analysis for $b=2048$ (not easy!): very roughly 2^{112} operations.

2017 Bernstein-Biasse-Mosca:
$L^{q+o(1)}$ operations
with $q=\sqrt[3]{8 / 3} \approx 1.387$, using $b^{2 / 3+o(1)}$ qubits (and many non-quantum bits).

Open: Analyze for $b=2048$.
Fewer than 4096 qubits?
Fewer than 2048 qubits?

Counting operations is an oversimplified cost model: ignores communication costs, parallelism. See, e.g., 1981 Brent-Kung AT theorem for realistic chip model.

NFS takes $L^{p+o(1)}$ operations with $p=\sqrt[3]{92+26 \sqrt{13}} / 3>1.9$, $\log L=\left(\log 2^{b}\right)^{1 / 3}\left(\log \log 2^{b}\right)^{2 / 3}$.

Analysis for $b=2048$ (not easy!): very roughly 2^{112} operations.

2017 Bernstein-Biasse-Mosca:
$L^{q+o(1)}$ operations
with $q=\sqrt[3]{8 / 3} \approx 1.387$,
using $b^{2 / 3+o(1)}$ qubits (and many non-quantum bits).

Open: Analyze for $b=2048$.
Fewer than 4096 qubits?
Fewer than 2048 qubits?

Counting operations is an oversimplified cost model: ignores communication costs, parallelism. See, e.g., 1981 Brent-Kung AT theorem for realistic chip model.

NFS suffers somewhat from communication costs inside big linear-algebra subroutine.

2001 Bernstein:
$A T=L^{p^{\prime}+o(1)}$ with $p^{\prime} \approx 1.976$.
2017 Bernstein-Biasse-Mosca:
$A T=L^{q^{\prime}+o(1)}$ with $q^{\prime} \approx 1.456$ using $b^{2 / 3+o(1)}$ qubits.
Open: Analyze for $b=2048$.

Counting operations is an oversimplified cost model: ignores communication costs, parallelism.
theorem for realistic chip model.
NFS suffers somewhat from communication costs inside big linear-algebra subroutine.

2001 Bernstein:
$A T=L^{p^{\prime}+o(1)}$ with $p^{\prime} \approx 1.976$.
2017 Bernstein-Biasse-Mosca:
$A T=L^{q^{\prime}+o(1)}$ with $q^{\prime} \approx 1.456$
using $b^{2 / 3+o(1)}$ qubits.
Open: Analyze for $b=2048$.
operations $26 \sqrt{13} / 3>1.9$, $\left(\log \log 2^{b}\right)^{2 / 3}$.

048 (not easy!): operations. asse-Mosca:
1.387, bits antum bits).

$$
b=2048 .
$$

qubits?
qubits?

Counting operations is an oversimplified cost model: ignores communication costs, parallelism. See, e.g., 1981 Brent-Kung AT theorem for realistic chip model.

NFS suffers somewhat from communication costs inside big linear-algebra subroutine.

2001 Bernstein:
$A T=L^{p^{\prime}+o(1)}$ with $p^{\prime} \approx 1.976$.
2017 Bernstein-Biasse-Mosca:
$A T=L^{q^{\prime}+o(1)}$ with $q^{\prime} \approx 1.456$
using $b^{2 / 3+o(1) ~ q u b i t s . ~}$
Open: Analyze for $b=2048$.

Actually have mar Lower cost for son
Lower cost for ma

Counting operations is an oversimplified cost model: ignores communication costs, parallelism. See, e.g., 1981 Brent-Kung AT theorem for realistic chip model.

NFS suffers somewhat from communication costs inside big linear-algebra subroutine.

2001 Bernstein:
$A T=L^{p^{\prime}+o(1)}$ with $p^{\prime} \approx 1.976$.
2017 Bernstein-Biasse-Mosca:
$A T=L^{q^{\prime}+o(1)}$ with $q^{\prime} \approx 1.456$ using $b^{2 / 3+o(1) ~ q u b i t s . ~}$
Open: Analyze for $b=2048$.
Actually have many inputs. Lower cost for some output Lower cost for many output

Counting operations is an oversimplified cost model: ignores communication costs, parallelism. See, e.g., 1981 Brent-Kung AT theorem for realistic chip model.

NFS suffers somewhat from communication costs inside big linear-algebra subroutine.

2001 Bernstein:
$A T=L^{p^{\prime}+o(1)}$ with $p^{\prime} \approx 1.976$.
2017 Bernstein-Biasse-Mosca:
$A T=L^{\prime}+o(1)$ with $q^{\prime} \approx 1.456$ using $b^{2 / 3+o(1)}$ qubits.
Open: Analyze for $b=2048$.
Lower cost for some output?
Lower cost for many outputs?

Counting operations is an oversimplified cost model: ignores communication costs, parallelism. See, e.g., 1981 Brent-Kung AT theorem for realistic chip model.

NFS suffers somewhat from communication costs inside big linear-algebra subroutine.

2001 Bernstein:
$A T=L^{p^{\prime}+o(1)}$ with $p^{\prime} \approx 1.976$.
2017 Bernstein-Biasse-Mosca:
$A T=L^{\prime}+o(1)$ with $q^{\prime} \approx 1.456$ using $b^{2 / 3+o(1) ~ q u b i t s . ~}$
Open: Analyze for $b=2048$.
Actually have many inputs.
Lower cost for some output?
Lower cost for many outputs?
1993 Coppersmith:
$L^{1.638 \ldots+o(1)}$ operations
after precomp (b) involving $L^{2.006 \ldots+o(1)}$ operations.

Counting operations is an oversimplified cost model: ignores communication costs, parallelism. See, e.g., 1981 Brent-Kung AT theorem for realistic chip model.

NFS suffers somewhat from communication costs inside big linear-algebra subroutine.

2001 Bernstein:
$A T=L^{p^{\prime}+o(1)}$ with $p^{\prime} \approx 1.976$.
2017 Bernstein-Biasse-Mosca:
$A T=L^{q^{\prime}+o(1)}$ with $q^{\prime} \approx 1.456$ using $b^{2 / 3+o(1) ~ q u b i t s . ~}$
Open: Analyze for $b=2048$.
Actually have many inputs.
Lower cost for some output?
Lower cost for many outputs?
1993 Coppersmith:
$L^{1.638 \ldots+o(1)}$ operations
after precomp (b) involving $L^{2.006 \ldots+o(1)}$ operations.

2014 Bernstein-Lange:
$A T=L^{2.204 \ldots+o(1)}$
to factor $L^{0.5+o(1)}$ inputs;
$L^{1.704 \ldots+o(1)}$ per input.

Counting operations is an oversimplified cost model: ignores communication costs, parallelism. See, e.g., 1981 Brent-Kung AT theorem for realistic chip model.

NFS suffers somewhat from communication costs inside big linear-algebra subroutine.

2001 Bernstein:
$A T=L^{p^{\prime}+o(1)}$ with $p^{\prime} \approx 1.976$.
2017 Bernstein-Biasse-Mosca:
$A T=L^{q^{\prime}+o(1)}$ with $q^{\prime} \approx 1.456$ using $b^{2 / 3+o(1)}$ qubits.
Open: Analyze for $b=2048$.

Actually have many inputs.
Lower cost for some output?
Lower cost for many outputs?
1993 Coppersmith:
$L^{1.638 \ldots+o(1)}$ operations
after precomp (b) involving
$L^{2.006 \ldots+o(1)}$ operations.
2014 Bernstein-Lange:
$A T=L^{2.204 \ldots+o(1)}$
to factor $L^{0.5+o(1)}$ inputs;
$L^{1.704 \ldots+o(1)}$ per input.
Open: Any quantum speedups for factoring many integers?
g operations is an
olified cost model: ignores ication costs, parallelism.
1981 Brent-Kung AT for realistic chip model.
fers somewhat from ication costs inside r-algebra subroutine.

rnstein:

$o^{\prime}+o(1)$ with $p^{\prime} \approx 1.976$.
rnstein-Biasse-Mosca:
$q^{\prime}+o(1)$ with $q^{\prime} \approx 1.456$
$/ 3+o(1)$ qubits.
nalyze for $b=2048$.

Actually have many inputs.
Lower cost for some output?
Lower cost for many outputs?
1993 Coppersmith:
$L^{1.638 \ldots+o(1)}$ operations
after precomp(b) involving
$L^{2.006 \ldots+o(1)}$ operations.
2014 Bernstein-Lange:
$A T=L^{2.204 \ldots+o(1)}$
to factor $L^{0.5+o(1)}$ inputs;
$L^{1.704 \ldots+o(1)}$ per input.
Open: Any quantum speedups for factoring many integers?

