
Short generators without quantum computers:
the case of multiquadratics

Daniel J. Bernstein

University of Illinois at Chicago

11 July 2017

Joint work with:
Jens Bauch & Henry de Valence & Tanja Lange & Christine van Vredendaal

https://multiquad.cr.yp.to

Daniel J. Bernstein multiquad.cr.yp.to 1

https://multiquad.cr.yp.to

Part I: Introduction

Daniel J. Bernstein multiquad.cr.yp.to 2

“Lattice-based crypto is secure because lattice problems are hard.”

— Everyone who works on lattice-based crypto

Really? How hard are they? Which problems are broken in time <2100?
Which cryptosystems are broken in time <2100?

2006 Silverman: “Lattices, SVP and CVP, have been intensively studied
for more than 100 years, both as intrinsic mathematical problems and for
applications in pure and applied mathematics, physics and cryptography.”

So SVP is a hard problem? How hard is it?

Daniel J. Bernstein multiquad.cr.yp.to 3

“Lattice-based crypto is secure because lattice problems are hard.”

— Everyone who works on lattice-based crypto

Really? How hard are they? Which problems are broken in time <2100?
Which cryptosystems are broken in time <2100?

2006 Silverman: “Lattices, SVP and CVP, have been intensively studied
for more than 100 years, both as intrinsic mathematical problems and for
applications in pure and applied mathematics, physics and cryptography.”

So SVP is a hard problem? How hard is it?

Daniel J. Bernstein multiquad.cr.yp.to 3

“Lattice-based crypto is secure because lattice problems are hard.”

— Everyone who works on lattice-based crypto

Really? How hard are they? Which problems are broken in time <2100?
Which cryptosystems are broken in time <2100?

2006 Silverman: “Lattices, SVP and CVP, have been intensively studied
for more than 100 years, both as intrinsic mathematical problems and for
applications in pure and applied mathematics, physics and cryptography.”

So SVP is a hard problem? How hard is it?

Daniel J. Bernstein multiquad.cr.yp.to 3

SVP: find minimum-length nonzero vector in lattice

O

b1
b2

c©Thijs Laarhoven

Daniel J. Bernstein multiquad.cr.yp.to 4

SVP: find minimum-length nonzero vector in lattice

O

b1
b2

c©Thijs Laarhoven

Daniel J. Bernstein multiquad.cr.yp.to 4

SVP: find minimum-length nonzero vector in lattice

O

b1
b2

s

c©Thijs Laarhoven

Daniel J. Bernstein multiquad.cr.yp.to 4

SVP: find minimum-length nonzero vector in lattice

O

b1
b2

s

-s

c©Thijs Laarhoven

Daniel J. Bernstein multiquad.cr.yp.to 4

How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?

Daniel J. Bernstein multiquad.cr.yp.to 5

How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.

c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?

Daniel J. Bernstein multiquad.cr.yp.to 5

How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.

c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?

Daniel J. Bernstein multiquad.cr.yp.to 5

How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.

c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?

Daniel J. Bernstein multiquad.cr.yp.to 5

How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.

c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?

Daniel J. Bernstein multiquad.cr.yp.to 5

How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.

c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?

Daniel J. Bernstein multiquad.cr.yp.to 5

How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.

c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?

Daniel J. Bernstein multiquad.cr.yp.to 5

How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?

Daniel J. Bernstein multiquad.cr.yp.to 5

How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?

Daniel J. Bernstein multiquad.cr.yp.to 5

How secure is approx SVP?

Maybe still reasonable to conjecture that SVP takes exponential time.

But is SVP the problem used in cryptography?
No! Cryptographic problems actually have approximation factors.

Daniel J. Bernstein multiquad.cr.yp.to 6

How secure is approx SVP?

Maybe still reasonable to conjecture that SVP takes exponential time.

But is SVP the problem used in cryptography?
No! Cryptographic problems actually have approximation factors.

Daniel J. Bernstein multiquad.cr.yp.to 6

How secure is approx SVP?

2002 Micciancio–Goldwasser (emphasis added): “To date, the best known
polynomial time (possibly randomized) approximation algorithms for SVP
and CVP achieve worst-case (over the choice of the input) approximation
factors γ(n) that are essentially exponential in the rank n.”

