
1

Internet integration:

the DNS security mess

D. J. Bernstein

University of Illinois at Chicago

2

The Domain Name System

uic.edu wants to see

http://www.matcom.uh.cu.'& %$! "#Browser at uic.edu

'& %$! "#Administrator at uh.cu

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

OO

Now uic.edu

retrieves web page from

IP address 200.55.139.216.

1

Internet integration:

the DNS security mess

D. J. Bernstein

University of Illinois at Chicago

2

The Domain Name System

uic.edu wants to see

http://www.matcom.uh.cu.'& %$! "#Browser at uic.edu

'& %$! "#Administrator at uh.cu

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

OO

Now uic.edu

retrieves web page from

IP address 200.55.139.216.

3

Same for Internet mail.

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Administrator at uh.cu

“The mail server for

uh.cu

has IP address

200.55.139.213.”

OO

Now uic.edu

delivers mail to

IP address 200.55.139.213.

1

Internet integration:

the DNS security mess

D. J. Bernstein

University of Illinois at Chicago

2

The Domain Name System

uic.edu wants to see

http://www.matcom.uh.cu.'& %$! "#Browser at uic.edu

'& %$! "#Administrator at uh.cu

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

OO

Now uic.edu

retrieves web page from

IP address 200.55.139.216.

3

Same for Internet mail.

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Administrator at uh.cu

“The mail server for

uh.cu

has IP address

200.55.139.213.”

OO

Now uic.edu

delivers mail to

IP address 200.55.139.213.

1

Internet integration:

the DNS security mess

D. J. Bernstein

University of Illinois at Chicago

2

The Domain Name System

uic.edu wants to see

http://www.matcom.uh.cu.'& %$! "#Browser at uic.edu

'& %$! "#Administrator at uh.cu

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

OO

Now uic.edu

retrieves web page from

IP address 200.55.139.216.

3

Same for Internet mail.

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Administrator at uh.cu

“The mail server for

uh.cu

has IP address

200.55.139.213.”

OO

Now uic.edu

delivers mail to

IP address 200.55.139.213.

2

The Domain Name System

uic.edu wants to see

http://www.matcom.uh.cu.'& %$! "#Browser at uic.edu

'& %$! "#Administrator at uh.cu

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

OO

Now uic.edu

retrieves web page from

IP address 200.55.139.216.

3

Same for Internet mail.

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Administrator at uh.cu

“The mail server for

uh.cu

has IP address

200.55.139.213.”

OO

Now uic.edu

delivers mail to

IP address 200.55.139.213.

2

The Domain Name System

uic.edu wants to see

http://www.matcom.uh.cu.'& %$! "#Browser at uic.edu

'& %$! "#Administrator at uh.cu

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

OO

Now uic.edu

retrieves web page from

IP address 200.55.139.216.

3

Same for Internet mail.

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Administrator at uh.cu

“The mail server for

uh.cu

has IP address

200.55.139.213.”

OO

Now uic.edu

delivers mail to

IP address 200.55.139.213.

4

Forging DNS packets

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Attacker anywhere on network

“The mail server for

uh.cu

has IP address

204.13.202.78.”

OO

Now uic.edu

delivers mail to

IP address 204.13.202.78,

actually the attacker’s machine.

2

The Domain Name System

uic.edu wants to see

http://www.matcom.uh.cu.'& %$! "#Browser at uic.edu

'& %$! "#Administrator at uh.cu

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

OO

Now uic.edu

retrieves web page from

IP address 200.55.139.216.

3

Same for Internet mail.

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Administrator at uh.cu

“The mail server for

uh.cu

has IP address

200.55.139.213.”

OO

Now uic.edu

delivers mail to

IP address 200.55.139.213.

4

Forging DNS packets

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Attacker anywhere on network

“The mail server for

uh.cu

has IP address

204.13.202.78.”

OO

Now uic.edu

delivers mail to

IP address 204.13.202.78,

actually the attacker’s machine.

2

The Domain Name System

uic.edu wants to see

http://www.matcom.uh.cu.'& %$! "#Browser at uic.edu

'& %$! "#Administrator at uh.cu

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

OO

Now uic.edu

retrieves web page from

IP address 200.55.139.216.

3

Same for Internet mail.

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Administrator at uh.cu

“The mail server for

uh.cu

has IP address

200.55.139.213.”

OO

Now uic.edu

delivers mail to

IP address 200.55.139.213.

4

Forging DNS packets

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Attacker anywhere on network

“The mail server for

uh.cu

has IP address

204.13.202.78.”

OO

Now uic.edu

delivers mail to

IP address 204.13.202.78,

actually the attacker’s machine.

3

Same for Internet mail.

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Administrator at uh.cu

“The mail server for

uh.cu

has IP address

200.55.139.213.”

OO

Now uic.edu

delivers mail to

IP address 200.55.139.213.

4

Forging DNS packets

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Attacker anywhere on network

“The mail server for

uh.cu

has IP address

204.13.202.78.”

OO

Now uic.edu

delivers mail to

IP address 204.13.202.78,

actually the attacker’s machine.

3

Same for Internet mail.

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Administrator at uh.cu

“The mail server for

uh.cu

has IP address

200.55.139.213.”

OO

Now uic.edu

delivers mail to

IP address 200.55.139.213.

4

Forging DNS packets

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Attacker anywhere on network

“The mail server for

uh.cu

has IP address

204.13.202.78.”

OO

Now uic.edu

delivers mail to

IP address 204.13.202.78,

actually the attacker’s machine.

5

How forgery really works

Client sends query.

Attacker has to repeat

some parts of the query.

Attacker must match

• the name: uh.cu.

• the query type: mail. (“MX”.)

• ≈ the query time,

so client sees forgery

before legitimate answer.

• the query UDP port.

• the query ID.

3

Same for Internet mail.

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Administrator at uh.cu

“The mail server for

uh.cu

has IP address

200.55.139.213.”

OO

Now uic.edu

delivers mail to

IP address 200.55.139.213.

4

Forging DNS packets

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Attacker anywhere on network

“The mail server for

uh.cu

has IP address

204.13.202.78.”

OO

Now uic.edu

delivers mail to

IP address 204.13.202.78,

actually the attacker’s machine.

5

How forgery really works

Client sends query.

Attacker has to repeat

some parts of the query.

Attacker must match

• the name: uh.cu.

• the query type: mail. (“MX”.)

• ≈ the query time,

so client sees forgery

before legitimate answer.

• the query UDP port.

• the query ID.

3

Same for Internet mail.

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Administrator at uh.cu

“The mail server for

uh.cu

has IP address

200.55.139.213.”

OO

Now uic.edu

delivers mail to

IP address 200.55.139.213.

4

Forging DNS packets

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Attacker anywhere on network

“The mail server for

uh.cu

has IP address

204.13.202.78.”

OO

Now uic.edu

delivers mail to

IP address 204.13.202.78,

actually the attacker’s machine.

5

How forgery really works

Client sends query.

Attacker has to repeat

some parts of the query.

Attacker must match

• the name: uh.cu.

• the query type: mail. (“MX”.)

• ≈ the query time,

so client sees forgery

before legitimate answer.

• the query UDP port.

• the query ID.

4

Forging DNS packets

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Attacker anywhere on network

“The mail server for

uh.cu

has IP address

204.13.202.78.”

OO

Now uic.edu

delivers mail to

IP address 204.13.202.78,

actually the attacker’s machine.

5

How forgery really works

Client sends query.

Attacker has to repeat

some parts of the query.

Attacker must match

• the name: uh.cu.

• the query type: mail. (“MX”.)

• ≈ the query time,

so client sees forgery

before legitimate answer.

• the query UDP port.

• the query ID.

4

Forging DNS packets

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Attacker anywhere on network

“The mail server for

uh.cu

has IP address

204.13.202.78.”

OO

Now uic.edu

delivers mail to

IP address 204.13.202.78,

actually the attacker’s machine.

5

How forgery really works

Client sends query.

Attacker has to repeat

some parts of the query.

Attacker must match

• the name: uh.cu.

• the query type: mail. (“MX”.)

• ≈ the query time,

so client sees forgery

before legitimate answer.

• the query UDP port.

• the query ID.

6

The hard way

for attackers to do this:

Control name, type, time

by triggering client.

Many ways to do this.

4

Forging DNS packets

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Attacker anywhere on network

“The mail server for

uh.cu

has IP address

204.13.202.78.”

OO

Now uic.edu

delivers mail to

IP address 204.13.202.78,

actually the attacker’s machine.

5

How forgery really works

Client sends query.

Attacker has to repeat

some parts of the query.

Attacker must match

• the name: uh.cu.

• the query type: mail. (“MX”.)

• ≈ the query time,

so client sees forgery

before legitimate answer.

• the query UDP port.

• the query ID.

6

The hard way

for attackers to do this:

Control name, type, time

by triggering client.

Many ways to do this.

4

Forging DNS packets

uic.edu has mail to deliver to

someone@uh.cu.'& %$! "#Mail client at uic.edu

'& %$! "#Attacker anywhere on network

“The mail server for

uh.cu

has IP address

204.13.202.78.”

OO

Now uic.edu

delivers mail to

IP address 204.13.202.78,

actually the attacker’s machine.

5

How forgery really works

Client sends query.

Attacker has to repeat

some parts of the query.

Attacker must match

• the name: uh.cu.

• the query type: mail. (“MX”.)

• ≈ the query time,

so client sees forgery

before legitimate answer.

• the query UDP port.

• the query ID.

6

The hard way

for attackers to do this:

Control name, type, time

by triggering client.

Many ways to do this.

5

How forgery really works

Client sends query.

Attacker has to repeat

some parts of the query.

Attacker must match

• the name: uh.cu.

• the query type: mail. (“MX”.)

• ≈ the query time,

so client sees forgery

before legitimate answer.

• the query UDP port.

• the query ID.

6

The hard way

for attackers to do this:

Control name, type, time

by triggering client.

Many ways to do this.

5

How forgery really works

Client sends query.

Attacker has to repeat

some parts of the query.

Attacker must match

• the name: uh.cu.

• the query type: mail. (“MX”.)

• ≈ the query time,

so client sees forgery

before legitimate answer.

• the query UDP port.

• the query ID.

6

The hard way

for attackers to do this:

Control name, type, time

by triggering client.

Many ways to do this.

Guess port and ID

(or predict them if

they’re poorly randomized).

16-bit port, 16-bit ID.

5

How forgery really works

Client sends query.

Attacker has to repeat

some parts of the query.

Attacker must match

• the name: uh.cu.

• the query type: mail. (“MX”.)

• ≈ the query time,

so client sees forgery

before legitimate answer.

• the query UDP port.

• the query ID.

6

The hard way

for attackers to do this:

Control name, type, time

by triggering client.

Many ways to do this.

Guess port and ID

(or predict them if

they’re poorly randomized).

16-bit port, 16-bit ID.

If guess fails, try again.

After analysis, optimization:

this is about as much traffic

as downloading a movie.

5

How forgery really works

Client sends query.

Attacker has to repeat

some parts of the query.

Attacker must match

• the name: uh.cu.

• the query type: mail. (“MX”.)

• ≈ the query time,

so client sees forgery

before legitimate answer.

• the query UDP port.

• the query ID.

6

The hard way

for attackers to do this:

Control name, type, time

by triggering client.

Many ways to do this.

Guess port and ID

(or predict them if

they’re poorly randomized).

16-bit port, 16-bit ID.

If guess fails, try again.

After analysis, optimization:

this is about as much traffic

as downloading a movie.

7

The easy way

for attackers to do this:

1. Break into a computer

on the same network.

2. Using that computer,

sniff network to see

the client’s query.

Immediately forge answer.

5

How forgery really works

Client sends query.

Attacker has to repeat

some parts of the query.

Attacker must match

• the name: uh.cu.

• the query type: mail. (“MX”.)

• ≈ the query time,

so client sees forgery

before legitimate answer.

• the query UDP port.

• the query ID.

6

The hard way

for attackers to do this:

Control name, type, time

by triggering client.

Many ways to do this.

Guess port and ID

(or predict them if

they’re poorly randomized).

16-bit port, 16-bit ID.

If guess fails, try again.

After analysis, optimization:

this is about as much traffic

as downloading a movie.

7

The easy way

for attackers to do this:

1. Break into a computer

on the same network.

2. Using that computer,

sniff network to see

the client’s query.

Immediately forge answer.

5

How forgery really works

Client sends query.

Attacker has to repeat

some parts of the query.

Attacker must match

• the name: uh.cu.

• the query type: mail. (“MX”.)

• ≈ the query time,

so client sees forgery

before legitimate answer.

• the query UDP port.

• the query ID.

6

The hard way

for attackers to do this:

Control name, type, time

by triggering client.

Many ways to do this.

Guess port and ID

(or predict them if

they’re poorly randomized).

16-bit port, 16-bit ID.

If guess fails, try again.

After analysis, optimization:

this is about as much traffic

as downloading a movie.

7

The easy way

for attackers to do this:

1. Break into a computer

on the same network.

2. Using that computer,

sniff network to see

the client’s query.

Immediately forge answer.

6

The hard way

for attackers to do this:

Control name, type, time

by triggering client.

Many ways to do this.

Guess port and ID

(or predict them if

they’re poorly randomized).

16-bit port, 16-bit ID.

If guess fails, try again.

After analysis, optimization:

this is about as much traffic

as downloading a movie.

7

The easy way

for attackers to do this:

1. Break into a computer

on the same network.

2. Using that computer,

sniff network to see

the client’s query.

Immediately forge answer.

6

The hard way

for attackers to do this:

Control name, type, time

by triggering client.

Many ways to do this.

Guess port and ID

(or predict them if

they’re poorly randomized).

16-bit port, 16-bit ID.

If guess fails, try again.

After analysis, optimization:

this is about as much traffic

as downloading a movie.

7

The easy way

for attackers to do this:

1. Break into a computer

on the same network.

2. Using that computer,

sniff network to see

the client’s query.

Immediately forge answer.

Sometimes skip step 1:

the network is the attacker.

e.g. DNS forgery by hotels,

Iranian government, et al.

6

The hard way

for attackers to do this:

Control name, type, time

by triggering client.

Many ways to do this.

Guess port and ID

(or predict them if

they’re poorly randomized).

16-bit port, 16-bit ID.

If guess fails, try again.

After analysis, optimization:

this is about as much traffic

as downloading a movie.

7

The easy way

for attackers to do this:

1. Break into a computer

on the same network.

2. Using that computer,

sniff network to see

the client’s query.

Immediately forge answer.

Sometimes skip step 1:

the network is the attacker.

e.g. DNS forgery by hotels,

Iranian government, et al.

8

Security theater

Many DNS “defenses”

(e.g. query repetition)

stop the hard attack

but are trivially broken

by the easy attack.

6

The hard way

for attackers to do this:

Control name, type, time

by triggering client.

Many ways to do this.

Guess port and ID

(or predict them if

they’re poorly randomized).

16-bit port, 16-bit ID.

If guess fails, try again.

After analysis, optimization:

this is about as much traffic

as downloading a movie.

7

The easy way

for attackers to do this:

1. Break into a computer

on the same network.

2. Using that computer,

sniff network to see

the client’s query.

Immediately forge answer.

Sometimes skip step 1:

the network is the attacker.

e.g. DNS forgery by hotels,

Iranian government, et al.

8

Security theater

Many DNS “defenses”

(e.g. query repetition)

stop the hard attack

but are trivially broken

by the easy attack.

6

The hard way

for attackers to do this:

Control name, type, time

by triggering client.

Many ways to do this.

Guess port and ID

(or predict them if

they’re poorly randomized).

16-bit port, 16-bit ID.

If guess fails, try again.

After analysis, optimization:

this is about as much traffic

as downloading a movie.

7

The easy way

for attackers to do this:

1. Break into a computer

on the same network.

2. Using that computer,

sniff network to see

the client’s query.

Immediately forge answer.

Sometimes skip step 1:

the network is the attacker.

e.g. DNS forgery by hotels,

Iranian government, et al.

8

Security theater

Many DNS “defenses”

(e.g. query repetition)

stop the hard attack

but are trivially broken

by the easy attack.

7

The easy way

for attackers to do this:

1. Break into a computer

on the same network.

2. Using that computer,

sniff network to see

the client’s query.

Immediately forge answer.

Sometimes skip step 1:

the network is the attacker.

e.g. DNS forgery by hotels,

Iranian government, et al.

8

Security theater

Many DNS “defenses”

(e.g. query repetition)

stop the hard attack

but are trivially broken

by the easy attack.

7

The easy way

for attackers to do this:

1. Break into a computer

on the same network.

2. Using that computer,

sniff network to see

the client’s query.

Immediately forge answer.

Sometimes skip step 1:

the network is the attacker.

e.g. DNS forgery by hotels,

Iranian government, et al.

8

Security theater

Many DNS “defenses”

(e.g. query repetition)

stop the hard attack

but are trivially broken

by the easy attack.

Why don’t people realize this?

Answer: The hard attack

receives much more publicity

than the easy attack.

7

The easy way

for attackers to do this:

1. Break into a computer

on the same network.

2. Using that computer,

sniff network to see

the client’s query.

Immediately forge answer.

Sometimes skip step 1:

the network is the attacker.

e.g. DNS forgery by hotels,

Iranian government, et al.

8

Security theater

Many DNS “defenses”

(e.g. query repetition)

stop the hard attack

but are trivially broken

by the easy attack.

Why don’t people realize this?

Answer: The hard attack

receives much more publicity

than the easy attack.

Security researchers

can’t publish easy attacks.

7

The easy way

for attackers to do this:

1. Break into a computer

on the same network.

2. Using that computer,

sniff network to see

the client’s query.

Immediately forge answer.

Sometimes skip step 1:

the network is the attacker.

e.g. DNS forgery by hotels,

Iranian government, et al.

8

Security theater

Many DNS “defenses”

(e.g. query repetition)

stop the hard attack

but are trivially broken

by the easy attack.

Why don’t people realize this?

Answer: The hard attack

receives much more publicity

than the easy attack.

Security researchers

can’t publish easy attacks.

9

June 2009: exciting news!

“.ORG becomes the first open

TLD to sign their zone with

DNSSEC : : :Today we reached

a significant milestone in our

effort to bolster online security

for the .ORG community. We are

the first open generic Top-Level

Domain to successfully sign our

zone with Domain Name Security

Extensions (DNSSEC). To date,

the .ORG zone is the largest

domain registry to implement

this needed security measure.”

7

The easy way

for attackers to do this:

1. Break into a computer

on the same network.

2. Using that computer,

sniff network to see

the client’s query.

Immediately forge answer.

Sometimes skip step 1:

the network is the attacker.

e.g. DNS forgery by hotels,

Iranian government, et al.

8

Security theater

Many DNS “defenses”

(e.g. query repetition)

stop the hard attack

but are trivially broken

by the easy attack.

Why don’t people realize this?

Answer: The hard attack

receives much more publicity

than the easy attack.

Security researchers

can’t publish easy attacks.

9

June 2009: exciting news!

“.ORG becomes the first open

TLD to sign their zone with

DNSSEC : : :Today we reached

a significant milestone in our

effort to bolster online security

for the .ORG community. We are

the first open generic Top-Level

Domain to successfully sign our

zone with Domain Name Security

Extensions (DNSSEC). To date,

the .ORG zone is the largest

domain registry to implement

this needed security measure.”

7

The easy way

for attackers to do this:

1. Break into a computer

on the same network.

2. Using that computer,

sniff network to see

the client’s query.

Immediately forge answer.

Sometimes skip step 1:

the network is the attacker.

e.g. DNS forgery by hotels,

Iranian government, et al.

8

Security theater

Many DNS “defenses”

(e.g. query repetition)

stop the hard attack

but are trivially broken

by the easy attack.

Why don’t people realize this?

Answer: The hard attack

receives much more publicity

than the easy attack.

Security researchers

can’t publish easy attacks.

9

June 2009: exciting news!

“.ORG becomes the first open

TLD to sign their zone with

DNSSEC : : :Today we reached

a significant milestone in our

effort to bolster online security

for the .ORG community. We are

the first open generic Top-Level

Domain to successfully sign our

zone with Domain Name Security

Extensions (DNSSEC). To date,

the .ORG zone is the largest

domain registry to implement

this needed security measure.”

8

Security theater

Many DNS “defenses”

(e.g. query repetition)

stop the hard attack

but are trivially broken

by the easy attack.

Why don’t people realize this?

Answer: The hard attack

receives much more publicity

than the easy attack.

Security researchers

can’t publish easy attacks.

9

June 2009: exciting news!

“.ORG becomes the first open

TLD to sign their zone with

DNSSEC : : :Today we reached

a significant milestone in our

effort to bolster online security

for the .ORG community. We are

the first open generic Top-Level

Domain to successfully sign our

zone with Domain Name Security

Extensions (DNSSEC). To date,

the .ORG zone is the largest

domain registry to implement

this needed security measure.”

8

Security theater

Many DNS “defenses”

(e.g. query repetition)

stop the hard attack

but are trivially broken

by the easy attack.

Why don’t people realize this?

Answer: The hard attack

receives much more publicity

than the easy attack.

Security researchers

can’t publish easy attacks.

9

June 2009: exciting news!

“.ORG becomes the first open

TLD to sign their zone with

DNSSEC : : :Today we reached

a significant milestone in our

effort to bolster online security

for the .ORG community. We are

the first open generic Top-Level

Domain to successfully sign our

zone with Domain Name Security

Extensions (DNSSEC). To date,

the .ORG zone is the largest

domain registry to implement

this needed security measure.”

10

“What does it mean that the

.ORG Zone is ‘signed’?

Signing our zone is the first part

of our DNSSEC test phase.

We are now cryptographically

signing the authoritative data

within the .ORG zone file.

This process adds new records to

the zone, which allows verification

of the origin authenticity and

integrity of data.”

8

Security theater

Many DNS “defenses”

(e.g. query repetition)

stop the hard attack

but are trivially broken

by the easy attack.

Why don’t people realize this?

Answer: The hard attack

receives much more publicity

than the easy attack.

Security researchers

can’t publish easy attacks.

9

June 2009: exciting news!

“.ORG becomes the first open

TLD to sign their zone with

DNSSEC : : :Today we reached

a significant milestone in our

effort to bolster online security

for the .ORG community. We are

the first open generic Top-Level

Domain to successfully sign our

zone with Domain Name Security

Extensions (DNSSEC). To date,

the .ORG zone is the largest

domain registry to implement

this needed security measure.”

10

“What does it mean that the

.ORG Zone is ‘signed’?

Signing our zone is the first part

of our DNSSEC test phase.

We are now cryptographically

signing the authoritative data

within the .ORG zone file.

This process adds new records to

the zone, which allows verification

of the origin authenticity and

integrity of data.”

8

Security theater

Many DNS “defenses”

(e.g. query repetition)

stop the hard attack

but are trivially broken

by the easy attack.

Why don’t people realize this?

Answer: The hard attack

receives much more publicity

than the easy attack.

Security researchers

can’t publish easy attacks.

9

June 2009: exciting news!

“.ORG becomes the first open

TLD to sign their zone with

DNSSEC : : :Today we reached

a significant milestone in our

effort to bolster online security

for the .ORG community. We are

the first open generic Top-Level

Domain to successfully sign our

zone with Domain Name Security

Extensions (DNSSEC). To date,

the .ORG zone is the largest

domain registry to implement

this needed security measure.”

10

“What does it mean that the

.ORG Zone is ‘signed’?

Signing our zone is the first part

of our DNSSEC test phase.

We are now cryptographically

signing the authoritative data

within the .ORG zone file.

This process adds new records to

the zone, which allows verification

of the origin authenticity and

integrity of data.”

9

June 2009: exciting news!

“.ORG becomes the first open

TLD to sign their zone with

DNSSEC : : :Today we reached

a significant milestone in our

effort to bolster online security

for the .ORG community. We are

the first open generic Top-Level

Domain to successfully sign our

zone with Domain Name Security

Extensions (DNSSEC). To date,

the .ORG zone is the largest

domain registry to implement

this needed security measure.”

10

“What does it mean that the

.ORG Zone is ‘signed’?

Signing our zone is the first part

of our DNSSEC test phase.

We are now cryptographically

signing the authoritative data

within the .ORG zone file.

This process adds new records to

the zone, which allows verification

of the origin authenticity and

integrity of data.”

9

June 2009: exciting news!

“.ORG becomes the first open

TLD to sign their zone with

DNSSEC : : :Today we reached

a significant milestone in our

effort to bolster online security

for the .ORG community. We are

the first open generic Top-Level

Domain to successfully sign our

zone with Domain Name Security

Extensions (DNSSEC). To date,

the .ORG zone is the largest

domain registry to implement

this needed security measure.”

10

“What does it mean that the

.ORG Zone is ‘signed’?

Signing our zone is the first part

of our DNSSEC test phase.

We are now cryptographically

signing the authoritative data

within the .ORG zone file.

This process adds new records to

the zone, which allows verification

of the origin authenticity and

integrity of data.”

11

Cryptography! Authority!

Verification! Authenticity!

Integrity! Sounds great!

9

June 2009: exciting news!

