Cryptographic readiness levels, Many stages of research

and the impact from cryptographic design
of quantum computers to real-world deployment:
Daniel J. Bernstein 1. Explore space of
cryptosystems.
e How is crypto developed? 2. Study algorithms for the
e How confident are we attackers.
that crypto is secure? 3. Focus on secure cryptosystems.

e How do we know what a
quantum computer will do?




Cryptographic readiness levels,
and the impact
of quantum computers

Daniel J. Bernstein

e How is crypto developed?

e How confident are we
that crypto is secure?

e How do we know what a

quantum computer will do?

Many stages of research
from cryptographic design
to real-world deployment:

1. Explore space of
cryptosystems.

2. Study algorithms for the
attackers.

3. Focus on secure cryptosystems.
4. Study algorithms for the users.

5. Study implementations
on real hardware: e.g.,
software for popular CPUs.



raphic readiness levels,
Impact
um computers

. Bernstein

5 crypto developed?

onfident are we
rypto is secure?

o we know what a

1m computer will do?

Many stages of research
from cryptographic design
to real-world deployment:

1. Explore space of
cryptosystems.

2. Study algorithms for the
attackers.

3. Focus on secure cryptosystems.

4. Study algorithms for the users.

5. Study implementations
on real hardware: e.g.,
software for popular CPUs.

6. Stud
fault

/. Focu:
imple

8. Focu:
meet

requil



diness levels,

Jters

oveloped?

re we

cure?

v what a
ter will do?

Many stages of research
from cryptographic design
to real-world deployment:

1. Explore space of
cryptosystems.

2. Study algorithms for the
attackers.

3. Focus on secure cryptosystems.

4. Study algorithms for the users.

5. Study implementations
on real hardware: e.g.,
software for popular CPUs.

6. Study side-chat
fault attacks, e

[. Focus on secur
implementatior

8. Focus on imple
meeting perfori
requirements.



s,

Many stages of research
from cryptographic design
to real-world deployment:

1. Explore space of
cryptosystems.

2. Study algorithms for the
attackers.

3. Focus on secure cryptosystems.

4. Study algorithms for the users.

5. Study implementations
on real hardware: e.g.,
software for popular CPUs.

6. Study side-channel attacl
fault attacks, etc.

7. Focus on secure, reliable
implementations.

8. Focus on implementation
meeting performance

requirements.



Many stages of research
from cryptographic design
to real-world deployment:

1. Explore space of
cryptosystems.

2. Study algorithms for the
attackers.

3. Focus on secure cryptosystems.

4. Study algorithms for the users.

5. Study implementations
on real hardware: e.g.,
software for popular CPUs.

6. Study side-channel attacks,
fault attacks, etc.

7. Focus on secure, reliable
implementations.

8. Focus on implementations
meeting performance

requirements.



Many stages of research
from cryptographic design
to real-world deployment:

1. Explore space of
cryptosystems.

2. Study algorithms for the
attackers.

3. Focus on secure cryptosystems.

4. Study algorithms for the users.

5. Study implementations
on real hardware: e.g.,
software for popular CPUs.

6. Study side-channel attacks,
fault attacks, etc.

7. Focus on secure, reliable
implementations.

8. Focus on implementations
meeting performance

requirements.

9. Integrate securely into
real-world applications.



Many stages of research

from cryptographic design

to real-world deployment:

1.

Explore space of
cryptosystems.

. Study algorithms for the

attackers.

. Focus on secure cryptosystems.
. Study algorithms for the users.

. Study implementations

on real hardware: e.g.,
software for popular CPUs.

6. Study side-channel attacks,
fault attacks, etc.

7. Focus on secure, reliable
implementations.

8. Focus on implementations
meeting performance

requirements.

9. Integrate securely into
real-world applications.

Getting all this right takes time:
e.g., elliptic-curve cryptography
(ECC) entered stage 1 in 1985.



ages of research
ptographic design
vorld deployment:

re space of
osystems.

/ algorithms for the
kers.

5 on secure cryptosystems.

/ algorithms for the users.