2007 Regev:

2013 Micciancio: “Smooth trade-off between running time and
approximation: γ ≈ 2O(n log log T/ log T)”

Daniel J. Bernstein multiquad.cr.yp.to 7

http://joakimolofsson.deviantart.com/art/Pacific-Rim-372130691

Quantum attacks against cyclotomic lattice problems

STOC 2014 Eisenträger–Hallgren–Kitaev–Song:
poly-time quantum algorithm for K 7→ O×K .

K : number field.
OK : ring of algebraic integers in K .
O×K : group of units in OK .

2015 (and SODA 2016) Biasse–Song,
also using an idea from 2014 Campbell–Groves–Shepherd:
poly-time quantum algorithm for K , gOK 7→ ζ jmg for some j ,
assuming cyclotomic K = Q(ζm), small h+

m, very short g .

This recovers secret keys in, e.g.,
STOC 2009 Gentry homomorphic-encryption system using cyclotomics,
Eurocrypt 2013 Garg–Gentry–Halevi multilinear-map system, etc.

Daniel J. Bernstein multiquad.cr.yp.to 9

Quantum attacks against cyclotomic lattice problems

STOC 2014 Eisenträger–Hallgren–Kitaev–Song:
poly-time quantum algorithm for K 7→ O×K .

K : number field.
OK : ring of algebraic integers in K .
O×K : group of units in OK .

2015 (and SODA 2016) Biasse–Song,
also using an idea from 2014 Campbell–Groves–Shepherd:
poly-time quantum algorithm for K , gOK 7→ ζ jmg for some j ,
assuming cyclotomic K = Q(ζm), small h+

m, very short g .

This recovers secret keys in, e.g.,
STOC 2009 Gentry homomorphic-encryption system using cyclotomics,
Eurocrypt 2013 Garg–Gentry–Halevi multilinear-map system, etc.

Daniel J. Bernstein multiquad.cr.yp.to 9

Quantum attacks against cyclotomic lattice problems

STOC 2014 Eisenträger–Hallgren–Kitaev–Song:
poly-time quantum algorithm for K 7→ O×K .

K : number field.
OK : ring of algebraic integers in K .
O×K : group of units in OK .

2015 (and SODA 2016) Biasse–Song,
also using an idea from 2014 Campbell–Groves–Shepherd:
poly-time quantum algorithm for K , gOK 7→ ζ jmg for some j ,
assuming cyclotomic K = Q(ζm), small h+

m, very short g .

This recovers secret keys in, e.g.,
STOC 2009 Gentry homomorphic-encryption system using cyclotomics,
Eurocrypt 2013 Garg–Gentry–Halevi multilinear-map system, etc.

Daniel J. Bernstein multiquad.cr.yp.to 9

Is the attack idea limited to very short generators?

More lattice problems of interest:
I 7→ shortest nonzero vector in I . (“Exact Ideal-SVP”.)
I 7→ close to shortest nonzero vector in I . (“Approximate Ideal-SVP”.)

Attack is against principal I with a very short generator .

2015 Peikert says technique is “useless” for more general principal ideals.
(“We simply hadn’t realized that the added guarantee of a short generator
would transform the technique from useless to devastatingly effective.”)

Counterargument: attack is poly time against arbitrary principal ideals
for approx factor 2N

1/2+o(1)
in degree-N cyclotomics, assuming small h+.

See, e.g., 2016 Cramer–Ducas–Peikert–Regev.

Daniel J. Bernstein multiquad.cr.yp.to 10

Is the attack idea limited to very short generators?

More lattice problems of interest:
I 7→ shortest nonzero vector in I . (“Exact Ideal-SVP”.)
I 7→ close to shortest nonzero vector in I . (“Approximate Ideal-SVP”.)

Attack is against principal I with a very short generator .

2015 Peikert says technique is “useless” for more general principal ideals.
(“We simply hadn’t realized that the added guarantee of a short generator
would transform the technique from useless to devastatingly effective.”)

Counterargument: attack is poly time against arbitrary principal ideals
for approx factor 2N

1/2+o(1)
in degree-N cyclotomics, assuming small h+.

See, e.g., 2016 Cramer–Ducas–Peikert–Regev.

Daniel J. Bernstein multiquad.cr.yp.to 10

Is the attack idea limited to very short generators?

More lattice problems of interest:
I 7→ shortest nonzero vector in I . (“Exact Ideal-SVP”.)
I 7→ close to shortest nonzero vector in I . (“Approximate Ideal-SVP”.)