“.ORG becomes the first open

TLD to sign their zone with

DNSSEC : : :Today we reached

a significant milestone in our

effort to bolster online security

for the .ORG community. We are

the first open generic Top-Level

Domain to successfully sign our

zone with Domain Name Security

Extensions (DNSSEC). To date,

the .ORG zone is the largest

domain registry to implement

this needed security measure.”

10

“What does it mean that the

.ORG Zone is ‘signed’?

Signing our zone is the first part

of our DNSSEC test phase.

We are now cryptographically

signing the authoritative data

within the .ORG zone file.

This process adds new records to

the zone, which allows verification

of the origin authenticity and

integrity of data.”

11

Cryptography! Authority!

Verification! Authenticity!

Integrity! Sounds great!

9

June 2009: exciting news!

“.ORG becomes the first open

TLD to sign their zone with

DNSSEC : : :Today we reached

a significant milestone in our

effort to bolster online security

for the .ORG community. We are

the first open generic Top-Level

Domain to successfully sign our

zone with Domain Name Security

Extensions (DNSSEC). To date,

the .ORG zone is the largest

domain registry to implement

this needed security measure.”

10

“What does it mean that the

.ORG Zone is ‘signed’?

Signing our zone is the first part

of our DNSSEC test phase.

We are now cryptographically

signing the authoritative data

within the .ORG zone file.

This process adds new records to

the zone, which allows verification

of the origin authenticity and

integrity of data.”

11

Cryptography! Authority!

Verification! Authenticity!

Integrity! Sounds great!

10

“What does it mean that the

.ORG Zone is ‘signed’?

Signing our zone is the first part

of our DNSSEC test phase.

We are now cryptographically

signing the authoritative data

within the .ORG zone file.

This process adds new records to

the zone, which allows verification

of the origin authenticity and

integrity of data.”

11

Cryptography! Authority!

Verification! Authenticity!

Integrity! Sounds great!

10

“What does it mean that the

.ORG Zone is ‘signed’?

Signing our zone is the first part

of our DNSSEC test phase.

We are now cryptographically

signing the authoritative data

within the .ORG zone file.

This process adds new records to

the zone, which allows verification

of the origin authenticity and

integrity of data.”

11

Cryptography! Authority!

Verification! Authenticity!

Integrity! Sounds great!

Now I simply configure

the new .org public key

into my DNS software.

Because the .org servers

are signing with DNSSEC,

it is no longer possible

for attackers to forge

data from those servers!

10

“What does it mean that the

.ORG Zone is ‘signed’?

Signing our zone is the first part

of our DNSSEC test phase.

We are now cryptographically

signing the authoritative data

within the .ORG zone file.

This process adds new records to

the zone, which allows verification

of the origin authenticity and

integrity of data.”

11

Cryptography! Authority!

Verification! Authenticity!

Integrity! Sounds great!

Now I simply configure

the new .org public key

into my DNS software.

Because the .org servers

are signing with DNSSEC,

it is no longer possible

for attackers to forge

data from those servers!

... or is it?

10

“What does it mean that the

.ORG Zone is ‘signed’?

Signing our zone is the first part

of our DNSSEC test phase.

We are now cryptographically

signing the authoritative data

within the .ORG zone file.

This process adds new records to

the zone, which allows verification

of the origin authenticity and

integrity of data.”

11

Cryptography! Authority!

Verification! Authenticity!

Integrity! Sounds great!

Now I simply configure

the new .org public key

into my DNS software.

Because the .org servers

are signing with DNSSEC,

it is no longer possible

for attackers to forge

data from those servers!

... or is it?

12

September 2017: reality

Let’s find a .org server:

$ dig +short ns org

d0.org.afilias-nst.org.

a0.org.afilias-nst.info.

c0.org.afilias-nst.info.

b2.org.afilias-nst.org.

a2.org.afilias-nst.info.

b0.org.afilias-nst.org.

$ dig +short \

b0.org.afilias-nst.org

199.19.54.1

10

“What does it mean that the

.ORG Zone is ‘signed’?

Signing our zone is the first part

of our DNSSEC test phase.

We are now cryptographically

signing the authoritative data

within the .ORG zone file.

This process adds new records to

the zone, which allows verification

of the origin authenticity and

integrity of data.”

11

Cryptography! Authority!

Verification! Authenticity!

Integrity! Sounds great!

Now I simply configure

the new .org public key

into my DNS software.

Because the .org servers

are signing with DNSSEC,

it is no longer possible

for attackers to forge

data from those servers!

... or is it?

12

September 2017: reality

Let’s find a .org server:

$ dig +short ns org

d0.org.afilias-nst.org.

a0.org.afilias-nst.info.

c0.org.afilias-nst.info.

b2.org.afilias-nst.org.

a2.org.afilias-nst.info.

b0.org.afilias-nst.org.

$ dig +short \

b0.org.afilias-nst.org

199.19.54.1

10

“What does it mean that the

.ORG Zone is ‘signed’?

Signing our zone is the first part

of our DNSSEC test phase.

We are now cryptographically

signing the authoritative data

within the .ORG zone file.

This process adds new records to

the zone, which allows verification

of the origin authenticity and

integrity of data.”

11

Cryptography! Authority!

Verification! Authenticity!

Integrity! Sounds great!

Now I simply configure

the new .org public key

into my DNS software.

Because the .org servers

are signing with DNSSEC,

it is no longer possible

for attackers to forge

data from those servers!

... or is it?

12

September 2017: reality

Let’s find a .org server:

$ dig +short ns org

d0.org.afilias-nst.org.

a0.org.afilias-nst.info.

c0.org.afilias-nst.info.

b2.org.afilias-nst.org.

a2.org.afilias-nst.info.

b0.org.afilias-nst.org.

$ dig +short \

b0.org.afilias-nst.org

199.19.54.1

11

Cryptography! Authority!

Verification! Authenticity!

Integrity! Sounds great!

Now I simply configure

the new .org public key

into my DNS software.

Because the .org servers

are signing with DNSSEC,

it is no longer possible

for attackers to forge

data from those servers!

... or is it?

12

September 2017: reality

Let’s find a .org server:

$ dig +short ns org

d0.org.afilias-nst.org.

a0.org.afilias-nst.info.

c0.org.afilias-nst.info.

b2.org.afilias-nst.org.

a2.org.afilias-nst.info.

b0.org.afilias-nst.org.

$ dig +short \

b0.org.afilias-nst.org

199.19.54.1

11

Cryptography! Authority!

Verification! Authenticity!

Integrity! Sounds great!

Now I simply configure

the new .org public key

into my DNS software.

Because the .org servers

are signing with DNSSEC,

it is no longer possible

for attackers to forge

data from those servers!

... or is it?

12

September 2017: reality

Let’s find a .org server:

$ dig +short ns org

d0.org.afilias-nst.org.

a0.org.afilias-nst.info.

c0.org.afilias-nst.info.

b2.org.afilias-nst.org.

a2.org.afilias-nst.info.

b0.org.afilias-nst.org.

$ dig +short \

b0.org.afilias-nst.org

199.19.54.1

13

Look up greenpeace.org:

$ dig \

www.greenpeace.org \

@199.19.54.1

Everything looks normal:

;; AUTHORITY SECTION:

greenpeace.org.

86400 IN NS

ns-cloud-e1.

googledomains.com.

11

Cryptography! Authority!

Verification! Authenticity!

Integrity! Sounds great!

Now I simply configure

the new .org public key

into my DNS software.

Because the .org servers

are signing with DNSSEC,

it is no longer possible

for attackers to forge

data from those servers!

... or is it?

12

September 2017: reality

Let’s find a .org server:

$ dig +short ns org

d0.org.afilias-nst.org.

a0.org.afilias-nst.info.

c0.org.afilias-nst.info.

b2.org.afilias-nst.org.

a2.org.afilias-nst.info.

b0.org.afilias-nst.org.

$ dig +short \

b0.org.afilias-nst.org

199.19.54.1

13

Look up greenpeace.org:

$ dig \

www.greenpeace.org \

@199.19.54.1

Everything looks normal:

;; AUTHORITY SECTION:

greenpeace.org.

86400 IN NS

ns-cloud-e1.

googledomains.com.

11

Cryptography! Authority!

Verification! Authenticity!

Integrity! Sounds great!

Now I simply configure

the new .org public key

into my DNS software.

Because the .org servers

are signing with DNSSEC,

it is no longer possible

for attackers to forge

data from those servers!

... or is it?

12

September 2017: reality

Let’s find a .org server:

$ dig +short ns org

d0.org.afilias-nst.org.

a0.org.afilias-nst.info.

c0.org.afilias-nst.info.

b2.org.afilias-nst.org.

a2.org.afilias-nst.info.

b0.org.afilias-nst.org.

$ dig +short \

b0.org.afilias-nst.org

199.19.54.1

13

Look up greenpeace.org:

$ dig \

www.greenpeace.org \

@199.19.54.1

Everything looks normal:

;; AUTHORITY SECTION:

greenpeace.org.

86400 IN NS

ns-cloud-e1.

googledomains.com.

12

September 2017: reality

Let’s find a .org server:

$ dig +short ns org

d0.org.afilias-nst.org.

a0.org.afilias-nst.info.

c0.org.afilias-nst.info.

b2.org.afilias-nst.org.

a2.org.afilias-nst.info.

b0.org.afilias-nst.org.

$ dig +short \

b0.org.afilias-nst.org

199.19.54.1

13

Look up greenpeace.org:

$ dig \

www.greenpeace.org \

@199.19.54.1

Everything looks normal:

;; AUTHORITY SECTION:

greenpeace.org.

86400 IN NS

ns-cloud-e1.

googledomains.com.

12

September 2017: reality

Let’s find a .org server:

$ dig +short ns org

d0.org.afilias-nst.org.

a0.org.afilias-nst.info.

c0.org.afilias-nst.info.

b2.org.afilias-nst.org.

a2.org.afilias-nst.info.

b0.org.afilias-nst.org.

$ dig +short \

b0.org.afilias-nst.org

199.19.54.1

13

Look up greenpeace.org:

$ dig \

www.greenpeace.org \

@199.19.54.1

Everything looks normal:

;; AUTHORITY SECTION:

greenpeace.org.

86400 IN NS

ns-cloud-e1.

googledomains.com.

14

Where’s the crypto?

Have to ask for signatures:

$ dig +dnssec \

www.greenpeace.org \

@199.19.54.1

Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9l1gid

np90u3h.org. 86400 IN NSE

C3 1 1 1 D399EAAB H9PARR6

69T6U8O1GSG9E1LMITK4DEM0T

NS SOA RRSIG DNSKEY NSEC

3PARAM

h9p7u7tr2u91d0v0ljs9l1gid

12

September 2017: reality

Let’s find a .org server:

$ dig +short ns org

d0.org.afilias-nst.org.

a0.org.afilias-nst.info.

c0.org.afilias-nst.info.

b2.org.afilias-nst.org.

a2.org.afilias-nst.info.

b0.org.afilias-nst.org.

$ dig +short \

b0.org.afilias-nst.org

199.19.54.1

13

Look up greenpeace.org:

$ dig \

www.greenpeace.org \

@199.19.54.1

Everything looks normal:

;; AUTHORITY SECTION:

greenpeace.org.

86400 IN NS

ns-cloud-e1.

googledomains.com.

14

Where’s the crypto?

Have to ask for signatures:

$ dig +dnssec \

www.greenpeace.org \

@199.19.54.1

Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9l1gid

np90u3h.org. 86400 IN NSE

C3 1 1 1 D399EAAB H9PARR6

69T6U8O1GSG9E1LMITK4DEM0T

NS SOA RRSIG DNSKEY NSEC

3PARAM

h9p7u7tr2u91d0v0ljs9l1gid

12

September 2017: reality

Let’s find a .org server:

$ dig +short ns org

d0.org.afilias-nst.org.

a0.org.afilias-nst.info.

c0.org.afilias-nst.info.

b2.org.afilias-nst.org.

a2.org.afilias-nst.info.

b0.org.afilias-nst.org.

$ dig +short \

b0.org.afilias-nst.org

199.19.54.1

13

Look up greenpeace.org:

$ dig \

www.greenpeace.org \

@199.19.54.1

Everything looks normal:

;; AUTHORITY SECTION:

greenpeace.org.

86400 IN NS

ns-cloud-e1.

googledomains.com.

14

Where’s the crypto?

Have to ask for signatures:

$ dig +dnssec \

www.greenpeace.org \

@199.19.54.1

Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9l1gid

np90u3h.org. 86400 IN NSE

C3 1 1 1 D399EAAB H9PARR6

69T6U8O1GSG9E1LMITK4DEM0T

NS SOA RRSIG DNSKEY NSEC

3PARAM

h9p7u7tr2u91d0v0ljs9l1gid

13

Look up greenpeace.org:

$ dig \

www.greenpeace.org \

@199.19.54.1

Everything looks normal:

;; AUTHORITY SECTION:

greenpeace.org.

86400 IN NS

ns-cloud-e1.

googledomains.com.

14

Where’s the crypto?

Have to ask for signatures:

$ dig +dnssec \

www.greenpeace.org \

@199.19.54.1

Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9l1gid

np90u3h.org. 86400 IN NSE

C3 1 1 1 D399EAAB H9PARR6

69T6U8O1GSG9E1LMITK4DEM0T

NS SOA RRSIG DNSKEY NSEC

3PARAM

h9p7u7tr2u91d0v0ljs9l1gid

13

Look up greenpeace.org:

$ dig \

www.greenpeace.org \

@199.19.54.1

Everything looks normal:

;; AUTHORITY SECTION:

greenpeace.org.

86400 IN NS

ns-cloud-e1.

googledomains.com.

14

Where’s the crypto?

Have to ask for signatures:

$ dig +dnssec \

www.greenpeace.org \

@199.19.54.1

Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9l1gid

np90u3h.org. 86400 IN NSE

C3 1 1 1 D399EAAB H9PARR6

69T6U8O1GSG9E1LMITK4DEM0T

NS SOA RRSIG DNSKEY NSEC

3PARAM

h9p7u7tr2u91d0v0ljs9l1gid

15

np90u3h.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

07105026 20170916095026 3

947 org. jE7Y8rHxJj6K2omn

kRMPitAQ1mEepmPNnA82fJfji

0lAmSm7vBXRGx2G kc9saqjom

LJPsHydDcAYfBj/haDogBPhNI

QfOuvc9QurOQhdOvcIJBSu cH

A9BKvt8ruo8ZMKkZPfdq+UXu+

DvboByYE7Qt0eZdMjqQ87f7Vx

Xniz Orw=

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN NSE

C3 1 1 1 D399EAAB BGDHKIB

13

Look up greenpeace.org:

$ dig \

www.greenpeace.org \

@199.19.54.1

Everything looks normal:

;; AUTHORITY SECTION:

greenpeace.org.

86400 IN NS

ns-cloud-e1.

googledomains.com.

14

Where’s the crypto?

Have to ask for signatures:

$ dig +dnssec \

www.greenpeace.org \

@199.19.54.1

Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9l1gid

np90u3h.org. 86400 IN NSE

C3 1 1 1 D399EAAB H9PARR6

69T6U8O1GSG9E1LMITK4DEM0T

NS SOA RRSIG DNSKEY NSEC

3PARAM

h9p7u7tr2u91d0v0ljs9l1gid

15

np90u3h.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

07105026 20170916095026 3

947 org. jE7Y8rHxJj6K2omn

kRMPitAQ1mEepmPNnA82fJfji

0lAmSm7vBXRGx2G kc9saqjom

LJPsHydDcAYfBj/haDogBPhNI

QfOuvc9QurOQhdOvcIJBSu cH

A9BKvt8ruo8ZMKkZPfdq+UXu+

DvboByYE7Qt0eZdMjqQ87f7Vx

Xniz Orw=

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN NSE

C3 1 1 1 D399EAAB BGDHKIB

13

Look up greenpeace.org:

$ dig \

www.greenpeace.org \

@199.19.54.1

Everything looks normal:

;; AUTHORITY SECTION:

greenpeace.org.

86400 IN NS

ns-cloud-e1.

googledomains.com.

14

Where’s the crypto?

Have to ask for signatures:

$ dig +dnssec \

www.greenpeace.org \

@199.19.54.1

Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9l1gid

np90u3h.org. 86400 IN NSE

C3 1 1 1 D399EAAB H9PARR6

69T6U8O1GSG9E1LMITK4DEM0T

NS SOA RRSIG DNSKEY NSEC

3PARAM

h9p7u7tr2u91d0v0ljs9l1gid

15

np90u3h.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

07105026 20170916095026 3

947 org. jE7Y8rHxJj6K2omn

kRMPitAQ1mEepmPNnA82fJfji

0lAmSm7vBXRGx2G kc9saqjom

LJPsHydDcAYfBj/haDogBPhNI

QfOuvc9QurOQhdOvcIJBSu cH

A9BKvt8ruo8ZMKkZPfdq+UXu+

DvboByYE7Qt0eZdMjqQ87f7Vx

Xniz Orw=

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN NSE

C3 1 1 1 D399EAAB BGDHKIB

14

Where’s the crypto?

Have to ask for signatures:

$ dig +dnssec \

www.greenpeace.org \

@199.19.54.1

Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9l1gid

np90u3h.org. 86400 IN NSE

C3 1 1 1 D399EAAB H9PARR6

69T6U8O1GSG9E1LMITK4DEM0T

NS SOA RRSIG DNSKEY NSEC

3PARAM

h9p7u7tr2u91d0v0ljs9l1gid

15

np90u3h.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

07105026 20170916095026 3

947 org. jE7Y8rHxJj6K2omn

kRMPitAQ1mEepmPNnA82fJfji

0lAmSm7vBXRGx2G kc9saqjom

LJPsHydDcAYfBj/haDogBPhNI

QfOuvc9QurOQhdOvcIJBSu cH

A9BKvt8ruo8ZMKkZPfdq+UXu+

DvboByYE7Qt0eZdMjqQ87f7Vx

Xniz Orw=

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN NSE

C3 1 1 1 D399EAAB BGDHKIB

14

Where’s the crypto?

Have to ask for signatures:

$ dig +dnssec \

www.greenpeace.org \

@199.19.54.1

Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9l1gid

np90u3h.org. 86400 IN NSE

C3 1 1 1 D399EAAB H9PARR6

69T6U8O1GSG9E1LMITK4DEM0T

NS SOA RRSIG DNSKEY NSEC

3PARAM

h9p7u7tr2u91d0v0ljs9l1gid

15

np90u3h.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

07105026 20170916095026 3

947 org. jE7Y8rHxJj6K2omn

kRMPitAQ1mEepmPNnA82fJfji

0lAmSm7vBXRGx2G kc9saqjom

LJPsHydDcAYfBj/haDogBPhNI

QfOuvc9QurOQhdOvcIJBSu cH

A9BKvt8ruo8ZMKkZPfdq+UXu+

DvboByYE7Qt0eZdMjqQ87f7Vx

Xniz Orw=

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN NSE

C3 1 1 1 D399EAAB BGDHKIB

16

0PPOBENBFCGBMB6RGT2JDC21E

A RRSIG

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

02190823 20170911180823 3

947 org. TuwMqbO7N+RguzFN

rsAaRYB4i7QBSUuOypYMFsSks

H98CpJpnL2sLZSV PrfjjsU9i

8WQEFsSfN7ux0c6gUlqZdtngA

/ukf+8B9Hz16YPWK8IxlBY pW

piKx0pY9qIISLne4UvCb+Aul3

vKwR2i3Vxupnx497uKE7p+nXl

2t9y 0aY=

14

Where’s the crypto?

Have to ask for signatures:

$ dig +dnssec \

www.greenpeace.org \

@199.19.54.1

Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9l1gid

np90u3h.org. 86400 IN NSE

C3 1 1 1 D399EAAB H9PARR6

69T6U8O1GSG9E1LMITK4DEM0T

NS SOA RRSIG DNSKEY NSEC

3PARAM

h9p7u7tr2u91d0v0ljs9l1gid

15

np90u3h.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

07105026 20170916095026 3

947 org. jE7Y8rHxJj6K2omn

kRMPitAQ1mEepmPNnA82fJfji

0lAmSm7vBXRGx2G kc9saqjom

LJPsHydDcAYfBj/haDogBPhNI

QfOuvc9QurOQhdOvcIJBSu cH

A9BKvt8ruo8ZMKkZPfdq+UXu+

DvboByYE7Qt0eZdMjqQ87f7Vx

Xniz Orw=

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN NSE

C3 1 1 1 D399EAAB BGDHKIB

16

0PPOBENBFCGBMB6RGT2JDC21E

A RRSIG

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

02190823 20170911180823 3

947 org. TuwMqbO7N+RguzFN

rsAaRYB4i7QBSUuOypYMFsSks

H98CpJpnL2sLZSV PrfjjsU9i

8WQEFsSfN7ux0c6gUlqZdtngA

/ukf+8B9Hz16YPWK8IxlBY pW

piKx0pY9qIISLne4UvCb+Aul3

vKwR2i3Vxupnx497uKE7p+nXl

2t9y 0aY=

14

Where’s the crypto?

Have to ask for signatures:

$ dig +dnssec \

www.greenpeace.org \

@199.19.54.1

Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9l1gid

np90u3h.org. 86400 IN NSE

C3 1 1 1 D399EAAB H9PARR6

69T6U8O1GSG9E1LMITK4DEM0T

NS SOA RRSIG DNSKEY NSEC

3PARAM

h9p7u7tr2u91d0v0ljs9l1gid

15

np90u3h.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

07105026 20170916095026 3

947 org. jE7Y8rHxJj6K2omn

kRMPitAQ1mEepmPNnA82fJfji

0lAmSm7vBXRGx2G kc9saqjom

LJPsHydDcAYfBj/haDogBPhNI

QfOuvc9QurOQhdOvcIJBSu cH

A9BKvt8ruo8ZMKkZPfdq+UXu+

DvboByYE7Qt0eZdMjqQ87f7Vx

Xniz Orw=

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN NSE

C3 1 1 1 D399EAAB BGDHKIB

16

0PPOBENBFCGBMB6RGT2JDC21E

A RRSIG

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

02190823 20170911180823 3

947 org. TuwMqbO7N+RguzFN

rsAaRYB4i7QBSUuOypYMFsSks

H98CpJpnL2sLZSV PrfjjsU9i

8WQEFsSfN7ux0c6gUlqZdtngA

/ukf+8B9Hz16YPWK8IxlBY pW

piKx0pY9qIISLne4UvCb+Aul3

vKwR2i3Vxupnx497uKE7p+nXl

2t9y 0aY=

15

np90u3h.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

07105026 20170916095026 3

947 org. jE7Y8rHxJj6K2omn

kRMPitAQ1mEepmPNnA82fJfji

0lAmSm7vBXRGx2G kc9saqjom

LJPsHydDcAYfBj/haDogBPhNI

QfOuvc9QurOQhdOvcIJBSu cH

A9BKvt8ruo8ZMKkZPfdq+UXu+

DvboByYE7Qt0eZdMjqQ87f7Vx

Xniz Orw=

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN NSE

C3 1 1 1 D399EAAB BGDHKIB

16

0PPOBENBFCGBMB6RGT2JDC21E

A RRSIG

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

02190823 20170911180823 3

947 org. TuwMqbO7N+RguzFN

rsAaRYB4i7QBSUuOypYMFsSks

H98CpJpnL2sLZSV PrfjjsU9i

8WQEFsSfN7ux0c6gUlqZdtngA

/ukf+8B9Hz16YPWK8IxlBY pW

piKx0pY9qIISLne4UvCb+Aul3

vKwR2i3Vxupnx497uKE7p+nXl

2t9y 0aY=

15

np90u3h.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

07105026 20170916095026 3

947 org. jE7Y8rHxJj6K2omn

kRMPitAQ1mEepmPNnA82fJfji

0lAmSm7vBXRGx2G kc9saqjom

LJPsHydDcAYfBj/haDogBPhNI

QfOuvc9QurOQhdOvcIJBSu cH

A9BKvt8ruo8ZMKkZPfdq+UXu+

DvboByYE7Qt0eZdMjqQ87f7Vx

Xniz Orw=

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN NSE

C3 1 1 1 D399EAAB BGDHKIB

16

0PPOBENBFCGBMB6RGT2JDC21E

A RRSIG

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

02190823 20170911180823 3

947 org. TuwMqbO7N+RguzFN

rsAaRYB4i7QBSUuOypYMFsSks

H98CpJpnL2sLZSV PrfjjsU9i

8WQEFsSfN7ux0c6gUlqZdtngA

/ukf+8B9Hz16YPWK8IxlBY pW

piKx0pY9qIISLne4UvCb+Aul3

vKwR2i3Vxupnx497uKE7p+nXl

2t9y 0aY=

17

Wow, that’s a lot of data.

Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &

shows packet sizes:

dig sends 89-byte IP packet

to the .org DNS server,

receives 657-byte IP packet.

See more DNSSEC data:

$ dig +dnssec any \

org @199.19.54.1

Sends 74-byte IP packet,

receives two IP fragments

totalling 2653 bytes.