Long-ter
Long his in intege

Long his switchin not far
ns is an
model: ignores
sts, parallelism.
ent-Kung AT
ic chip model.
vhat from
sts inside subroutine.
$p^{\prime} \approx 1.976$
asse-Mosca:
$q^{\prime} \approx 1.456$
bits.
$b=2048$.

Actually have many inputs.
Lower cost for some output?
Lower cost for many outputs?
1993 Coppersmith:
$L^{1.638 \ldots+o(1)}$ operations
after precomp (b) involving
$L^{2.006 \ldots+o(1)}$ operations.
2014 Bernstein-Lange:

$$
A T=L^{2.204 \ldots+o(1)}
$$

to factor $L^{0.5+o(1)}$ inputs;
$L^{1.704 \ldots+o(1)}$ per input.
Open: Any quantum speedups for factoring many integers?

Long-term RSA se
Long history of ad in integer factoriza

Long history of R switching to larger not far beyond bro

Actually have many inputs.
Lower cost for some output?
Lower cost for many outputs?
1993 Coppersmith:
$L^{1.638 \ldots+o(1)}$ operations
after precomp(b) involving $L^{2.006 \ldots+o(1)}$ operations.

2014 Bernstein-Lange:
$A T=L^{2.204 \ldots+o(1)}$
to factor $L^{0.5+o(1)}$ inputs;
$L^{1.704 \ldots+o(1)}$ per input.
Open: Any quantum speedups for factoring many integers?

Long-term RSA security

Long history of advances in integer factorization.

Long history of RSA users switching to larger key sizes not far beyond broken sizes.

Actually have many inputs.
Lower cost for some output?
Lower cost for many outputs?
1993 Coppersmith:
$L^{1.638 \ldots+o(1)}$ operations
after precomp(b) involving
$L^{2.006 \ldots+o(1)}$ operations.
2014 Bernstein-Lange:
$A T=L^{2.204 \ldots+o(1)}$
to factor $L^{0.5+o(1)}$ inputs;
$L^{1.704 \ldots+o(1)}$ per input.
Open: Any quantum speedups for factoring many integers?

Long-term RSA security
Long history of advances in integer factorization.

Long history of RSA users switching to larger key sizes, not far beyond broken sizes.

Actually have many inputs.
Lower cost for some output?
Lower cost for many outputs?
1993 Coppersmith:
$L^{1.638 \ldots+o(1)}$ operations
after precomp(b) involving
$L^{2.006 \ldots+o(1)}$ operations.
2014 Bernstein-Lange:
$A T=L^{2.204 \ldots+o(1)}$
to factor $L^{0.5+o(1)}$ inputs;
$L^{1.704 \ldots+o(1)}$ per input.
Open: Any quantum speedups for factoring many integers?

Long-term RSA security

Long history of advances in integer factorization.

Long history of RSA users switching to larger key sizes, not far beyond broken sizes.
"Expert" cryptographers:
"Obviously they won't react to Shor's algorithm this way! They'll switch to codes, lattices, etc. long before quantum computers break RSA-2048! We don't need to analyze the security of RSA-4096, RSA-8192, RSA-16384, etc.!"
have many inputs.
ost for some output?
ost for many outputs?
ppersmith:
-o(1) operations
comp (b) involving
-o(1) operations.
rnstein-Lange:
2.204...+o(1)
$L^{0.5+o(1)}$ inputs;
-o(1) per input.
Iny quantum speedups ring many integers?

We cons
quantun we also of users

Long history of RSA users switching to larger key sizes,
not far beyond broken sizes.
"Expert" cryptographers:
"Obviously they won't react to Shor's algorithm this way! They'll switch to codes, lattices, etc. long before quantum computers break RSA-2048! We don't need to analyze the security of RSA-4096, RSA-8192, RSA-16384, etc.!"
Long-term RSA security
Long history of advances
in integer factorization.
y inputs.
ne output?
ny outputs?
ations
involving
ations.
nge:
inputs;
nput.
im speedups integers?

Long-term RSA security

Long history of advances in integer factorization.

Long history of RSA users switching to larger key sizes, not far beyond broken sizes.
"Expert" cryptographers:
"Obviously they won't react to Shor's algorithm this way! They'll switch to codes, lattices, etc. long before quantum computers break RSA-2048! We don't need to analyze the security of RSA-4096, RSA-8192, RSA-16384, etc.!"

We consider possi quantum compute we also consider p of users wanting t

Long-term RSA security
Long history of advances in integer factorization.

Long history of RSA users switching to larger key sizes, not far beyond broken sizes.
"Expert" cryptographers:
"Obviously they won't react to Shor's algorithm this way! They'll switch to codes, lattices, etc. long before quantum computers break RSA-2048! We don't need to analyze the security of RSA-4096, RSA-8192, RSA-16384, etc.!"

We consider possible impact quantum computers. Shoulc we also consider possible im of users wanting to stick to

Long-term RSA security
Long history of advances in integer factorization.

Long history of RSA users switching to larger key sizes, not far beyond broken sizes.
"Expert" cryptographers:
"Obviously they won't react to Shor's algorithm this way! They'll switch to codes, lattices, etc. long before quantum computers break RSA-2048! We don't need to analyze the security of RSA-4096, RSA-8192, RSA-16384, etc.!"

We consider possible impact of quantum computers. Shouldn't we also consider possible impact of users wanting to stick to RSA?

Long-term RSA security
Long history of advances in integer factorization.

Long history of RSA users switching to larger key sizes, not far beyond broken sizes.
"Expert" cryptographers:
"Obviously they won't react to Shor's algorithm this way! They'll switch to codes, lattices, etc. long before quantum computers break RSA-2048! We don't need to analyze the security of RSA-4096, RSA-8192, RSA-16384, etc.!"

We consider possible impact of quantum computers. Shouldn't we also consider possible impact of users wanting to stick to RSA?

2017 Bernstein-Heninger-LouValenta "Post-quantum RSA" (pqRSA): Generated 1-terabyte RSA key; 2000000 core-hours. Shor's algorithm: $>2^{100}$ gates.

Long-term RSA security

Long history of advances in integer factorization.

Long history of RSA users switching to larger key sizes, not far beyond broken sizes.
"Expert" cryptographers:
"Obviously they won't react to Shor's algorithm this way! They'll switch to codes, lattices, etc. long before quantum computers break RSA-2048! We don't need to analyze the security of RSA-4096, RSA-8192, RSA-16384, etc.!"

We consider possible impact of quantum computers. Shouldn't we also consider possible impact of users wanting to stick to RSA?

2017 Bernstein-Heninger-LouValenta "Post-quantum RSA" (pqRSA): Generated 1-terabyte RSA key; 2000000 core-hours. Shor's algorithm: $>2^{100}$ gates. Bernstein-Fried-Heninger-LouValenta: Draft NIST submission proposing 1-gigabyte RSA keys. Much faster to generate.

We consider possible impact of quantum computers. Shouldn't we also consider possible impact of users wanting to stick to RSA?

2017 Bernstein-Heninger-LouValenta "Post-quantum RSA" (pqRSA): Generated 1-terabyte RSA key; 2000000 core-hours. Shor's algorithm: $>2^{100}$ gates.

Bernstein-Fried-Heninger-LouValenta: Draft NIST submission proposing 1-gigabyte RSA keys. Much faster to generate.

The sect 4096 bit 1024 bit Importa keygen, Is this a

ECM fin using L where lo Beats ($\log \log$

Public E 274-bit

vances

 ation.A users

- key sizes, ken sizes.
aphers:
on't react to his way! They'll attices, etc. long omputers break n't need to Ey of RSA-4096, 6384, etc.!"

We consider possible impact of quantum computers. Shouldn't we also consider possible impact of users wanting to stick to RSA?

2017 Bernstein-Heninger-LouValenta "Post-quantum RSA" (pqRSA): Generated 1-terabyte RSA key; 2000000 core-hours. Shor's algorithm: $>2^{100}$ gates.

Bernstein-Fried-Heninger-LouValenta: Draft NIST submission proposing 1-gigabyte RSA keys. Much faster to generate.

