
Cryptographic readiness levels,

and the impact

of quantum computers

Daniel J. Bernstein

• How is crypto developed?

• How confident are we

that crypto is secure?

• How do we know what a

quantum computer will do?

Many stages of research

from cryptographic design

to real-world deployment:

1. Explore space of

cryptosystems.

2. Study algorithms for the

attackers.

3. Focus on secure cryptosystems.



Cryptographic readiness levels,

and the impact

of quantum computers

Daniel J. Bernstein

• How is crypto developed?

• How confident are we

that crypto is secure?

• How do we know what a

quantum computer will do?

Many stages of research

from cryptographic design

to real-world deployment:

1. Explore space of

cryptosystems.

2. Study algorithms for the

attackers.

3. Focus on secure cryptosystems.

4. Study algorithms for the users.

5. Study implementations

on real hardware: e.g.,

software for popular CPUs.



Cryptographic readiness levels,

and the impact

of quantum computers

Daniel J. Bernstein

• How is crypto developed?

• How confident are we

that crypto is secure?

• How do we know what a

quantum computer will do?

Many stages of research

from cryptographic design

to real-world deployment:

1. Explore space of

cryptosystems.

2. Study algorithms for the

attackers.

3. Focus on secure cryptosystems.

4. Study algorithms for the users.

5. Study implementations

on real hardware: e.g.,

software for popular CPUs.

6. Study side-channel attacks,

fault attacks, etc.

7. Focus on secure, reliable

implementations.

8. Focus on implementations

meeting performance

requirements.



Cryptographic readiness levels,

and the impact

of quantum computers

Daniel J. Bernstein

• How is crypto developed?

• How confident are we

that crypto is secure?

• How do we know what a

quantum computer will do?

Many stages of research

from cryptographic design

to real-world deployment:

1. Explore space of

cryptosystems.

2. Study algorithms for the

attackers.

3. Focus on secure cryptosystems.

4. Study algorithms for the users.

5. Study implementations

on real hardware: e.g.,

software for popular CPUs.

6. Study side-channel attacks,

fault attacks, etc.

7. Focus on secure, reliable

implementations.

8. Focus on implementations

meeting performance

requirements.



Cryptographic readiness levels,

and the impact

of quantum computers

Daniel J. Bernstein

• How is crypto developed?

• How confident are we

that crypto is secure?

• How do we know what a

quantum computer will do?

Many stages of research

from cryptographic design

to real-world deployment:

1. Explore space of

cryptosystems.

2. Study algorithms for the

attackers.

3. Focus on secure cryptosystems.

4. Study algorithms for the users.

5. Study implementations

on real hardware: e.g.,

software for popular CPUs.

6. Study side-channel attacks,

fault attacks, etc.

7. Focus on secure, reliable

implementations.

8. Focus on implementations

meeting performance

requirements.



Many stages of research

from cryptographic design

to real-world deployment:

1. Explore space of

cryptosystems.

2. Study algorithms for the

attackers.

3. Focus on secure cryptosystems.

4. Study algorithms for the users.

5. Study implementations

on real hardware: e.g.,

software for popular CPUs.

6. Study side-channel attacks,

fault attacks, etc.

7. Focus on secure, reliable

implementations.

8. Focus on implementations

meeting performance

requirements.



Many stages of research

from cryptographic design

to real-world deployment:

1. Explore space of

cryptosystems.

2. Study algorithms for the

attackers.

3. Focus on secure cryptosystems.

4. Study algorithms for the users.

5. Study implementations

on real hardware: e.g.,

software for popular CPUs.

6. Study side-channel attacks,

fault attacks, etc.

7. Focus on secure, reliable

implementations.

8. Focus on implementations

meeting performance

requirements.

9. Integrate securely into

real-world applications.



Many stages of research

from cryptographic design

to real-world deployment:

1. Explore space of

cryptosystems.

2. Study algorithms for the

attackers.