15

np90u3h.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

07105026 20170916095026 3

947 org. jE7Y8rHxJj6K2omn

kRMPitAQ1mEepmPNnA82fJfji

0lAmSm7vBXRGx2G kc9saqjom

LJPsHydDcAYfBj/haDogBPhNI

QfOuvc9QurOQhdOvcIJBSu cH

A9BKvt8ruo8ZMKkZPfdq+UXu+

DvboByYE7Qt0eZdMjqQ87f7Vx

Xniz Orw=

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN NSE

C3 1 1 1 D399EAAB BGDHKIB

16

0PPOBENBFCGBMB6RGT2JDC21E

A RRSIG

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

02190823 20170911180823 3

947 org. TuwMqbO7N+RguzFN

rsAaRYB4i7QBSUuOypYMFsSks

H98CpJpnL2sLZSV PrfjjsU9i

8WQEFsSfN7ux0c6gUlqZdtngA

/ukf+8B9Hz16YPWK8IxlBY pW

piKx0pY9qIISLne4UvCb+Aul3

vKwR2i3Vxupnx497uKE7p+nXl

2t9y 0aY=

17

Wow, that’s a lot of data.

Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &

shows packet sizes:

dig sends 89-byte IP packet

to the .org DNS server,

receives 657-byte IP packet.

See more DNSSEC data:

$ dig +dnssec any \

org @199.19.54.1

Sends 74-byte IP packet,

receives two IP fragments

totalling 2653 bytes.

15

np90u3h.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

07105026 20170916095026 3

947 org. jE7Y8rHxJj6K2omn

kRMPitAQ1mEepmPNnA82fJfji

0lAmSm7vBXRGx2G kc9saqjom

LJPsHydDcAYfBj/haDogBPhNI

QfOuvc9QurOQhdOvcIJBSu cH

A9BKvt8ruo8ZMKkZPfdq+UXu+

DvboByYE7Qt0eZdMjqQ87f7Vx

Xniz Orw=

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN NSE

C3 1 1 1 D399EAAB BGDHKIB

16

0PPOBENBFCGBMB6RGT2JDC21E

A RRSIG

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

02190823 20170911180823 3

947 org. TuwMqbO7N+RguzFN

rsAaRYB4i7QBSUuOypYMFsSks

H98CpJpnL2sLZSV PrfjjsU9i

8WQEFsSfN7ux0c6gUlqZdtngA

/ukf+8B9Hz16YPWK8IxlBY pW

piKx0pY9qIISLne4UvCb+Aul3

vKwR2i3Vxupnx497uKE7p+nXl

2t9y 0aY=

17

Wow, that’s a lot of data.

Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &

shows packet sizes:

dig sends 89-byte IP packet

to the .org DNS server,

receives 657-byte IP packet.

See more DNSSEC data:

$ dig +dnssec any \

org @199.19.54.1

Sends 74-byte IP packet,

receives two IP fragments

totalling 2653 bytes.

16

0PPOBENBFCGBMB6RGT2JDC21E

A RRSIG

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

02190823 20170911180823 3

947 org. TuwMqbO7N+RguzFN

rsAaRYB4i7QBSUuOypYMFsSks

H98CpJpnL2sLZSV PrfjjsU9i

8WQEFsSfN7ux0c6gUlqZdtngA

/ukf+8B9Hz16YPWK8IxlBY pW

piKx0pY9qIISLne4UvCb+Aul3

vKwR2i3Vxupnx497uKE7p+nXl

2t9y 0aY=

17

Wow, that’s a lot of data.

Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &

shows packet sizes:

dig sends 89-byte IP packet

to the .org DNS server,

receives 657-byte IP packet.

See more DNSSEC data:

$ dig +dnssec any \

org @199.19.54.1

Sends 74-byte IP packet,

receives two IP fragments

totalling 2653 bytes.

16

0PPOBENBFCGBMB6RGT2JDC21E

A RRSIG

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

02190823 20170911180823 3

947 org. TuwMqbO7N+RguzFN

rsAaRYB4i7QBSUuOypYMFsSks

H98CpJpnL2sLZSV PrfjjsU9i

8WQEFsSfN7ux0c6gUlqZdtngA

/ukf+8B9Hz16YPWK8IxlBY pW

piKx0pY9qIISLne4UvCb+Aul3

vKwR2i3Vxupnx497uKE7p+nXl

2t9y 0aY=

17

Wow, that’s a lot of data.

Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &

shows packet sizes:

dig sends 89-byte IP packet

to the .org DNS server,

receives 657-byte IP packet.

See more DNSSEC data:

$ dig +dnssec any \

org @199.19.54.1

Sends 74-byte IP packet,

receives two IP fragments

totalling 2653 bytes.

18

Interlude: the attacker’s view

What happens if we aim

this data at someone else?

16

0PPOBENBFCGBMB6RGT2JDC21E

A RRSIG

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

02190823 20170911180823 3

947 org. TuwMqbO7N+RguzFN

rsAaRYB4i7QBSUuOypYMFsSks

H98CpJpnL2sLZSV PrfjjsU9i

8WQEFsSfN7ux0c6gUlqZdtngA

/ukf+8B9Hz16YPWK8IxlBY pW

piKx0pY9qIISLne4UvCb+Aul3

vKwR2i3Vxupnx497uKE7p+nXl

2t9y 0aY=

17

Wow, that’s a lot of data.

Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &

shows packet sizes:

dig sends 89-byte IP packet

to the .org DNS server,

receives 657-byte IP packet.

See more DNSSEC data:

$ dig +dnssec any \

org @199.19.54.1

Sends 74-byte IP packet,

receives two IP fragments

totalling 2653 bytes.

18

Interlude: the attacker’s view

What happens if we aim

this data at someone else?

16

0PPOBENBFCGBMB6RGT2JDC21E

A RRSIG

bgca0g0ug0p6o7425emkt9ue4

qng3p2f.org. 86400 IN RRS

IG NSEC3 7 2 86400 201710

02190823 20170911180823 3

947 org. TuwMqbO7N+RguzFN

rsAaRYB4i7QBSUuOypYMFsSks

H98CpJpnL2sLZSV PrfjjsU9i

8WQEFsSfN7ux0c6gUlqZdtngA

/ukf+8B9Hz16YPWK8IxlBY pW

piKx0pY9qIISLne4UvCb+Aul3

vKwR2i3Vxupnx497uKE7p+nXl

2t9y 0aY=

17

Wow, that’s a lot of data.

Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &

shows packet sizes:

dig sends 89-byte IP packet

to the .org DNS server,

receives 657-byte IP packet.

See more DNSSEC data:

$ dig +dnssec any \

org @199.19.54.1

Sends 74-byte IP packet,

receives two IP fragments

totalling 2653 bytes.

18

Interlude: the attacker’s view

What happens if we aim

this data at someone else?

17

Wow, that’s a lot of data.

Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &

shows packet sizes:

dig sends 89-byte IP packet

to the .org DNS server,

receives 657-byte IP packet.

See more DNSSEC data:

$ dig +dnssec any \

org @199.19.54.1

Sends 74-byte IP packet,

receives two IP fragments

totalling 2653 bytes.

18

Interlude: the attacker’s view

What happens if we aim

this data at someone else?

17

Wow, that’s a lot of data.

Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &

shows packet sizes:

dig sends 89-byte IP packet

to the .org DNS server,

receives 657-byte IP packet.

See more DNSSEC data:

$ dig +dnssec any \

org @199.19.54.1

Sends 74-byte IP packet,

receives two IP fragments

totalling 2653 bytes.

18

Interlude: the attacker’s view

What happens if we aim

this data at someone else?

17

Wow, that’s a lot of data.

Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &

shows packet sizes:

dig sends 89-byte IP packet

to the .org DNS server,

receives 657-byte IP packet.

See more DNSSEC data:

$ dig +dnssec any \

org @199.19.54.1

Sends 74-byte IP packet,

receives two IP fragments

totalling 2653 bytes.

18

Interlude: the attacker’s view

What happens if we aim

this data at someone else?

Let’s see what DNSSEC can do

as an amplification tool for

denial-of-service attacks.

17

Wow, that’s a lot of data.

Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &

shows packet sizes:

dig sends 89-byte IP packet

to the .org DNS server,

receives 657-byte IP packet.

See more DNSSEC data:

$ dig +dnssec any \

org @199.19.54.1

Sends 74-byte IP packet,

receives two IP fragments

totalling 2653 bytes.

18

Interlude: the attacker’s view

What happens if we aim

this data at someone else?

Let’s see what DNSSEC can do

as an amplification tool for

denial-of-service attacks.

19

Download DNSSEC zone list:

wget -m -k -I / \

secspider.cs.ucla.edu

cd secspider.cs.ucla.edu

awk ’

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5]

}

’ ./*--zone.html \

| sort -u | wc -l

17

Wow, that’s a lot of data.

Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &

shows packet sizes:

dig sends 89-byte IP packet

to the .org DNS server,

receives 657-byte IP packet.

See more DNSSEC data:

$ dig +dnssec any \

org @199.19.54.1

Sends 74-byte IP packet,

receives two IP fragments

totalling 2653 bytes.

18

Interlude: the attacker’s view

What happens if we aim

this data at someone else?

Let’s see what DNSSEC can do

as an amplification tool for

denial-of-service attacks.

19

Download DNSSEC zone list:

wget -m -k -I / \

secspider.cs.ucla.edu

cd secspider.cs.ucla.edu

awk ’

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5]

}

’ ./*--zone.html \

| sort -u | wc -l

17

Wow, that’s a lot of data.

Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &

shows packet sizes:

dig sends 89-byte IP packet

to the .org DNS server,

receives 657-byte IP packet.

See more DNSSEC data:

$ dig +dnssec any \

org @199.19.54.1

Sends 74-byte IP packet,

receives two IP fragments

totalling 2653 bytes.

18

Interlude: the attacker’s view

What happens if we aim

this data at someone else?

Let’s see what DNSSEC can do

as an amplification tool for

denial-of-service attacks.

19

Download DNSSEC zone list:

wget -m -k -I / \

secspider.cs.ucla.edu

cd secspider.cs.ucla.edu

awk ’

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5]

}

’ ./*--zone.html \

| sort -u | wc -l

18

Interlude: the attacker’s view

What happens if we aim

this data at someone else?

Let’s see what DNSSEC can do

as an amplification tool for

denial-of-service attacks.

19

Download DNSSEC zone list:

wget -m -k -I / \

secspider.cs.ucla.edu

cd secspider.cs.ucla.edu

awk ’

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5]

}

’ ./*--zone.html \

| sort -u | wc -l

18

Interlude: the attacker’s view

What happens if we aim

this data at someone else?

Let’s see what DNSSEC can do

as an amplification tool for

denial-of-service attacks.

19

Download DNSSEC zone list:

wget -m -k -I / \

secspider.cs.ucla.edu

cd secspider.cs.ucla.edu

awk ’

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5]

}

’ ./*--zone.html \

| sort -u | wc -l

20

Make list of DNSSEC names:

(cd secspider.cs.ucla.edu

echo ./*--zone.html \

| xargs awk ’

/^Zone / { z = $2

sub(//,"",z)

sub(/<\/STRONG>/,"",z)

}

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5],z,rand()

}’

) | sort -k3n \

| awk ’{print $1,$2}’ > SERVERS

18

Interlude: the attacker’s view

What happens if we aim

this data at someone else?

Let’s see what DNSSEC can do

as an amplification tool for

denial-of-service attacks.

19

Download DNSSEC zone list:

wget -m -k -I / \

secspider.cs.ucla.edu

cd secspider.cs.ucla.edu

awk ’

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5]

}

’ ./*--zone.html \

| sort -u | wc -l

20

Make list of DNSSEC names:

(cd secspider.cs.ucla.edu

echo ./*--zone.html \

| xargs awk ’

/^Zone / { z = $2

sub(//,"",z)

sub(/<\/STRONG>/,"",z)

}

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5],z,rand()

}’

) | sort -k3n \

| awk ’{print $1,$2}’ > SERVERS

18

Interlude: the attacker’s view

What happens if we aim

this data at someone else?

Let’s see what DNSSEC can do

as an amplification tool for

denial-of-service attacks.

19

Download DNSSEC zone list:

wget -m -k -I / \

secspider.cs.ucla.edu

cd secspider.cs.ucla.edu

awk ’

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5]

}

’ ./*--zone.html \

| sort -u | wc -l

20

Make list of DNSSEC names:

(cd secspider.cs.ucla.edu

echo ./*--zone.html \

| xargs awk ’

/^Zone / { z = $2

sub(//,"",z)

sub(/<\/STRONG>/,"",z)

}

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5],z,rand()

}’

) | sort -k3n \

| awk ’{print $1,$2}’ > SERVERS

19

Download DNSSEC zone list:

wget -m -k -I / \

secspider.cs.ucla.edu

cd secspider.cs.ucla.edu

awk ’

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5]

}

’ ./*--zone.html \

| sort -u | wc -l

20

Make list of DNSSEC names:

(cd secspider.cs.ucla.edu

echo ./*--zone.html \

| xargs awk ’

/^Zone / { z = $2

sub(//,"",z)

sub(/<\/STRONG>/,"",z)

}

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5],z,rand()

}’

) | sort -k3n \

| awk ’{print $1,$2}’ > SERVERS

19

Download DNSSEC zone list:

wget -m -k -I / \

secspider.cs.ucla.edu

cd secspider.cs.ucla.edu

awk ’

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5]

}

’ ./*--zone.html \

| sort -u | wc -l

20

Make list of DNSSEC names:

(cd secspider.cs.ucla.edu

echo ./*--zone.html \

| xargs awk ’

/^Zone / { z = $2

sub(//,"",z)

sub(/<\/STRONG>/,"",z)

}

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5],z,rand()

}’

) | sort -k3n \

| awk ’{print $1,$2}’ > SERVERS

21

For each domain: Try query,

estimate DNSSEC amplification.

while read ip z

do

dig +dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip" | \

awk -v "z=$z" -v "ip=$ip" ’{

if ($1 != ";;") next

if ($2 != "MSG") next

if ($3 != "SIZE") next

if ($4 != "rcvd:") next

est = (22+$5)/(40+length(z))

print est,ip,z

}’

done < SERVERS > AMP

19

Download DNSSEC zone list:

wget -m -k -I / \

secspider.cs.ucla.edu

cd secspider.cs.ucla.edu

awk ’

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5]

}

’ ./*--zone.html \

| sort -u | wc -l

20

Make list of DNSSEC names:

(cd secspider.cs.ucla.edu

echo ./*--zone.html \

| xargs awk ’

/^Zone / { z = $2

sub(//,"",z)

sub(/<\/STRONG>/,"",z)

}

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5],z,rand()

}’

) | sort -k3n \

| awk ’{print $1,$2}’ > SERVERS

21

For each domain: Try query,

estimate DNSSEC amplification.

while read ip z

do

dig +dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip" | \

awk -v "z=$z" -v "ip=$ip" ’{

if ($1 != ";;") next

if ($2 != "MSG") next

if ($3 != "SIZE") next

if ($4 != "rcvd:") next

est = (22+$5)/(40+length(z))

print est,ip,z

}’

done < SERVERS > AMP

19

Download DNSSEC zone list:

wget -m -k -I / \

secspider.cs.ucla.edu

cd secspider.cs.ucla.edu

awk ’

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5]

}

’ ./*--zone.html \

| sort -u | wc -l

20

Make list of DNSSEC names:

(cd secspider.cs.ucla.edu

echo ./*--zone.html \

| xargs awk ’

/^Zone / { z = $2

sub(//,"",z)

sub(/<\/STRONG>/,"",z)

}

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5],z,rand()

}’

) | sort -k3n \

| awk ’{print $1,$2}’ > SERVERS

21

For each domain: Try query,

estimate DNSSEC amplification.

while read ip z

do

dig +dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip" | \

awk -v "z=$z" -v "ip=$ip" ’{

if ($1 != ";;") next

if ($2 != "MSG") next

if ($3 != "SIZE") next

if ($4 != "rcvd:") next

est = (22+$5)/(40+length(z))

print est,ip,z

}’

done < SERVERS > AMP

20

Make list of DNSSEC names:

(cd secspider.cs.ucla.edu

echo ./*--zone.html \

| xargs awk ’

/^Zone / { z = $2

sub(//,"",z)

sub(/<\/STRONG>/,"",z)

}

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5],z,rand()

}’

) | sort -k3n \

| awk ’{print $1,$2}’ > SERVERS

21

For each domain: Try query,

estimate DNSSEC amplification.

while read ip z

do

dig +dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip" | \

awk -v "z=$z" -v "ip=$ip" ’{

if ($1 != ";;") next

if ($2 != "MSG") next

if ($3 != "SIZE") next

if ($4 != "rcvd:") next

est = (22+$5)/(40+length(z))

print est,ip,z

}’

done < SERVERS > AMP

20

Make list of DNSSEC names:

(cd secspider.cs.ucla.edu

echo ./*--zone.html \

| xargs awk ’

/^Zone / { z = $2

sub(//,"",z)

sub(/<\/STRONG>/,"",z)

}

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5],z,rand()

}’

) | sort -k3n \

| awk ’{print $1,$2}’ > SERVERS

21

For each domain: Try query,

estimate DNSSEC amplification.

while read ip z

do

dig +dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip" | \

awk -v "z=$z" -v "ip=$ip" ’{

if ($1 != ";;") next

if ($2 != "MSG") next

if ($3 != "SIZE") next

if ($4 != "rcvd:") next

est = (22+$5)/(40+length(z))

print est,ip,z

}’

done < SERVERS > AMP

22

For each DNSSEC server,

find domain estimated to have

maximum DNSSEC amplification:

sort -nr AMP | awk ’{

if (seen[$2]) next

if ($1 < 30) next

print $1,$2,$3

seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -l MAXAMP

Output (last time I tried it):

95.6279 156.154.102.26 fi.

2326 MAXAMP

20

Make list of DNSSEC names:

(cd secspider.cs.ucla.edu

echo ./*--zone.html \

| xargs awk ’

/^Zone / { z = $2

sub(//,"",z)

sub(/<\/STRONG>/,"",z)

}

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5],z,rand()

}’

) | sort -k3n \

| awk ’{print $1,$2}’ > SERVERS

21

For each domain: Try query,

estimate DNSSEC amplification.

while read ip z

do

dig +dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip" | \

awk -v "z=$z" -v "ip=$ip" ’{

if ($1 != ";;") next

if ($2 != "MSG") next

if ($3 != "SIZE") next

if ($4 != "rcvd:") next

est = (22+$5)/(40+length(z))

print est,ip,z

}’

done < SERVERS > AMP

22

For each DNSSEC server,

find domain estimated to have

maximum DNSSEC amplification:

sort -nr AMP | awk ’{

if (seen[$2]) next

if ($1 < 30) next

print $1,$2,$3

seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -l MAXAMP

Output (last time I tried it):

95.6279 156.154.102.26 fi.

2326 MAXAMP

20

Make list of DNSSEC names:

(cd secspider.cs.ucla.edu

echo ./*--zone.html \

| xargs awk ’

/^Zone / { z = $2

sub(//,"",z)

sub(/<\/STRONG>/,"",z)

}

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5],z,rand()

}’

) | sort -k3n \

| awk ’{print $1,$2}’ > SERVERS

21

For each domain: Try query,

estimate DNSSEC amplification.

while read ip z

do

dig +dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip" | \

awk -v "z=$z" -v "ip=$ip" ’{

if ($1 != ";;") next

if ($2 != "MSG") next

if ($3 != "SIZE") next

if ($4 != "rcvd:") next

est = (22+$5)/(40+length(z))

print est,ip,z

}’

done < SERVERS > AMP

22

For each DNSSEC server,

find domain estimated to have

maximum DNSSEC amplification:

sort -nr AMP | awk ’{

if (seen[$2]) next

if ($1 < 30) next

print $1,$2,$3

seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -l MAXAMP

Output (last time I tried it):

95.6279 156.154.102.26 fi.

2326 MAXAMP

21

For each domain: Try query,

estimate DNSSEC amplification.

while read ip z

do

dig +dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip" | \

awk -v "z=$z" -v "ip=$ip" ’{

if ($1 != ";;") next

if ($2 != "MSG") next

if ($3 != "SIZE") next

if ($4 != "rcvd:") next

est = (22+$5)/(40+length(z))

print est,ip,z

}’

done < SERVERS > AMP

22

For each DNSSEC server,

find domain estimated to have

maximum DNSSEC amplification:

sort -nr AMP | awk ’{

if (seen[$2]) next

if ($1 < 30) next

print $1,$2,$3

seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -l MAXAMP

Output (last time I tried it):

95.6279 156.154.102.26 fi.

2326 MAXAMP

21

For each domain: Try query,

estimate DNSSEC amplification.

while read ip z

do

dig +dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip" | \

awk -v "z=$z" -v "ip=$ip" ’{

if ($1 != ";;") next

if ($2 != "MSG") next

if ($3 != "SIZE") next

if ($4 != "rcvd:") next

est = (22+$5)/(40+length(z))

print est,ip,z

}’

done < SERVERS > AMP

22

For each DNSSEC server,

find domain estimated to have

maximum DNSSEC amplification:

sort -nr AMP | awk ’{

if (seen[$2]) next

if ($1 < 30) next

print $1,$2,$3

seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -l MAXAMP

Output (last time I tried it):

95.6279 156.154.102.26 fi.

2326 MAXAMP

23

Can that really be true?

>2000 DNSSEC servers

around the Internet, each

providing >30× amplification

of incoming UDP packets?

21

For each domain: Try query,

estimate DNSSEC amplification.

while read ip z

do

dig +dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip" | \

awk -v "z=$z" -v "ip=$ip" ’{

if ($1 != ";;") next

if ($2 != "MSG") next

if ($3 != "SIZE") next

if ($4 != "rcvd:") next

est = (22+$5)/(40+length(z))

print est,ip,z

}’

done < SERVERS > AMP

22

For each DNSSEC server,

find domain estimated to have

maximum DNSSEC amplification:

sort -nr AMP | awk ’{

if (seen[$2]) next

if ($1 < 30) next

print $1,$2,$3

seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -l MAXAMP

Output (last time I tried it):

95.6279 156.154.102.26 fi.

2326 MAXAMP

23

Can that really be true?

>2000 DNSSEC servers

around the Internet, each

providing >30× amplification

of incoming UDP packets?

21

For each domain: Try query,

estimate DNSSEC amplification.

while read ip z

do

dig +dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip" | \

awk -v "z=$z" -v "ip=$ip" ’{

if ($1 != ";;") next

if ($2 != "MSG") next

if ($3 != "SIZE") next

if ($4 != "rcvd:") next

est = (22+$5)/(40+length(z))

print est,ip,z

}’

done < SERVERS > AMP

22

For each DNSSEC server,

find domain estimated to have

maximum DNSSEC amplification:

sort -nr AMP | awk ’{

if (seen[$2]) next

if ($1 < 30) next

print $1,$2,$3

seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -l MAXAMP

Output (last time I tried it):

95.6279 156.154.102.26 fi.

2326 MAXAMP

23

Can that really be true?

>2000 DNSSEC servers

around the Internet, each

providing >30× amplification

of incoming UDP packets?

22

For each DNSSEC server,

find domain estimated to have

maximum DNSSEC amplification:

sort -nr AMP | awk ’{

if (seen[$2]) next

if ($1 < 30) next

print $1,$2,$3

seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -l MAXAMP

Output (last time I tried it):

95.6279 156.154.102.26 fi.

2326 MAXAMP

23

Can that really be true?

>2000 DNSSEC servers

around the Internet, each

providing >30× amplification

of incoming UDP packets?

22

For each DNSSEC server,

find domain estimated to have

maximum DNSSEC amplification:

sort -nr AMP | awk ’{

if (seen[$2]) next

if ($1 < 30) next

print $1,$2,$3

seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -l MAXAMP

Output (last time I tried it):

95.6279 156.154.102.26 fi.

2326 MAXAMP

23

Can that really be true?

>2000 DNSSEC servers

around the Internet, each

providing >30× amplification

of incoming UDP packets?

Let’s verify this.

Choose quiet test machines

on two different networks

(without egress filters).

e.g. Sender: 1.2.3.4.

Receiver: 5.6.7.8.

22

For each DNSSEC server,

find domain estimated to have

maximum DNSSEC amplification:

sort -nr AMP | awk ’{

if (seen[$2]) next

if ($1 < 30) next

print $1,$2,$3

seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -l MAXAMP

Output (last time I tried it):

95.6279 156.154.102.26 fi.

2326 MAXAMP

23

Can that really be true?

>2000 DNSSEC servers

around the Internet, each

providing >30× amplification

of incoming UDP packets?

Let’s verify this.

Choose quiet test machines

on two different networks

(without egress filters).

e.g. Sender: 1.2.3.4.

Receiver: 5.6.7.8.

24

Run network-traffic monitors

on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response

address to 5.6.7.8,

and send 1 query/second:

ifconfig eth0:1 \

5.6.7.8 \

netmask 255.255.255.255

while read est ip z

do

dig -b 5.6.7.8 \

+dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip"

done < MAXAMP >/dev/null 2>&1

22

For each DNSSEC server,

find domain estimated to have

maximum DNSSEC amplification:

sort -nr AMP | awk ’{

if (seen[$2]) next

if ($1 < 30) next

print $1,$2,$3

seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -l MAXAMP

Output (last time I tried it):

95.6279 156.154.102.26 fi.