Attack is against principal I with a very short generator .

2015 Peikert says technique is “useless” for more general principal ideals.
(“We simply hadn’t realized that the added guarantee of a short generator
would transform the technique from useless to devastatingly effective.”)

Counterargument: attack is poly time against arbitrary principal ideals
for approx factor 2N

1/2+o(1)
in degree-N cyclotomics, assuming small h+.

See, e.g., 2016 Cramer–Ducas–Peikert–Regev.

Daniel J. Bernstein multiquad.cr.yp.to 10

Is the attack idea limited to principal ideals?

2015 Peikert:
“Although cyclotomics have a lot of structure, nobody has yet found a
way to exploit it in attacking Ideal-SVP/BDD . . . For commonly used
rings, principal ideals are an extremely small fraction of all ideals. . . . The
weakness here is not so much due to the structure of cyclotomics, but
rather to the extra structure of principal ideals that have short generators.”

Counterargument, 2016 Cramer–Ducas–Wesolowski:
fast Ideal-SVP attack for approx factor 2N

1/2+o(1)
in degree-N cyclotomics,

under plausible assumptions about class-group generators etc.
Starts from Biasse–Song, uses more features of cyclotomic fields.

This shreds the standard approx-Ideal-SVP tradeoff picture.

Daniel J. Bernstein multiquad.cr.yp.to 11

Is the attack idea limited to principal ideals?

2015 Peikert:
“Although cyclotomics have a lot of structure, nobody has yet found a
way to exploit it in attacking Ideal-SVP/BDD . . . For commonly used
rings, principal ideals are an extremely small fraction of all ideals. . . . The
weakness here is not so much due to the structure of cyclotomics, but
rather to the extra structure of principal ideals that have short generators.”

Counterargument, 2016 Cramer–Ducas–Wesolowski:
fast Ideal-SVP attack for approx factor 2N

1/2+o(1)
in degree-N cyclotomics,

under plausible assumptions about class-group generators etc.
Starts from Biasse–Song, uses more features of cyclotomic fields.

This shreds the standard approx-Ideal-SVP tradeoff picture.

Daniel J. Bernstein multiquad.cr.yp.to 11

Non-cyclotomic lattice-based cryptography

Cyclotomics are scary. Let’s explore alternatives:

Eliminate the ideal structure.
e.g., use LWE instead of Ring-LWE.
But this limits the security achievable for key size K .

2016 Bernstein–Chuengsatiansup–Lange–van Vredendaal “NTRU
Prime” (preliminary announcement 2014.02, before these attacks):
as in discrete-log crypto, eliminate unnecessary ring morphisms.
Use prime degree, large Galois group: e.g., xp − x − 1.

This talk: Switch from cyclotomics to other Galois number fields.
Another popular example in algebraic-number-theory textbooks:
multiquadratics; e.g., Q(

√
2,
√

3,
√

5,
√

7,
√

11,
√

13,
√

17,
√

19,
√

23).

Daniel J. Bernstein multiquad.cr.yp.to 12

Non-cyclotomic lattice-based cryptography

Cyclotomics are scary. Let’s explore alternatives:

Eliminate the ideal structure.
e.g., use LWE instead of Ring-LWE.
But this limits the security achievable for key size K .

2016 Bernstein–Chuengsatiansup–Lange–van Vredendaal “NTRU
Prime” (preliminary announcement 2014.02, before these attacks):
as in discrete-log crypto, eliminate unnecessary ring morphisms.
Use prime degree, large Galois group: e.g., xp − x − 1.

This talk: Switch from cyclotomics to other Galois number fields.
Another popular example in algebraic-number-theory textbooks:
multiquadratics; e.g., Q(

√
2,
√

3,
√

5,
√

7,
√

11,
√

13,
√

17,
√

19,
√

23).

Daniel J. Bernstein multiquad.cr.yp.to 12

Non-cyclotomic lattice-based cryptography

Cyclotomics are scary. Let’s explore alternatives:

Eliminate the ideal structure.
e.g., use LWE instead of Ring-LWE.
But this limits the security achievable for key size K .

2016 Bernstein–Chuengsatiansup–Lange–van Vredendaal “NTRU
Prime” (preliminary announcement 2014.02, before these attacks):
as in discrete-log crypto, eliminate unnecessary ring morphisms.
Use prime degree, large Galois group: e.g., xp − x − 1.

