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Sage scripts for some algorithms,

joint work with Heninger:

facthacks.cr.yp.to

2

Q sieve

Sieving small integers i > 0

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

etc.
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3

Have complete factorization of

the “congruences” i(611 + i)

for some i’s.

14 · 625 = 21305471.

64 · 675 = 26335270.

75 · 686 = 21315273.

14 · 64 · 75 · 625 · 675 · 686

= 28345874 = (24325472)2.

gcd
˘

611; 14 · 64 · 75− 24325472
¯

= 47.

611 = 47 · 13.
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This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n+ 1) = 25315071;

4(n+ 4) = 22335270;

15(n+ 15) = 21315173;

49(n+ 49) = 24325172;

64(n+ 64) = 26315172.

F2-kernel of exponent matrix is

gen by (0 1 0 1 1) and (1 0 1 1 0);

e.g., 1(n+ 1)15(n+ 15)49(n+ 49)

is a square.
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7

Plausible conjecture: Q sieve can

separate the odd prime divisors

of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n+ i)

for i ∈
˘

1; 2; 3; : : : ; y2
¯

into products of primes ≤y.

Look for nonempty set I of i’s

with i(n+ i) completely factored

and with
Q
i∈I
i(n+ i) square.

Compute gcd{n; s− t} where

s =
Q
i∈I
i and t =

rQ
i∈I
i(n+ i).
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9

More generally, if y ∈
exp

q`
1
2c + o(1)

´
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r“
(c+1)2+o(1)

2c

”
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.
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10

Improving smoothness chances

Smoothness chance of i(n+ i)

degrades as i grows.

Smaller for i ≈ y2 than for i ≈ y.

Crude analysis: i(n+ i) grows.

≈ yn if i ≈ y;

≈ y2n if i ≈ y2.

More careful analysis:

n+ i doesn’t degrade, but

i is always smooth for i ≤ y,

only 30% chance for i ≈ y2.

Can we select congruences

to avoid this degradation?



8

How large does y have to be

for this to find a square?

Uniform random integer in [1; n]

has n1=u-smoothness chance

roughly u−u.

Plausible conjecture:

Q sieve succeeds

with y = bn1=uc
for all n ≥ u(1+o(1))u2

;

here o(1) is as u→∞.

9

More generally, if y ∈
exp

q`
1
2c + o(1)

´
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r“
(c+1)2+o(1)

2c

”
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.

10

Improving smoothness chances

Smoothness chance of i(n+ i)

degrades as i grows.

Smaller for i ≈ y2 than for i ≈ y.

Crude analysis: i(n+ i) grows.

≈ yn if i ≈ y;

≈ y2n if i ≈ y2.

More careful analysis:

n+ i doesn’t degrade, but

i is always smooth for i ≤ y,

only 30% chance for i ≈ y2.

Can we select congruences

to avoid this degradation?



8

How large does y have to be

for this to find a square?

Uniform random integer in [1; n]

has n1=u-smoothness chance

roughly u−u.

Plausible conjecture:

Q sieve succeeds

with y = bn1=uc
for all n ≥ u(1+o(1))u2

;

here o(1) is as u→∞.

9

More generally, if y ∈
exp

q`
1
2c + o(1)

´
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r“
(c+1)2+o(1)

2c

”
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.

10

Improving smoothness chances

Smoothness chance of i(n+ i)

degrades as i grows.

Smaller for i ≈ y2 than for i ≈ y.

Crude analysis: i(n+ i) grows.

≈ yn if i ≈ y;

≈ y2n if i ≈ y2.

More careful analysis:

n+ i doesn’t degrade, but

i is always smooth for i ≤ y,

only 30% chance for i ≈ y2.

Can we select congruences

to avoid this degradation?



9

More generally, if y ∈
exp

q`
1
2c + o(1)

´
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r“
(c+1)2+o(1)

2c

”
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.

10

Improving smoothness chances

Smoothness chance of i(n+ i)

degrades as i grows.

Smaller for i ≈ y2 than for i ≈ y.

Crude analysis: i(n+ i) grows.

≈ yn if i ≈ y;

≈ y2n if i ≈ y2.