2326 MAXAMP

23

Can that really be true?

>2000 DNSSEC servers

around the Internet, each

providing >30× amplification

of incoming UDP packets?

Let’s verify this.

Choose quiet test machines

on two different networks

(without egress filters).

e.g. Sender: 1.2.3.4.

Receiver: 5.6.7.8.

24

Run network-traffic monitors

on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response

address to 5.6.7.8,

and send 1 query/second:

ifconfig eth0:1 \

5.6.7.8 \

netmask 255.255.255.255

while read est ip z

do

dig -b 5.6.7.8 \

+dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip"

done < MAXAMP >/dev/null 2>&1

22

For each DNSSEC server,

find domain estimated to have

maximum DNSSEC amplification:

sort -nr AMP | awk ’{

if (seen[$2]) next

if ($1 < 30) next

print $1,$2,$3

seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -l MAXAMP

Output (last time I tried it):

95.6279 156.154.102.26 fi.

2326 MAXAMP

23

Can that really be true?

>2000 DNSSEC servers

around the Internet, each

providing >30× amplification

of incoming UDP packets?

Let’s verify this.

Choose quiet test machines

on two different networks

(without egress filters).

e.g. Sender: 1.2.3.4.

Receiver: 5.6.7.8.

24

Run network-traffic monitors

on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response

address to 5.6.7.8,

and send 1 query/second:

ifconfig eth0:1 \

5.6.7.8 \

netmask 255.255.255.255

while read est ip z

do

dig -b 5.6.7.8 \

+dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip"

done < MAXAMP >/dev/null 2>&1

23

Can that really be true?

>2000 DNSSEC servers

around the Internet, each

providing >30× amplification

of incoming UDP packets?

Let’s verify this.

Choose quiet test machines

on two different networks

(without egress filters).

e.g. Sender: 1.2.3.4.

Receiver: 5.6.7.8.

24

Run network-traffic monitors

on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response

address to 5.6.7.8,

and send 1 query/second:

ifconfig eth0:1 \

5.6.7.8 \

netmask 255.255.255.255

while read est ip z

do

dig -b 5.6.7.8 \

+dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip"

done < MAXAMP >/dev/null 2>&1

23

Can that really be true?

>2000 DNSSEC servers

around the Internet, each

providing >30× amplification

of incoming UDP packets?

Let’s verify this.

Choose quiet test machines

on two different networks

(without egress filters).

e.g. Sender: 1.2.3.4.

Receiver: 5.6.7.8.

24

Run network-traffic monitors

on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response

address to 5.6.7.8,

and send 1 query/second:

ifconfig eth0:1 \

5.6.7.8 \

netmask 255.255.255.255

while read est ip z

do

dig -b 5.6.7.8 \

+dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip"

done < MAXAMP >/dev/null 2>&1

25

I sustained 51× amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

23

Can that really be true?

>2000 DNSSEC servers

around the Internet, each

providing >30× amplification

of incoming UDP packets?

Let’s verify this.

Choose quiet test machines

on two different networks

(without egress filters).

e.g. Sender: 1.2.3.4.

Receiver: 5.6.7.8.

24

Run network-traffic monitors

on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response

address to 5.6.7.8,

and send 1 query/second:

ifconfig eth0:1 \

5.6.7.8 \

netmask 255.255.255.255

while read est ip z

do

dig -b 5.6.7.8 \

+dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip"

done < MAXAMP >/dev/null 2>&1

25

I sustained 51× amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

23

Can that really be true?

>2000 DNSSEC servers

around the Internet, each

providing >30× amplification

of incoming UDP packets?

Let’s verify this.

Choose quiet test machines

on two different networks

(without egress filters).

e.g. Sender: 1.2.3.4.

Receiver: 5.6.7.8.

24

Run network-traffic monitors

on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response

address to 5.6.7.8,

and send 1 query/second:

ifconfig eth0:1 \

5.6.7.8 \

netmask 255.255.255.255

while read est ip z

do

dig -b 5.6.7.8 \

+dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip"

done < MAXAMP >/dev/null 2>&1

25

I sustained 51× amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

24

Run network-traffic monitors

on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response

address to 5.6.7.8,

and send 1 query/second:

ifconfig eth0:1 \

5.6.7.8 \

netmask 255.255.255.255

while read est ip z

do

dig -b 5.6.7.8 \

+dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip"

done < MAXAMP >/dev/null 2>&1

25

I sustained 51× amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

24

Run network-traffic monitors

on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response

address to 5.6.7.8,

and send 1 query/second:

ifconfig eth0:1 \

5.6.7.8 \

netmask 255.255.255.255

while read est ip z

do

dig -b 5.6.7.8 \

+dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip"

done < MAXAMP >/dev/null 2>&1

25

I sustained 51× amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps flood

from the DNSSEC drone pool,

taking down typical site.

24

Run network-traffic monitors

on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response

address to 5.6.7.8,

and send 1 query/second:

ifconfig eth0:1 \

5.6.7.8 \

netmask 255.255.255.255

while read est ip z

do

dig -b 5.6.7.8 \

+dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip"

done < MAXAMP >/dev/null 2>&1

25

I sustained 51× amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps flood

from the DNSSEC drone pool,

taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flood,

taking down very large site.

24

Run network-traffic monitors

on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response

address to 5.6.7.8,

and send 1 query/second:

ifconfig eth0:1 \

5.6.7.8 \

netmask 255.255.255.255

while read est ip z

do

dig -b 5.6.7.8 \

+dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip"

done < MAXAMP >/dev/null 2>&1

25

I sustained 51× amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps flood

from the DNSSEC drone pool,

taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flood,

taking down very large site.

26

Attack capacity is limited by

total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.

Can’t take down Google this way.

24

Run network-traffic monitors

on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response

address to 5.6.7.8,

and send 1 query/second:

ifconfig eth0:1 \

5.6.7.8 \

netmask 255.255.255.255

while read est ip z

do

dig -b 5.6.7.8 \

+dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip"

done < MAXAMP >/dev/null 2>&1

25

I sustained 51× amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps flood

from the DNSSEC drone pool,

taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flood,

taking down very large site.

26

Attack capacity is limited by

total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.

Can’t take down Google this way.

24

Run network-traffic monitors

on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response

address to 5.6.7.8,

and send 1 query/second:

ifconfig eth0:1 \

5.6.7.8 \

netmask 255.255.255.255

while read est ip z

do

dig -b 5.6.7.8 \

+dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip"

done < MAXAMP >/dev/null 2>&1

25

I sustained 51× amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps flood

from the DNSSEC drone pool,

taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flood,

taking down very large site.

26

Attack capacity is limited by

total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.

Can’t take down Google this way.

25

I sustained 51× amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps flood

from the DNSSEC drone pool,

taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flood,

taking down very large site.

26

Attack capacity is limited by

total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.

Can’t take down Google this way.

25

I sustained 51× amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps flood

from the DNSSEC drone pool,

taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flood,

taking down very large site.

26

Attack capacity is limited by

total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.

Can’t take down Google this way.

Logical attacker response:

Tell people to install DNSSEC.

25

I sustained 51× amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps flood

from the DNSSEC drone pool,

taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flood,

taking down very large site.

26

Attack capacity is limited by

total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.

Can’t take down Google this way.

Logical attacker response:

Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:

2536 IP addresses worldwide.

25

I sustained 51× amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps flood

from the DNSSEC drone pool,

taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flood,

taking down very large site.

26

Attack capacity is limited by

total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.

Can’t take down Google this way.

Logical attacker response:

Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:

2536 IP addresses worldwide.

2011.12.14 DNSSEC servers:

3393 IP addresses worldwide.

25

I sustained 51× amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps flood

from the DNSSEC drone pool,

taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flood,

taking down very large site.

26

Attack capacity is limited by

total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.

Can’t take down Google this way.

Logical attacker response:

Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:

2536 IP addresses worldwide.

2011.12.14 DNSSEC servers:

3393 IP addresses worldwide.

2017: No SecSpider downloads???

25

I sustained 51× amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps flood

from the DNSSEC drone pool,

taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flood,

taking down very large site.

26

Attack capacity is limited by

total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.

Can’t take down Google this way.

Logical attacker response:

Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:

2536 IP addresses worldwide.

2011.12.14 DNSSEC servers:

3393 IP addresses worldwide.

2017: No SecSpider downloads???

Exercise: Collect+publish data.

25

I sustained 51× amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps flood

from the DNSSEC drone pool,

taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flood,

taking down very large site.

26

Attack capacity is limited by

total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.

Can’t take down Google this way.

Logical attacker response:

Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:

2536 IP addresses worldwide.

2011.12.14 DNSSEC servers:

3393 IP addresses worldwide.

2017: No SecSpider downloads???

Exercise: Collect+publish data.

27

RFC 4033 says

“DNSSEC provides no protection

against denial of service attacks.”

25

I sustained 51× amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps flood

from the DNSSEC drone pool,

taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flood,

taking down very large site.

26

Attack capacity is limited by

total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.

Can’t take down Google this way.

Logical attacker response:

Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:

2536 IP addresses worldwide.

2011.12.14 DNSSEC servers:

3393 IP addresses worldwide.

2017: No SecSpider downloads???

Exercise: Collect+publish data.

27

RFC 4033 says

“DNSSEC provides no protection

against denial of service attacks.”

25

I sustained 51× amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps flood

from the DNSSEC drone pool,

taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flood,

taking down very large site.

26

Attack capacity is limited by

total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.

Can’t take down Google this way.

Logical attacker response:

Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:

2536 IP addresses worldwide.

2011.12.14 DNSSEC servers:

3393 IP addresses worldwide.

2017: No SecSpider downloads???

Exercise: Collect+publish data.

27

RFC 4033 says

“DNSSEC provides no protection

against denial of service attacks.”

26

Attack capacity is limited by

total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.

Can’t take down Google this way.

Logical attacker response:

Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:

2536 IP addresses worldwide.

2011.12.14 DNSSEC servers:

3393 IP addresses worldwide.

2017: No SecSpider downloads???

Exercise: Collect+publish data.

27

RFC 4033 says

“DNSSEC provides no protection

against denial of service attacks.”

26

Attack capacity is limited by

total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.

Can’t take down Google this way.

Logical attacker response:

Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:

2536 IP addresses worldwide.

2011.12.14 DNSSEC servers:

3393 IP addresses worldwide.

2017: No SecSpider downloads???

Exercise: Collect+publish data.

27

RFC 4033 says

“DNSSEC provides no protection

against denial of service attacks.”

RFC 4033 doesn’t say

“DNSSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

26

Attack capacity is limited by

total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.

Can’t take down Google this way.

Logical attacker response:

Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:

2536 IP addresses worldwide.

2011.12.14 DNSSEC servers:

3393 IP addresses worldwide.

2017: No SecSpider downloads???

Exercise: Collect+publish data.

27

RFC 4033 says

“DNSSEC provides no protection

against denial of service attacks.”

RFC 4033 doesn’t say

“DNSSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exercise: investigate

other types of DoS attacks.

e.g. DNSSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

26

Attack capacity is limited by

total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.

Can’t take down Google this way.

Logical attacker response:

Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:

2536 IP addresses worldwide.

2011.12.14 DNSSEC servers:

3393 IP addresses worldwide.

2017: No SecSpider downloads???

Exercise: Collect+publish data.

27

RFC 4033 says

“DNSSEC provides no protection

against denial of service attacks.”

RFC 4033 doesn’t say

“DNSSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exercise: investigate

other types of DoS attacks.

e.g. DNSSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

28

Back to integrity

Let’s pretend we don’t

care about availability.

This is not an attack:

26

Attack capacity is limited by

total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.

Can’t take down Google this way.

Logical attacker response:

Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:

2536 IP addresses worldwide.

2011.12.14 DNSSEC servers:

3393 IP addresses worldwide.

2017: No SecSpider downloads???

Exercise: Collect+publish data.

27

RFC 4033 says

“DNSSEC provides no protection

against denial of service attacks.”

RFC 4033 doesn’t say

“DNSSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exercise: investigate

other types of DoS attacks.

e.g. DNSSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

28

Back to integrity

Let’s pretend we don’t

care about availability.

This is not an attack:

26

Attack capacity is limited by

total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.

Can’t take down Google this way.

Logical attacker response:

Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:

2536 IP addresses worldwide.

2011.12.14 DNSSEC servers:

3393 IP addresses worldwide.

2017: No SecSpider downloads???

Exercise: Collect+publish data.

27

RFC 4033 says

“DNSSEC provides no protection

against denial of service attacks.”

RFC 4033 doesn’t say

“DNSSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exercise: investigate

other types of DoS attacks.

e.g. DNSSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

28

Back to integrity

Let’s pretend we don’t

care about availability.

This is not an attack:

27

RFC 4033 says

“DNSSEC provides no protection

against denial of service attacks.”

RFC 4033 doesn’t say

“DNSSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exercise: investigate

other types of DoS attacks.

e.g. DNSSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

28

Back to integrity

Let’s pretend we don’t

care about availability.

This is not an attack:

27

RFC 4033 says

“DNSSEC provides no protection

against denial of service attacks.”

RFC 4033 doesn’t say

“DNSSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exercise: investigate

other types of DoS attacks.

e.g. DNSSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

28

Back to integrity

Let’s pretend we don’t

care about availability.

This is not an attack:

29

All we care about is integrity:

27

RFC 4033 says

“DNSSEC provides no protection

against denial of service attacks.”

RFC 4033 doesn’t say

“DNSSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exercise: investigate

other types of DoS attacks.

e.g. DNSSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

28

Back to integrity

Let’s pretend we don’t

care about availability.

This is not an attack:

29

All we care about is integrity:

27

RFC 4033 says

“DNSSEC provides no protection

against denial of service attacks.”

RFC 4033 doesn’t say

“DNSSEC is a pool of

remote-controlled attack drones,

the worst DDoS amplifier

on the Internet.”

Exercise: investigate

other types of DoS attacks.

e.g. DNSSEC advertising says

zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

28

Back to integrity

Let’s pretend we don’t

care about availability.

This is not an attack:

29

All we care about is integrity:

28

Back to integrity

Let’s pretend we don’t

care about availability.

This is not an attack:

29

All we care about is integrity:

28

Back to integrity

Let’s pretend we don’t

care about availability.

This is not an attack:

29

All we care about is integrity:
30

The .org signatures

are 1024-bit RSA signatures.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

$10 million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

28

Back to integrity

Let’s pretend we don’t

care about availability.

This is not an attack:

29

All we care about is integrity:
30

The .org signatures

are 1024-bit RSA signatures.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

$10 million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

28

Back to integrity

Let’s pretend we don’t

care about availability.

This is not an attack:

29

All we care about is integrity:
30

The .org signatures

are 1024-bit RSA signatures.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

$10 million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

29

All we care about is integrity:
30

The .org signatures

are 1024-bit RSA signatures.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

$10 million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

29

All we care about is integrity:
30

The .org signatures

are 1024-bit RSA signatures.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

$10 million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

31

Academics in small labs

factored RSA-768 in 2009.

Still no public announcements

of breaks of 1024-bit RSA.

29

All we care about is integrity:
30

The .org signatures

are 1024-bit RSA signatures.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

$10 million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

31

Academics in small labs

factored RSA-768 in 2009.

Still no public announcements

of breaks of 1024-bit RSA.

29

All we care about is integrity:
30

The .org signatures

are 1024-bit RSA signatures.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

$10 million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

31

Academics in small labs

factored RSA-768 in 2009.

Still no public announcements

of breaks of 1024-bit RSA.

30

The .org signatures

are 1024-bit RSA signatures.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

$10 million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

31

Academics in small labs

factored RSA-768 in 2009.

Still no public announcements

of breaks of 1024-bit RSA.

30

The .org signatures

are 1024-bit RSA signatures.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

$10 million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

31

Academics in small labs

factored RSA-768 in 2009.

Still no public announcements

of breaks of 1024-bit RSA.

“RSA-1024: still secure

against honest attackers.”

30

The .org signatures

are 1024-bit RSA signatures.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

$10 million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

31

Academics in small labs

factored RSA-768 in 2009.

Still no public announcements

of breaks of 1024-bit RSA.

“RSA-1024: still secure

against honest attackers.”

What about serious attackers

using many more computers?

e.g. botnet operators?

I say:

Using RSA-1024 is irresponsible.

30

The .org signatures

are 1024-bit RSA signatures.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

$10 million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

31

Academics in small labs

factored RSA-768 in 2009.

Still no public announcements

of breaks of 1024-bit RSA.

“RSA-1024: still secure

against honest attackers.”

What about serious attackers

using many more computers?

e.g. botnet operators?

I say:

Using RSA-1024 is irresponsible.

32

But that’s not the big problem

with these DNSSEC signatures

for greenpeace.org.

30

The .org signatures

are 1024-bit RSA signatures.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

$10 million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

31

Academics in small labs

factored RSA-768 in 2009.

Still no public announcements

of breaks of 1024-bit RSA.

“RSA-1024: still secure

against honest attackers.”

What about serious attackers

using many more computers?

e.g. botnet operators?

I say:

Using RSA-1024 is irresponsible.

32

But that’s not the big problem

with these DNSSEC signatures

for greenpeace.org.

30

The .org signatures

are 1024-bit RSA signatures.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

$10 million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

31

Academics in small labs

factored RSA-768 in 2009.

Still no public announcements

of breaks of 1024-bit RSA.

“RSA-1024: still secure

against honest attackers.”

What about serious attackers

using many more computers?

e.g. botnet operators?

I say:

Using RSA-1024 is irresponsible.

32

But that’s not the big problem

with these DNSSEC signatures

for greenpeace.org.

31

Academics in small labs

factored RSA-768 in 2009.

Still no public announcements

of breaks of 1024-bit RSA.

“RSA-1024: still secure

against honest attackers.”

What about serious attackers

using many more computers?

e.g. botnet operators?

I say:

Using RSA-1024 is irresponsible.

32

But that’s not the big problem

with these DNSSEC signatures

for greenpeace.org.

31

Academics in small labs

factored RSA-768 in 2009.

Still no public announcements

of breaks of 1024-bit RSA.

“RSA-1024: still secure

against honest attackers.”

What about serious attackers

using many more computers?

e.g. botnet operators?

I say:

Using RSA-1024 is irresponsible.

32

But that’s not the big problem

with these DNSSEC signatures

for greenpeace.org.

Suppose an attacker forges

a DNS packet from .org,

including exactly the same

DNSSEC signatures but

changing the NS+A records to

point to the attacker’s servers.

31

Academics in small labs

factored RSA-768 in 2009.

Still no public announcements

of breaks of 1024-bit RSA.

“RSA-1024: still secure

against honest attackers.”

What about serious attackers

using many more computers?

e.g. botnet operators?

I say:

Using RSA-1024 is irresponsible.

32

But that’s not the big problem

with these DNSSEC signatures

for greenpeace.org.

Suppose an attacker forges

a DNS packet from .org,

including exactly the same

DNSSEC signatures but

changing the NS+A records to

point to the attacker’s servers.

Fact: DNSSEC “verification”

won’t notice the change.

The signatures say nothing

about the NS+A records.

The forgery will be accepted.

31

Academics in small labs

factored RSA-768 in 2009.

Still no public announcements

of breaks of 1024-bit RSA.

“RSA-1024: still secure

against honest attackers.”

What about serious attackers

using many more computers?

e.g. botnet operators?

I say:

Using RSA-1024 is irresponsible.

32

But that’s not the big problem

with these DNSSEC signatures

for greenpeace.org.

Suppose an attacker forges

a DNS packet from .org,

including exactly the same

DNSSEC signatures but

changing the NS+A records to

point to the attacker’s servers.

Fact: DNSSEC “verification”

won’t notice the change.

The signatures say nothing

about the NS+A records.

The forgery will be accepted.

33

Here’s what .org signed,

translated into English:

“.org might have data

with hashes between

h9p7u7tr2u91d0v0ljs9l1gidnp90u3h,

h9parr669t6u8o1gsg9e1lmitk4dem0t

but has not signed any of

that data.”

Can check that greenpeace.org

has a hash in that range.

.org now has thousands

of these useless signatures.

This is .org “implementing”

a “needed security measure.”

31

Academics in small labs

factored RSA-768 in 2009.

Still no public announcements

of breaks of 1024-bit RSA.

“RSA-1024: still secure

against honest attackers.”

What about serious attackers

using many more computers?

e.g. botnet operators?

I say:

Using RSA-1024 is irresponsible.

32

But that’s not the big problem

with these DNSSEC signatures

for greenpeace.org.

Suppose an attacker forges

a DNS packet from .org,

including exactly the same

DNSSEC signatures but

changing the NS+A records to

point to the attacker’s servers.

Fact: DNSSEC “verification”

won’t notice the change.

The signatures say nothing

about the NS+A records.

The forgery will be accepted.

33

Here’s what .org signed,

translated into English:

“.org might have data

with hashes between

h9p7u7tr2u91d0v0ljs9l1gidnp90u3h,

h9parr669t6u8o1gsg9e1lmitk4dem0t

but has not signed any of

that data.”

Can check that greenpeace.org

has a hash in that range.

.org now has thousands

of these useless signatures.

This is .org “implementing”

a “needed security measure.”

31

Academics in small labs

factored RSA-768 in 2009.

Still no public announcements

of breaks of 1024-bit RSA.

“RSA-1024: still secure

against honest attackers.”

What about serious attackers

using many more computers?

e.g. botnet operators?

I say:

Using RSA-1024 is irresponsible.

32

But that’s not the big problem

with these DNSSEC signatures

for greenpeace.org.

Suppose an attacker forges

a DNS packet from .org,

including exactly the same

DNSSEC signatures but

changing the NS+A records to

point to the attacker’s servers.

Fact: DNSSEC “verification”

won’t notice the change.

The signatures say nothing

about the NS+A records.

The forgery will be accepted.

33

Here’s what .org signed,

translated into English:

“.org might have data

with hashes between

h9p7u7tr2u91d0v0ljs9l1gidnp90u3h,

h9parr669t6u8o1gsg9e1lmitk4dem0t

but has not signed any of

that data.”

Can check that greenpeace.org

has a hash in that range.

.org now has thousands

of these useless signatures.

This is .org “implementing”

a “needed security measure.”

32

But that’s not the big problem

with these DNSSEC signatures

for greenpeace.org.

Suppose an attacker forges

a DNS packet from .org,

including exactly the same

DNSSEC signatures but

changing the NS+A records to

point to the attacker’s servers.

Fact: DNSSEC “verification”

won’t notice the change.

The signatures say nothing

about the NS+A records.

The forgery will be accepted.

33

Here’s what .org signed,

translated into English:

“.org might have data

with hashes between

h9p7u7tr2u91d0v0ljs9l1gidnp90u3h,

h9parr669t6u8o1gsg9e1lmitk4dem0t

but has not signed any of

that data.”

Can check that greenpeace.org

has a hash in that range.

.org now has thousands

of these useless signatures.

This is .org “implementing”

a “needed security measure.”

32

But that’s not the big problem

with these DNSSEC signatures

for greenpeace.org.

Suppose an attacker forges

a DNS packet from .org,

including exactly the same

DNSSEC signatures but

changing the NS+A records to

point to the attacker’s servers.

Fact: DNSSEC “verification”

won’t notice the change.

The signatures say nothing

about the NS+A records.

The forgery will be accepted.

33

Here’s what .org signed,

translated into English:

“.org might have data

with hashes between

h9p7u7tr2u91d0v0ljs9l1gidnp90u3h,

h9parr669t6u8o1gsg9e1lmitk4dem0t

but has not signed any of

that data.”

Can check that greenpeace.org

has a hash in that range.

.org now has thousands

of these useless signatures.

This is .org “implementing”

a “needed security measure.”

34

“DNSSEC: Built, not plugged in.”

32

But that’s not the big problem

with these DNSSEC signatures

for greenpeace.org.

Suppose an attacker forges

a DNS packet from .org,

including exactly the same

DNSSEC signatures but

changing the NS+A records to

point to the attacker’s servers.

Fact: DNSSEC “verification”

won’t notice the change.

The signatures say nothing

about the NS+A records.

The forgery will be accepted.

33

Here’s what .org signed,

translated into English:

“.org might have data

with hashes between

h9p7u7tr2u91d0v0ljs9l1gidnp90u3h,

h9parr669t6u8o1gsg9e1lmitk4dem0t

but has not signed any of

that data.”

Can check that greenpeace.org

has a hash in that range.

.org now has thousands

of these useless signatures.

This is .org “implementing”

a “needed security measure.”

34

“DNSSEC: Built, not plugged in.”

32

But that’s not the big problem

with these DNSSEC signatures

for greenpeace.org.

Suppose an attacker forges

a DNS packet from .org,

including exactly the same

DNSSEC signatures but

changing the NS+A records to

point to the attacker’s servers.

Fact: DNSSEC “verification”

won’t notice the change.

The signatures say nothing

about the NS+A records.