The secret primes 4096 bits in teraby 1024 bits in gigab Important time-sa keygen, signing, d

Is this a weakness
ECM finds any pri using $L^{\sqrt{2}+o(1)} \mathrm{m}$ where $\log L=(\log$ Beats Shor for log ($\log \log$ modulus) ${ }^{2}$

Public ECM recor 274-bit factor of 7

We consider possible impact of quantum computers. Shouldn't we also consider possible impact of users wanting to stick to RSA?

2017 Bernstein-Heninger-LouValenta "Post-quantum RSA" (pqRSA): Generated 1-terabyte RSA key; 2000000 core-hours.
Shor's algorithm: $>2^{100}$ gates.
Bernstein-Fried-Heninger-LouValenta: Draft NIST submission proposing 1-gigabyte RSA keys. Much faster to generate.

The secret primes are small: 4096 bits in terabyte key; 1024 bits in gigabyte key. Important time-saver in keygen, signing, decryption. Is this a weakness?

ECM finds any prime $<y$ using $L^{\sqrt{2}+o(1)}$ mulmods, where $\log L=(\log y \log \log)$ Beats Shor for $\log y$ below ($\log \log$ modulus) ${ }^{2+o(1)}$.

Public ECM record:
274 -bit factor of $7^{337}+1$.

We consider possible impact of quantum computers. Shouldn't we also consider possible impact of users wanting to stick to RSA?

2017 Bernstein-Heninger-LouValenta "Post-quantum RSA" (pqRSA): Generated 1-terabyte RSA key; 2000000 core-hours. Shor's algorithm: $>2^{100}$ gates. Bernstein-Fried-Heninger-LouValenta: Draft NIST submission proposing 1-gigabyte RSA keys. Much faster to generate.

The secret primes are small: 4096 bits in terabyte key; 1024 bits in gigabyte key. Important time-saver in keygen, signing, decryption.

Is this a weakness?
ECM finds any prime $<y$ using $L^{\sqrt{2}+o(1)}$ mulmods, where $\log L=(\log y \log \log y)^{1 / 2}$. Beats Shor for $\log y$ below ($\log \log$ modulus) ${ }^{2+o(1)}$.

Public ECM record:
274-bit factor of $7^{337}+1$.
ider possible impact of computers. Shouldn't consider possible impact wanting to stick to RSA?
rnstein-Heninger-Lou-
"Post-quantum RSA"
): Generated 1-terabyte ; 2000000 core-hours. Igorithm: $>2^{100}$ gates.
n-Fried-Heninger-Lou-
Draft NIST submission
g 1-gigabyte RSA keys.
ster to generate.

Analysis
$>2^{125} \mathrm{~m}$
and 2^{33}
$2^{23} \operatorname{targ}$
finding j

Is this a weakness?
ECM finds any prime $<y$ using $L^{\sqrt{2}+o(1)}$ mulmods, where $\log L=(\log y \log \log y)^{1 / 2}$.
Beats Shor for $\log y$ below
(log \log modulus $^{2+o(1)}$.
Public ECM record:
274 -bit factor of $7^{337}+1$.
The secret primes are small:
4096 bits in terabyte key;
1024 bits in gigabyte key.
Important time-saver in
keygen, signing, decryption.
ble impact of rs. Shouldn't ossible impact o stick to RSA?
eninger-Lountum RSA"
ed 1-terabyte core-hours.
$>2^{100}$ gates. eninger-Lou-
ST submission yte RSA keys. nerate.

The secret primes are small: 4096 bits in terabyte key; 1024 bits in gigabyte key. Important time-saver in keygen, signing, decryption.

Is this a weakness?
ECM finds any prime $<y$ using $L^{\sqrt{2}+o(1)}$ mulmods, where $\log L=(\log y \log \log y)^{1 / 2}$.
Beats Shor for $\log y$ below $\left(\log \log\right.$ modulus) ${ }^{2+o(1)}$.

Public ECM record:
274-bit factor of $7^{337}+1$.

Analysis for $y \approx 2$ $>2^{125}$ mulmods, $⺊$ and 2^{33}-bit mulm
2^{23} target primes, finding just one is

The secret primes are small: 4096 bits in terabyte key; 1024 bits in gigabyte key. Important time-saver in keygen, signing, decryption.

Is this a weakness?
ECM finds any prime $<y$ using $L^{\sqrt{2}+o(1)}$ mulmods, where $\log L=(\log y \log \log y)^{1 / 2}$.
Beats Shor for $\log y$ below $(\log \log \text { modulus })^{2+o(1)}$.

Public ECM record:
274-bit factor of $7^{337}+1$.

The secret primes are small: 4096 bits in terabyte key; 1024 bits in gigabyte key. Important time-saver in keygen, signing, decryption.

Is this a weakness?
ECM finds any prime $<y$ using $L^{\sqrt{2}+o(1)}$ mulmods, where $\log L=(\log y \log \log y)^{1 / 2}$.
Beats Shor for $\log y$ below $(\log \log \text { modulus })^{2+o(1)}$.

Public ECM record:
274-bit factor of $7^{337}+1$.
Analysis for $y \approx 2^{1024}$:
$>2^{125}$ mulmods, huge depth; and 2^{33}-bit mulmod is slow.
2^{23} target primes, but finding just one isn't enough.

The secret primes are small: 4096 bits in terabyte key; 1024 bits in gigabyte key. Important time-saver in keygen, signing, decryption.

Is this a weakness?
ECM finds any prime $<y$ using $L^{\sqrt{2}+o(1)}$ mulmods, where $\log L=(\log y \log \log y)^{1 / 2}$.
Beats Shor for $\log y$ below $\left(\log \log\right.$ modulus) ${ }^{2+o(1)}$.

Public ECM record:
274 -bit factor of $7^{337}+1$.
Analysis for $y \approx 2^{1024}$.
$>2^{125}$ mulmods, huge depth; and 2^{33}-bit mulmod is slow.
2^{23} target primes, but finding just one isn't enough.

2017 Bernstein-Heninger-LouValenta: Grover+ECM
finds any prime $<y$
using $L^{1+o(1)}$ mulmods.

The secret primes are small: 4096 bits in terabyte key; 1024 bits in gigabyte key. Important time-saver in keygen, signing, decryption.

Is this a weakness?
ECM finds any prime $<y$ using $L^{\sqrt{2}+o(1)}$ mulmods, where $\log L=(\log y \log \log y)^{1 / 2}$.
Beats Shor for $\log y$ below (log log modulus) $^{2+o(1)}$.

Public ECM record:
274 -bit factor of $7^{337}+1$.

Analysis for $y \approx 2^{1024}$.
$>2^{125}$ mulmods, huge depth; and 2^{33}-bit mulmod is slow.
2^{23} target primes, but finding just one isn't enough.

2017 Bernstein-Heninger-LouValenta: Grover+ECM finds any prime $<y$ using $L^{1+o(1)}$ mulmods.

Seems swamped by overhead.
Open: Better ways for quantum algorithms to find small factors?

Analysis for $y \approx 2^{1024}$:
$>2^{125}$ mulmods, huge depth; and 2^{33}-bit mulmod is slow.
2^{23} target primes, but finding just one isn't enough.

2017 Bernstein-Heninger-LouValenta: Grover+ECM
finds any prime $<y$
using $L^{1+o(1)}$ mulmods.
Seems swamped by overhead.
Open: Better ways for quantum algorithms to find small factors?

NIST al submissi search ff

Is a giga Shor's a

CM record:
factor of $7^{337}+1$.
are small:
te key;
yte key. ver in
ecryption.
$\mathrm{me}<y$
ulmods,
$y \log \log y)^{1 / 2}$
y below
$+o(1)$.
$337+1$.

Analysis for $y \approx 2^{1024}$.
$>2^{125}$ mulmods, huge depth; and 2^{33}-bit mulmod is slow.
2^{23} target primes, but finding just one isn't enough.

2017 Bernstein-Heninger-Lou-
Valenta: Grover+ECM
finds any prime $<y$
using $L^{1+o(1)}$ mulmods.
Seems swamped by overhead.
Open: Better ways for quantum algorithms to find small factors?

Minimum security NIST allows for p submissions: brute search for a 128-b Is a gigabyte key Shor's algorithm t

Analysis for $y \approx 2^{1024}$.
$>2^{125}$ mulmods, huge depth; and 2^{33}-bit mulmod is slow.
2^{23} target primes, but finding just one isn't enough.

2017 Bernstein-Heninger-Lou-
Valenta: Grover+ECM
finds any prime $<y$
using $L^{1+o(1)}$ mulmods.
Seems swamped by overhead.
Open: Better ways for quantum algorithms to find small factors?