More careful analysis:

n+ i doesn’t degrade, but

i is always smooth for i ≤ y,

only 30% chance for i ≈ y2.

Can we select congruences

to avoid this degradation?



9

More generally, if y ∈
exp

q`
1
2c + o(1)

´
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r“
(c+1)2+o(1)

2c

”
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.

10

Improving smoothness chances

Smoothness chance of i(n+ i)

degrades as i grows.

Smaller for i ≈ y2 than for i ≈ y.

Crude analysis: i(n+ i) grows.

≈ yn if i ≈ y;

≈ y2n if i ≈ y2.

More careful analysis:

n+ i doesn’t degrade, but

i is always smooth for i ≤ y,

only 30% chance for i ≈ y2.

Can we select congruences

to avoid this degradation?

11

Choose q, square of large prime.

Choose a “q-sublattice” of i’s:

arithmetic progression of i’s

where q divides each i(n+ i).

e.g. progression q − (nmod q),

2q − (nmod q), 3q − (nmod q),

etc.

Check smoothness of

generalized congruence i(n+ i)=q

for i’s in this sublattice.

e.g. check whether i; (n+i)=q are

smooth for i = q − (nmod q) etc.

Try many large q’s.

Rare for i’s to overlap.
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12

e.g. n = 314159265358979323:

Original Q sieve:

i n+ i

1 314159265358979324

2 314159265358979325

3 314159265358979326

Use 9972-sublattice,

i ∈ 802458 + 994009Z:

i (n+ i)=9972

802458 316052737309

1796467 316052737310

2790476 316052737311
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are even better than that!

For q ≈ n1=2 have
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(u=2)−u=2(u=2)−u=2 = 2u=uu,
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i2 − n with i ≈
√
n;

have i2 − n ≈ n1=2+o(1),

much smaller than n.
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Generalizing beyond Q
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the number-field sieve.

Recall how the Q sieve

factors 611:
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as product of i(i+ 611j)
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14(625) · 64(675) · 75(686)
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gcd{611; 14 · 64 · 75− 4410000}
= 47.
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16

The Q(
√

14) sieve

factors 611 as follows:

Form a square

as product of (i+ 25j)(i+
√

14j)

for several pairs (i; j):

(−11 + 3 · 25)(−11 + 3
√

14)

· (3 + 25)(3 +
√

14)

= (112− 16
√

14)2.

Compute

s = (−11 + 3 · 25) · (3 + 25),

t = 112− 16 · 25,

gcd{611; s− t} = 13.
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Why does this work?

Answer: Have ring morphism

Z[
√

14]→ Z=611,
√

14 7→ 25,

since 252 = 14 in Z=611.

Apply ring morphism to square:

(−11 + 3 · 25)(−11 + 3 · 25)

· (3 + 25)(3 + 25)

= (112− 16 · 25)2 in Z=611.

i.e. s2 = t2 in Z=611.

Unsurprising to find factor.
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with iZ + jZ = Z and j > 0.

Could replace i− jx by

higher-deg irred in Z[x];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a squareQ
(i;j)∈S(i− jm)(i− j¸)

in Q(¸); now what?
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21

How to find square product

of congruences (i− jm)(i− j¸)?

Start with congruences for,

e.g., y2 pairs (i; j).

Look for y-smooth congruences:

y-smooth i− jm and

y-smooth fd norm(i− j¸) =

fdi
d + · · ·+ f0j

d = jdf(i=j).

Here “y-smooth” means

“has no prime divisor > y.”

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.
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22

Asymptotic cost exponents

Number of bit operations

in number-field sieve,

with theorists’ parameters,

is L1:90:::+o(1) where L =

exp((logn)1=3(log logn)2=3).

What are theorists’ parameters?

Choose degree d with

d=(logn)1=3(log logn)−1=3

∈ 1:40 : : :+ o(1).
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logn bits: n.

Unavoidably 1=3 in exponent:
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forces (log y)2 ≈ logm;

balancing norms with m

forces d log y ≈ logm;

and d logm ≈ logn.
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Batch NFS

The number-field sieve used

L1:90:::+o(1) bit operations

finding smooth i− jm; only

L1:77:::+o(1) bit operations

finding smooth jdf(i=j).