This talk: Switch from cyclotomics to other Galois number fields.
Another popular example in algebraic-number-theory textbooks:
multiquadratics; e.g., Q(

√
2,
√

3,
√

5,
√

7,
√

11,
√

13,
√

17,
√

19,
√

23).

Daniel J. Bernstein multiquad.cr.yp.to 12

A reasonable multiquadratic cryptosystem

Case study of a lattice-based cryptosystem
that was already defined in detail for arbitrary number fields:
2010 Smart–Vercauteren, optimized version of 2009 Gentry.

Parameter: R = Z[α] for an algebraic integer α.
Secret key: very short g ∈ R.
Public key: gR.

To handle multiquadratics better,
we generalized beyond Z[α]; fixed a keygen speed problem;
used twisted Hadamard transforms as replacement for FFTs;
adapted 2011 Gentry–Halevi cyclotomic speedups to multiquadratics.

Like Smart–Vercauteren, we took N ∈ λ2+o(1) for target security 2λ.
Checked security against standard lattice attacks:
nothing better than exponential time.

Daniel J. Bernstein multiquad.cr.yp.to 13

A reasonable multiquadratic cryptosystem

Case study of a lattice-based cryptosystem
that was already defined in detail for arbitrary number fields:
2010 Smart–Vercauteren, optimized version of 2009 Gentry.

Parameter: R = Z[α] for an algebraic integer α.
Secret key: very short g ∈ R.
Public key: gR.

To handle multiquadratics better,
we generalized beyond Z[α]; fixed a keygen speed problem;
used twisted Hadamard transforms as replacement for FFTs;
adapted 2011 Gentry–Halevi cyclotomic speedups to multiquadratics.

Like Smart–Vercauteren, we took N ∈ λ2+o(1) for target security 2λ.
Checked security against standard lattice attacks:
nothing better than exponential time.

Daniel J. Bernstein multiquad.cr.yp.to 13

Part II: Some preliminaries

Daniel J. Bernstein multiquad.cr.yp.to 14

Definition

A number field is a field L containing Q with finite dimension as a
Q-vector space. Its degree is this dimension.

Definition

The ring of integers OL of a number field L is the set of algebraic integers
in L. The invertible elements of this ring form the unit group O×L .

Problem

Recover a “small” g ∈ OL (modulo roots of unity) given gOL.

Definition (for this talk—see paper for broader definition)

A multiquadratic field is a number field that can be written in the form
L = Q(

√
d1, . . . ,

√
dn), where (d1, . . . , dn) are distinct primes.

The degree of the multiquadratic field is N = 2n.

Daniel J. Bernstein multiquad.cr.yp.to 15

General strategy to recover g

0 Compute the unit group O×L

1 Find some generator ug of principal ideal gOL

I subexponential-time algorithm: see, e.g., 1990 Buchmann, 2014
Biasse–Fieker, 2014 Biasse

I quantum poly-time algorithm: 2015/2016 Biasse–Song

2 Solve BDD for Log ug in the log-unit lattice to find Log u
I 2014 Campbell–Groves–Shepherd pointed out this was easy for

cyclotomic fields with h+ small
I 2015 Schanck confirmed experimentally
I 2015 Cramer–Ducas–Peikert–Regev proved pre-quantum polynomial

time for these fields

(BDD: bounded-distance decoding; i.e., finding a lattice vector close to an input point.)

Daniel J. Bernstein multiquad.cr.yp.to 16

General strategy to recover g

0 Compute the unit group O×L
1 Find some generator ug of principal ideal gOL

I subexponential-time algorithm: see, e.g., 1990 Buchmann, 2014
Biasse–Fieker, 2014 Biasse

I quantum poly-time algorithm: 2015/2016 Biasse–Song

2 Solve BDD for Log ug in the log-unit lattice to find Log u
I 2014 Campbell–Groves–Shepherd pointed out this was easy for

cyclotomic fields with h+ small
I 2015 Schanck confirmed experimentally
I 2015 Cramer–Ducas–Peikert–Regev proved pre-quantum polynomial

time for these fields

(BDD: bounded-distance decoding; i.e., finding a lattice vector close to an input point.)