Minimum security level that NIST allows for post-quantu submissions: brute-force/Gr search for a 128-bit AES ke

Is a gigabyte key so difficult Shor's algorithm to break?

Analysis for $y \approx 2^{1024}$.
$>2^{125}$ mulmods, huge depth; and 2^{33}-bit mulmod is slow.
2^{23} target primes, but finding just one isn't enough.

2017 Bernstein-Heninger-LouValenta: Grover+ECM
finds any prime $<y$
using $L^{1+o(1)}$ mulmods.
Seems swamped by overhead.
Open: Better ways for quantum algorithms to find small factors?

Minimum security level that NIST allows for post-quantum submissions: brute-force/Grover search for a 128-bit AES key.

Is a gigabyte key so difficult for Shor's algorithm to break?

Analysis for $y \approx 2^{1024}$.
$>2^{125}$ mulmods, huge depth; and 2^{33}-bit mulmod is slow.
2^{23} target primes, but finding just one isn't enough.

2017 Bernstein-Heninger-LouValenta: Grover+ECM
finds any prime $<y$
using $L^{1+o(1)}$ mulmods.
Seems swamped by overhead.
Open: Better ways for quantum algorithms to find small factors?

Minimum security level that NIST allows for post-quantum submissions: brute-force/Grover search for a 128-bit AES key.

Is a gigabyte key so difficult for Shor's algorithm to break?
$64 b^{3} \lg b \approx 2^{110}$ for $b=2^{33}$.
Not totally implausible to argue that Grover's algorithm could break AES-128 faster than this.

Analysis for $y \approx 2^{1024}$:
$>2^{125}$ mulmods, huge depth; and 2^{33}-bit mulmod is slow.
2^{23} target primes, but finding just one isn't enough.

2017 Bernstein-Heninger-LouValenta: Grover+ECM
finds any prime $<y$
using $L^{1+o(1)}$ mulmods.
Seems swamped by overhead.
Open: Better ways for quantum algorithms to find small factors?

Minimum security level that NIST allows for post-quantum submissions: brute-force/Grover search for a 128-bit AES key.

Is a gigabyte key so difficult for Shor's algorithm to break?
$64 b^{3} \lg b \approx 2^{110}$ for $b=2^{33}$.
Not totally implausible to argue that Grover's algorithm could break AES-128 faster than this.

But Shor's algorithm can (with more qubits) use faster mulmods.
for $y \approx 2^{1024}$
ıulmods, huge depth; bit mulmod is slow.
et primes, but
ust one isn't enough.
rnstein-Heninger-Lou-
Grover+ECM
y prime $<y$
$+o(1)$ mulmods.
wamped by overhead.
Better ways for quantum
ns to find small factors?

Minimum security level that NIST allows for post-quantum submissions: brute-force/Grover search for a 128-bit AES key.

Is a gigabyte key so difficult for Shor's algorithm to break?
$64 b^{3} \lg b \approx 2^{110}$ for $b=2^{33}$.
Not totally implausible to argue that Grover's algorithm could break AES-128 faster than this.

But Shor's algorithm can (with more qubits) use faster mulmods.

NIST al
assume
"Plausib range fr approxin presently computi expectes a year) (the app that cur architect in a dec logical g
1024.
uge depth;
d is slow.
but
n't enough.
eninger-Lou-
ECM
mods.
y overhead.
s for quantum small factors?

Minimum security level that NIST allows for post-quantum submissions: brute-force/Grover search for a 128-bit AES key.

Is a gigabyte key so difficult for Shor's algorithm to break?
$64 b^{3} \lg b \approx 2^{110}$ for $b=2^{33}$.
Not totally implausible to argue that Grover's algorithm could break AES-128 faster than this.

But Shor's algorithm can (with more qubits) use faster mulmods.

NIST allows subm assume reasonable
"Plausible values range from 2^{40} los approximate numb presently envision computing archite expected to seriall a year) through 2^{6} (the approximate that current classi architectures can in a decade), to n logical gates ..."

Minimum security level that
NIST allows for post-quantum submissions: brute-force/Grover search for a 128-bit AES key.

Is a gigabyte key so difficult for Shor's algorithm to break?
$64 b^{3} \lg b \approx 2^{110}$ for $b=2^{33}$.
Not totally implausible to argue that Grover's algorithm could break AES-128 faster than this.

But Shor's algorithm can (with more qubits) use faster mulmods.

NIST allows submissions to assume reasonable time limi
"Plausible values for MAXD range from 2^{40} logical gates approximate number of gate presently envisioned quantur computing architectures are expected to serially perform a year) through 2^{64} logical (the approximate number of that current classical compu architectures can perform se in a decade), to no more th logical gates..."

Minimum security level that NIST allows for post-quantum submissions: brute-force/Grover search for a 128-bit AES key.

Is a gigabyte key so difficult for Shor's algorithm to break?
$64 b^{3} \lg b \approx 2^{110}$ for $b=2^{33}$.
Not totally implausible to argue that Grover's algorithm could break AES-128 faster than this.

But Shor's algorithm can (with more qubits) use faster mulmods.

NIST allows submissions to assume reasonable time limits:
"Plausible values for MAXDEPTH range from 2^{40} logical gates (the approximate number of gates that presently envisioned quantum computing architectures are expected to serially perform in a year) through 2^{64} logical gates (the approximate number of gates that current classical computing architectures can perform serially in a decade), to no more than 2^{96} logical gates ..."
n security level that ows for post-quantum
ons: brute-force/Grover or a 128-bit AES key.
byte key so difficult for lgorithm to break?
$\approx 2^{110}$ for $b=2^{33}$.
Ily implausible to argue ver's algorithm could ES-128 faster than this.
r's algorithm can (with bits) use faster mulmods.

NIST allows submissions to assume reasonable time limits:
"Plausible values for MAXDEPTH range from 2^{40} logical gates (the approximate number of gates that presently envisioned quantum computing architectures are expected to serially perform in a year) through 2^{64} logical gates (the approximate number of gates that current classical computing architectures can perform serially in a decade), to no more than 2^{96} logical gates ..."

What is for b-bit

Light ta
to cross
1981 Br
$A T \geq \mathrm{sr}$ even if v
(Work a faster-th through Haven't even if r avoids F
level that
ost-quantum
-force/Grover
it AES key.
o difficult for o break?
$b=2^{33}$
sible to argue rithm could ster than this.
nm can (with aster mulmods.

NIST allows submissions to assume reasonable time limits:
"Plausible values for MAXDEPTH range from 2^{40} logical gates (the approximate number of gates that presently envisioned quantum computing architectures are expected to serially perform in a year) through 2^{64} logical gates (the approximate number of gates that current classical computing architectures can perform serially in a decade), to no more than 2^{96} logical gates ..."

What is the minim for b-bit integer m Light takes time ς to cross a $b^{1 / 2} \times$ 1981 Brent-Kung $A T \geq$ small consta even if wire latenc
(Work around obs faster-than-light c through long-dista Haven't seen plau even if reversible c avoids FTL impos

NIST allows submissions to
assume reasonable time limits:
"Plausible values for MAXDEPTH range from 2^{40} logical gates (the approximate number of gates that presently envisioned quantum computing architectures are expected to serially perform in a year) through 2^{64} logical gates (the approximate number of gates that current classical computing architectures can perform serially in a decade), to no more than 2^{96} logical gates ..."

What is the minimum time for b-bit integer multiplicati Light takes time $\Omega\left(b^{1 / 2}\right)$ to cross a $b^{1 / 2} \times b^{1 / 2}$ chip. 1981 Brent-Kung $A T$ theor $A T \geq$ small constant $\cdot b^{3 / 2}$, even if wire latency is 0 .
(Work around obstacles usin faster-than-light communica through long-distance EPR Haven't seen plausible desig even if reversible computatic avoids FTL impossibility pro

NIST allows submissions to assume reasonable time limits:
"Plausible values for MAXDEPTH range from 2^{40} logical gates (the approximate number of gates that presently envisioned quantum computing architectures are expected to serially perform in a year) through 2^{64} logical gates (the approximate number of gates that current classical computing architectures can perform serially in a decade), to no more than 2^{96} logical gates ..."

What is the minimum time for b-bit integer multiplication?

Light takes time $\Omega\left(b^{1 / 2}\right)$ to cross a $b^{1 / 2} \times b^{1 / 2}$ chip.