Many n’s can share one m;

L1:90:::+o(1) bit operations

to find squares for all n’s.

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring

batch in much less time than

factoring each n separately.
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27

Asymptotic batch-NFS

parameters:

d=(logn)1=3(log logn)−1=3

∈ 1:10 : : :+ o(1).

Primes ≤L0:82:::+o(1).

1 ≤ i; j ≤ L1:00:::+o(1).

Computation independent of n

finds L1:64:::+o(1)

smooth values i− jm.

L1:64:::+o(1) operations

for each target n.
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The rho method

Define 0 = 0, k+1 = 2
k + 11.

Every prime ≤220 divides S =

(1 − 2)(2 − 4)(3 − 6)

· · · (3575 − 7150).

Also many larger primes.

Can compute gcd{c; S} using

≈ 214 multiplications mod c,

very little memory.

Compare to ≈ 216 divisions

for trial division up to 220.
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29

More generally: Choose z.

Compute gcd{c; S} where S =

(1 − 2)(2 − 4) · · · (z − 2z).

How big does z have to be

for all primes ≤y to divide S?

Plausible conjecture: y1=2+o(1);

so y1=2+o(1) mults mod c.

Reason: Consider first collision in

1 mod p; 2 mod p; : : :.

If i mod p = j mod p

then k mod p = 2k mod p

for k ∈ (j − i)Z ∩ [i;∞] ∩ [j;∞].
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30

The p− 1 method

S1 = 2232792560 − 1

has prime divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,

89, 97, 103, 109, 113, 127, 131,

137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes ≤103;

156 of the 1229 primes ≤104;

296 of the 9592 primes ≤105;

470 of the 78498 primes ≤106;

etc.
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An odd prime p

divides 2232792560 − 1

iff order of 2 in the

multiplicative group F∗p
divides s = 232792560.

Many ways for this to happen:

232792560 has 960 divisors.

Why so many?

Answer: s = 232792560

= lcm{1; 2; 3; 4; : : : ; 20}
= 24 · 32 · 5 · 7 · 11 · 13 · 17 · 19.
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Could instead have checked
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The 167th trial division

would have found divisor 991.

Not clear which method is better.

Dividing by small p

is faster than squaring mod n.

The p− 1 method finds

only 70 of the primes ≤1000;

trial division finds all 168 primes.
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Scale up to larger exponent

s = lcm{1; 2; 3; 4; : : : ; 100}:
using 136 squarings mod n

find 2317 of the primes ≤105.

Is a squaring mod n

faster than 17 trial divisions?

Or s = lcm{1; 2; 3; 4; : : : ; 1000}:
using 1438 squarings mod n

find 180121 of the primes ≤107.

Is a squaring mod n

faster than 125 trial divisions?

Extra benefit:

no need to store the primes.
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The p+ 1 factorization method

(1982 Williams)

Define (X; Y ) ∈ Q×Q as the

232792560th multiple of

(3=5; 4=5) in the group Clock(Q).

The integer S2 = 5232792560X

is divisible by

82 of the primes ≤103;

223 of the primes ≤104;

455 of the primes ≤105;

720 of the primes ≤106;

etc.
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Given an integer n,

compute 5232792560X mod n

and compute gcd with n,

hoping to factor n.

Many p’s not found by F∗p
are found by Clock(Fp).

If −1 is not a square mod p

and p+ 1 divides 232792560

then 5232792560X mod p = 0.

Proof: p ≡ 3 (mod 4),

so (4=5 + 3i=5)p = 4=5− 3i=5,

so (p+ 1)(3=5; 4=5) = (0; 1)

in the group Clock(Fp),

so 232792560(3=5; 4=5) = (0; 1).
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39

The elliptic-curve method

Replace clock group with

a random elliptic curve.

Order of elliptic-curve group

∈ [p+ 1− 2
√
p; p+ 1 + 2

√
p].

If a curve fails, try another.

Good news (for the attacker):

All primes ≤H
seem to be found after a

reasonable number of curves.

Time subexponential in H.
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