/ Implementations
al hardware: e.g.,
are for popular CPUs.

6. Study side-channel attacks,
fault attacks, etc.

7. Focus on secure, reliable
implementations.

8. Focus on implementations
meeting performance
requirements.

9. Integrate securely into
real-world applications.

Getting all this right takes time:
e.g., elliptic-curve cryptography
(ECC) entered stage 1 in 1985.

What's 1

Case stu
famous |

2006 Sil
and CVI
studied -
both as

problem
pure anc
physics

Best SV
by 2000
almost ¢



search 6. Study side-channel attacks, What's the best a

c design fault attacks, etc. Case study: SVP
yment: (. Focus on secure, reliable famous lattice pro
f implementations. 5006 Silverman:
8. Focus on implementations and CVP, have be

ns for the meeting performance studied for more t
requirements. both as intrinsic n

e cryptosystems. 9. Integrate securely into problems and for :

L. pure and applied r
real-world applications. |
ns for the users. phys|cs and cryptc

. Getting all this right takes time:
ntations

. Best SVP algorith
e.g., elliptic-curve cryptography

e e.g., - O
© (ECC) entered stage 1 in 1985. by 2000: time 2

pular CPUs. almost all dimensi




stems.

USErS.

6. Study side-channel attacks,
fault attacks, etc.

7. Focus on secure, reliable
implementations.

8. Focus on implementations
meeting performance
requirements.

9. Integrate securely into
real-world applications.

Getting all this right takes time:

e.g., elliptic-curve cryptography
(ECC) entered stage 1 in 1985.

What's the best attack algo

Case study: SVP, the most
famous lattice problem.

2006 Silverman: “Lattices, !
and CVP, have been intensn
studied for more than 100 vy
both as intrinsic mathematic

problems and for applicatior

pure and applied mathemati
physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O0(Nlog N) £,
almost all dimension-N latti



6. Study side-channel attacks,
fault attacks, etc.

7. Focus on secure, reliable
implementations.

8. Focus on implementations
meeting performance

requirements.

9. Integrate securely into
real-world applications.

Getting all this right takes time:

e.g., elliptic-curve cryptography
(ECC) entered stage 1 in 1985.

What's the best attack algorithm?

Case study: SVP, t
famous lattice prob

ne Most

em.

2006 Silverman: “Lattices, SVP
and CVP, have been intensively

studied for more than 100 years,

bot
pro

pure and applied mat

vlems and for app

N as intrinsic mathematical

ications In

nematics,

physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O(Nlog N) fo
almost all dimension-N lattices.



/ side-channel attacks,
attacks, etc.

5 on secure, reliable
mentations.

5 on Implementations
ing performance
rements.

rate securely into
vorld applications.

all this right takes time:

otic-curve cryptography
ntered stage 1 in 198b.

What's the best attack algorithm?

Case study: SVP, t
famous lattice prob

ne Most

cm.

2006 Silverman: “Lattices, SVP
and CVP, have been intensively

studied for more than 100 years,

bot
pro

pure and applied mat

olems and for app

N as intrinsic mathematical

ications In

nematics,

physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O(Nlog N) £o
almost all dimension-/ lattices.

Best SV
today: -

Approx
believed
0.415: ~
0.415: ~



1nel attacks, What's the best attack algorithm? Best SVP algorith

. 50(N)
tc. Case study: SVP, the most today: 2 |
e, reliable famous lattice problem. Approx ¢ for some
> 2006 Silverman: ‘“Lattices, SVP l(;ezlllle;/ed2(’§;8ta\ll<e i
mentations and CVP, have been intensively 0'415' 5010 \/lg.uy_
nance studied for more than 100 years, T e

both as intrinsic mathematical

. roblems and for applications in
ely Into P PP

. pure and applied mathematics,
cations.

physics and cryptography.”
ht takes time:
cryptography
ge 1 in 1985.

Best SVP algorithms known
by 2000: time 2O(Nlog N) fo
almost all dimension-N lattices.




S,

S

ime:

phy

What's the best attack algorithm?