The forgery will be accepted.

33

Here’s what .org signed,

translated into English:

“.org might have data

with hashes between

h9p7u7tr2u91d0v0ljs9l1gidnp90u3h,

h9parr669t6u8o1gsg9e1lmitk4dem0t

but has not signed any of

that data.”

Can check that greenpeace.org

has a hash in that range.

.org now has thousands

of these useless signatures.

This is .org “implementing”

a “needed security measure.”

34

“DNSSEC: Built, not plugged in.”

33

Here’s what .org signed,

translated into English:

“.org might have data

with hashes between

h9p7u7tr2u91d0v0ljs9l1gidnp90u3h,

h9parr669t6u8o1gsg9e1lmitk4dem0t

but has not signed any of

that data.”

Can check that greenpeace.org

has a hash in that range.

.org now has thousands

of these useless signatures.

This is .org “implementing”

a “needed security measure.”

34

“DNSSEC: Built, not plugged in.”

33

Here’s what .org signed,

translated into English:

“.org might have data

with hashes between

h9p7u7tr2u91d0v0ljs9l1gidnp90u3h,

h9parr669t6u8o1gsg9e1lmitk4dem0t

but has not signed any of

that data.”

Can check that greenpeace.org

has a hash in that range.

.org now has thousands

of these useless signatures.

This is .org “implementing”

a “needed security measure.”

34

“DNSSEC: Built, not plugged in.”
35

What went wrong?

Rushed development process?

33

Here’s what .org signed,

translated into English:

“.org might have data

with hashes between

h9p7u7tr2u91d0v0ljs9l1gidnp90u3h,

h9parr669t6u8o1gsg9e1lmitk4dem0t

but has not signed any of

that data.”

Can check that greenpeace.org

has a hash in that range.

.org now has thousands

of these useless signatures.

This is .org “implementing”

a “needed security measure.”

34

“DNSSEC: Built, not plugged in.”
35

What went wrong?

Rushed development process?

33

Here’s what .org signed,

translated into English:

“.org might have data

with hashes between

h9p7u7tr2u91d0v0ljs9l1gidnp90u3h,

h9parr669t6u8o1gsg9e1lmitk4dem0t

but has not signed any of

that data.”

Can check that greenpeace.org

has a hash in that range.

.org now has thousands

of these useless signatures.

This is .org “implementing”

a “needed security measure.”

34

“DNSSEC: Built, not plugged in.”
35

What went wrong?

Rushed development process?

34

“DNSSEC: Built, not plugged in.”
35

What went wrong?

Rushed development process?

34

“DNSSEC: Built, not plugged in.”
35

What went wrong?

Rushed development process?

No: DNSSEC has been

under active development

for two decades.

34

“DNSSEC: Built, not plugged in.”
35

What went wrong?

Rushed development process?

No: DNSSEC has been

under active development

for two decades.

1993.11 Galvin: “The DNS

Security design team of the

DNS working group met for one

morning at the Houston IETF.”

1994.02 Eastlake–Kaufman,

after months of discussions on

dns-security mailing list:

“DNSSEC” protocol specification.

34

“DNSSEC: Built, not plugged in.”
35

What went wrong?

Rushed development process?

No: DNSSEC has been

under active development

for two decades.

1993.11 Galvin: “The DNS

Security design team of the

DNS working group met for one

morning at the Houston IETF.”

1994.02 Eastlake–Kaufman,

after months of discussions on

dns-security mailing list:

“DNSSEC” protocol specification.

36

Millions of dollars

of U.S. government grants: e.g.,

DISA to BIND company;

NSF to UCLA; DHS to

Secure64 Software Corporation.

Continuing cycle of

DNSSEC implementations,

IETF DNSSEC discussions,

protocol updates, revised

software implementations, etc.

34

“DNSSEC: Built, not plugged in.”
35

What went wrong?

Rushed development process?

No: DNSSEC has been

under active development

for two decades.

1993.11 Galvin: “The DNS

Security design team of the

DNS working group met for one

morning at the Houston IETF.”

1994.02 Eastlake–Kaufman,

after months of discussions on

dns-security mailing list:

“DNSSEC” protocol specification.

36

Millions of dollars

of U.S. government grants: e.g.,

DISA to BIND company;

NSF to UCLA; DHS to

Secure64 Software Corporation.

Continuing cycle of

DNSSEC implementations,

IETF DNSSEC discussions,

protocol updates, revised

software implementations, etc.

34

“DNSSEC: Built, not plugged in.”
35

What went wrong?

Rushed development process?

No: DNSSEC has been

under active development

for two decades.

1993.11 Galvin: “The DNS

Security design team of the

DNS working group met for one

morning at the Houston IETF.”

1994.02 Eastlake–Kaufman,

after months of discussions on

dns-security mailing list:

“DNSSEC” protocol specification.

36

Millions of dollars

of U.S. government grants: e.g.,

DISA to BIND company;

NSF to UCLA; DHS to

Secure64 Software Corporation.

Continuing cycle of

DNSSEC implementations,

IETF DNSSEC discussions,

protocol updates, revised

software implementations, etc.

35

What went wrong?

Rushed development process?

No: DNSSEC has been

under active development

for two decades.

1993.11 Galvin: “The DNS

Security design team of the

DNS working group met for one

morning at the Houston IETF.”

1994.02 Eastlake–Kaufman,

after months of discussions on

dns-security mailing list:

“DNSSEC” protocol specification.

36

Millions of dollars

of U.S. government grants: e.g.,

DISA to BIND company;

NSF to UCLA; DHS to

Secure64 Software Corporation.

Continuing cycle of

DNSSEC implementations,

IETF DNSSEC discussions,

protocol updates, revised

software implementations, etc.

35

What went wrong?

Rushed development process?

No: DNSSEC has been

under active development

for two decades.

1993.11 Galvin: “The DNS

Security design team of the

DNS working group met for one

morning at the Houston IETF.”

1994.02 Eastlake–Kaufman,

after months of discussions on

dns-security mailing list:

“DNSSEC” protocol specification.

36

Millions of dollars

of U.S. government grants: e.g.,

DISA to BIND company;

NSF to UCLA; DHS to

Secure64 Software Corporation.

Continuing cycle of

DNSSEC implementations,

IETF DNSSEC discussions,

protocol updates, revised

software implementations, etc.

Compatibility trap? No.

Several DNSSEC updates

have broken compatibility

with older implementations.

35

What went wrong?

Rushed development process?

No: DNSSEC has been

under active development

for two decades.

1993.11 Galvin: “The DNS

Security design team of the

DNS working group met for one

morning at the Houston IETF.”

1994.02 Eastlake–Kaufman,

after months of discussions on

dns-security mailing list:

“DNSSEC” protocol specification.

36

Millions of dollars

of U.S. government grants: e.g.,

DISA to BIND company;

NSF to UCLA; DHS to

Secure64 Software Corporation.

Continuing cycle of

DNSSEC implementations,

IETF DNSSEC discussions,

protocol updates, revised

software implementations, etc.

Compatibility trap? No.

Several DNSSEC updates

have broken compatibility

with older implementations.

37

The performance trap

Some of the Internet’s DNS

servers are extremely busy: e.g.,

the root servers, the .com servers,

the google.com servers.

Can they afford crypto?

35

What went wrong?

Rushed development process?

No: DNSSEC has been

under active development

for two decades.

1993.11 Galvin: “The DNS

Security design team of the

DNS working group met for one

morning at the Houston IETF.”

1994.02 Eastlake–Kaufman,

after months of discussions on

dns-security mailing list:

“DNSSEC” protocol specification.

36

Millions of dollars

of U.S. government grants: e.g.,

DISA to BIND company;

NSF to UCLA; DHS to

Secure64 Software Corporation.

Continuing cycle of

DNSSEC implementations,

IETF DNSSEC discussions,

protocol updates, revised

software implementations, etc.

Compatibility trap? No.

Several DNSSEC updates

have broken compatibility

with older implementations.

37

The performance trap

Some of the Internet’s DNS

servers are extremely busy: e.g.,

the root servers, the .com servers,

the google.com servers.

Can they afford crypto?

35

What went wrong?

Rushed development process?

No: DNSSEC has been

under active development

for two decades.

1993.11 Galvin: “The DNS

Security design team of the

DNS working group met for one

morning at the Houston IETF.”

1994.02 Eastlake–Kaufman,

after months of discussions on

dns-security mailing list:

“DNSSEC” protocol specification.

36

Millions of dollars

of U.S. government grants: e.g.,

DISA to BIND company;

NSF to UCLA; DHS to

Secure64 Software Corporation.

Continuing cycle of

DNSSEC implementations,

IETF DNSSEC discussions,

protocol updates, revised

software implementations, etc.

Compatibility trap? No.

Several DNSSEC updates

have broken compatibility

with older implementations.

37

The performance trap

Some of the Internet’s DNS

servers are extremely busy: e.g.,

the root servers, the .com servers,

the google.com servers.

Can they afford crypto?

36

Millions of dollars

of U.S. government grants: e.g.,

DISA to BIND company;

NSF to UCLA; DHS to

Secure64 Software Corporation.

Continuing cycle of

DNSSEC implementations,

IETF DNSSEC discussions,

protocol updates, revised

software implementations, etc.

Compatibility trap? No.

Several DNSSEC updates

have broken compatibility

with older implementations.

37

The performance trap

Some of the Internet’s DNS

servers are extremely busy: e.g.,

the root servers, the .com servers,

the google.com servers.

Can they afford crypto?

36

Millions of dollars

of U.S. government grants: e.g.,

DISA to BIND company;

NSF to UCLA; DHS to

Secure64 Software Corporation.

Continuing cycle of

DNSSEC implementations,

IETF DNSSEC discussions,

protocol updates, revised

software implementations, etc.

Compatibility trap? No.

Several DNSSEC updates

have broken compatibility

with older implementations.

37

The performance trap

Some of the Internet’s DNS

servers are extremely busy: e.g.,

the root servers, the .com servers,

the google.com servers.

Can they afford crypto?

The critical design decision

in DNSSEC: precompute

signatures of DNS records.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the server can afford

to sign each DNS record once.

36

Millions of dollars

of U.S. government grants: e.g.,

DISA to BIND company;

NSF to UCLA; DHS to

Secure64 Software Corporation.

Continuing cycle of

DNSSEC implementations,

IETF DNSSEC discussions,

protocol updates, revised

software implementations, etc.

Compatibility trap? No.

Several DNSSEC updates

have broken compatibility

with older implementations.

37

The performance trap

Some of the Internet’s DNS

servers are extremely busy: e.g.,

the root servers, the .com servers,

the google.com servers.

Can they afford crypto?

The critical design decision

in DNSSEC: precompute

signatures of DNS records.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the server can afford

to sign each DNS record once.

38

Clients don’t share the work

of verifying a signature.

DNSSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many DNSSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current RFCs

(for “leaf nodes in the DNS”);

DSA, “10 to 40 times as slow

for verification” but faster for

signatures.

36

Millions of dollars

of U.S. government grants: e.g.,

DISA to BIND company;

NSF to UCLA; DHS to

Secure64 Software Corporation.

Continuing cycle of

DNSSEC implementations,

IETF DNSSEC discussions,

protocol updates, revised

software implementations, etc.

Compatibility trap? No.

Several DNSSEC updates

have broken compatibility

with older implementations.

37

The performance trap

Some of the Internet’s DNS

servers are extremely busy: e.g.,

the root servers, the .com servers,

the google.com servers.

Can they afford crypto?

The critical design decision

in DNSSEC: precompute

signatures of DNS records.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the server can afford

to sign each DNS record once.

38

Clients don’t share the work

of verifying a signature.

DNSSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many DNSSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current RFCs

(for “leaf nodes in the DNS”);

DSA, “10 to 40 times as slow

for verification” but faster for

signatures.

36

Millions of dollars

of U.S. government grants: e.g.,

DISA to BIND company;

NSF to UCLA; DHS to

Secure64 Software Corporation.

Continuing cycle of

DNSSEC implementations,

IETF DNSSEC discussions,

protocol updates, revised

software implementations, etc.

Compatibility trap? No.

Several DNSSEC updates

have broken compatibility

with older implementations.

37

The performance trap

Some of the Internet’s DNS

servers are extremely busy: e.g.,

the root servers, the .com servers,

the google.com servers.

Can they afford crypto?

The critical design decision

in DNSSEC: precompute

signatures of DNS records.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the server can afford

to sign each DNS record once.

38

Clients don’t share the work

of verifying a signature.

DNSSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many DNSSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current RFCs

(for “leaf nodes in the DNS”);

DSA, “10 to 40 times as slow

for verification” but faster for

signatures.

37

The performance trap

Some of the Internet’s DNS

servers are extremely busy: e.g.,

the root servers, the .com servers,

the google.com servers.

Can they afford crypto?

The critical design decision

in DNSSEC: precompute

signatures of DNS records.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the server can afford

to sign each DNS record once.

38

Clients don’t share the work

of verifying a signature.

DNSSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many DNSSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current RFCs

(for “leaf nodes in the DNS”);

DSA, “10 to 40 times as slow

for verification” but faster for

signatures.

37

The performance trap

Some of the Internet’s DNS

servers are extremely busy: e.g.,

the root servers, the .com servers,

the google.com servers.

Can they afford crypto?

The critical design decision

in DNSSEC: precompute

signatures of DNS records.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the server can afford

to sign each DNS record once.

38

Clients don’t share the work

of verifying a signature.

DNSSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many DNSSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current RFCs

(for “leaf nodes in the DNS”);

DSA, “10 to 40 times as slow

for verification” but faster for

signatures.

39

DNSSEC made breakable choices

such as 640-bit RSA

for no reason other than

fear of overload.

DNSSEC needed more options

to survive the inevitable breaks.

More complexity ⇒ more bugs,

including security holes.

37

The performance trap

Some of the Internet’s DNS

servers are extremely busy: e.g.,

the root servers, the .com servers,

the google.com servers.

Can they afford crypto?

The critical design decision

in DNSSEC: precompute

signatures of DNS records.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the server can afford

to sign each DNS record once.

38

Clients don’t share the work

of verifying a signature.

DNSSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many DNSSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current RFCs

(for “leaf nodes in the DNS”);

DSA, “10 to 40 times as slow

for verification” but faster for

signatures.

39

DNSSEC made breakable choices

such as 640-bit RSA

for no reason other than

fear of overload.

DNSSEC needed more options

to survive the inevitable breaks.

More complexity ⇒ more bugs,

including security holes.

37

The performance trap

Some of the Internet’s DNS

servers are extremely busy: e.g.,

the root servers, the .com servers,

the google.com servers.

Can they afford crypto?

The critical design decision

in DNSSEC: precompute

signatures of DNS records.

“Per-query crypto is bad.”

Signature is computed once;

saved; sent to many clients.

Hopefully the server can afford

to sign each DNS record once.

38

Clients don’t share the work

of verifying a signature.

DNSSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many DNSSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current RFCs

(for “leaf nodes in the DNS”);

DSA, “10 to 40 times as slow

for verification” but faster for

signatures.

39

DNSSEC made breakable choices

such as 640-bit RSA

for no reason other than

fear of overload.

DNSSEC needed more options

to survive the inevitable breaks.

More complexity ⇒ more bugs,

including security holes.

38

Clients don’t share the work

of verifying a signature.

DNSSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many DNSSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current RFCs

(for “leaf nodes in the DNS”);

DSA, “10 to 40 times as slow

for verification” but faster for

signatures.

39

DNSSEC made breakable choices

such as 640-bit RSA

for no reason other than

fear of overload.

DNSSEC needed more options

to survive the inevitable breaks.

More complexity ⇒ more bugs,

including security holes.

38

Clients don’t share the work

of verifying a signature.

DNSSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many DNSSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current RFCs

(for “leaf nodes in the DNS”);

DSA, “10 to 40 times as slow

for verification” but faster for

signatures.

39

DNSSEC made breakable choices

such as 640-bit RSA

for no reason other than

fear of overload.

DNSSEC needed more options

to survive the inevitable breaks.

More complexity ⇒ more bugs,

including security holes.

Looking beyond the crypto:

Precomputation forced DNSSEC

down a path of unreliability,

insecurity, and unusability.

Let’s see how this happened.

38

Clients don’t share the work

of verifying a signature.

DNSSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many DNSSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current RFCs

(for “leaf nodes in the DNS”);

DSA, “10 to 40 times as slow

for verification” but faster for

signatures.

39

DNSSEC made breakable choices

such as 640-bit RSA

for no reason other than

fear of overload.

DNSSEC needed more options

to survive the inevitable breaks.

More complexity ⇒ more bugs,

including security holes.

Looking beyond the crypto:

Precomputation forced DNSSEC

down a path of unreliability,

insecurity, and unusability.

Let’s see how this happened.

40

DNS architecture

Browser pulls data from

DNS cache at uic.edu:

Browser at uic.edu

DNS cache

WV UTPQ RS
OO

Administrator at uh.cu?> =<89 :;
OO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

bj

Cache pulls data from

administrator if it

doesn’t already have the data.

38

Clients don’t share the work

of verifying a signature.

DNSSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many DNSSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current RFCs

(for “leaf nodes in the DNS”);

DSA, “10 to 40 times as slow

for verification” but faster for

signatures.

39

DNSSEC made breakable choices

such as 640-bit RSA

for no reason other than

fear of overload.

DNSSEC needed more options

to survive the inevitable breaks.

More complexity ⇒ more bugs,

including security holes.

Looking beyond the crypto:

Precomputation forced DNSSEC

down a path of unreliability,

insecurity, and unusability.

Let’s see how this happened.

40

DNS architecture

Browser pulls data from

DNS cache at uic.edu:

Browser at uic.edu

DNS cache

WV UTPQ RS
OO

Administrator at uh.cu?> =<89 :;
OO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

bj

Cache pulls data from

administrator if it

doesn’t already have the data.

38

Clients don’t share the work

of verifying a signature.

DNSSEC tries to reduce

client-side costs (and

precomputation costs) through

choice of crypto primitive.

Many DNSSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current RFCs

(for “leaf nodes in the DNS”);

DSA, “10 to 40 times as slow

for verification” but faster for

signatures.

39

DNSSEC made breakable choices

such as 640-bit RSA

for no reason other than

fear of overload.

DNSSEC needed more options

to survive the inevitable breaks.

More complexity ⇒ more bugs,

including security holes.

Looking beyond the crypto:

Precomputation forced DNSSEC

down a path of unreliability,

insecurity, and unusability.

Let’s see how this happened.

40

DNS architecture

Browser pulls data from

DNS cache at uic.edu:

Browser at uic.edu

DNS cache

WV UTPQ RS
OO

Administrator at uh.cu?> =<89 :;
OO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

bj

Cache pulls data from

administrator if it

doesn’t already have the data.

39

DNSSEC made breakable choices

such as 640-bit RSA

for no reason other than

fear of overload.

DNSSEC needed more options

to survive the inevitable breaks.

More complexity ⇒ more bugs,

including security holes.

Looking beyond the crypto:

Precomputation forced DNSSEC

down a path of unreliability,

insecurity, and unusability.

Let’s see how this happened.

40

DNS architecture

Browser pulls data from

DNS cache at uic.edu:

Browser at uic.edu

DNS cache

WV UTPQ RS
OO

Administrator at uh.cu?> =<89 :;
OO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

bj

Cache pulls data from

administrator if it

doesn’t already have the data.

39

DNSSEC made breakable choices

such as 640-bit RSA

for no reason other than

fear of overload.

DNSSEC needed more options

to survive the inevitable breaks.

More complexity ⇒ more bugs,

including security holes.

Looking beyond the crypto:

Precomputation forced DNSSEC

down a path of unreliability,

insecurity, and unusability.

Let’s see how this happened.

40

DNS architecture

Browser pulls data from

DNS cache at uic.edu:

Browser at uic.edu

DNS cache

WV UTPQ RS
OO

Administrator at uh.cu?> =<89 :;
OO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

bj

Cache pulls data from

administrator if it

doesn’t already have the data.

41

Administrator pushes data

through local database into

.uh.cu DNS server:

Browser at uic.edu

DNS cache

WV UTPQ RSOO

.uh.cu
DNS server

OO

.uh.cu
database

OO

Administrator at uh.cu

WV UT
PQ RSOO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

^f

39

DNSSEC made breakable choices

such as 640-bit RSA

for no reason other than

fear of overload.

DNSSEC needed more options

to survive the inevitable breaks.

More complexity ⇒ more bugs,

including security holes.

Looking beyond the crypto:

Precomputation forced DNSSEC

down a path of unreliability,

insecurity, and unusability.

Let’s see how this happened.

40

DNS architecture

Browser pulls data from

DNS cache at uic.edu:

Browser at uic.edu

DNS cache

WV UTPQ RS
OO

Administrator at uh.cu?> =<89 :;
OO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

bj

Cache pulls data from

administrator if it

doesn’t already have the data.

41

Administrator pushes data

through local database into

.uh.cu DNS server:

Browser at uic.edu

DNS cache

WV UTPQ RSOO

.uh.cu
DNS server

OO

.uh.cu
database

OO

Administrator at uh.cu

WV UT
PQ RSOO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

^f

39

DNSSEC made breakable choices

such as 640-bit RSA

for no reason other than

fear of overload.

DNSSEC needed more options

to survive the inevitable breaks.

More complexity ⇒ more bugs,

including security holes.

Looking beyond the crypto:

Precomputation forced DNSSEC

down a path of unreliability,

insecurity, and unusability.

Let’s see how this happened.

40

DNS architecture

Browser pulls data from

DNS cache at uic.edu:

Browser at uic.edu

DNS cache

WV UTPQ RS
OO

Administrator at uh.cu?> =<89 :;
OO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

bj

Cache pulls data from

administrator if it

doesn’t already have the data.

41

Administrator pushes data

through local database into

.uh.cu DNS server:

Browser at uic.edu

DNS cache

WV UTPQ RSOO

.uh.cu
DNS server

OO

.uh.cu
database

OO

Administrator at uh.cu

WV UT
PQ RSOO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

^f

40

DNS architecture

Browser pulls data from

DNS cache at uic.edu:

Browser at uic.edu

DNS cache

WV UTPQ RS
OO

Administrator at uh.cu?> =<89 :;
OO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

bj

Cache pulls data from

administrator if it

doesn’t already have the data.

41

Administrator pushes data

through local database into

.uh.cu DNS server:

Browser at uic.edu

DNS cache

WV UTPQ RSOO

.uh.cu
DNS server

OO

.uh.cu
database

OO

Administrator at uh.cu

WV UT
PQ RSOO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

^f

40

DNS architecture

Browser pulls data from

DNS cache at uic.edu:

Browser at uic.edu

DNS cache

WV UTPQ RS
OO

Administrator at uh.cu?> =<89 :;
OO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

bj

Cache pulls data from

administrator if it

doesn’t already have the data.

41

Administrator pushes data

through local database into

.uh.cu DNS server:

Browser at uic.edu

DNS cache

WV UTPQ RSOO

.uh.cu
DNS server

OO

.uh.cu
database

OO

Administrator at uh.cu

WV UT
PQ RSOO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

^f

42

DNS cache learns location of

.uh.cu DNS server from

.cu DNS server:

at uic.edu DNS cache
'& %$! "#

.cu
DNS server

OO

.cu
database

WV UT
PQ RSOO

at uh.cu Administrator
'& %$! "#OO

“The DNS server

for .uh.cu

is smtp1

with IP address

200.55.139.212.”

5=

40

DNS architecture

Browser pulls data from

DNS cache at uic.edu:

Browser at uic.edu

DNS cache

WV UTPQ RS
OO

Administrator at uh.cu?> =<89 :;
OO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

bj

Cache pulls data from

administrator if it

doesn’t already have the data.

41

Administrator pushes data

through local database into

.uh.cu DNS server:

Browser at uic.edu

DNS cache

WV UTPQ RSOO

.uh.cu
DNS server

OO

.uh.cu
database

OO

Administrator at uh.cu

WV UT
PQ RSOO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

^f

42

DNS cache learns location of

.uh.cu DNS server from

.cu DNS server:

at uic.edu DNS cache
'& %$! "#

.cu
DNS server

OO

.cu
database

WV UT
PQ RSOO

at uh.cu Administrator
'& %$! "#OO

“The DNS server

for .uh.cu

is smtp1

with IP address

200.55.139.212.”

5=

40

DNS architecture

Browser pulls data from

DNS cache at uic.edu:

Browser at uic.edu

DNS cache

WV UTPQ RS
OO

Administrator at uh.cu?> =<89 :;
OO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

bj

Cache pulls data from

administrator if it

doesn’t already have the data.

41

Administrator pushes data

through local database into

.uh.cu DNS server:

Browser at uic.edu

DNS cache

WV UTPQ RSOO

.uh.cu
DNS server

OO

.uh.cu
database

OO

Administrator at uh.cu

WV UT
PQ RSOO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

^f

42

DNS cache learns location of

.uh.cu DNS server from

.cu DNS server:

at uic.edu DNS cache
'& %$! "#

.cu
DNS server

OO

.cu
database

WV UT
PQ RSOO

at uh.cu Administrator
'& %$! "#OO

“The DNS server

for .uh.cu

is smtp1

with IP address

200.55.139.212.”