3. Focus on secure cryptosystems.

4. Study algorithms for the users.

5. Study implementations

on real hardware: e.g.,

software for popular CPUs.

6. Study side-channel attacks,

fault attacks, etc.

7. Focus on secure, reliable

implementations.

8. Focus on implementations

meeting performance

requirements.

9. Integrate securely into

real-world applications.

Getting all this right takes time:

e.g., elliptic-curve cryptography

(ECC) entered stage 1 in 1985.



Many stages of research

from cryptographic design

to real-world deployment:

1. Explore space of

cryptosystems.

2. Study algorithms for the

attackers.

3. Focus on secure cryptosystems.

4. Study algorithms for the users.

5. Study implementations

on real hardware: e.g.,

software for popular CPUs.

6. Study side-channel attacks,

fault attacks, etc.

7. Focus on secure, reliable

implementations.

8. Focus on implementations

meeting performance

requirements.

9. Integrate securely into

real-world applications.

Getting all this right takes time:

e.g., elliptic-curve cryptography

(ECC) entered stage 1 in 1985.

What’s the best attack algorithm?

Case study: SVP, the most

famous lattice problem.

2006 Silverman: “Lattices, SVP

and CVP, have been intensively

studied for more than 100 years,

both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,

physics and cryptography.”

Best SVP algorithms known

by 2000: time 2Θ(N logN) for

almost all dimension-N lattices.



Many stages of research

from cryptographic design

to real-world deployment:

1. Explore space of

cryptosystems.

2. Study algorithms for the

attackers.

3. Focus on secure cryptosystems.

4. Study algorithms for the users.

5. Study implementations

on real hardware: e.g.,

software for popular CPUs.

6. Study side-channel attacks,

fault attacks, etc.

7. Focus on secure, reliable

implementations.

8. Focus on implementations

meeting performance

requirements.

9. Integrate securely into

real-world applications.

Getting all this right takes time:

e.g., elliptic-curve cryptography

(ECC) entered stage 1 in 1985.

What’s the best attack algorithm?

Case study: SVP, the most

famous lattice problem.

2006 Silverman: “Lattices, SVP

and CVP, have been intensively

studied for more than 100 years,

both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,

physics and cryptography.”

Best SVP algorithms known

by 2000: time 2Θ(N logN) for

almost all dimension-N lattices.



Many stages of research

from cryptographic design

to real-world deployment:

1. Explore space of

cryptosystems.

2. Study algorithms for the

attackers.

3. Focus on secure cryptosystems.

4. Study algorithms for the users.

5. Study implementations

on real hardware: e.g.,

software for popular CPUs.

6. Study side-channel attacks,

fault attacks, etc.

7. Focus on secure, reliable

implementations.

8. Focus on implementations

meeting performance

requirements.

9. Integrate securely into

real-world applications.

Getting all this right takes time:

e.g., elliptic-curve cryptography

(ECC) entered stage 1 in 1985.

What’s the best attack algorithm?

Case study: SVP, the most

famous lattice problem.

2006 Silverman: “Lattices, SVP

and CVP, have been intensively

studied for more than 100 years,

both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,

physics and cryptography.”

Best SVP algorithms known

by 2000: time 2Θ(N logN) for

almost all dimension-N lattices.



6. Study side-channel attacks,

fault attacks, etc.

7. Focus on secure, reliable

implementations.

8. Focus on implementations

meeting performance

requirements.

9. Integrate securely into

real-world applications.

Getting all this right takes time:

e.g., elliptic-curve cryptography

(ECC) entered stage 1 in 1985.

What’s the best attack algorithm?

Case study: SVP, the most

famous lattice problem.

2006 Silverman: “Lattices, SVP

and CVP, have been intensively

studied for more than 100 years,

both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,

physics and cryptography.”

Best SVP algorithms known

by 2000: time 2Θ(N logN) for

almost all dimension-N lattices.