Case study: SVP, t
famous lattice prob

ne Most

cm.

2006 Silverman: ‘“Lattices, SVP
and CVP, have been intensively

studied for more than 100 years,

bot
pro

pure and applied mat

olems and for app

N as intrinsic mathematical

ications In

nematics,

physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O(Nlog N) fo
almost all dimension-/ lattices.

Best SVP algorithms known
today: 20(N)

Approx ¢ for some algorithn
believed to take time 2(ctol
0.415: 2008 Nguyen—Vidick
0.415: 2010 Micciancio—Vol




What's the best attack algorithm?

Case study: SVP, t
famous lattice prob

ne Most

em.

2006 Silverman: “Lattices, SVP
and CVP, have been intensively

studied for more than 100 years,

bot

pro

pure and applied mat

vlems and for app

N as intrinsic mathematical

ications In

nematics,

physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O(Nlog N) fo
almost all dimension-N lattices.

Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cTo(1)N.
0.415: 2008 Nguyen—Vidick.
0.415: 2010 Micciancio—Voulgaris.




What's the best attack algorithm?

Case study: SVP, t
famous lattice prob

ne Most

em.

2006 Silverman: “Lattices, SVP
and CVP, have been intensively

studied for more than 100 years,

bot

pro

pure and applied mat

vlems and for app

N as intrinsic mathematical

ications In

nematics,

physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O(Nlog N) fo
almost all dimension-N lattices.

Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cto(1))N.
0.415: 2008 Nguyen—Vidick.
0.415: 2010 Micciancio—Voulgaris.
0.384: 2011 Wang—Liu—-Tian-Bi.




What's the best attack algorithm?

Case study: SVP, t
famous lattice prob

ne Most

em.

2006 Silverman: “Lattices, SVP
and CVP, have been intensively

studied for more than 100 years,

bot
pro

pure and applied mat

vlems and for app

N as intrinsic mathematical

ications In

nematics,

physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O(Nlog N) fo
almost all dimension-N lattices.

Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(c¢to(1))N.

0.415
0.415
0.334
0.373

. 2008 Nguyen—Vidick.
. 2010 Micciancio—Voulgaris.
. 2011 Wang—Liu—Tian-Bi.
. 2013 Zhang—Pan—Hu.




What's the best attack algorithm?

Case study: SVP, t
famous lattice prob

ne Most

em.

2006 Silverman: “Lattices, SVP
and CVP, have been intensively

studied for more than 100 years,

bot
pro

pure and applied mat

vlems and for app

N as intrinsic mathematical

ications In

nematics,

physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O(Nlog N) fo
almost all dimension-N lattices.

Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(c¢to(1))N.

0.415:
0.415:
0.384:
0.378:
0.337:

2008 Nguyen—Vidick.
2010 Micciancio—Voulgaris.
2011 Wang—Liu—Tian—Bi.
2013 Zhang—Pan—Hu.
2014 Laarhoven.




What's the best attack algorithm?

Case study: SVP, t
famous lattice prob

ne Most

em.

2006 Silverman: “Lattices, SVP
and CVP, have been intensively

studied for more than 100 years,

bot
pro

pure and applied mat

vlems and for app

N as intrinsic mathematical

ications In

nematics,

physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O(Nlog N) fo
almost all dimension-N lattices.

Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(c¢to(1))N.

0.415:
0.415:
0.384:
0.378:
0.337:
0.298:
0.292:

2008 Nguyen—Vidick.
2010 Micciancio—Voulgaris.
2011 Wang—Liu—Tian—Bi.
2013 Zhang—Pan—Hu.
2014 Laarhoven.

2015 Laarhoven—de Weger.
2015 Becker—Ducas—
Gama-Laarhoven.




What's the best attack algorithm?

Case study: SVP, t
famous lattice prob

ne Most

em.

2006 Silverman: “Lattices, SVP
and CVP, have been intensively

studied for more than 100 years,

bot
pro

pure and applied mat

vlems and for app

N as intrinsic mathematical

ications In

nematics,

physics and cryptography.”