5=

41

Administrator pushes data

through local database into

.uh.cu DNS server:

Browser at uic.edu

DNS cache

WV UTPQ RSOO

.uh.cu
DNS server

OO

.uh.cu
database

OO

Administrator at uh.cu

WV UT
PQ RSOO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

^f

42

DNS cache learns location of

.uh.cu DNS server from

.cu DNS server:

at uic.edu DNS cache
'& %$! "#

.cu
DNS server

OO

.cu
database

WV UT
PQ RSOO

at uh.cu Administrator
'& %$! "#OO

“The DNS server

for .uh.cu

is smtp1

with IP address

200.55.139.212.”

5=

41

Administrator pushes data

through local database into

.uh.cu DNS server:

Browser at uic.edu

DNS cache

WV UTPQ RSOO

.uh.cu
DNS server

OO

.uh.cu
database

OO

Administrator at uh.cu

WV UT
PQ RSOO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

^f

42

DNS cache learns location of

.uh.cu DNS server from

.cu DNS server:

at uic.edu DNS cache
'& %$! "#

.cu
DNS server

OO

.cu
database

WV UT
PQ RSOO

at uh.cu Administrator
'& %$! "#OO

“The DNS server

for .uh.cu

is smtp1

with IP address

200.55.139.212.”

5=

43

GodWV UT

PQ RS

&&NN
NNN

NNN
NNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.cu
DNS
server

::uuuuuuuuuuu
.uh.cu

DNS
server

OO

.cu
data

at Internet
Central HQ

base

OO

.uh.cu
database

OO

at uh.cu

Administrator

WV UT
PQ RSOOhhPPPPPPPPPP

\d

6>

41

Administrator pushes data

through local database into

.uh.cu DNS server:

Browser at uic.edu

DNS cache

WV UTPQ RSOO

.uh.cu
DNS server

OO

.uh.cu
database

OO

Administrator at uh.cu

WV UT
PQ RSOO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

^f

42

DNS cache learns location of

.uh.cu DNS server from

.cu DNS server:

at uic.edu DNS cache
'& %$! "#

.cu
DNS server

OO

.cu
database

WV UT
PQ RSOO

at uh.cu Administrator
'& %$! "#OO

“The DNS server

for .uh.cu

is smtp1

with IP address

200.55.139.212.”

5=

43

GodWV UT

PQ RS

&&NN
NNN

NNN
NNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.cu
DNS
server

::uuuuuuuuuuu
.uh.cu

DNS
server

OO

.cu
data

at Internet
Central HQ

base

OO

.uh.cu
database

OO

at uh.cu

Administrator

WV UT
PQ RSOOhhPPPPPPPPPP

\d

6>

41

Administrator pushes data

through local database into

.uh.cu DNS server:

Browser at uic.edu

DNS cache

WV UTPQ RSOO

.uh.cu
DNS server

OO

.uh.cu
database

OO

Administrator at uh.cu

WV UT
PQ RSOO

“The web server

www.matcom.uh.cu

has IP address

200.55.139.216.”

^f

42

DNS cache learns location of

.uh.cu DNS server from

.cu DNS server:

at uic.edu DNS cache
'& %$! "#

.cu
DNS server

OO

.cu
database

WV UT
PQ RSOO

at uh.cu Administrator
'& %$! "#OO

“The DNS server

for .uh.cu

is smtp1

with IP address

200.55.139.212.”

5=

43

GodWV UT

PQ RS

&&NN
NNN

NNN
NNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.cu
DNS
server

::uuuuuuuuuuu
.uh.cu

DNS
server

OO

.cu
data

at Internet
Central HQ

base

OO

.uh.cu
database

OO

at uh.cu

Administrator

WV UT
PQ RSOOhhPPPPPPPPPP

\d

6>

42

DNS cache learns location of

.uh.cu DNS server from

.cu DNS server:

at uic.edu DNS cache
'& %$! "#

.cu
DNS server

OO

.cu
database

WV UT
PQ RSOO

at uh.cu Administrator
'& %$! "#OO

“The DNS server

for .uh.cu

is smtp1

with IP address

200.55.139.212.”

5=

43

GodWV UT

PQ RS

&&NN
NNN

NNN
NNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.cu
DNS
server

::uuuuuuuuuuu
.uh.cu

DNS
server

OO

.cu
data

at Internet
Central HQ

base

OO

.uh.cu
database

OO

at uh.cu

Administrator

WV UT
PQ RSOOhhPPPPPPPPPP

\d

6>

42

DNS cache learns location of

.uh.cu DNS server from

.cu DNS server:

at uic.edu DNS cache
'& %$! "#

.cu
DNS server

OO

.cu
database

WV UT
PQ RSOO

at uh.cu Administrator
'& %$! "#OO

“The DNS server

for .uh.cu

is smtp1

with IP address

200.55.139.212.”

5=

43

GodWV UT

PQ RS

&&NN
NNN

NNN
NNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.cu
DNS
server

::uuuuuuuuuuu
.uh.cu

DNS
server

OO

.cu
data

at Internet
Central HQ

base

OO

.uh.cu
database

OO

at uh.cu

Administrator

WV UT
PQ RSOOhhPPPPPPPPPP

\d

6>

44

DNS server software listed in

Wikipedia: BIND, Microsoft

DNS, djbdns, Dnsmasq, Simple

DNS Plus, NSD, Knot DNS,

PowerDNS, MaraDNS, pdnsd,

Nominum ANS, Nominum Vantio,

Posadis, Unbound, Cisco Network

Registrar, dnrd, gdnsd, YADIFA,

yaku-ns, DNS Blast.

Much wider variety of DNS

database-management tools, plus

hundreds of homegrown tools

written by DNS registrars etc.

42

DNS cache learns location of

.uh.cu DNS server from

.cu DNS server:

at uic.edu DNS cache
'& %$! "#

.cu
DNS server

OO

.cu
database

WV UT
PQ RSOO

at uh.cu Administrator
'& %$! "#OO

“The DNS server

for .uh.cu

is smtp1

with IP address

200.55.139.212.”

5=

43

GodWV UT

PQ RS

&&NN
NNN

NNN
NNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.cu
DNS
server

::uuuuuuuuuuu
.uh.cu

DNS
server

OO

.cu
data

at Internet
Central HQ

base

OO

.uh.cu
database

OO

at uh.cu

Administrator

WV UT
PQ RSOOhhPPPPPPPPPP

\d

6>

44

DNS server software listed in

Wikipedia: BIND, Microsoft

DNS, djbdns, Dnsmasq, Simple

DNS Plus, NSD, Knot DNS,

PowerDNS, MaraDNS, pdnsd,

Nominum ANS, Nominum Vantio,

Posadis, Unbound, Cisco Network

Registrar, dnrd, gdnsd, YADIFA,

yaku-ns, DNS Blast.

Much wider variety of DNS

database-management tools, plus

hundreds of homegrown tools

written by DNS registrars etc.

42

DNS cache learns location of

.uh.cu DNS server from

.cu DNS server:

at uic.edu DNS cache
'& %$! "#

.cu
DNS server

OO

.cu
database

WV UT
PQ RSOO

at uh.cu Administrator
'& %$! "#OO

“The DNS server

for .uh.cu

is smtp1

with IP address

200.55.139.212.”

5=

43

GodWV UT

PQ RS

&&NN
NNN

NNN
NNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.cu
DNS
server

::uuuuuuuuuuu
.uh.cu

DNS
server

OO

.cu
data

at Internet
Central HQ

base

OO

.uh.cu
database

OO

at uh.cu

Administrator

WV UT
PQ RSOOhhPPPPPPPPPP

\d

6>

44

DNS server software listed in

Wikipedia: BIND, Microsoft

DNS, djbdns, Dnsmasq, Simple

DNS Plus, NSD, Knot DNS,

PowerDNS, MaraDNS, pdnsd,

Nominum ANS, Nominum Vantio,

Posadis, Unbound, Cisco Network

Registrar, dnrd, gdnsd, YADIFA,

yaku-ns, DNS Blast.

Much wider variety of DNS

database-management tools, plus

hundreds of homegrown tools

written by DNS registrars etc.

43

GodWV UT

PQ RS

&&NN
NNN

NNN
NNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.cu
DNS
server

::uuuuuuuuuuu
.uh.cu

DNS
server

OO

.cu
data

at Internet
Central HQ

base

OO

.uh.cu
database

OO

at uh.cu

Administrator

WV UT
PQ RSOOhhPPPPPPPPPP

\d

6>

44

DNS server software listed in

Wikipedia: BIND, Microsoft

DNS, djbdns, Dnsmasq, Simple

DNS Plus, NSD, Knot DNS,

PowerDNS, MaraDNS, pdnsd,

Nominum ANS, Nominum Vantio,

Posadis, Unbound, Cisco Network

Registrar, dnrd, gdnsd, YADIFA,

yaku-ns, DNS Blast.

Much wider variety of DNS

database-management tools, plus

hundreds of homegrown tools

written by DNS registrars etc.

43

GodWV UT

PQ RS

&&NN
NNN

NNN
NNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.cu
DNS
server

::uuuuuuuuuuu
.uh.cu

DNS
server

OO

.cu
data

at Internet
Central HQ

base

OO

.uh.cu
database

OO

at uh.cu

Administrator

WV UT
PQ RSOOhhPPPPPPPPPP

\d

6>

44

DNS server software listed in

Wikipedia: BIND, Microsoft

DNS, djbdns, Dnsmasq, Simple

DNS Plus, NSD, Knot DNS,

PowerDNS, MaraDNS, pdnsd,

Nominum ANS, Nominum Vantio,

Posadis, Unbound, Cisco Network

Registrar, dnrd, gdnsd, YADIFA,

yaku-ns, DNS Blast.

Much wider variety of DNS

database-management tools, plus

hundreds of homegrown tools

written by DNS registrars etc.

45

DNSSEC changes everything

DNSSEC demands new code in

every DNS-management tool.

Whenever a tool adds or changes

a DNS record, also has to

precompute and store a DNSSEC

signature for the new record.

Often considerable effort

for the tool programmers.

Example: Signing 6GB database

can produce 40GB database.

Tool reading database into RAM

probably has to be reengineered.

43

GodWV UT

PQ RS

&&NN
NNN

NNN
NNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.cu
DNS
server

::uuuuuuuuuuu
.uh.cu

DNS
server

OO

.cu
data

at Internet
Central HQ

base

OO

.uh.cu
database

OO

at uh.cu

Administrator

WV UT
PQ RSOOhhPPPPPPPPPP

\d

6>

44

DNS server software listed in

Wikipedia: BIND, Microsoft

DNS, djbdns, Dnsmasq, Simple

DNS Plus, NSD, Knot DNS,

PowerDNS, MaraDNS, pdnsd,

Nominum ANS, Nominum Vantio,

Posadis, Unbound, Cisco Network

Registrar, dnrd, gdnsd, YADIFA,

yaku-ns, DNS Blast.

Much wider variety of DNS

database-management tools, plus

hundreds of homegrown tools

written by DNS registrars etc.

45

DNSSEC changes everything

DNSSEC demands new code in

every DNS-management tool.

Whenever a tool adds or changes

a DNS record, also has to

precompute and store a DNSSEC

signature for the new record.

Often considerable effort

for the tool programmers.

Example: Signing 6GB database

can produce 40GB database.

Tool reading database into RAM

probably has to be reengineered.

43

GodWV UT

PQ RS

&&NN
NNN

NNN
NNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.cu
DNS
server

::uuuuuuuuuuu
.uh.cu

DNS
server

OO

.cu
data

at Internet
Central HQ

base

OO

.uh.cu
database

OO

at uh.cu

Administrator

WV UT
PQ RSOOhhPPPPPPPPPP

\d

6>

44

DNS server software listed in

Wikipedia: BIND, Microsoft

DNS, djbdns, Dnsmasq, Simple

DNS Plus, NSD, Knot DNS,

PowerDNS, MaraDNS, pdnsd,

Nominum ANS, Nominum Vantio,

Posadis, Unbound, Cisco Network

Registrar, dnrd, gdnsd, YADIFA,

yaku-ns, DNS Blast.

Much wider variety of DNS

database-management tools, plus

hundreds of homegrown tools

written by DNS registrars etc.

45

DNSSEC changes everything

DNSSEC demands new code in

every DNS-management tool.

Whenever a tool adds or changes

a DNS record, also has to

precompute and store a DNSSEC

signature for the new record.

Often considerable effort

for the tool programmers.

Example: Signing 6GB database

can produce 40GB database.

Tool reading database into RAM

probably has to be reengineered.

44

DNS server software listed in

Wikipedia: BIND, Microsoft

DNS, djbdns, Dnsmasq, Simple

DNS Plus, NSD, Knot DNS,

PowerDNS, MaraDNS, pdnsd,

Nominum ANS, Nominum Vantio,

Posadis, Unbound, Cisco Network

Registrar, dnrd, gdnsd, YADIFA,

yaku-ns, DNS Blast.

Much wider variety of DNS

database-management tools, plus

hundreds of homegrown tools

written by DNS registrars etc.

45

DNSSEC changes everything

DNSSEC demands new code in

every DNS-management tool.

Whenever a tool adds or changes

a DNS record, also has to

precompute and store a DNSSEC

signature for the new record.

Often considerable effort

for the tool programmers.

Example: Signing 6GB database

can produce 40GB database.

Tool reading database into RAM

probably has to be reengineered.

44

DNS server software listed in

Wikipedia: BIND, Microsoft

DNS, djbdns, Dnsmasq, Simple

DNS Plus, NSD, Knot DNS,

PowerDNS, MaraDNS, pdnsd,

Nominum ANS, Nominum Vantio,

Posadis, Unbound, Cisco Network

Registrar, dnrd, gdnsd, YADIFA,

yaku-ns, DNS Blast.

Much wider variety of DNS

database-management tools, plus

hundreds of homegrown tools

written by DNS registrars etc.

45

DNSSEC changes everything

DNSSEC demands new code in

every DNS-management tool.

Whenever a tool adds or changes

a DNS record, also has to

precompute and store a DNSSEC

signature for the new record.

Often considerable effort

for the tool programmers.

Example: Signing 6GB database

can produce 40GB database.

Tool reading database into RAM

probably has to be reengineered.

46

Havana administrator also has to

send public key to .cu.

The .cu server

and database software

and web interface

need to be updated

to accept these public keys

and to sign everything.

DNS cache needs new software

to fetch keys, fetch signatures,

and verify signatures.

Tons of pain for implementors.

44

DNS server software listed in

Wikipedia: BIND, Microsoft

DNS, djbdns, Dnsmasq, Simple

DNS Plus, NSD, Knot DNS,

PowerDNS, MaraDNS, pdnsd,

Nominum ANS, Nominum Vantio,

Posadis, Unbound, Cisco Network

Registrar, dnrd, gdnsd, YADIFA,

yaku-ns, DNS Blast.

Much wider variety of DNS

database-management tools, plus

hundreds of homegrown tools

written by DNS registrars etc.

45

DNSSEC changes everything

DNSSEC demands new code in

every DNS-management tool.

Whenever a tool adds or changes

a DNS record, also has to

precompute and store a DNSSEC

signature for the new record.

Often considerable effort

for the tool programmers.

Example: Signing 6GB database

can produce 40GB database.

Tool reading database into RAM

probably has to be reengineered.

46

Havana administrator also has to

send public key to .cu.

The .cu server

and database software

and web interface

need to be updated

to accept these public keys

and to sign everything.

DNS cache needs new software

to fetch keys, fetch signatures,

and verify signatures.

Tons of pain for implementors.

44

DNS server software listed in

Wikipedia: BIND, Microsoft

DNS, djbdns, Dnsmasq, Simple

DNS Plus, NSD, Knot DNS,

PowerDNS, MaraDNS, pdnsd,

Nominum ANS, Nominum Vantio,

Posadis, Unbound, Cisco Network

Registrar, dnrd, gdnsd, YADIFA,

yaku-ns, DNS Blast.

Much wider variety of DNS

database-management tools, plus

hundreds of homegrown tools

written by DNS registrars etc.

45

DNSSEC changes everything

DNSSEC demands new code in

every DNS-management tool.

Whenever a tool adds or changes

a DNS record, also has to

precompute and store a DNSSEC

signature for the new record.

Often considerable effort

for the tool programmers.

Example: Signing 6GB database

can produce 40GB database.

Tool reading database into RAM

probably has to be reengineered.

46

Havana administrator also has to

send public key to .cu.

The .cu server

and database software

and web interface

need to be updated

to accept these public keys

and to sign everything.

DNS cache needs new software

to fetch keys, fetch signatures,

and verify signatures.

Tons of pain for implementors.

45

DNSSEC changes everything

DNSSEC demands new code in

every DNS-management tool.

Whenever a tool adds or changes

a DNS record, also has to

precompute and store a DNSSEC

signature for the new record.

Often considerable effort

for the tool programmers.

Example: Signing 6GB database

can produce 40GB database.

Tool reading database into RAM

probably has to be reengineered.

46

Havana administrator also has to

send public key to .cu.

The .cu server

and database software

and web interface

need to be updated

to accept these public keys

and to sign everything.

DNS cache needs new software

to fetch keys, fetch signatures,

and verify signatures.

Tons of pain for implementors.

45

DNSSEC changes everything

DNSSEC demands new code in

every DNS-management tool.

Whenever a tool adds or changes

a DNS record, also has to

precompute and store a DNSSEC

signature for the new record.

Often considerable effort

for the tool programmers.

Example: Signing 6GB database

can produce 40GB database.

Tool reading database into RAM

probably has to be reengineered.

46

Havana administrator also has to

send public key to .cu.

The .cu server

and database software

and web interface

need to be updated

to accept these public keys

and to sign everything.

DNS cache needs new software

to fetch keys, fetch signatures,

and verify signatures.

Tons of pain for implementors.

47

Original DNSSEC protocols

would have required .org

to sign its whole database:

millions of records.

Conceptually simple but

much too slow, much too big.

So the DNSSEC protocol

added complicated options

allowing .org to sign

a small number of records,

and to sign “might have data

but has not signed any of it”

covering the other records.

45

DNSSEC changes everything

DNSSEC demands new code in

every DNS-management tool.

Whenever a tool adds or changes

a DNS record, also has to

precompute and store a DNSSEC

signature for the new record.

Often considerable effort

for the tool programmers.

Example: Signing 6GB database

can produce 40GB database.

Tool reading database into RAM

probably has to be reengineered.

46

Havana administrator also has to

send public key to .cu.

The .cu server

and database software

and web interface

need to be updated

to accept these public keys

and to sign everything.

DNS cache needs new software

to fetch keys, fetch signatures,

and verify signatures.

Tons of pain for implementors.

47

Original DNSSEC protocols

would have required .org

to sign its whole database:

millions of records.

Conceptually simple but

much too slow, much too big.

So the DNSSEC protocol

added complicated options

allowing .org to sign

a small number of records,

and to sign “might have data

but has not signed any of it”

covering the other records.

45

DNSSEC changes everything

DNSSEC demands new code in

every DNS-management tool.

Whenever a tool adds or changes

a DNS record, also has to

precompute and store a DNSSEC

signature for the new record.

Often considerable effort

for the tool programmers.

Example: Signing 6GB database

can produce 40GB database.

Tool reading database into RAM

probably has to be reengineered.

46

Havana administrator also has to

send public key to .cu.

The .cu server

and database software

and web interface

need to be updated

to accept these public keys

and to sign everything.

DNS cache needs new software

to fetch keys, fetch signatures,

and verify signatures.

Tons of pain for implementors.

47

Original DNSSEC protocols

would have required .org

to sign its whole database:

millions of records.

Conceptually simple but

much too slow, much too big.

So the DNSSEC protocol

added complicated options

allowing .org to sign

a small number of records,

and to sign “might have data

but has not signed any of it”

covering the other records.

46

Havana administrator also has to

send public key to .cu.

The .cu server

and database software

and web interface

need to be updated

to accept these public keys

and to sign everything.

DNS cache needs new software

to fetch keys, fetch signatures,

and verify signatures.

Tons of pain for implementors.

47

Original DNSSEC protocols

would have required .org

to sign its whole database:

millions of records.

Conceptually simple but

much too slow, much too big.

So the DNSSEC protocol

added complicated options

allowing .org to sign

a small number of records,

and to sign “might have data

but has not signed any of it”

covering the other records.

46

Havana administrator also has to

send public key to .cu.

The .cu server

and database software

and web interface

need to be updated

to accept these public keys

and to sign everything.

DNS cache needs new software

to fetch keys, fetch signatures,

and verify signatures.

Tons of pain for implementors.

47

Original DNSSEC protocols

would have required .org

to sign its whole database:

millions of records.

Conceptually simple but

much too slow, much too big.

So the DNSSEC protocol

added complicated options

allowing .org to sign

a small number of records,

and to sign “might have data

but has not signed any of it”

covering the other records.

48

What about dynamic DNS data?

e.g. Most big sites

return random IP addresses

to spread load across servers.

Often they automatically

adjust list of addresses

in light of dead servers,

client location, etc.

46

Havana administrator also has to

send public key to .cu.

The .cu server

and database software

and web interface

need to be updated

to accept these public keys

and to sign everything.

DNS cache needs new software

to fetch keys, fetch signatures,

and verify signatures.

Tons of pain for implementors.

47

Original DNSSEC protocols

would have required .org

to sign its whole database:

millions of records.

Conceptually simple but

much too slow, much too big.

So the DNSSEC protocol

added complicated options

allowing .org to sign

a small number of records,

and to sign “might have data

but has not signed any of it”

covering the other records.

48

What about dynamic DNS data?

e.g. Most big sites

return random IP addresses

to spread load across servers.

Often they automatically

adjust list of addresses

in light of dead servers,

client location, etc.

46

Havana administrator also has to

send public key to .cu.

The .cu server

and database software

and web interface

need to be updated

to accept these public keys

and to sign everything.

DNS cache needs new software

to fetch keys, fetch signatures,

and verify signatures.

Tons of pain for implementors.

47

Original DNSSEC protocols

would have required .org

to sign its whole database:

millions of records.

Conceptually simple but

much too slow, much too big.

So the DNSSEC protocol

added complicated options

allowing .org to sign

a small number of records,

and to sign “might have data

but has not signed any of it”

covering the other records.

48

What about dynamic DNS data?

e.g. Most big sites

return random IP addresses

to spread load across servers.

Often they automatically

adjust list of addresses

in light of dead servers,

client location, etc.

47

Original DNSSEC protocols

would have required .org

to sign its whole database:

millions of records.

Conceptually simple but

much too slow, much too big.

So the DNSSEC protocol

added complicated options

allowing .org to sign

a small number of records,

and to sign “might have data

but has not signed any of it”

covering the other records.

48

What about dynamic DNS data?

e.g. Most big sites

return random IP addresses

to spread load across servers.

Often they automatically

adjust list of addresses

in light of dead servers,

client location, etc.

47

Original DNSSEC protocols

would have required .org

to sign its whole database:

millions of records.

Conceptually simple but

much too slow, much too big.

So the DNSSEC protocol

added complicated options

allowing .org to sign

a small number of records,

and to sign “might have data

but has not signed any of it”

covering the other records.

48

What about dynamic DNS data?

e.g. Most big sites

return random IP addresses

to spread load across servers.

Often they automatically

adjust list of addresses

in light of dead servers,

client location, etc.

DNSSEC purists say “Answers

should always be static”.

47

Original DNSSEC protocols

would have required .org

to sign its whole database:

millions of records.

Conceptually simple but

much too slow, much too big.

So the DNSSEC protocol

added complicated options

allowing .org to sign

a small number of records,

and to sign “might have data

but has not signed any of it”

covering the other records.

48

What about dynamic DNS data?

e.g. Most big sites

return random IP addresses

to spread load across servers.

Often they automatically

adjust list of addresses

in light of dead servers,

client location, etc.

DNSSEC purists say “Answers

should always be static”.

49

Even in “static” DNS,

each response packet is

dynamically assembled

from several answers:

MX answer, NS answer, etc.

DNSSEC precomputes

a signature for each answer,

not for each packet.

⇒ One DNSSEC packet

includes several signatures.

Massive bloat on the wire.

That’s why DNSSEC allows

so much amplification.

47

Original DNSSEC protocols

would have required .org

to sign its whole database:

millions of records.

Conceptually simple but

much too slow, much too big.

So the DNSSEC protocol

added complicated options

allowing .org to sign

a small number of records,

and to sign “might have data

but has not signed any of it”

covering the other records.

48

What about dynamic DNS data?

e.g. Most big sites

return random IP addresses

to spread load across servers.

Often they automatically

adjust list of addresses

in light of dead servers,

client location, etc.

DNSSEC purists say “Answers

should always be static”.

49

Even in “static” DNS,

each response packet is

dynamically assembled

from several answers:

MX answer, NS answer, etc.

DNSSEC precomputes

a signature for each answer,

not for each packet.

⇒ One DNSSEC packet

includes several signatures.

Massive bloat on the wire.

That’s why DNSSEC allows

so much amplification.

47

Original DNSSEC protocols

would have required .org

to sign its whole database:

millions of records.