6. Study side-channel attacks,

fault attacks, etc.

7. Focus on secure, reliable

implementations.

8. Focus on implementations

meeting performance

requirements.

9. Integrate securely into

real-world applications.

Getting all this right takes time:

e.g., elliptic-curve cryptography

(ECC) entered stage 1 in 1985.

What’s the best attack algorithm?

Case study: SVP, the most

famous lattice problem.

2006 Silverman: “Lattices, SVP

and CVP, have been intensively

studied for more than 100 years,

both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,

physics and cryptography.”

Best SVP algorithms known

by 2000: time 2Θ(N logN) for

almost all dimension-N lattices.

Best SVP algorithms known

today: 2Θ(N).

Approx c for some algorithms

believed to take time 2(c+o(1))N :

0:415: 2008 Nguyen–Vidick.

0:415: 2010 Micciancio–Voulgaris.



6. Study side-channel attacks,

fault attacks, etc.

7. Focus on secure, reliable

implementations.

8. Focus on implementations

meeting performance

requirements.

9. Integrate securely into

real-world applications.

Getting all this right takes time:

e.g., elliptic-curve cryptography

(ECC) entered stage 1 in 1985.

What’s the best attack algorithm?

Case study: SVP, the most

famous lattice problem.

2006 Silverman: “Lattices, SVP

and CVP, have been intensively

studied for more than 100 years,

both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,

physics and cryptography.”

Best SVP algorithms known

by 2000: time 2Θ(N logN) for

almost all dimension-N lattices.

Best SVP algorithms known

today: 2Θ(N).

Approx c for some algorithms

believed to take time 2(c+o(1))N :

0:415: 2008 Nguyen–Vidick.

0:415: 2010 Micciancio–Voulgaris.



6. Study side-channel attacks,

fault attacks, etc.

7. Focus on secure, reliable

implementations.

8. Focus on implementations

meeting performance

requirements.

9. Integrate securely into

real-world applications.

Getting all this right takes time:

e.g., elliptic-curve cryptography

(ECC) entered stage 1 in 1985.

What’s the best attack algorithm?

Case study: SVP, the most

famous lattice problem.

2006 Silverman: “Lattices, SVP

and CVP, have been intensively

studied for more than 100 years,

both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,

physics and cryptography.”

Best SVP algorithms known

by 2000: time 2Θ(N logN) for

almost all dimension-N lattices.

Best SVP algorithms known

today: 2Θ(N).

Approx c for some algorithms

believed to take time 2(c+o(1))N :

0:415: 2008 Nguyen–Vidick.

0:415: 2010 Micciancio–Voulgaris.



What’s the best attack algorithm?

Case study: SVP, the most

famous lattice problem.

2006 Silverman: “Lattices, SVP

and CVP, have been intensively

studied for more than 100 years,

both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,

physics and cryptography.”

Best SVP algorithms known

by 2000: time 2Θ(N logN) for

almost all dimension-N lattices.

Best SVP algorithms known

today: 2Θ(N).

Approx c for some algorithms

believed to take time 2(c+o(1))N :

0:415: 2008 Nguyen–Vidick.

0:415: 2010 Micciancio–Voulgaris.



What’s the best attack algorithm?

Case study: SVP, the most

famous lattice problem.

2006 Silverman: “Lattices, SVP

and CVP, have been intensively

studied for more than 100 years,

both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,

physics and cryptography.”

Best SVP algorithms known

by 2000: time 2Θ(N logN) for

almost all dimension-N lattices.

Best SVP algorithms known

today: 2Θ(N).

Approx c for some algorithms

believed to take time 2(c+o(1))N :

0:415: 2008 Nguyen–Vidick.

0:415: 2010 Micciancio–Voulgaris.

0:384: 2011 Wang–Liu–Tian–Bi.



What’s the best attack algorithm?

Case study: SVP, the most

famous lattice problem.