Best SVP algorithms known
by 2000: time 2O(Nlog N) fo
almost all dimension-N lattices.

Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(c¢to(1))N.

0.415:
0.415:
0.384:
0.378:
0.337:
0.298:
0.292:

2008 Nguyen—Vidick.
2010 Micciancio—Voulgaris.
2011 Wang—Liu—Tian—Bi.
2013 Zhang—Pan—Hu.
2014 Laarhoven.

2015 Laarhoven—de Weger.
2015 Becker—Ducas—
Gama-Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.



the best attack algorithm?

dy: SVP, the most
attice problem.

verman: ‘Lattices, SVP
?, have been intensively
for more than 100 years,
Intrinsic mathematical

s and for applications in

I applied mathematics,
and cryptography.”

P algorithms known

~O(Nlog N)

' time for

Il dimension-N lattices.

Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cto(1))N.

0.415:
0.415:
0.384:
0.378:
0.337:
0.298:
0.292:

2008 Nguyen—Vidick.

2010 Micciancio—Voulgaris.

2011 Wang—Liu—Tian—Bi.
2013 Zhang—Pan—Hu.
2014 Laarhoven.

2015 Laarhoven—de Weger.

2015 Becker—Ducas—
Gama—Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.

Code-ba

Some ps
against

1962 Pr.
1981 Or
1988 Le
1988 Le
1989 Kr
1989 St
1989 D
1990 Co
1990 val
1991 Du
1991 Co



ttack algorithm?

the most

blem.

Lattices, SVP
en Intensively
han 100 years,
1athematical

pplications In

nathematics,
graphy.”

ms known
Nlog N) £

on-/N lattices.

Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cto(1))N.

0.415:
0.415:
0.384:
0.378:
0.337:
0.298:
0.292:

2008 Nguyen—Vidick.

2010 Micciancio—Voulgaris.

2011 Wang—Liu—Tian—Bi.
2013 Zhang—Pan—Hu.
2014 Laarhoven.

2015 Laarhoven—de Weger.

2015 Becker—Ducas—
Gama-Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.

Code-based cryptc

Some papers stud
against 1978 McE

1962 Prange.
1981 Omura.
1988 Lee—Brickell.
1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.
1990 Coffey—Gooca
1990 van Tilburg.
1991 Dumer.
1991 Coffey—Gooca



rithm?

5VP
rely
ears,
-al

S 1IN

CES.

Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cto(1))N.

0.415:
0.415:
0.384:
0.378:
0.337:
0.298:
0.292:

2008 Nguyen—Vidick.

2010 Micciancio—Voulgaris.

2011 Wang—Liu—Tian—Bi.
2013 Zhang—Pan—Hu.
2014 Laarhoven.

2015 Laarhoven—de Weger.

2015 Becker—Ducas—
Gama—Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.

Code-based cryptography

Some papers studying attac
against 1978 McEliece syste

1962 Prange.

1981 Omura.

1988 Lee—Brickell.
1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.
1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farr



Best SVP algorithms known
today: 2O(N)

Approx ¢ for some algorithms
believed to take time 2(cto(1))N.

0.415:
0.415:
0.384:
0.378:
0.337:
0.2938:
0.292:

2008 Nguyen—Vidick.

2010 Micciancio—Voulgaris.

2011 Wang—Liu—Tian—Bi.
2013 Zhang—Pan—Hu.
2014 Laarhoven.

2015 Laarhoven—de Weger.

2015 Becker—Ducas—
Gama-Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.

Code-based cryptography

Some papers studying attacks
against 1978 McEliece system:

1962 Prange.

1981 Omura.

1988 Lee—Brickell.
1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.
1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.



P algorithms known

ON),

c for some algorithms
to take time 2(cto(1))N.
008 Nguyen—Vidick.

010 Micciancio—Voulgaris.

011 Wang—Liu—-Tian-Bi.
013 Zhang—Pan—Hu.

014 Laar
015 Laar

noven.

noven—de Weger.