Conceptually simple but

much too slow, much too big.

So the DNSSEC protocol

added complicated options

allowing .org to sign

a small number of records,

and to sign “might have data

but has not signed any of it”

covering the other records.

48

What about dynamic DNS data?

e.g. Most big sites

return random IP addresses

to spread load across servers.

Often they automatically

adjust list of addresses

in light of dead servers,

client location, etc.

DNSSEC purists say “Answers

should always be static”.

49

Even in “static” DNS,

each response packet is

dynamically assembled

from several answers:

MX answer, NS answer, etc.

DNSSEC precomputes

a signature for each answer,

not for each packet.

⇒ One DNSSEC packet

includes several signatures.

Massive bloat on the wire.

That’s why DNSSEC allows

so much amplification.

48

What about dynamic DNS data?

e.g. Most big sites

return random IP addresses

to spread load across servers.

Often they automatically

adjust list of addresses

in light of dead servers,

client location, etc.

DNSSEC purists say “Answers

should always be static”.

49

Even in “static” DNS,

each response packet is

dynamically assembled

from several answers:

MX answer, NS answer, etc.

DNSSEC precomputes

a signature for each answer,

not for each packet.

⇒ One DNSSEC packet

includes several signatures.

Massive bloat on the wire.

That’s why DNSSEC allows

so much amplification.

48

What about dynamic DNS data?

e.g. Most big sites

return random IP addresses

to spread load across servers.

Often they automatically

adjust list of addresses

in light of dead servers,

client location, etc.

DNSSEC purists say “Answers

should always be static”.

49

Even in “static” DNS,

each response packet is

dynamically assembled

from several answers:

MX answer, NS answer, etc.

DNSSEC precomputes

a signature for each answer,

not for each packet.

⇒ One DNSSEC packet

includes several signatures.

Massive bloat on the wire.

That’s why DNSSEC allows

so much amplification.

50

What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

48

What about dynamic DNS data?

e.g. Most big sites

return random IP addresses

to spread load across servers.

Often they automatically

adjust list of addresses

in light of dead servers,

client location, etc.

DNSSEC purists say “Answers

should always be static”.

49

Even in “static” DNS,

each response packet is

dynamically assembled

from several answers:

MX answer, NS answer, etc.

DNSSEC precomputes

a signature for each answer,

not for each packet.

⇒ One DNSSEC packet

includes several signatures.

Massive bloat on the wire.

That’s why DNSSEC allows

so much amplification.

50

What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

48

What about dynamic DNS data?

e.g. Most big sites

return random IP addresses

to spread load across servers.

Often they automatically

adjust list of addresses

in light of dead servers,

client location, etc.

DNSSEC purists say “Answers

should always be static”.

49

Even in “static” DNS,

each response packet is

dynamically assembled

from several answers:

MX answer, NS answer, etc.

DNSSEC precomputes

a signature for each answer,

not for each packet.

⇒ One DNSSEC packet

includes several signatures.

Massive bloat on the wire.

That’s why DNSSEC allows

so much amplification.

50

What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

49

Even in “static” DNS,

each response packet is

dynamically assembled

from several answers:

MX answer, NS answer, etc.

DNSSEC precomputes

a signature for each answer,

not for each packet.

⇒ One DNSSEC packet

includes several signatures.

Massive bloat on the wire.

That’s why DNSSEC allows

so much amplification.

50

What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

49

Even in “static” DNS,

each response packet is

dynamically assembled

from several answers:

MX answer, NS answer, etc.

DNSSEC precomputes

a signature for each answer,

not for each packet.

⇒ One DNSSEC packet

includes several signatures.

Massive bloat on the wire.

That’s why DNSSEC allows

so much amplification.

50

What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

49

Even in “static” DNS,

each response packet is

dynamically assembled

from several answers:

MX answer, NS answer, etc.

DNSSEC precomputes

a signature for each answer,

not for each packet.

⇒ One DNSSEC packet

includes several signatures.

Massive bloat on the wire.

That’s why DNSSEC allows

so much amplification.

50

What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

49

Even in “static” DNS,

each response packet is

dynamically assembled

from several answers:

MX answer, NS answer, etc.

DNSSEC precomputes

a signature for each answer,

not for each packet.

⇒ One DNSSEC packet

includes several signatures.

Massive bloat on the wire.

That’s why DNSSEC allows

so much amplification.

50

What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

49

Even in “static” DNS,

each response packet is

dynamically assembled

from several answers:

MX answer, NS answer, etc.

DNSSEC precomputes

a signature for each answer,

not for each packet.

⇒ One DNSSEC packet

includes several signatures.

Massive bloat on the wire.

That’s why DNSSEC allows

so much amplification.

50

What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

50

What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

50

What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

2012.02.28, ISC’s Evan Hunt:

“dnssec-accept-expired yes”

50

What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

2012.02.28, ISC’s Evan Hunt:

“dnssec-accept-expired yes”

2012.10.28: .nl killed itself.

50

What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

2012.02.28, ISC’s Evan Hunt:

“dnssec-accept-expired yes”

2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org

killed itself.

50

What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

2012.02.28, ISC’s Evan Hunt:

“dnssec-accept-expired yes”

2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org

killed itself.

2015.12.11: af.mil killed itself.

50

What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

2012.02.28, ISC’s Evan Hunt:

“dnssec-accept-expired yes”

2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org

killed itself.

2015.12.11: af.mil killed itself.

2016.10.24: dnssec-tools.org

killed itself.

50

What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

2012.02.28, ISC’s Evan Hunt:

“dnssec-accept-expired yes”

2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org

killed itself.

2015.12.11: af.mil killed itself.

2016.10.24: dnssec-tools.org

killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

50

What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

2012.02.28, ISC’s Evan Hunt:

“dnssec-accept-expired yes”

2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org

killed itself.

2015.12.11: af.mil killed itself.

2016.10.24: dnssec-tools.org

killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

52

What about nonexistent data?

50

What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

2012.02.28, ISC’s Evan Hunt:

“dnssec-accept-expired yes”

2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org

killed itself.

2015.12.11: af.mil killed itself.

2016.10.24: dnssec-tools.org

killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

52

What about nonexistent data?

50

What about old DNS data?

Are the signatures still valid?

Can an attacker replay

obsolete signed data?

e.g. You move IP addresses.

Attacker grabs old address,

replays old signature.

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

2012.02.28, ISC’s Evan Hunt:

“dnssec-accept-expired yes”

2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org

killed itself.

2015.12.11: af.mil killed itself.

2016.10.24: dnssec-tools.org

killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

52

What about nonexistent data?

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

2012.02.28, ISC’s Evan Hunt:

“dnssec-accept-expired yes”

2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org

killed itself.

2015.12.11: af.mil killed itself.

2016.10.24: dnssec-tools.org

killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

52

What about nonexistent data?

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

2012.02.28, ISC’s Evan Hunt:

“dnssec-accept-expired yes”

2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org

killed itself.

2015.12.11: af.mil killed itself.

2016.10.24: dnssec-tools.org

killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

52

What about nonexistent data?

Does Havana administrator

precompute signatures on

“aaaaa.uh.cu does not exist”,

“aaaab.uh.cu does not exist”,

etc.?

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

2012.02.28, ISC’s Evan Hunt:

“dnssec-accept-expired yes”

2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org

killed itself.

2015.12.11: af.mil killed itself.

2016.10.24: dnssec-tools.org

killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

52

What about nonexistent data?

Does Havana administrator

precompute signatures on

“aaaaa.uh.cu does not exist”,

“aaaab.uh.cu does not exist”,

etc.?

Crazy! Obvious approach:

“We sign each record that exists,

and don’t sign anything else.”

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

2012.02.28, ISC’s Evan Hunt:

“dnssec-accept-expired yes”

2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org

killed itself.

2015.12.11: af.mil killed itself.

2016.10.24: dnssec-tools.org

killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

52

What about nonexistent data?

Does Havana administrator

precompute signatures on

“aaaaa.uh.cu does not exist”,

“aaaab.uh.cu does not exist”,

etc.?

Crazy! Obvious approach:

“We sign each record that exists,

and don’t sign anything else.”

User asks for nonexistent name.

Receives unsigned answer

saying the name doesn’t exist.

Has no choice but to trust it.

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

2012.02.28, ISC’s Evan Hunt:

“dnssec-accept-expired yes”

2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org

killed itself.

2015.12.11: af.mil killed itself.

2016.10.24: dnssec-tools.org

killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

52

What about nonexistent data?

Does Havana administrator

precompute signatures on

“aaaaa.uh.cu does not exist”,

“aaaab.uh.cu does not exist”,

etc.?

Crazy! Obvious approach:

“We sign each record that exists,

and don’t sign anything else.”

User asks for nonexistent name.

Receives unsigned answer

saying the name doesn’t exist.

Has no choice but to trust it.

53

User asks for www.google.com.

Receives unsigned answer,

a packet forged by attacker,

saying the name doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

2012.02.28, ISC’s Evan Hunt:

“dnssec-accept-expired yes”

2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org

killed itself.

2015.12.11: af.mil killed itself.

2016.10.24: dnssec-tools.org

killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

52

What about nonexistent data?

Does Havana administrator

precompute signatures on

“aaaaa.uh.cu does not exist”,

“aaaab.uh.cu does not exist”,

etc.?

Crazy! Obvious approach:

“We sign each record that exists,

and don’t sign anything else.”

User asks for nonexistent name.

Receives unsigned answer

saying the name doesn’t exist.

Has no choice but to trust it.

53

User asks for www.google.com.

Receives unsigned answer,

a packet forged by attacker,

saying the name doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

51

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.

2012.02.28, ISC’s Evan Hunt:

“dnssec-accept-expired yes”

2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org

killed itself.

2015.12.11: af.mil killed itself.

2016.10.24: dnssec-tools.org

killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

52

What about nonexistent data?

Does Havana administrator

precompute signatures on

“aaaaa.uh.cu does not exist”,

“aaaab.uh.cu does not exist”,

etc.?

Crazy! Obvious approach:

“We sign each record that exists,

and don’t sign anything else.”

User asks for nonexistent name.

Receives unsigned answer

saying the name doesn’t exist.

Has no choice but to trust it.

53

User asks for www.google.com.

Receives unsigned answer,

a packet forged by attacker,

saying the name doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

52

What about nonexistent data?

Does Havana administrator

precompute signatures on

“aaaaa.uh.cu does not exist”,

“aaaab.uh.cu does not exist”,

etc.?

Crazy! Obvious approach:

“We sign each record that exists,

and don’t sign anything else.”

User asks for nonexistent name.

Receives unsigned answer

saying the name doesn’t exist.

Has no choice but to trust it.

53

User asks for www.google.com.

Receives unsigned answer,

a packet forged by attacker,

saying the name doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

52

What about nonexistent data?

Does Havana administrator

precompute signatures on

“aaaaa.uh.cu does not exist”,

“aaaab.uh.cu does not exist”,

etc.?

Crazy! Obvious approach:

“We sign each record that exists,

and don’t sign anything else.”

User asks for nonexistent name.

Receives unsigned answer

saying the name doesn’t exist.

Has no choice but to trust it.

53

User asks for www.google.com.

Receives unsigned answer,

a packet forged by attacker,

saying the name doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: DNSSEC’s “NSEC”.

e.g. nonex.clegg.com query

returns “There are no names

between nick.clegg.com and

start.clegg.com” + signature.

52

What about nonexistent data?

Does Havana administrator

precompute signatures on

“aaaaa.uh.cu does not exist”,

“aaaab.uh.cu does not exist”,

etc.?

Crazy! Obvious approach:

“We sign each record that exists,

and don’t sign anything else.”

User asks for nonexistent name.

Receives unsigned answer

saying the name doesn’t exist.

Has no choice but to trust it.

53

User asks for www.google.com.

Receives unsigned answer,

a packet forged by attacker,

saying the name doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: DNSSEC’s “NSEC”.

e.g. nonex.clegg.com query

returns “There are no names

between nick.clegg.com and

start.clegg.com” + signature.

54

Try foo.clegg.com etc.

After several queries have

complete clegg.com list:

_jabber._tcp, _xmpp-

server._tcp, alan, alvis,

andrew, brian, calendar, dlv,

googleffffffffe91126e7,

home, imogene, jennifer,

localhost, mail, wiki, www.

52

What about nonexistent data?

Does Havana administrator

precompute signatures on

“aaaaa.uh.cu does not exist”,

“aaaab.uh.cu does not exist”,

etc.?

Crazy! Obvious approach:

“We sign each record that exists,

and don’t sign anything else.”

User asks for nonexistent name.

Receives unsigned answer

saying the name doesn’t exist.

Has no choice but to trust it.

53

User asks for www.google.com.

Receives unsigned answer,

a packet forged by attacker,

saying the name doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: DNSSEC’s “NSEC”.

e.g. nonex.clegg.com query

returns “There are no names

between nick.clegg.com and

start.clegg.com” + signature.

54

Try foo.clegg.com etc.

After several queries have

complete clegg.com list:

_jabber._tcp, _xmpp-

server._tcp, alan, alvis,

andrew, brian, calendar, dlv,

googleffffffffe91126e7,

home, imogene, jennifer,

localhost, mail, wiki, www.

52

What about nonexistent data?

Does Havana administrator

precompute signatures on

“aaaaa.uh.cu does not exist”,

“aaaab.uh.cu does not exist”,

etc.?

Crazy! Obvious approach:

“We sign each record that exists,

and don’t sign anything else.”

User asks for nonexistent name.

Receives unsigned answer

saying the name doesn’t exist.

Has no choice but to trust it.

53

User asks for www.google.com.

Receives unsigned answer,

a packet forged by attacker,

saying the name doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: DNSSEC’s “NSEC”.

e.g. nonex.clegg.com query

returns “There are no names

between nick.clegg.com and

start.clegg.com” + signature.

54

Try foo.clegg.com etc.

After several queries have

complete clegg.com list:

_jabber._tcp, _xmpp-

server._tcp, alan, alvis,

andrew, brian, calendar, dlv,

googleffffffffe91126e7,

home, imogene, jennifer,

localhost, mail, wiki, www.

53

User asks for www.google.com.

Receives unsigned answer,

a packet forged by attacker,

saying the name doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: DNSSEC’s “NSEC”.

e.g. nonex.clegg.com query

returns “There are no names

between nick.clegg.com and

start.clegg.com” + signature.

54

Try foo.clegg.com etc.

After several queries have

complete clegg.com list:

_jabber._tcp, _xmpp-

server._tcp, alan, alvis,

andrew, brian, calendar, dlv,

googleffffffffe91126e7,

home, imogene, jennifer,

localhost, mail, wiki, www.

53

User asks for www.google.com.

Receives unsigned answer,

a packet forged by attacker,

saying the name doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: DNSSEC’s “NSEC”.

e.g. nonex.clegg.com query

returns “There are no names

between nick.clegg.com and

start.clegg.com” + signature.

54

Try foo.clegg.com etc.

After several queries have

complete clegg.com list:

_jabber._tcp, _xmpp-

server._tcp, alan, alvis,

andrew, brian, calendar, dlv,

googleffffffffe91126e7,

home, imogene, jennifer,

localhost, mail, wiki, www.

The clegg.com administrator

disabled DNS “zone transfers”

— but then leaked the same data

by installing DNSSEC.

(This was a real example.)

53

User asks for www.google.com.

Receives unsigned answer,

a packet forged by attacker,

saying the name doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: DNSSEC’s “NSEC”.

e.g. nonex.clegg.com query

returns “There are no names

between nick.clegg.com and

start.clegg.com” + signature.

54

Try foo.clegg.com etc.

After several queries have

complete clegg.com list:

_jabber._tcp, _xmpp-

server._tcp, alan, alvis,

andrew, brian, calendar, dlv,

googleffffffffe91126e7,

home, imogene, jennifer,

localhost, mail, wiki, www.

The clegg.com administrator

disabled DNS “zone transfers”

— but then leaked the same data

by installing DNSSEC.

(This was a real example.)

56

Summary: Attacker learns

all n names in an NSEC zone

(with signatures guaranteeing

that there are no more)

using n DNS queries.

53

User asks for www.google.com.

Receives unsigned answer,

a packet forged by attacker,

saying the name doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: DNSSEC’s “NSEC”.

e.g. nonex.clegg.com query

returns “There are no names

between nick.clegg.com and

start.clegg.com” + signature.

54

Try foo.clegg.com etc.

After several queries have

complete clegg.com list:

_jabber._tcp, _xmpp-

server._tcp, alan, alvis,

andrew, brian, calendar, dlv,

googleffffffffe91126e7,

home, imogene, jennifer,

localhost, mail, wiki, www.

The clegg.com administrator

disabled DNS “zone transfers”

— but then leaked the same data

by installing DNSSEC.

(This was a real example.)

56

Summary: Attacker learns

all n names in an NSEC zone

(with signatures guaranteeing

that there are no more)

using n DNS queries.

53

User asks for www.google.com.

Receives unsigned answer,

a packet forged by attacker,

saying the name doesn’t exist.

Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This is not a good approach.

Alternative: DNSSEC’s “NSEC”.

e.g. nonex.clegg.com query

returns “There are no names

between nick.clegg.com and

start.clegg.com” + signature.

54

Try foo.clegg.com etc.

After several queries have

complete clegg.com list:

_jabber._tcp, _xmpp-

server._tcp, alan, alvis,

andrew, brian, calendar, dlv,

googleffffffffe91126e7,

home, imogene, jennifer,

localhost, mail, wiki, www.

The clegg.com administrator

disabled DNS “zone transfers”

— but then leaked the same data

by installing DNSSEC.

(This was a real example.)

56

Summary: Attacker learns

all n names in an NSEC zone

(with signatures guaranteeing

that there are no more)

using n DNS queries.

54

Try foo.clegg.com etc.

After several queries have

complete clegg.com list:

_jabber._tcp, _xmpp-

server._tcp, alan, alvis,

andrew, brian, calendar, dlv,

googleffffffffe91126e7,

home, imogene, jennifer,

localhost, mail, wiki, www.

The clegg.com administrator

disabled DNS “zone transfers”

— but then leaked the same data

by installing DNSSEC.

(This was a real example.)

56

Summary: Attacker learns

all n names in an NSEC zone

(with signatures guaranteeing

that there are no more)

using n DNS queries.

54

Try foo.clegg.com etc.

After several queries have

complete clegg.com list:

_jabber._tcp, _xmpp-

server._tcp, alan, alvis,

andrew, brian, calendar, dlv,

googleffffffffe91126e7,

home, imogene, jennifer,

localhost, mail, wiki, www.

The clegg.com administrator

disabled DNS “zone transfers”

— but then leaked the same data

by installing DNSSEC.

(This was a real example.)

56

Summary: Attacker learns

all n names in an NSEC zone

(with signatures guaranteeing

that there are no more)

using n DNS queries.

This is not a good approach.

54

Try foo.clegg.com etc.

After several queries have

complete clegg.com list:

_jabber._tcp, _xmpp-

server._tcp, alan, alvis,

andrew, brian, calendar, dlv,

googleffffffffe91126e7,

home, imogene, jennifer,

localhost, mail, wiki, www.

The clegg.com administrator

disabled DNS “zone transfers”

— but then leaked the same data

by installing DNSSEC.

(This was a real example.)

56

Summary: Attacker learns

all n names in an NSEC zone

(with signatures guaranteeing

that there are no more)

using n DNS queries.

This is not a good approach.

DNSSEC purists disagree:

“It is part of the design

philosophy of the DNS

that the data in it is public.”

But this notion is so extreme

that it became a

public-relations problem.

54

Try foo.clegg.com etc.

After several queries have

complete clegg.com list:

_jabber._tcp, _xmpp-

server._tcp, alan, alvis,

andrew, brian, calendar, dlv,

googleffffffffe91126e7,

home, imogene, jennifer,

localhost, mail, wiki, www.

The clegg.com administrator

disabled DNS “zone transfers”

— but then leaked the same data

by installing DNSSEC.

(This was a real example.)

56

Summary: Attacker learns

all n names in an NSEC zone

(with signatures guaranteeing

that there are no more)

using n DNS queries.

This is not a good approach.

DNSSEC purists disagree:

“It is part of the design

philosophy of the DNS

that the data in it is public.”

But this notion is so extreme

that it became a

public-relations problem.

57

New DNSSEC approach:

1. “NSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

54

Try foo.clegg.com etc.

After several queries have

complete clegg.com list:

_jabber._tcp, _xmpp-

server._tcp, alan, alvis,

andrew, brian, calendar, dlv,

googleffffffffe91126e7,

home, imogene, jennifer,

localhost, mail, wiki, www.

The clegg.com administrator

disabled DNS “zone transfers”

— but then leaked the same data

by installing DNSSEC.

(This was a real example.)

56

Summary: Attacker learns

all n names in an NSEC zone

(with signatures guaranteeing

that there are no more)

using n DNS queries.

This is not a good approach.

DNSSEC purists disagree:

“It is part of the design

philosophy of the DNS

that the data in it is public.”

But this notion is so extreme

that it became a

public-relations problem.

57

New DNSSEC approach:

1. “NSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

54

Try foo.clegg.com etc.

After several queries have

complete clegg.com list:

_jabber._tcp, _xmpp-

server._tcp, alan, alvis,

andrew, brian, calendar, dlv,

googleffffffffe91126e7,

home, imogene, jennifer,

localhost, mail, wiki, www.

The clegg.com administrator

disabled DNS “zone transfers”

— but then leaked the same data

by installing DNSSEC.

(This was a real example.)

56

Summary: Attacker learns

all n names in an NSEC zone

(with signatures guaranteeing

that there are no more)

using n DNS queries.

This is not a good approach.

DNSSEC purists disagree:

“It is part of the design

philosophy of the DNS

that the data in it is public.”

But this notion is so extreme

that it became a

public-relations problem.

57

New DNSSEC approach:

1. “NSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

56

Summary: Attacker learns

all n names in an NSEC zone

(with signatures guaranteeing

that there are no more)

using n DNS queries.

This is not a good approach.

DNSSEC purists disagree:

“It is part of the design

philosophy of the DNS

that the data in it is public.”

But this notion is so extreme

that it became a

public-relations problem.

57

New DNSSEC approach:

1. “NSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

56

Summary: Attacker learns

all n names in an NSEC zone

(with signatures guaranteeing

that there are no more)

using n DNS queries.

This is not a good approach.

DNSSEC purists disagree:

“It is part of the design

philosophy of the DNS

that the data in it is public.”

But this notion is so extreme

that it became a

public-relations problem.

57

New DNSSEC approach:

1. “NSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NSEC3 is

less damaging than NSEC.

ISC: “NSEC3 does not allow

enumeration of the zone.”

56

Summary: Attacker learns

all n names in an NSEC zone

(with signatures guaranteeing

that there are no more)

using n DNS queries.

This is not a good approach.

DNSSEC purists disagree:

“It is part of the design

philosophy of the DNS

that the data in it is public.”

But this notion is so extreme

that it became a

public-relations problem.

57

New DNSSEC approach:

1. “NSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NSEC3 is

less damaging than NSEC.

ISC: “NSEC3 does not allow

enumeration of the zone.”

58

Reality: Attacker grabs the hashes

by abusing DNSSEC’s NSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

56

Summary: Attacker learns

all n names in an NSEC zone

(with signatures guaranteeing

that there are no more)

using n DNS queries.

This is not a good approach.

DNSSEC purists disagree:

“It is part of the design

philosophy of the DNS

that the data in it is public.”

But this notion is so extreme

that it became a

public-relations problem.

57

New DNSSEC approach:

1. “NSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NSEC3 is

less damaging than NSEC.

ISC: “NSEC3 does not allow

enumeration of the zone.”

58

Reality: Attacker grabs the hashes

by abusing DNSSEC’s NSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

56

Summary: Attacker learns

all n names in an NSEC zone

(with signatures guaranteeing

that there are no more)

using n DNS queries.

This is not a good approach.

DNSSEC purists disagree:

“It is part of the design

philosophy of the DNS

that the data in it is public.”

But this notion is so extreme

that it became a

public-relations problem.

57

New DNSSEC approach:

1. “NSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NSEC3 is

less damaging than NSEC.

ISC: “NSEC3 does not allow

enumeration of the zone.”

58

Reality: Attacker grabs the hashes

by abusing DNSSEC’s NSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

57

New DNSSEC approach:

1. “NSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NSEC3 is

less damaging than NSEC.

ISC: “NSEC3 does not allow

enumeration of the zone.”

58

Reality: Attacker grabs the hashes

by abusing DNSSEC’s NSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

57

New DNSSEC approach:

1. “NSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NSEC3 is

less damaging than NSEC.

ISC: “NSEC3 does not allow

enumeration of the zone.”

58

Reality: Attacker grabs the hashes

by abusing DNSSEC’s NSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

DNSSEC purists: “You could

have sent all the same guesses

as queries to the server.”

57

New DNSSEC approach:

1. “NSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NSEC3 is

less damaging than NSEC.

ISC: “NSEC3 does not allow

enumeration of the zone.”