1981 Brent-Kung $A T$ theorem: $A T \geq$ small constant $\cdot b^{3 / 2}$, even if wire latency is 0 .
(Work around obstacles using faster-than-light communication through long-distance EPR pairs? Haven't seen plausible designs, even if reversible computation avoids FTL impossibility proofs.)
ows submissions to reasonable time limits:
le values for MAXDEPTH m 2^{40} logical gates (the nate number of gates that / envisioned quantum ng architectures are to serially perform in hrough 2^{64} logical gates roximate number of gates rent classical computing ures can perform serially ade), to no more than 2^{96} ates . . ."

What is the minimum time for b-bit integer multiplication?

Light takes time $\Omega\left(b^{1 / 2}\right)$
to cross a $b^{1 / 2} \times b^{1 / 2}$ chip.
1981 Brent-Kung $A T$ theorem:
$A T \geq$ small constant $\cdot b^{3 / 2}$, even if wire latency is 0 .
(Work around obstacles using
faster-than-light communication through long-distance EPR pairs? Haven't seen plausible designs, even if reversible computation avoids FTL impossibility proofs.)

What is for Shor

Main bo
for $2 b$-b
Traditio controlle a and 1 , $a^{2} \bmod$ $a^{4} \bmod$

Can mu using m but hard computa
issions to
time limits:
For MAXDEPTH ical gates (the er of gates that
d quantum
ctures are
y perform in
4 logical gates
number of gates
cal computing
serform serially
o more than 2^{96}

What is the minimum time for b-bit integer multiplication?

Light takes time $\Omega\left(b^{1 / 2}\right)$ to cross a $b^{1 / 2} \times b^{1 / 2}$ chip.

1981 Brent-Kung AT theorem:
$A T \geq$ small constant $\cdot b^{3 / 2}$, even if wire latency is 0 .
(Work around obstacles using
faster-than-light communication through long-distance EPR pairs?
Haven't seen plausible designs, even if reversible computation avoids FTL impossibility proofs.)

What is the minim for Shor's algorith Main bottleneck: for $2 b$-bit superpo

Traditional approa controlled multipli a and $1 / a \bmod N$; $a^{2} \bmod N$ and $1 / a$ $a^{4} \bmod N$ and $1 /$

Can multiply thes using many more but hard to paralle computation of a^{2}

What is the minimum time for b-bit integer multiplication?

Light takes time $\Omega\left(b^{1 / 2}\right)$ to cross a $b^{1 / 2} \times b^{1 / 2}$ chip.

1981 Brent-Kung $A T$ theorem:
$A T \geq$ small constant $\cdot b^{3 / 2}$, even if wire latency is 0 .
(Work around obstacles using faster-than-light communication through long-distance EPR pairs?
Haven't seen plausible designs, even if reversible computation avoids FTL impossibility proofs.)

What is the minimum time for Shor's algorithm?

Main bottleneck: $a^{e} \bmod N$ for $2 b$-bit superposition e.

Traditional approach: series controlled multiplications by a and $1 / a \bmod N$; $a^{2} \bmod N$ and $1 / a^{2} \bmod N$; $a^{4} \bmod N$ and $1 / a^{4} \bmod N$;

Can multiply these in parall using many more qubits; but hard to parallelize initial computation of $a^{2^{i}} \bmod N$.

What is the minimum time for b-bit integer multiplication?

Light takes time $\Omega\left(b^{1 / 2}\right)$ to cross a $b^{1 / 2} \times b^{1 / 2}$ chip.

1981 Brent-Kung AT theorem:
$A T \geq$ small constant $\cdot b^{3 / 2}$, even if wire latency is 0 .
(Work around obstacles using faster-than-light communication through long-distance EPR pairs? Haven't seen plausible designs, even if reversible computation avoids FTL impossibility proofs.)

What is the minimum time for Shor's algorithm?

Main bottleneck: $a^{e} \bmod N$ for $2 b$-bit superposition e.

Traditional approach: series of controlled multiplications by a and $1 / a \bmod N$; $a^{2} \bmod N$ and $1 / a^{2} \bmod N$; $a^{4} \bmod N$ and $1 / a^{4} \bmod N$; etc.

Can multiply these in parallel, using many more qubits; but hard to parallelize initial computation of $a^{2^{i}} \bmod N$.
the minimum time integer multiplication?
kes time $\Omega\left(b^{1 / 2}\right)$
a $b^{1 / 2} \times b^{1 / 2}$ chip.
ent-Kung $A T$ theorem:
nall constant $\cdot b^{3 / 2}$, vire latency is 0 .
round obstacles using
an-light communication long-distance EPR pairs?
seen plausible designs, eversible computation
TL impossibility proofs.)

What is the minimum time for Shor's algorithm?

Main bottleneck: $a^{e} \bmod N$ for $2 b$-bit superposition e.

Traditional approach: series of controlled multiplications by a and $1 / a \bmod N$;
$a^{2} \bmod N$ and $1 / a^{2} \bmod N$; $a^{4} \bmod N$ and $1 / a^{4} \bmod N$; etc.

Can multiply these in parallel, using many more qubits; but hard to parallelize initial computation of $a^{2^{i}} \bmod N$.

Why gig big enou beyond under re

Gigabyt millions than 20 These a billions More co
lum time
ultiplication?
$2\left(b^{1 / 2}\right)$
$b^{1 / 2}$ chip.
AT theorem:
ant $\cdot b^{3 / 2}$
y is 0 .
tacles using
ommunication nce EPR pairs?
sible designs, omputation sibility proofs.)

What is the minimum time for Shor's algorithm?

Main bottleneck: $a^{e} \bmod N$ for $2 b$-bit superposition e.

Traditional approach: series of controlled multiplications by a and $1 / a \bmod N$;
$a^{2} \bmod N$ and $1 / a^{2} \bmod N$;
$a^{4} \bmod N$ and $1 / a^{4} \bmod N$; etc.
Can multiply these in parallel, using many more qubits; but hard to parallelize initial computation of $a^{2^{i}} \bmod N$.

Why gigabyte key big enough to pus beyond the 2^{64} lin under reasonable

Gigabyte inputs ar millions of times than 2048-bit inp These algorithms billions of times lo More cost to find

What is the minimum time for Shor's algorithm?

Main bottleneck: $a^{e} \bmod N$ for $2 b$-bit superposition e.

Traditional approach: series of controlled multiplications by a and $1 / a \bmod N$; $a^{2} \bmod N$ and $1 / a^{2} \bmod N$; $a^{4} \bmod N$ and $1 / a^{4} \bmod N$; etc.

Can multiply these in parallel, using many more qubits; but hard to parallelize initial computation of $a^{2^{i}} \bmod N$.

Why gigabyte keys are reasc big enough to push latency beyond the 2^{64} limit, under reasonable assumptior

Gigabyte inputs are millions of times larger than 2048-bit inputs.
These algorithms will take billions of times longer.
More cost to find all primes

What is the minimum time for Shor's algorithm?

Main bottleneck: $a^{e} \bmod N$ for $2 b$-bit superposition e.

Traditional approach: series of controlled multiplications by a and $1 / a \bmod N$; $a^{2} \bmod N$ and $1 / a^{2} \bmod N$; $a^{4} \bmod N$ and $1 / a^{4} \bmod N$; etc.

Can multiply these in parallel, using many more qubits; but hard to parallelize initial computation of $a^{2^{i}} \bmod N$.

Why gigabyte keys are reasonable:
big enough to push latency beyond the 2^{64} limit, under reasonable assumptions.

Gigabyte inputs are millions of times larger than 2048-bit inputs.
These algorithms will take billions of times longer.
More cost to find all primes.

What is the minimum time for Shor's algorithm?

Main bottleneck: $a^{e} \bmod N$ for $2 b$-bit superposition e.

Traditional approach: series of controlled multiplications by a and $1 / a \bmod N$; $a^{2} \bmod N$ and $1 / a^{2} \bmod N$; $a^{4} \bmod N$ and $1 / a^{4} \bmod N$; etc.

Can multiply these in parallel, using many more qubits; but hard to parallelize initial computation of $a^{2^{i}} \bmod N$.

Why gigabyte keys are reasonable:
big enough to push latency beyond the 2^{64} limit, under reasonable assumptions.

Gigabyte inputs are millions of times larger than 2048-bit inputs.
These algorithms will take billions of times longer.
More cost to find all primes.
Open: What is minimum time for integer factorization?
the minimum time 's algorithm?
ttleneck: $a^{e} \bmod N$ it superposition e.
nal approach: series of
d multiplications by
'a mod N;
N and $1 / a^{2} \bmod N$; N and $1 / a^{4} \bmod N$; etc.
tiply these in parallel, any more qubits; to parallelize initial tion of $a^{2^{i}} \bmod N$.