015 Becker—Ducas—
sama—Laarhoven.

rypto: more attack

even less understanding.

Code-based cryptography

Some papers studying attacks

against 1978 McEliece system:

1962 Prange.

1981 Omura.

1988 Lee—Brickell.
1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.
1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Ch
1993 Ch
1994 val
1994 Ca
1998 Ca
1998 Ca
2008 Be
2009 Be

val
2009 Be
2009 Fir
2010 Be
2011 M:
2011 Be
2012 Be




ms known

 algorithms
me 2(c+o(N.

en—Vidick.

ancio—Voulgaris.

—Liu—T1an—Bi.
oc—Pan—Hu.

IOVEN.

oven—de Weger.

sr—Ducas—
rhoven.

re attack
understanding.

Code-based cryptography

Some papers studying attacks

against 1978 McEliece system:

1962 Prange.

1981 Omura.

1988 Lee—Brickell.
1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.
1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne-C
1993 Chabaud.
1994 van Tilburg.
1994 Canteaut—Ct
1998 Canteaut—Ct
1998 Canteaut—Se
2008 Bernstein—Lz:
2009 Bernstein—Lz:
van Tilborg.
2009 Bernstein (p
2009 Finiasz—Senc
2010 Bernstein—Lz
2011 May—Meurer
2011 Becker—Coro
2012 Becker—Joux




Ilgaris.

1—Bi.

Neger.

\ding.

Code-based cryptography

Some papers studying attacks

against 1978 McEliece system:

1962 Prange.

1981 Omura.

1988 Lee—Brickell.
1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.
1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Pete

2009 Bernstein—Lange—Pete
van Tilborg.

2009 Bernstein (post-quantl
2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Pete
2011 May—Meurer—Thomae.
2011 Becker—Coron—Joux.
2012 Becker—Joux—May—Me



Code-based cryptography

Some papers studying attacks

against 1978 McEliece system:

1962 Prange.

1981 Omura.

1988 Lee—Brickell.
1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.
1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.
1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.



sed cryptography

pers studying attacks

1978 McEliece system:

ange.
nura.
e—Brickell.

on.

ouk.

2rn.

mer.
ffey—Goodman.
1 Tilburg.

MeEr.

ffey—Goodman—Farrell.

1993 Chabanne—Courteau.
1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.
2011 May—Meurer—Thomae.
2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Be
M e
2015 Mz



graphy

ying attacks

liece system:

'man.

'man—Farrell.

1993 Chabanne—Courteau.
1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.
2011 May—Meurer—Thomae.
2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Je
Meurer (pos
2015 May—Ozerov



ks

el].

1993 Chabanne—Courteau.
1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.
2011 May—Meurer—Thomae.
2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jeffery—Lang
Meurer (post-quantum

2015 May—Ozerov.



1993 Chabanne—Courteau.
1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Peters.
2009 Bernstein—Lange—Peters—

van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.
2011 May—Meurer—Thomae.
2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jeffery—Lange—
Meurer (post-quantum).
2015 May—Ozerov.



1993 Chabanne—Courteau.
1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Peters.
2009 Bernstein—Lange—Peters—

van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.
2011 May—Meurer—Thomae.
2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jeffery—Lange—
Meurer (post-quantum).
2015 May—Ozerov.

Key size needed for 2? security
vs. best attack known in 1978:
(Co + o(1))b?(Ig b)?.

Here Cy ~ 0.7418860694.



1993 Chabanne—Courteau.
1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.
2011 May—Meurer—Thomae.
2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jeffery—Lange—
Meurer (post-quantum).
2015 May—Ozerov.

Key size needed for 2? security
vs. best attack known in 1978:
(Co + o(1))b?(Ig b)?.

Here Cy ~ 0.7418860694.

Key size needed for 2° security
vs. best pre-quantum attack
known today:

(Co + o(1))b?(Ig b)*.



