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receives two IP fragments
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DNS server software listed in

Wikipedia: BIND, Microsoft

DNS, djbdns, Dnsmasq, Simple

DNS Plus, NSD, Knot DNS,

PowerDNS, MaraDNS, pdnsd,

Nominum ANS, Nominum Vantio,

Posadis, Unbound, Cisco Network

Registrar, dnrd, gdnsd, YADIFA,

yaku-ns, DNS Blast.

Much wider variety of DNS

database-management tools, plus

hundreds of homegrown tools

written by DNS registrars etc.
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