58

Reality: Attacker grabs the hashes

by abusing DNSSEC’s NSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

DNSSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is under

500 million noisy guesses/day.

NSEC3 allows typical attackers

1000000 million to 1000000000

million silent guesses/day.

57

New DNSSEC approach:

1. “NSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NSEC3 is

less damaging than NSEC.

ISC: “NSEC3 does not allow

enumeration of the zone.”

58

Reality: Attacker grabs the hashes

by abusing DNSSEC’s NSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

DNSSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is under

500 million noisy guesses/day.

NSEC3 allows typical attackers

1000000 million to 1000000000

million silent guesses/day.

59

This is crazy!

Imagine an “HTTPSEC”

that works like DNSSEC.

57

New DNSSEC approach:

1. “NSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NSEC3 is

less damaging than NSEC.

ISC: “NSEC3 does not allow

enumeration of the zone.”

58

Reality: Attacker grabs the hashes

by abusing DNSSEC’s NSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

DNSSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is under

500 million noisy guesses/day.

NSEC3 allows typical attackers

1000000 million to 1000000000

million silent guesses/day.

59

This is crazy!

Imagine an “HTTPSEC”

that works like DNSSEC.

57

New DNSSEC approach:

1. “NSEC3” technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names

instead of revealing names.

“There are no names with

hashes between : : : and : : : ”

2. Marketing:

Pretend that NSEC3 is

less damaging than NSEC.

ISC: “NSEC3 does not allow

enumeration of the zone.”

58

Reality: Attacker grabs the hashes

by abusing DNSSEC’s NSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

DNSSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is under

500 million noisy guesses/day.

NSEC3 allows typical attackers

1000000 million to 1000000000

million silent guesses/day.

59

This is crazy!

Imagine an “HTTPSEC”

that works like DNSSEC.

58

Reality: Attacker grabs the hashes

by abusing DNSSEC’s NSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

DNSSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is under

500 million noisy guesses/day.

NSEC3 allows typical attackers

1000000 million to 1000000000

million silent guesses/day.

59

This is crazy!

Imagine an “HTTPSEC”

that works like DNSSEC.

58

Reality: Attacker grabs the hashes

by abusing DNSSEC’s NSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

DNSSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is under

500 million noisy guesses/day.

NSEC3 allows typical attackers

1000000 million to 1000000000

million silent guesses/day.

59

This is crazy!

Imagine an “HTTPSEC”

that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature

for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

58

Reality: Attacker grabs the hashes

by abusing DNSSEC’s NSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

DNSSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is under

500 million noisy guesses/day.

NSEC3 allows typical attackers

1000000 million to 1000000000

million silent guesses/day.

59

This is crazy!

Imagine an “HTTPSEC”

that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature

for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

Replay attacks work for 30 days.

Filename guessing is much faster.

Nothing is encrypted.

Denial of service is trivial.

58

Reality: Attacker grabs the hashes

by abusing DNSSEC’s NSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

DNSSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is under

500 million noisy guesses/day.

NSEC3 allows typical attackers

1000000 million to 1000000000

million silent guesses/day.

59

This is crazy!

Imagine an “HTTPSEC”

that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature

for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

Replay attacks work for 30 days.

Filename guessing is much faster.

Nothing is encrypted.

Denial of service is trivial.

60

Does DNS security matter?

There are some IP addresses

signed with DNSSEC, and some

caches checking signatures.

Never mind all the problems.

Do these signatures

accomplish anything?

58

Reality: Attacker grabs the hashes

by abusing DNSSEC’s NSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

DNSSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is under

500 million noisy guesses/day.

NSEC3 allows typical attackers

1000000 million to 1000000000

million silent guesses/day.

59

This is crazy!

Imagine an “HTTPSEC”

that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature

for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

Replay attacks work for 30 days.

Filename guessing is much faster.

Nothing is encrypted.

Denial of service is trivial.

60

Does DNS security matter?

There are some IP addresses

signed with DNSSEC, and some

caches checking signatures.

Never mind all the problems.

Do these signatures

accomplish anything?

58

Reality: Attacker grabs the hashes

by abusing DNSSEC’s NSEC3;

computes the same hash function

for many different name guesses;

quickly discovers almost all names

(and knows # missing names).

DNSSEC purists: “You could

have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is under

500 million noisy guesses/day.

NSEC3 allows typical attackers

1000000 million to 1000000000

million silent guesses/day.

59

This is crazy!

Imagine an “HTTPSEC”

that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature

for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

Replay attacks work for 30 days.

Filename guessing is much faster.

Nothing is encrypted.

Denial of service is trivial.

60

Does DNS security matter?

There are some IP addresses

signed with DNSSEC, and some

caches checking signatures.

Never mind all the problems.

Do these signatures

accomplish anything?

59

This is crazy!

Imagine an “HTTPSEC”

that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature

for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

Replay attacks work for 30 days.

Filename guessing is much faster.

Nothing is encrypted.

Denial of service is trivial.

60

Does DNS security matter?

There are some IP addresses

signed with DNSSEC, and some

caches checking signatures.

Never mind all the problems.

Do these signatures

accomplish anything?

59

This is crazy!

Imagine an “HTTPSEC”

that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature

for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

Replay attacks work for 30 days.

Filename guessing is much faster.

Nothing is encrypted.

Denial of service is trivial.

60

Does DNS security matter?

There are some IP addresses

signed with DNSSEC, and some

caches checking signatures.

Never mind all the problems.

Do these signatures

accomplish anything?

Occasionally these caches

are on client machines,

so attacker can’t simply

forge packets from cache : : :

59

This is crazy!

Imagine an “HTTPSEC”

that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature

for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

Replay attacks work for 30 days.

Filename guessing is much faster.

Nothing is encrypted.

Denial of service is trivial.

60

Does DNS security matter?

There are some IP addresses

signed with DNSSEC, and some

caches checking signatures.

Never mind all the problems.

Do these signatures

accomplish anything?

Occasionally these caches

are on client machines,

so attacker can’t simply

forge packets from cache : : :

so attacker intercepts and forges

all the subsequent packets:

web pages, email, etc.

59

This is crazy!

Imagine an “HTTPSEC”

that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature

for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

Replay attacks work for 30 days.

Filename guessing is much faster.

Nothing is encrypted.

Denial of service is trivial.

60

Does DNS security matter?

There are some IP addresses

signed with DNSSEC, and some

caches checking signatures.

Never mind all the problems.

Do these signatures

accomplish anything?

Occasionally these caches

are on client machines,

so attacker can’t simply

forge packets from cache : : :

so attacker intercepts and forges

all the subsequent packets:

web pages, email, etc.

61

Administrator can use HTTPS

to protect web pages

: : : but then what attack

is stopped by DNSSEC?

59

This is crazy!

Imagine an “HTTPSEC”

that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature

for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

Replay attacks work for 30 days.

Filename guessing is much faster.

Nothing is encrypted.

Denial of service is trivial.

60

Does DNS security matter?

There are some IP addresses

signed with DNSSEC, and some

caches checking signatures.

Never mind all the problems.

Do these signatures

accomplish anything?

Occasionally these caches

are on client machines,

so attacker can’t simply

forge packets from cache : : :

so attacker intercepts and forges

all the subsequent packets:

web pages, email, etc.

61

Administrator can use HTTPS

to protect web pages

: : : but then what attack

is stopped by DNSSEC?

59

This is crazy!

Imagine an “HTTPSEC”

that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature

for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

Replay attacks work for 30 days.

Filename guessing is much faster.

Nothing is encrypted.

Denial of service is trivial.

60

Does DNS security matter?

There are some IP addresses

signed with DNSSEC, and some

caches checking signatures.

Never mind all the problems.

Do these signatures

accomplish anything?

Occasionally these caches

are on client machines,

so attacker can’t simply

forge packets from cache : : :

so attacker intercepts and forges

all the subsequent packets:

web pages, email, etc.

61

Administrator can use HTTPS

to protect web pages

: : : but then what attack

is stopped by DNSSEC?

60

Does DNS security matter?

There are some IP addresses

signed with DNSSEC, and some

caches checking signatures.

Never mind all the problems.

Do these signatures

accomplish anything?

Occasionally these caches

are on client machines,

so attacker can’t simply

forge packets from cache : : :

so attacker intercepts and forges

all the subsequent packets:

web pages, email, etc.

61

Administrator can use HTTPS

to protect web pages

: : : but then what attack

is stopped by DNSSEC?

60

Does DNS security matter?

There are some IP addresses

signed with DNSSEC, and some

caches checking signatures.

Never mind all the problems.

Do these signatures

accomplish anything?

Occasionally these caches

are on client machines,

so attacker can’t simply

forge packets from cache : : :

so attacker intercepts and forges

all the subsequent packets:

web pages, email, etc.

61

Administrator can use HTTPS

to protect web pages

: : : but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HTTPS:

“You can’t trust your servers.”

DNSSEC signers are offline

(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

60

Does DNS security matter?

There are some IP addresses

signed with DNSSEC, and some

caches checking signatures.

Never mind all the problems.

Do these signatures

accomplish anything?

Occasionally these caches

are on client machines,

so attacker can’t simply

forge packets from cache : : :

so attacker intercepts and forges

all the subsequent packets:

web pages, email, etc.

61

Administrator can use HTTPS

to protect web pages

: : : but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HTTPS:

“You can’t trust your servers.”

DNSSEC signers are offline

(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

But DNSSEC is not signing

any of the user’s data!

60

Does DNS security matter?

There are some IP addresses

signed with DNSSEC, and some

caches checking signatures.

Never mind all the problems.

Do these signatures

accomplish anything?

Occasionally these caches

are on client machines,

so attacker can’t simply

forge packets from cache : : :

so attacker intercepts and forges

all the subsequent packets:

web pages, email, etc.

61

Administrator can use HTTPS

to protect web pages

: : : but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HTTPS:

“You can’t trust your servers.”

DNSSEC signers are offline

(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

But DNSSEC is not signing

any of the user’s data!

62

PGP signs the user’s data.

PGP-signed web pages and email

are protected against

misbehaving servers,

and against network attackers.

60

Does DNS security matter?

There are some IP addresses

signed with DNSSEC, and some

caches checking signatures.

Never mind all the problems.

Do these signatures

accomplish anything?

Occasionally these caches

are on client machines,

so attacker can’t simply

forge packets from cache : : :

so attacker intercepts and forges

all the subsequent packets:

web pages, email, etc.

61

Administrator can use HTTPS

to protect web pages

: : : but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HTTPS:

“You can’t trust your servers.”

DNSSEC signers are offline

(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

But DNSSEC is not signing

any of the user’s data!

62

PGP signs the user’s data.

PGP-signed web pages and email

are protected against

misbehaving servers,

and against network attackers.

60

Does DNS security matter?

There are some IP addresses

signed with DNSSEC, and some

caches checking signatures.

Never mind all the problems.

Do these signatures

accomplish anything?

Occasionally these caches

are on client machines,

so attacker can’t simply

forge packets from cache : : :

so attacker intercepts and forges

all the subsequent packets:

web pages, email, etc.

61

Administrator can use HTTPS

to protect web pages

: : : but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HTTPS:

“You can’t trust your servers.”

DNSSEC signers are offline

(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

But DNSSEC is not signing

any of the user’s data!

62

PGP signs the user’s data.

PGP-signed web pages and email

are protected against

misbehaving servers,

and against network attackers.

61

Administrator can use HTTPS

to protect web pages

: : : but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HTTPS:

“You can’t trust your servers.”

DNSSEC signers are offline

(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

But DNSSEC is not signing

any of the user’s data!

62

PGP signs the user’s data.

PGP-signed web pages and email

are protected against

misbehaving servers,

and against network attackers.

61

Administrator can use HTTPS

to protect web pages

: : : but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HTTPS:

“You can’t trust your servers.”

DNSSEC signers are offline

(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

But DNSSEC is not signing

any of the user’s data!

62

PGP signs the user’s data.

PGP-signed web pages and email

are protected against

misbehaving servers,

and against network attackers.

With PGP, what attack

is stopped by DNSSEC?

61

Administrator can use HTTPS

to protect web pages

: : : but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HTTPS:

“You can’t trust your servers.”

DNSSEC signers are offline

(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

But DNSSEC is not signing

any of the user’s data!

62

PGP signs the user’s data.

PGP-signed web pages and email

are protected against

misbehaving servers,

and against network attackers.

With PGP, what attack

is stopped by DNSSEC?

With HTTPS but not PGP, what

attack is stopped by DNSSEC?

61

Administrator can use HTTPS

to protect web pages

: : : but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HTTPS:

“You can’t trust your servers.”

DNSSEC signers are offline

(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

But DNSSEC is not signing

any of the user’s data!

62

PGP signs the user’s data.

PGP-signed web pages and email

are protected against

misbehaving servers,

and against network attackers.

With PGP, what attack

is stopped by DNSSEC?

With HTTPS but not PGP, what

attack is stopped by DNSSEC?

With neither HTTPS nor PGP,

what attack is stopped by

DNSSEC?

61

Administrator can use HTTPS

to protect web pages

: : : but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HTTPS:

“You can’t trust your servers.”

DNSSEC signers are offline

(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

But DNSSEC is not signing

any of the user’s data!

62

PGP signs the user’s data.

PGP-signed web pages and email

are protected against

misbehaving servers,

and against network attackers.

With PGP, what attack

is stopped by DNSSEC?

With HTTPS but not PGP, what

attack is stopped by DNSSEC?

With neither HTTPS nor PGP,

what attack is stopped by

DNSSEC?

63

Getting out of the mess

State-of-the-art ECC

is fast enough to

authenticate and encrypt

every packet.

Deployed: DNSCurve protects

DNS packets, server→cache.

Deployed: DNSCrypt protects

DNS packets, cache→client.

Work in progress: HTTPCurve

protects HTTP packets.

61

Administrator can use HTTPS

to protect web pages

: : : but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HTTPS:

“You can’t trust your servers.”

DNSSEC signers are offline

(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

But DNSSEC is not signing

any of the user’s data!

62

PGP signs the user’s data.

PGP-signed web pages and email

are protected against

misbehaving servers,

and against network attackers.

With PGP, what attack

is stopped by DNSSEC?

With HTTPS but not PGP, what

attack is stopped by DNSSEC?

With neither HTTPS nor PGP,

what attack is stopped by

DNSSEC?

63

Getting out of the mess

State-of-the-art ECC

is fast enough to

authenticate and encrypt

every packet.

Deployed: DNSCurve protects

DNS packets, server→cache.

Deployed: DNSCrypt protects

DNS packets, cache→client.

Work in progress: HTTPCurve

protects HTTP packets.

61

Administrator can use HTTPS

to protect web pages

: : : but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HTTPS:

“You can’t trust your servers.”

DNSSEC signers are offline

(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

But DNSSEC is not signing

any of the user’s data!

62

PGP signs the user’s data.

PGP-signed web pages and email

are protected against

misbehaving servers,

and against network attackers.

With PGP, what attack

is stopped by DNSSEC?

With HTTPS but not PGP, what

attack is stopped by DNSSEC?

With neither HTTPS nor PGP,

what attack is stopped by

DNSSEC?

63

Getting out of the mess

State-of-the-art ECC

is fast enough to

authenticate and encrypt

every packet.

Deployed: DNSCurve protects

DNS packets, server→cache.

Deployed: DNSCrypt protects

DNS packets, cache→client.

Work in progress: HTTPCurve

protects HTTP packets.

62

PGP signs the user’s data.

PGP-signed web pages and email

are protected against

misbehaving servers,

and against network attackers.

With PGP, what attack

is stopped by DNSSEC?

With HTTPS but not PGP, what

attack is stopped by DNSSEC?

With neither HTTPS nor PGP,

what attack is stopped by

DNSSEC?

63

Getting out of the mess

State-of-the-art ECC

is fast enough to

authenticate and encrypt

every packet.

Deployed: DNSCurve protects

DNS packets, server→cache.

Deployed: DNSCrypt protects

DNS packets, cache→client.

Work in progress: HTTPCurve

protects HTTP packets.

62

PGP signs the user’s data.

PGP-signed web pages and email

are protected against

misbehaving servers,

and against network attackers.

With PGP, what attack

is stopped by DNSSEC?

With HTTPS but not PGP, what

attack is stopped by DNSSEC?

With neither HTTPS nor PGP,

what attack is stopped by

DNSSEC?

63

Getting out of the mess

State-of-the-art ECC

is fast enough to

authenticate and encrypt

every packet.

Deployed: DNSCurve protects

DNS packets, server→cache.

Deployed: DNSCrypt protects

DNS packets, cache→client.

Work in progress: HTTPCurve

protects HTTP packets.

64

Crypto is at edge of network,

handled by simple proxy.

Administrator puts public key

into name of server.

Need new DNS cache software

but no need to change

server software,

database-management software,

web interfaces, etc.

Easy to implement,

easy to deploy.

62

PGP signs the user’s data.

PGP-signed web pages and email

are protected against

misbehaving servers,

and against network attackers.

With PGP, what attack

is stopped by DNSSEC?

With HTTPS but not PGP, what

attack is stopped by DNSSEC?

With neither HTTPS nor PGP,

what attack is stopped by

DNSSEC?

63

Getting out of the mess

State-of-the-art ECC

is fast enough to

authenticate and encrypt

every packet.

Deployed: DNSCurve protects

DNS packets, server→cache.

Deployed: DNSCrypt protects

DNS packets, cache→client.

Work in progress: HTTPCurve

protects HTTP packets.

64

Crypto is at edge of network,

handled by simple proxy.

Administrator puts public key

into name of server.

Need new DNS cache software

but no need to change

server software,

database-management software,

web interfaces, etc.

Easy to implement,

easy to deploy.

62

PGP signs the user’s data.

PGP-signed web pages and email

are protected against

misbehaving servers,

and against network attackers.

With PGP, what attack

is stopped by DNSSEC?

With HTTPS but not PGP, what

attack is stopped by DNSSEC?

With neither HTTPS nor PGP,

what attack is stopped by

DNSSEC?

63

Getting out of the mess

State-of-the-art ECC

is fast enough to

authenticate and encrypt

every packet.

Deployed: DNSCurve protects

DNS packets, server→cache.

Deployed: DNSCrypt protects

DNS packets, cache→client.

Work in progress: HTTPCurve

protects HTTP packets.

64

Crypto is at edge of network,

handled by simple proxy.

Administrator puts public key

into name of server.

Need new DNS cache software

but no need to change

server software,

database-management software,

web interfaces, etc.

Easy to implement,

easy to deploy.

63

Getting out of the mess

State-of-the-art ECC

is fast enough to

authenticate and encrypt

every packet.

Deployed: DNSCurve protects

DNS packets, server→cache.

Deployed: DNSCrypt protects

DNS packets, cache→client.

Work in progress: HTTPCurve

protects HTTP packets.

64

Crypto is at edge of network,

handled by simple proxy.

Administrator puts public key

into name of server.

Need new DNS cache software

but no need to change

server software,

database-management software,

web interfaces, etc.

Easy to implement,

easy to deploy.

63

Getting out of the mess

State-of-the-art ECC

is fast enough to

authenticate and encrypt

every packet.

Deployed: DNSCurve protects

DNS packets, server→cache.

Deployed: DNSCrypt protects

DNS packets, cache→client.

Work in progress: HTTPCurve

protects HTTP packets.

64

Crypto is at edge of network,

handled by simple proxy.

Administrator puts public key

into name of server.

Need new DNS cache software

but no need to change

server software,

database-management software,

web interfaces, etc.

Easy to implement,

easy to deploy.

65

No precomputation.

63

Getting out of the mess

State-of-the-art ECC

is fast enough to

authenticate and encrypt

every packet.

Deployed: DNSCurve protects

DNS packets, server→cache.

Deployed: DNSCrypt protects

DNS packets, cache→client.

Work in progress: HTTPCurve

protects HTTP packets.

64

Crypto is at edge of network,

handled by simple proxy.

Administrator puts public key

into name of server.

Need new DNS cache software

but no need to change

server software,

database-management software,

web interfaces, etc.

Easy to implement,

easy to deploy.

65

No precomputation.

63

Getting out of the mess

State-of-the-art ECC

is fast enough to

authenticate and encrypt

every packet.

Deployed: DNSCurve protects

DNS packets, server→cache.

Deployed: DNSCrypt protects

DNS packets, cache→client.

Work in progress: HTTPCurve

protects HTTP packets.

64

Crypto is at edge of network,

handled by simple proxy.

Administrator puts public key

into name of server.

Need new DNS cache software

but no need to change

server software,

database-management software,

web interfaces, etc.

Easy to implement,

easy to deploy.

65

No precomputation.

64

Crypto is at edge of network,

handled by simple proxy.

Administrator puts public key

into name of server.

Need new DNS cache software

but no need to change

server software,

database-management software,

web interfaces, etc.

Easy to implement,

easy to deploy.

65

No precomputation.

64

Crypto is at edge of network,

handled by simple proxy.

Administrator puts public key

into name of server.

Need new DNS cache software

but no need to change

server software,

database-management software,

web interfaces, etc.

Easy to implement,

easy to deploy.

65

No precomputation.

No problems with

dynamic data.

64

Crypto is at edge of network,

handled by simple proxy.

Administrator puts public key

into name of server.

Need new DNS cache software

but no need to change

server software,

database-management software,

web interfaces, etc.

Easy to implement,

easy to deploy.

65

No precomputation.

No problems with

dynamic data.

No problems with

old data: all results

are guaranteed to be fresh.

64

Crypto is at edge of network,

handled by simple proxy.

Administrator puts public key

into name of server.

Need new DNS cache software

but no need to change

server software,

database-management software,

web interfaces, etc.

Easy to implement,

easy to deploy.

65

No precomputation.

No problems with

dynamic data.

No problems with

old data: all results

are guaranteed to be fresh.

No problems with

nonexistent data,

database leaks, etc.

64

Crypto is at edge of network,

handled by simple proxy.

Administrator puts public key

into name of server.

Need new DNS cache software

but no need to change

server software,

database-management software,

web interfaces, etc.

Easy to implement,

easy to deploy.

65

No precomputation.

No problems with

dynamic data.

No problems with

old data: all results

are guaranteed to be fresh.

No problems with

nonexistent data,

database leaks, etc.

Packets are small.

Smaller amplification

than existing protocols.

64

Crypto is at edge of network,

handled by simple proxy.

Administrator puts public key

into name of server.

Need new DNS cache software

but no need to change

server software,

database-management software,

web interfaces, etc.

Easy to implement,

easy to deploy.

65

No precomputation.

No problems with

dynamic data.

No problems with

old data: all results

are guaranteed to be fresh.

No problems with

nonexistent data,

database leaks, etc.

Packets are small.

Smaller amplification

than existing protocols.

66

DNSCurve and DNSCrypt

and HTTPCurve and SMTPCurve

add real security even to

PGP-signed web pages, email.

Improved confidentiality:

e.g., is the user accessing

firstaid.webmd.com or

diabetes.webmd.com?

Improved integrity:

e.g., freshness.

Improved availability:

attacker forging a packet

doesn’t break connections.

64

Crypto is at edge of network,

handled by simple proxy.

Administrator puts public key

into name of server.

Need new DNS cache software

but no need to change

server software,

database-management software,

web interfaces, etc.

Easy to implement,

easy to deploy.

65

No precomputation.

No problems with

dynamic data.

No problems with

old data: all results

are guaranteed to be fresh.

No problems with

nonexistent data,

database leaks, etc.

Packets are small.

Smaller amplification

than existing protocols.

66

DNSCurve and DNSCrypt

and HTTPCurve and SMTPCurve

add real security even to

PGP-signed web pages, email.

Improved confidentiality:

e.g., is the user accessing

firstaid.webmd.com or

diabetes.webmd.com?

Improved integrity:

e.g., freshness.

Improved availability:

attacker forging a packet

doesn’t break connections.

64

Crypto is at edge of network,

handled by simple proxy.

Administrator puts public key

into name of server.

Need new DNS cache software

but no need to change

server software,

database-management software,

web interfaces, etc.

Easy to implement,

easy to deploy.

65

No precomputation.

No problems with

dynamic data.

No problems with

old data: all results

are guaranteed to be fresh.

No problems with

nonexistent data,

database leaks, etc.

Packets are small.

Smaller amplification

than existing protocols.

66

DNSCurve and DNSCrypt

and HTTPCurve and SMTPCurve

add real security even to

PGP-signed web pages, email.

Improved confidentiality:

e.g., is the user accessing

firstaid.webmd.com or

diabetes.webmd.com?

Improved integrity:

e.g., freshness.

Improved availability:

attacker forging a packet

doesn’t break connections.

65

No precomputation.

No problems with

dynamic data.

No problems with

old data: all results

are guaranteed to be fresh.

No problems with

nonexistent data,

database leaks, etc.

Packets are small.

Smaller amplification

than existing protocols.

66

DNSCurve and DNSCrypt

and HTTPCurve and SMTPCurve

add real security even to

PGP-signed web pages, email.

Improved confidentiality:

e.g., is the user accessing

firstaid.webmd.com or

diabetes.webmd.com?

Improved integrity:

e.g., freshness.

Improved availability:

attacker forging a packet

doesn’t break connections.