1993 Chabanne—Courteau.
1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz—Sendrier.

2010 Bernstein—Lange—Peters.
2011 May—Meurer—Thomae.
2011 Becker—Coron—Joux.

2012 Becker—Joux—May—Meurer.

2013 Bernstein—Jeffery—Lange—
Meurer (post-quantum).

2015 May—Ozerov.

Key size needed for 2? security
vs. best attack known in 1978:
(Co + o(1))b?(Ig b)?.

Here Cy ~ 0.7418860694.

Key size needed for 2° security
vs. best pre-quantum attack
known today:

(Co + o(1))b?(Ig b)*.

Key size needed for 2P security
vs. best quantum attack known

today: (4Co + o(1))b?(Ig b)?.




abanne—Courteau.

abaud.
1 Tilburg.
nteaut—Chabanne.

nteaut—Chabaud.
nteaut—Sendrier.
rnstein—Lange—Peters.
rnstein—Lange—Peters—
1 Tilborg.

rnstein (post-quantum).

\iasz—Sendrier.
rnstein—Lange—Peters.
yy—Meurer—Thomae.
cker—Coron—Joux.

cker—Joux—May—Meurer.

2013 Bernstein—Jeffery—Lange—

Meurer (post-quantum).
2015 May—Ozerov.

Key size needed for 2? security
vs. best attack known in 1978:
(Co + o(1))b?(Ig b)?.

Here Cp ~ 0.7418860694.

Key size needed for 2° security
vs. best pre-quantum attack
known today:

(Co + o(1))b?(Ig b)*.

Key size needed for 2P security
vs. best quantum attack known

today: (4Co + o(1))b?(Ig b)?.

What is

Quantur
stores m
can effic
"Hadam

“control

Making
Is the n
comput

Combine
to comp
... 'Sin
... "She

. Grec



ourteaud.

1dDaNNeE.

1abaud.
ndrier.
inge—Peters.
inge—Peters—

ost-quantum).

rier.
nge—Peters.
—Thomae.

n—Joux.

—May—Meurer.

2013 Bernstein—Jeffery—Lange—

Meurer (post-quantum).
2015 May—Ozerov.

Key size needed for 2? security
vs. best attack known in 1978:
(Co + o(1))b?(Ig b)?.

Here Cp ~ 0.7418860694.

Key size needed for 2° security
vs. best pre-quantum attack
known today:

(Co + o(1))b?(Ig b)*.

Key size needed for 2P security
vs. best quantum attack known

today: (4Co + o(1))b?(Ig b)?.

What is a quantur

Quantum compute
stores many “qubi

can efficiently per

"Hadamard gate”
“controlled NOT

Making these ins
iIs the main goal
computer engine

Combine these ins
to compute “Toffc
. “Simon’s algo
. “Shor’s algorit
. "Grover's algo



S.
(S—

im).

S.

urer.

2013 Bernstein—Jeffery—Lange—

Meurer (post-quantum).
2015 May—Ozerov.

Key size needed for 2? security
vs. best attack known in 1978:
(Co + o(1))b?(Ig b)?.

Here Cy ~ 0.7418860694.

Key size needed for 2° security
vs. best pre-quantum attack
known today:

(Co + o(1))b?(Ig b)~.

Key size needed for 2P security
vs. best quantum attack known

today: (4Co + o(1))b?(Ig b)?.

What is a quantum comput:

Quantum computer type 1 (
stores many “qubits”;

can efficiently perform
"Hadamard gate”, "I gate’
“controlled NOT gate”.

Making these instructions
is the main goal of quantt
computer engineering.

Combine these instructions
to compute “Toffoli gate”;

. “Simon’s algorithm”;

. “Shor’s algorithm”;

. "Grover's algorithm”™; et



2013 Bernstein—Jeffery—Lange—

Meurer (post-quantum).
2015 May—Ozerov.

Key size needed for 2? security
vs. best attack known in 1978:
(Co + o(1))b?(Ig b)?.

Here Cy ~ 0.7418860694.

Key size needed for 2° security
vs. best pre-quantum attack
known today:

(Co + o(1))b?(Ig b)*.

Key size needed for 2P security
vs. best quantum attack known

today: (4Co + o(1))b?(Ig b)?.