Why gigabyte keys are reasonable:
big enough to push latency beyond the 2^{64} limit, under reasonable assumptions.

Gigabyte inputs are millions of times larger than 2048-bit inputs.
These algorithms will take billions of times longer.
More cost to find all primes.
Open: What is minimum time for integer factorization?

NIST's is define
lum time
m ?
$a^{e} \bmod N$
sition e.
ch: series of
cations by
$a^{2} \bmod N ;$
${ }^{4} \bmod N$; etc.
e in parallel, qubits; lize initial $\bmod N$.

Why gigabyte keys are reasonable:
big enough to push latency beyond the 2^{64} limit, under reasonable assumptions.

Gigabyte inputs are millions of times larger than 2048-bit inputs. These algorithms will take billions of times longer. More cost to find all primes.

Open: What is minimum time for integer factorization?

NIST's middle sec is defined by an A

Why gigabyte keys are reasonable:
big enough to push latency beyond the 2^{64} limit, under reasonable assumptions.

Gigabyte inputs are millions of times larger than 2048-bit inputs.
These algorithms will take billions of times longer.
More cost to find all primes.
Open: What is minimum time for integer factorization?

NIST's middle security level is defined by an AES-192 ke

Why gigabyte keys are reasonable:
big enough to push latency beyond the 2^{64} limit, under reasonable assumptions.

Gigabyte inputs are millions of times larger than 2048-bit inputs.
These algorithms will take billions of times longer.
More cost to find all primes.
Open: What is minimum time for integer factorization?

NIST's middle security level is defined by an AES-192 key.

Why gigabyte keys are reasonable:
big enough to push latency beyond the 2^{64} limit, under reasonable assumptions.

Gigabyte inputs are millions of times larger than 2048-bit inputs.
These algorithms will take billions of times longer.
More cost to find all primes.
Open: What is minimum time for integer factorization?

NIST's middle security level is defined by an AES-192 key.

With maximum depth 2^{64}, finding an AES-192 key requires $\approx 2^{144}$ cores.

Why gigabyte keys are reasonable: big enough to push latency beyond the 2^{64} limit, under reasonable assumptions.

Gigabyte inputs are millions of times larger than 2048-bit inputs.
These algorithms will take billions of times longer.
More cost to find all primes.
Open: What is minimum time for integer factorization?

NIST's middle security level is defined by an AES-192 key.

With maximum depth 2^{64}, finding an AES-192 key requires $\approx 2^{144}$ cores.

This is nonsense! There is not enough time to broadcast the input to 2^{144} parallel computations, and not enough time to collect the results.

Why gigabyte keys are reasonable: big enough to push latency beyond the 2^{64} limit, under reasonable assumptions.

Gigabyte inputs are millions of times larger than 2048-bit inputs.
These algorithms will take billions of times longer.
More cost to find all primes.
Open: What is minimum time for integer factorization?

NIST's middle security level is defined by an AES-192 key.

With maximum depth 2^{64}, finding an AES-192 key requires $\approx 2^{144}$ cores.

This is nonsense! There is not enough time to broadcast the input to 2^{144} parallel computations, and not enough time to collect the results.

Is NIST implicitly assuming
a higher latency limit?
abyte keys are reasonable:
gh to push latency the 2^{64} limit,
asonable assumptions.
inputs are
of times larger
48-bit inputs. gorithms will take of times longer.
st to find all primes.
Vhat is minimum time
er factorization?

Some im
(2017 B
Conside factoring $\left(p_{j}-1\right)$

Unit gro
$\mathbf{Z} / 2^{t_{1}} \times$
s are reasonable:
h latency
it,
assumptions.
arger
its.
will take
nger.
all primes.
nimum time
ation?

NIST's middle security level is defined by an AES-192 key.

With maximum depth 2^{64}, finding an AES-192 key requires $\approx 2^{144}$ cores.

This is nonsense! There is not enough time to broadcast the input to 2^{144} parallel computations, and not enough time to collect the results.

Is NIST implicitly assuming a higher latency limit?

Some improvemen

(2017 Bernstein-E

Consider Shor's al factoring $N=p_{1}^{e_{1}}$ $\left(p_{j}-1\right) p_{j}^{e_{j}-1}$ as 2

Unit group is isom $\mathbf{Z} / 2^{t_{1}} \times \cdots \times \mathbf{Z} / 2$
nable:

NIST's middle security level is defined by an AES-192 key.

With maximum depth 2^{64}, finding an AES-192 key requires $\approx 2^{144}$ cores.

This is nonsense! There is not enough time to broadcast the input to 2^{144} parallel computations, and not enough time to collect the results.

Is NIST implicitly assuming a higher latency limit?

Some improvements to Shor
(2017 Bernstein-Biasse-Mo
Consider Shor's algorithm factoring $N=p_{1}^{e_{1}} \cdots p_{f}^{e_{f}}$. V $\left(p_{j}-1\right) p_{j}^{e_{j}-1}$ as $2^{t_{j}} u_{j}$ with ι
Unit group is isomorphic to $\mathbf{Z} / 2^{t_{1}} \times \cdots \times \mathbf{Z} / 2^{t_{f}} \times \mathbf{Z} / u_{1}$

NIST's middle security level is defined by an AES-192 key.

With maximum depth 2^{64}, finding an AES-192 key requires $\approx 2^{144}$ cores.

This is nonsense! There is not enough time to broadcast the input to 2^{144} parallel computations, and not enough time to collect the results.

Is NIST implicitly assuming
a higher latency limit?

Some improvements to Shor
 Some improvaments to Shor

(2017 Bernstein-Biasse-Mosca)
Consider Shor's algorithm factoring $N=p_{1}^{e_{1}} \cdots p_{f}^{e_{f}}$. Write $\left(p_{j}-1\right) p_{j}^{e_{j}-1}$ as $2^{t_{j}} u_{j}$ with u_{j} odd.
Unit group is isomorphic to
$\mathbf{Z} / 2^{t_{1}} \times \cdots \times \mathbf{Z} / 2^{t_{f}} \times \mathbf{Z} / u_{1} \times \cdots$.

NIST's middle security level is defined by an AES-192 key.

With maximum depth 2^{64}, finding an AES-192 key requires $\approx 2^{144}$ cores.

This is nonsense! There is not enough time to broadcast the input to 2^{144} parallel computations, and not enough time to collect the results.

Is NIST implicitly assuming a higher latency limit?

Some improvements to Shor
(2017 Bernstein-Biasse-Mosca)
Consider Shor's algorithm factoring $N=p_{1}^{e_{1}} \cdots p_{f}^{e_{f}}$. Write $\left(p_{j}-1\right) p_{j}^{e_{j}-1}$ as $2^{t_{j}} u_{j}$ with u_{j} odd.
Unit group is isomorphic to
$\mathbf{Z} / 2^{t_{1}} \times \cdots \times \mathbf{Z} / 2^{t_{f}} \times \mathbf{Z} / u_{1} \times \cdots$.
Shor's algorithm (hopefully) computes order r of random unit.
Order $2^{c_{j}}$ in $\mathbf{Z} / 2^{t_{j}}$ is
$2^{t_{j}}$ with probability $1 / 2$;
$2^{t_{j}-1}$ with probability $1 / 4$; etc.
middle security level
d by an AES-192 key.
ximum depth 2^{64},
n AES-192 key
$\approx 2^{144}$ cores.
oonsense! There is
ugh time to broadcast
t to 2^{144} parallel
tions, and not enough collect the results.
implicitly assuming latency limit?

Some improvements to Shor
(2017 Bernstein-Biasse-Mosca)
Consider Shor's algorithm factoring $N=p_{1}^{e_{1}} \cdots p_{f}^{e_{f}}$. Write $\left(p_{j}-1\right) p_{j}^{e_{j}-1}$ as $2^{t_{j}} u_{j}$ with u_{j} odd.

Shor cor
Divisible
$c_{j}<\mathrm{ma}$
Factoriz equal.
urity level
ES-192 key.
pth 2^{64}
2 key
es.
There is
o broadcast
oarallel
not enough
results.
assuming mit?