2006 Silverman: “Lattices, SVP

and CVP, have been intensively

studied for more than 100 years,

both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,

physics and cryptography.”

Best SVP algorithms known

by 2000: time 2Θ(N logN) for

almost all dimension-N lattices.

Best SVP algorithms known

today: 2Θ(N).

Approx c for some algorithms

believed to take time 2(c+o(1))N :

0:415: 2008 Nguyen–Vidick.

0:415: 2010 Micciancio–Voulgaris.

0:384: 2011 Wang–Liu–Tian–Bi.

0:378: 2013 Zhang–Pan–Hu.



What’s the best attack algorithm?

Case study: SVP, the most

famous lattice problem.

2006 Silverman: “Lattices, SVP

and CVP, have been intensively

studied for more than 100 years,

both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,

physics and cryptography.”

Best SVP algorithms known

by 2000: time 2Θ(N logN) for

almost all dimension-N lattices.

Best SVP algorithms known

today: 2Θ(N).

Approx c for some algorithms

believed to take time 2(c+o(1))N :

0:415: 2008 Nguyen–Vidick.

0:415: 2010 Micciancio–Voulgaris.

0:384: 2011 Wang–Liu–Tian–Bi.

0:378: 2013 Zhang–Pan–Hu.

0:337: 2014 Laarhoven.



What’s the best attack algorithm?

Case study: SVP, the most

famous lattice problem.

2006 Silverman: “Lattices, SVP

and CVP, have been intensively

studied for more than 100 years,

both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,

physics and cryptography.”

Best SVP algorithms known

by 2000: time 2Θ(N logN) for

almost all dimension-N lattices.

Best SVP algorithms known

today: 2Θ(N).

Approx c for some algorithms

believed to take time 2(c+o(1))N :

0:415: 2008 Nguyen–Vidick.

0:415: 2010 Micciancio–Voulgaris.

0:384: 2011 Wang–Liu–Tian–Bi.

0:378: 2013 Zhang–Pan–Hu.

0:337: 2014 Laarhoven.

0:298: 2015 Laarhoven–de Weger.

0:292: 2015 Becker–Ducas–

Gama–Laarhoven.



What’s the best attack algorithm?

Case study: SVP, the most

famous lattice problem.

2006 Silverman: “Lattices, SVP

and CVP, have been intensively

studied for more than 100 years,

both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,

physics and cryptography.”

Best SVP algorithms known

by 2000: time 2Θ(N logN) for

almost all dimension-N lattices.

Best SVP algorithms known

today: 2Θ(N).

Approx c for some algorithms

believed to take time 2(c+o(1))N :

0:415: 2008 Nguyen–Vidick.

0:415: 2010 Micciancio–Voulgaris.

0:384: 2011 Wang–Liu–Tian–Bi.

0:378: 2013 Zhang–Pan–Hu.

0:337: 2014 Laarhoven.

0:298: 2015 Laarhoven–de Weger.

0:292: 2015 Becker–Ducas–

Gama–Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.



What’s the best attack algorithm?

Case study: SVP, the most

famous lattice problem.

2006 Silverman: “Lattices, SVP

and CVP, have been intensively

studied for more than 100 years,

both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,

physics and cryptography.”

Best SVP algorithms known

by 2000: time 2Θ(N logN) for

almost all dimension-N lattices.

Best SVP algorithms known

today: 2Θ(N).

Approx c for some algorithms

believed to take time 2(c+o(1))N :

0:415: 2008 Nguyen–Vidick.

0:415: 2010 Micciancio–Voulgaris.

0:384: 2011 Wang–Liu–Tian–Bi.

0:378: 2013 Zhang–Pan–Hu.

0:337: 2014 Laarhoven.

0:298: 2015 Laarhoven–de Weger.

0:292: 2015 Becker–Ducas–

Gama–Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.