What is a quantum computer?

Quantum computer type 1 (QC1):
stores many “qubits”;

can efficiently perform
"Hadamard gate’, “T gate’,
“controlled NOT gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions
to compute “Toffoli gate”;

. “Simon’s algorithm”;

. “Shor’s algorithm”;

. "Grover's algorithm™; etc.



rnstein—Jeffery—Lange—
urer (post-quantum).
y—Ozerov.

needed for 2? security
attack known in 1978:
1))b°(Ig b)*.

~ (0.7418860694.

needed for 2P security
pre-quantum attack
oday:

1))b*(Ig b)*.

needed for 2? security
quantum attack known

4Co + o(1))b%(Ig b)?.

What is a quantum computer?

Quantum computer type 1 (QC1):

stores many “qubits’;

can efficiently perform
"Hadamard gate”, "I gate’,
“controlled NOT gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions
to compute “Toffoli gate”;

. “Simon’s algorithm”;

. “Shor’s algorithm”;

. "Grover's algorithm™; etc.

Quantur
stores a
efficientl
laws of ¢
with as

This i1s t
quantun
by 1982
physics



ffery—Lange—
t-quantum).

r 2P security
own in 1978:
).

560694

r 2P security
um attack

).

r 2P security
attack known

))b?(Ig b)?.

What is a quantum computer?

Quantum computer type 1 (QC1):

stores many “qubits’;

can efficiently perform
"Hadamard gate”, "I gate’,
“controlled NOT gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions
to compute “Toffoli gate”;

. “Simon’s algorithm”;

. “Shor’s algorithm”;

. "Grover's algorithm™; etc.

Quantum compute
stores a simulated
efficiently simulate
laws of quantum ¢
with as much acclt

This Is the origina
quantum compute

by 1982 Feynman
physics with comg



What is a quantum computer?

Quantum computer type 1 (QC1):

stores many “qubits’;

can efficiently perform
"Hadamard gate”, "I gate’,
“controlled NOT gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”;
“Grover's algorithm™; etc.

Quantum computer type 2 (
stores a simulated universe:
efficiently simulates the
laws of quantum physics
with as much accuracy as di

This Is the original concept
quantum computers introdu
by 1982 Feynman “Simulati
physics with computers’ .



What is a quantum computer?

Quantum computer type 1 (QC1):

stores many “qubits’;

can efficiently perform
"Hadamard gate”, "I gate’,
“controlled NOT gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”;
“Grover's algorithm™; etc.

Quantum computer type 2 (QC2):
stores a simulated universe;
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .



What is a quantum computer?

Quantum computer type 1 (QC1):

stores many “qubits’;

can efficiently perform
"Hadamard gate”, "I gate’,
“controlled NOT gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions
to compute “Toffoli gate”;

. “Simon’s algorithm”;

. “Shor’s algorithm”;

. "Grover's algorithm™; etc.

Quantum computer type 2 (QC2):
stores a simulated universe;
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .



a quantum computer?

n computer type 1 (QC1):

any ‘qubits’;

lently perform
ard gate”’, "I gate’,
led NOT gate”.

these instructions work
1ain goal of quantum-
er engineering.

> these Instructions
ute “Toffoli gate”;
1on’s algorithm™;

or's algorithm™ ;

ver's algorithm™; etc.

Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantur
efficientl
that any
can com



n computer?

r type 1 (QC1):

tructions work
of quantum-
ering.

tructions
|l gate™’;
rithm'

hm" :

rithm' : etc.

Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum compute
efficiently comput:
that any physical «
can compute effici



g

QC1):

Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 3 (
efficiently computes anythin
that any physical computer
can compute efficiently.



Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 3 (QC3):
efficiently computes anything

that any physical computer

can compute efficiently.



Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 3 (QC3):
efficiently computes anything
that any physical computer
can compute efficiently.

General belief: any QC2 is a QCS3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.



Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 3 (QC3):
efficiently computes anything
that any physical computer
can compute efficiently.

General belief: any QC2 is a QCS3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.