Shor computes gc Divisible by p_{j} exa $c_{j}<\max \left\{c_{1}, \ldots\right.$,

Factorization fails equal. Chance ≤ 1

Some improvements to Shor
(2017 Bernstein-Biasse-Mosca)
Consider Shor's algorithm factoring $N=p_{1}^{e_{1}} \cdots p_{f}^{e_{f}}$. Write $\left(p_{j}-1\right) p_{j}^{e_{j}-1}$ as $2^{t_{j}} u_{j}$ with u_{j} odd.
Unit group is isomorphic to
$\mathbf{Z} / 2^{t_{1}} \times \cdots \times \mathbf{Z} / 2^{t_{f}} \times \mathbf{Z} / u_{1} \times \cdots$.
Shor's algorithm (hopefully) computes order r of random unit.
Order $2^{c_{j}}$ in $\mathbf{Z} / 2^{t_{j}}$ is
$2^{t_{j}}$ with probability $1 / 2$;
$2^{t_{j}-1}$ with probability $1 / 4$; etc.

Some improvements to Shor
(2017 Bernstein-Biasse-Mosca)
Consider Shor's algorithm factoring $N=p_{1}^{e_{1}} \cdots p_{f}^{e_{f}}$. Write $\left(p_{j}-1\right) p_{j}^{e_{j}-1}$ as $2^{t_{j}} u_{j}$ with u_{j} odd.
Unit group is isomorphic to
$\mathbf{Z} / 2^{t_{1}} \times \cdots \times \mathbf{Z} / 2^{t_{f}} \times \mathbf{Z} / u_{1} \times \cdots$.
Shor's algorithm (hopefully) computes order r of random unit.
Order $2^{c_{j}}$ in $\mathbf{Z} / 2^{t_{j}}$ is
$2^{t_{j}}$ with probability $1 / 2$;
$2^{t_{j}-1}$ with probability $1 / 4$; etc.

Shor computes $\operatorname{gcd}\left\{N, a^{r / 2}\right.$ Divisible by p_{j} exactly when $c_{j}<\max \left\{c_{1}, \ldots, c_{f}\right\}$.

Factorization fails iff all c_{j} a equal. Chance $\leq 1 / 2^{f-1}$.

Some improvements to Shor
(2017 Bernstein-Biasse-Mosca)
Consider Shor's algorithm factoring $N=p_{1}^{e_{1}} \cdots p_{f}^{e_{f}}$. Write $\left(p_{j}-1\right) p_{j}^{e_{j}-1}$ as $2^{t_{j}} u_{j}$ with u_{j} odd. Unit group is isomorphic to $\mathbf{Z} / 2^{t_{1}} \times \cdots \times \mathbf{Z} / 2^{t_{f}} \times \mathbf{Z} / u_{1} \times \cdots$.

Shor's algorithm (hopefully) computes order r of random unit. Order $2^{c_{j}}$ in $\mathbf{Z} / 2^{t_{j}}$ is $2^{t_{j}}$ with probability $1 / 2$; $2^{t_{j}-1}$ with probability $1 / 4$; etc.

Shor computes $\operatorname{gcd}\left\{N, a^{r / 2}-1\right\}$.
Divisible by p_{j} exactly when
$c_{j}<\max \left\{c_{1}, \ldots, c_{f}\right\}$.
Factorization fails iff all c_{j} are equal. Chance $\leq 1 / 2^{f-1}$.

Some improvements to Shor

(2017 Bernstein-Biasse-Mosca)
Consider Shor's algorithm factoring $N=p_{1}^{e_{1}} \cdots p_{f}^{e_{f}}$. Write $\left(p_{j}-1\right) p_{j}^{e_{j}-1}$ as $2^{t_{j}} u_{j}$ with u_{j} odd.

Unit group is isomorphic to
$\mathbf{Z} / 2^{t_{1}} \times \cdots \times \mathbf{Z} / 2^{t_{f}} \times \mathbf{Z} / u_{1} \times \cdots$.
Shor's algorithm (hopefully) computes order r of random unit.
Order $2^{c_{j}}$ in $\mathbf{Z} / 2^{t_{j}}$ is
$2^{t_{j}}$ with probability $1 / 2$;
$2^{t_{j}-1}$ with probability $1 / 4$; etc.

Shor computes $\operatorname{gcd}\left\{N, a^{r / 2}-1\right\}$.
Divisible by p_{j} exactly when
$c_{j}<\max \left\{c_{1}, \ldots, c_{f}\right\}$.
Factorization fails iff all c_{j} are equal. Chance $\leq 1 / 2^{f-1}$.

More subtle problem:
Factorization is likely to split off some of the primes with maximum t_{j}.

Can iterate Shor's algorithm enough times to completely factor. Many full-size iterations; many more for adversarial inputs.
ernstein-Biasse-Mosca)
Shor's algorithm
$N=p_{1}^{e_{1}} \cdots p_{f}^{e_{f}}$. Write
${ }_{j}^{e_{j}-1}$ as $2^{t_{j}} u_{j}$ with u_{j} odd.
up is isomorphic to

$$
\cdots \times \mathbf{Z} / 2^{t_{f}} \times \mathbf{Z} / u_{1} \times \cdots
$$

lgorithm (hopefully)
order r of random unit.
${ }_{j}$ in $\mathbf{Z} / 2^{t_{j}}$ is
probability $1 / 2 ;$
th probability $1 / 4$; etc.

Shor computes $\operatorname{gcd}\left\{N, a^{r / 2}-1\right\}$. Divisible by p_{j} exactly when $c_{j}<\max \left\{c_{1}, \ldots, c_{f}\right\}$.

Factorization fails iff all c_{j} are equal. Chance $\leq 1 / 2^{f-1}$.

More subtle problem:
Factorization is likely to split off some of the primes with maximum t_{j}.

Can iterate Shor's algorithm enough times to completely factor. Many full-size iterations; many more for adversarial inputs.

Better n primality with $a^{r /}$ \ldots, a^{d}

This spli
Any two
$\geq 1 / 2$ of
Factors
Much le
Also "pa
Run sev giving s
Then fa
ts to Shor
iasse-Mosca)
gorithm
$p_{f}^{e_{f}}$. Write
${ }^{t_{j}} u_{j}$ with u_{j} odd.
orphic to
$t_{f} \times \mathbf{Z} / u_{1} \times \cdots$.
hopefully)
of random unit.
is
y $1 / 2$;
ility $1 / 4$; etc.

Shor computes $\operatorname{gcd}\left\{N, a^{r / 2}-1\right\}$. Divisible by p_{j} exactly when
$c_{j}<\max \left\{c_{1}, \ldots, c_{f}\right\}$.
Factorization fails iff all c_{j} are equal. Chance $\leq 1 / 2^{f-1}$.

More subtle problem:
Factorization is likely to
split off some of the primes with maximum t_{j}.

Can iterate Shor's algorithm enough times to completely factor. Many full-size iterations; many more for adversarial inputs.

Better method, in primality testing: with $a^{r / 2}+1, a^{r / 2}$ $\ldots, a^{d}+1, a^{d}-$

This splits p_{j} acco Any two primes ha $\geq 1 / 2$ of being spl

Factors are arounc Much less overhea

Also "parallel cons Run several times giving several fact Then factor into c

Shor computes $\operatorname{gcd}\left\{N, a^{r / 2}-1\right\}$. Divisible by p_{j} exactly when
$c_{j}<\max \left\{c_{1}, \ldots, c_{f}\right\}$.
Factorization fails iff all c_{j} are equal. Chance $\leq 1 / 2^{f-1}$.

More subtle problem:
Factorization is likely to split off some of the primes with maximum t_{j}.

Can iterate Shor's algorithm enough times to completely factor. Many full-size iterations; many more for adversarial inputs.

Better method, inspired by primality testing: compute with $a^{r / 2}+1, a^{r / 4}+1, a^{r / \delta}$ $\ldots, a^{d}+1, a^{d}-1$, with od

This splits p_{j} according to c Any two primes have chance $\geq 1 / 2$ of being split.

Factors are around half size.
Much less overhead for recu
Also "parallel construction": Run several times in parallel giving several factorizations. Then factor into coprimes.

Shor computes $\operatorname{gcd}\left\{N, a^{r / 2}-1\right\}$. Divisible by p_{j} exactly when $c_{j}<\max \left\{c_{1}, \ldots, c_{f}\right\}$.

Factorization fails iff all c_{j} are equal. Chance $\leq 1 / 2^{f-1}$.

More subtle problem:
Factorization is likely to split off some of the primes with maximum t_{j}.

Can iterate Shor's algorithm enough times to completely factor. Many full-size iterations; many more for adversarial inputs.