Code-based cryptography

Some papers studying attacks

against 1978 McEliece system:

1962 Prange.

1981 Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.



What’s the best attack algorithm?

Case study: SVP, the most

famous lattice problem.

2006 Silverman: “Lattices, SVP

and CVP, have been intensively

studied for more than 100 years,

both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,

physics and cryptography.”

Best SVP algorithms known

by 2000: time 2Θ(N logN) for

almost all dimension-N lattices.

Best SVP algorithms known

today: 2Θ(N).

Approx c for some algorithms

believed to take time 2(c+o(1))N :

0:415: 2008 Nguyen–Vidick.

0:415: 2010 Micciancio–Voulgaris.

0:384: 2011 Wang–Liu–Tian–Bi.

0:378: 2013 Zhang–Pan–Hu.

0:337: 2014 Laarhoven.

0:298: 2015 Laarhoven–de Weger.

0:292: 2015 Becker–Ducas–

Gama–Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.

Code-based cryptography

Some papers studying attacks

against 1978 McEliece system:

1962 Prange.

1981 Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.



What’s the best attack algorithm?

Case study: SVP, the most

famous lattice problem.

2006 Silverman: “Lattices, SVP

and CVP, have been intensively

studied for more than 100 years,

both as intrinsic mathematical

problems and for applications in

pure and applied mathematics,

physics and cryptography.”

Best SVP algorithms known

by 2000: time 2Θ(N logN) for

almost all dimension-N lattices.

Best SVP algorithms known

today: 2Θ(N).

Approx c for some algorithms

believed to take time 2(c+o(1))N :

0:415: 2008 Nguyen–Vidick.

0:415: 2010 Micciancio–Voulgaris.

0:384: 2011 Wang–Liu–Tian–Bi.

0:378: 2013 Zhang–Pan–Hu.

0:337: 2014 Laarhoven.

0:298: 2015 Laarhoven–de Weger.

0:292: 2015 Becker–Ducas–

Gama–Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.

Code-based cryptography

Some papers studying attacks

against 1978 McEliece system:

1962 Prange.

1981 Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.



Best SVP algorithms known

today: 2Θ(N).

Approx c for some algorithms

believed to take time 2(c+o(1))N :

0:415: 2008 Nguyen–Vidick.

0:415: 2010 Micciancio–Voulgaris.

0:384: 2011 Wang–Liu–Tian–Bi.

0:378: 2013 Zhang–Pan–Hu.

0:337: 2014 Laarhoven.

0:298: 2015 Laarhoven–de Weger.

0:292: 2015 Becker–Ducas–

Gama–Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.

Code-based cryptography

Some papers studying attacks

against 1978 McEliece system:

1962 Prange.

1981 Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.



Best SVP algorithms known

today: 2Θ(N).

Approx c for some algorithms

believed to take time 2(c+o(1))N :

0:415: 2008 Nguyen–Vidick.

0:415: 2010 Micciancio–Voulgaris.

0:384: 2011 Wang–Liu–Tian–Bi.

0:378: 2013 Zhang–Pan–Hu.

0:337: 2014 Laarhoven.

0:298: 2015 Laarhoven–de Weger.

0:292: 2015 Becker–Ducas–

Gama–Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.

Code-based cryptography

Some papers studying attacks

against 1978 McEliece system:

1962 Prange.

1981 Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.



Best SVP algorithms known

today: 2Θ(N).

Approx c for some algorithms

believed to take time 2(c+o(1))N :

0:415: 2008 Nguyen–Vidick.

0:415: 2010 Micciancio–Voulgaris.

0:384: 2011 Wang–Liu–Tian–Bi.

0:378: 2013 Zhang–Pan–Hu.

0:337: 2014 Laarhoven.

0:298: 2015 Laarhoven–de Weger.

0:292: 2015 Becker–Ducas–

Gama–Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.

Code-based cryptography

Some papers studying attacks

against 1978 McEliece system:

1962 Prange.

1981 Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.



Best SVP algorithms known

today: 2Θ(N).

Approx c for some algorithms

believed to take time 2(c+o(1))N :

0:415: 2008 Nguyen–Vidick.

0:415: 2010 Micciancio–Voulgaris.

0:384: 2011 Wang–Liu–Tian–Bi.

0:378: 2013 Zhang–Pan–Hu.

0:337: 2014 Laarhoven.

0:298: 2015 Laarhoven–de Weger.

0:292: 2015 Becker–Ducas–

Gama–Laarhoven.

Lattice crypto: more attack

avenues; even less understanding.

Code-based cryptography

Some papers studying attacks

against 1978 McEliece system:

1962 Prange.

1981 Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.



Code-based cryptography

Some papers studying attacks

against 1978 McEliece system:

1962 Prange.

1981 Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.



Code-based cryptography

Some papers studying attacks

against 1978 McEliece system:

1962 Prange.

1981 Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

2015 May–Ozerov.



Code-based cryptography

Some papers studying attacks

against 1978 McEliece system:

1962 Prange.

1981 Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

2015 May–Ozerov.



Code-based cryptography

Some papers studying attacks

against 1978 McEliece system:

1962 Prange.

1981 Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

2015 May–Ozerov.



1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

2015 May–Ozerov.



1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

2015 May–Ozerov.

Key size needed for 2b security

vs. best attack known in 1978:

(C0 + o(1))b2(lg b)2.

Here C0 ≈ 0:7418860694.



1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

2015 May–Ozerov.

Key size needed for 2b security

vs. best attack known in 1978:

(C0 + o(1))b2(lg b)2.

Here C0 ≈ 0:7418860694.

Key size needed for 2b security

vs. best pre-quantum attack

known today:

(C0 + o(1))b2(lg b)2.



1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

2015 May–Ozerov.

Key size needed for 2b security

vs. best attack known in 1978:

(C0 + o(1))b2(lg b)2.

Here C0 ≈ 0:7418860694.

Key size needed for 2b security

vs. best pre-quantum attack

known today:

(C0 + o(1))b2(lg b)2.

Key size needed for 2b security

vs. best quantum attack known

today: (4C0 + o(1))b2(lg b)2.



1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

2015 May–Ozerov.

Key size needed for 2b security

vs. best attack known in 1978:

(C0 + o(1))b2(lg b)2.

Here C0 ≈ 0:7418860694.

Key size needed for 2b security

vs. best pre-quantum attack

known today:

(C0 + o(1))b2(lg b)2.

Key size needed for 2b security

vs. best quantum attack known

today: (4C0 + o(1))b2(lg b)2.

What is a quantum computer?

Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform

“Hadamard gate”, “T gate”,

“controlled NOT gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”;

: : : “Grover’s algorithm”; etc.



1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

2015 May–Ozerov.

Key size needed for 2b security

vs. best attack known in 1978:

(C0 + o(1))b2(lg b)2.

Here C0 ≈ 0:7418860694.

Key size needed for 2b security

vs. best pre-quantum attack

known today:

(C0 + o(1))b2(lg b)2.

Key size needed for 2b security

vs. best quantum attack known

today: (4C0 + o(1))b2(lg b)2.

What is a quantum computer?

Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform

“Hadamard gate”, “T gate”,

“controlled NOT gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”;

: : : “Grover’s algorithm”; etc.



1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Bernstein (post-quantum).

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

2015 May–Ozerov.

Key size needed for 2b security

vs. best attack known in 1978:

(C0 + o(1))b2(lg b)2.

Here C0 ≈ 0:7418860694.

Key size needed for 2b security

vs. best pre-quantum attack

known today:

(C0 + o(1))b2(lg b)2.

Key size needed for 2b security

vs. best quantum attack known

today: (4C0 + o(1))b2(lg b)2.

What is a quantum computer?

Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform

“Hadamard gate”, “T gate”,

“controlled NOT gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”;

: : : “Grover’s algorithm”; etc.



2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

2015 May–Ozerov.

Key size needed for 2b security

vs. best attack known in 1978:

(C0 + o(1))b2(lg b)2.

Here C0 ≈ 0:7418860694.

Key size needed for 2b security

vs. best pre-quantum attack

known today:

(C0 + o(1))b2(lg b)2.

Key size needed for 2b security

vs. best quantum attack known

today: (4C0 + o(1))b2(lg b)2.

What is a quantum computer?

Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform

“Hadamard gate”, “T gate”,

“controlled NOT gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”;

: : : “Grover’s algorithm”; etc.



2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

2015 May–Ozerov.

Key size needed for 2b security

vs. best attack known in 1978:

(C0 + o(1))b2(lg b)2.

Here C0 ≈ 0:7418860694.

Key size needed for 2b security

vs. best pre-quantum attack

known today:

(C0 + o(1))b2(lg b)2.

Key size needed for 2b security

vs. best quantum attack known

today: (4C0 + o(1))b2(lg b)2.

What is a quantum computer?

Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform

“Hadamard gate”, “T gate”,

“controlled NOT gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”;

: : : “Grover’s algorithm”; etc.

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.



2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

2015 May–Ozerov.

Key size needed for 2b security

vs. best attack known in 1978:

(C0 + o(1))b2(lg b)2.

Here C0 ≈ 0:7418860694.

Key size needed for 2b security

vs. best pre-quantum attack

known today:

(C0 + o(1))b2(lg b)2.

Key size needed for 2b security

vs. best quantum attack known

today: (4C0 + o(1))b2(lg b)2.

What is a quantum computer?

Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform

“Hadamard gate”, “T gate”,

“controlled NOT gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”;

: : : “Grover’s algorithm”; etc.

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.



2013 Bernstein–Jeffery–Lange–

Meurer (post-quantum).

2015 May–Ozerov.

Key size needed for 2b security

vs. best attack known in 1978:

(C0 + o(1))b2(lg b)2.

Here C0 ≈ 0:7418860694.

Key size needed for 2b security

vs. best pre-quantum attack

known today:

(C0 + o(1))b2(lg b)2.

Key size needed for 2b security

vs. best quantum attack known

today: (4C0 + o(1))b2(lg b)2.

What is a quantum computer?

Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform

“Hadamard gate”, “T gate”,

“controlled NOT gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”;

: : : “Grover’s algorithm”; etc.

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.



What is a quantum computer?

Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform

“Hadamard gate”, “T gate”,

“controlled NOT gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”;

: : : “Grover’s algorithm”; etc.

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.



What is a quantum computer?

Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform

“Hadamard gate”, “T gate”,

“controlled NOT gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”;

: : : “Grover’s algorithm”; etc.

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.



What is a quantum computer?

Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform

“Hadamard gate”, “T gate”,

“controlled NOT gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”;

: : : “Grover’s algorithm”; etc.

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

Quantum computer type 3 (QC3):

efficiently computes anything

that any physical computer

can compute efficiently.



What is a quantum computer?

Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform

“Hadamard gate”, “T gate”,

“controlled NOT gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”;

: : : “Grover’s algorithm”; etc.

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

Quantum computer type 3 (QC3):

efficiently computes anything

that any physical computer

can compute efficiently.



What is a quantum computer?

Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform

“Hadamard gate”, “T gate”,

“controlled NOT gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”;

: : : “Grover’s algorithm”; etc.

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

Quantum computer type 3 (QC3):

efficiently computes anything

that any physical computer

can compute efficiently.



Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

Quantum computer type 3 (QC3):

efficiently computes anything

that any physical computer

can compute efficiently.



Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

Quantum computer type 3 (QC3):

efficiently computes anything

that any physical computer

can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.



Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

Quantum computer type 3 (QC3):

efficiently computes anything

that any physical computer

can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.