Better method, inspired by primality testing: compute gcd with $a^{r / 2}+1, a^{r / 4}+1, a^{r / 8}+1$, $\ldots, a^{d}+1, a^{d}-1$, with odd d.

This splits p_{j} according to c_{j}.
Any two primes have chance $\geq 1 / 2$ of being split.

Factors are around half size. Much less overhead for recursion.

Also "parallel construction": Run several times in parallel, giving several factorizations.
Then factor into coprimes.
nputes $\operatorname{gcd}\left\{N, a^{r / 2}-1\right\}$. by p_{j} exactly when $x\left\{c_{1}, \ldots, c_{f}\right\}$.
ation fails iff all c_{j} are hance $\leq 1 / 2^{f-1}$.
btle problem:
ation is likely to
some of the vith maximum t_{j}.
ate Shor's algorithm times to completely
Vany full-size iterations; ore for adversarial inputs.

Better method, inspired by primality testing: compute gcd with $a^{r / 2}+1, a^{r / 4}+1, a^{r / 8}+1$, $\ldots, a^{d}+1, a^{d}-1$, with odd d.

This splits p_{j} according to c_{j}. Any two primes have chance $\geq 1 / 2$ of being split.

Factors are around half size. Much less overhead for recursion.

Also "parallel construction": Run several times in parallel, giving several factorizations. Then factor into coprimes.

These m
Didn't
We actu to searc numbers

Oracle f factor th to recog

We twea work in with qub fractions
$d\left\{N, a^{r / 2}-1\right\}$.
ctly when
$\left.c_{f}\right\}$.
iff all c_{j} are
$/ 2^{f-1}$.
em:
ely to
ne
num t_{j}.
algorithm ompletely size iterations; versarial inputs.

Better method, inspired by primality testing: compute gcd with $a^{r / 2}+1, a^{r / 4}+1, a^{r / 8}+1$, $\ldots, a^{d}+1, a^{d}-1$, with odd d.

This splits p_{j} according to c_{j}. Any two primes have chance $\geq 1 / 2$ of being split.

Factors are around half size. Much less overhead for recursion.

Also "parallel construction": Run several times in parallel, giving several factorizations. Then factor into coprimes.

These methods us Didn't we claim b

We actually use G to search for smod numbers in NFS.

Oracle for Grover' factor thoroughly to recognize smoo

We tweak (improv work in superposit with qubit budget fractions, power d

Better method, inspired by primality testing: compute gcd with $a^{r / 2}+1, a^{r / 4}+1, a^{r / 8}+1$,
$\ldots, a^{d}+1, a^{d}-1$, with odd d.
This splits p_{j} according to c_{j}.
Any two primes have chance
$\geq 1 / 2$ of being split.
Factors are around half size.
Much less overhead for recursion.
Also "parallel construction":
Run several times in parallel, giving several factorizations.
Then factor into coprimes.

These methods use $>b$ qubi Didn't we claim $b^{2 / 3+o(1)} \mathrm{q}$

We actually use Grover's me to search for smooth $b^{2 / 3+o}$ numbers in NFS.

Oracle for Grover's method: factor thoroughly enough to recognize smooth inputs.

We tweak (improved) Shor 1 work in superposition. Care with qubit budget for contin fractions, power detection,

Better method, inspired by primality testing: compute gcd with $a^{r / 2}+1, a^{r / 4}+1, a^{r / 8}+1$, $\ldots, a^{d}+1, a^{d}-1$, with odd d.

This splits p_{j} according to c_{j}.
Any two primes have chance $\geq 1 / 2$ of being split.

Factors are around half size. Much less overhead for recursion.

Also "parallel construction":
Run several times in parallel, giving several factorizations.
Then factor into coprimes.

These methods use $>b$ qubits.
Didn't we claim $b^{2 / 3+o(1) ~ q u b i t s ? ~}$
We actually use Grover's method to search for smooth $b^{2 / 3+o(1)}$-bit numbers in NFS.

Oracle for Grover's method: factor thoroughly enough to recognize smooth inputs.

We tweak (improved) Shor to work in superposition. Careful with qubit budget for continued fractions, power detection, etc.
ethod, inspired by
testing: compute gcd $2+1, a^{r / 4}+1, a^{r / 8}+1$,
$+1, a^{d}-1$, with odd d.
ts p_{j} according to c_{j}.
primes have chance being split.
are around half size. ss overhead for recursion.
rallel construction": eral times in parallel, everal factorizations. ctor into coprimes.

These methods use $>b$ qubits.
Didn't we claim $b^{2 / 3+o(1) ~ q u b i t s ? ~}$
We actually use Grover's method to search for smooth $b^{2 / 3+o(1)}$-bit numbers in NFS.

Oracle for Grover's method: factor thoroughly enough to recognize smooth inputs.

We tweak (improved) Shor to work in superposition. Careful with qubit budget for continued fractions, power detection, etc.

A differe randomr Shor's a $(\mathbf{Z} / N)^{*}$ for a rar
spired by
compute gcd

$$
4+1, a^{r / 8}+1
$$

1 , with odd d.
rding to c_{j}.
ve chance
it.
half size.
d for recursion.
struction":
in parallel, orizations. oprimes.

These methods use $>b$ qubits.
Didn't we claim $b^{2 / 3+o(1) ~ q u b i t s ? ~}$
We actually use Grover's method to search for smooth $b^{2 / 3+o(1)}$-bit numbers in NFS.

Oracle for Grover's method: factor thoroughly enough to recognize smooth inputs.

We tweak (improved) Shor to work in superposition. Careful with qubit budget for continued fractions, power detection, etc.

A different way to randomness of fac Shor's algorithm:
$(\mathbf{Z} / N)^{*}$ with $E(\mathbf{Z}$ for a random ellip

These methods use $>b$ qubits. Didn't we claim $b^{2 / 3+o(1) ~ q u b i t s ? ~}$

We actually use Grover's method to search for smooth $b^{2 / 3+o(1)}$-bit numbers in NFS.

Oracle for Grover's method: factor thoroughly enough to recognize smooth inputs.

We tweak (improved) Shor to work in superposition. Careful with qubit budget for continued fractions, power detection, etc.

A different way to improve randomness of factorizations Shor's algorithm: replace gr $(\mathbf{Z} / N)^{*}$ with $E(\mathbf{Z} / N)$
for a random elliptic curve

These methods use $>b$ qubits.
Didn't we claim $b^{2 / 3+o(1) ~ q u b i t s ? ~}$
We actually use Grover's method to search for smooth $b^{2 / 3+o(1)}$-bit numbers in NFS.

Oracle for Grover's method: factor thoroughly enough to recognize smooth inputs.

We tweak (improved) Shor to work in superposition. Careful with qubit budget for continued fractions, power detection, etc.

A different way to improve randomness of factorizations in Shor's algorithm: replace group
$(\mathbf{Z} / N)^{*}$ with $E(\mathbf{Z} / N)$
for a random elliptic curve E.

These methods use $>b$ qubits.
Didn't we claim $b^{2 / 3+o(1) ~ q u b i t s ? ~}$
We actually use Grover's method to search for smooth $b^{2 / 3+o(1)}$-bit numbers in NFS.

Oracle for Grover's method: factor thoroughly enough to recognize smooth inputs.

We tweak (improved) Shor to work in superposition. Careful with qubit budget for continued fractions, power detection, etc.

A different way to improve randomness of factorizations in Shor's algorithm: replace group $(\mathbf{Z} / N)^{*}$ with $E(\mathbf{Z} / N)$
for a random elliptic curve E.
Gal Dor suggests unifying Grover+ECM with Shor: e.g., compute es P on $E(\mathbf{Z} / N)$ where e is superposition of scalars, s is smooth scalar,
E is superposition of curves.

These methods use $>b$ qubits.
Didn't we claim $b^{2 / 3+o(1) ~ q u b i t s ? ~}$
We actually use Grover's method to search for smooth $b^{2 / 3+o(1)}$-bit numbers in NFS.

Oracle for Grover's method: factor thoroughly enough to recognize smooth inputs.

We tweak (improved) Shor to work in superposition. Careful with qubit budget for continued fractions, power detection, etc.

A different way to improve randomness of factorizations in Shor's algorithm: replace group $(\mathbf{Z} / N)^{*}$ with $E(\mathbf{Z} / N)$
for a random elliptic curve E.
Gal Dor suggests unifying Grover+ECM with Shor: e.g., compute es P on $E(\mathbf{Z} / N)$ where e is superposition of scalars, s is smooth scalar,
E is superposition of curves.
Open: What are minimum costs for this unification?