Daniel J. Bernstein multiquad.cr.yp.to 16

General strategy to recover g

0 Compute the unit group O×L
1 Find some generator ug of principal ideal gOL

I subexponential-time algorithm: see, e.g., 1990 Buchmann, 2014
Biasse–Fieker, 2014 Biasse

I quantum poly-time algorithm: 2015/2016 Biasse–Song

2 Solve BDD for Log ug in the log-unit lattice to find Log u
I 2014 Campbell–Groves–Shepherd pointed out this was easy for

cyclotomic fields with h+ small
I 2015 Schanck confirmed experimentally
I 2015 Cramer–Ducas–Peikert–Regev proved pre-quantum polynomial

time for these fields

(BDD: bounded-distance decoding; i.e., finding a lattice vector close to an input point.)

Daniel J. Bernstein multiquad.cr.yp.to 16

Definition

Fix a number field L of degree N and fix distinct complex embeddings
σ1, . . . , σN of L. The Dirichlet logarithm map is defined as

Log : L× 7→ RN

x 7→ (log |σ1(x)|, . . . , log |σN(x)|)

Theorem (Dirichlet Unit Theorem)

The kernel of Log |OL−{0} is the cyclic group of roots of unity in OL. Let

Λ = LogO×L ⊂ RN . Λ is a lattice of rank r + c − 1, where r is the number
of real embeddings and c is the number of complex-conjugate pairs of
non-real embeddings of L.

Fact

If hOL = gOL and g 6= 0 then h = ug for some u ∈ O×L , and

Log g ∈ Log h + Λ.

Daniel J. Bernstein multiquad.cr.yp.to 17

Definition

Fix a number field L of degree N and fix distinct complex embeddings
σ1, . . . , σN of L. The Dirichlet logarithm map is defined as

Log : L× 7→ RN

x 7→ (log |σ1(x)|, . . . , log |σN(x)|)

Theorem (Dirichlet Unit Theorem)

The kernel of Log |OL−{0} is the cyclic group of roots of unity in OL. Let

Λ = LogO×L ⊂ RN . Λ is a lattice of rank r + c − 1, where r is the number
of real embeddings and c is the number of complex-conjugate pairs of
non-real embeddings of L.

Fact

If hOL = gOL and g 6= 0 then h = ug for some u ∈ O×L , and

Log g ∈ Log h + Λ.

Daniel J. Bernstein multiquad.cr.yp.to 17

Definition

Fix a number field L of degree N and fix distinct complex embeddings
σ1, . . . , σN of L. The Dirichlet logarithm map is defined as

Log : L× 7→ RN

x 7→ (log |σ1(x)|, . . . , log |σN(x)|)

Theorem (Dirichlet Unit Theorem)

The kernel of Log |OL−{0} is the cyclic group of roots of unity in OL. Let

Λ = LogO×L ⊂ RN . Λ is a lattice of rank r + c − 1, where r is the number
of real embeddings and c is the number of complex-conjugate pairs of
non-real embeddings of L.

Fact

If hOL = gOL and g 6= 0 then h = ug for some u ∈ O×L , and

Log g ∈ Log h + Λ.

Daniel J. Bernstein multiquad.cr.yp.to 17

Part III: The algorithm

https://starecat.com/algorithm-word-used-by-programmers-when-they-do-not-want-to-explain-what-they-did/

Daniel J. Bernstein multiquad.cr.yp.to 18

https://starecat.com/algorithm-word-used-by-programmers-when-they-do-not-want-to-explain-what-they-did/

Algorithm idea 1: subfields

Multiquadratic fields have a huge number of subfields.

We use 3 specific subfields (plus recursion).

Q

Q(
√

5) Q(
√

13) Q(
√

17) Q(
√

65) Q(
√

85) Q(
√

221) Q(
√

1105)

Q(
√

5,
√

13) Q(
√

5,
√

17) Q(
√

13,
√

17) Q(
√

5,
√

221) Q(
√

13,
√

85) Q(
√

17,
√

65) Q(
√

65,
√

85)

K = Q(
√

5,
√

13,
√

17)

Daniel J. Bernstein multiquad.cr.yp.to 19

Algorithm idea 1: subfields

Multiquadratic fields have a huge number of subfields.
We use 3 specific subfields (plus recursion).

Q

Q(
√

5) Q(
√

13) Q(
√

17) Q(
√

65) Q(
√

85) Q(
√

221) Q(
√

1105)

Q(
√

5,
√

13) Q(
√

5,
√

17) Q(
√

5,
√

221)

K = Q(
√

5,
√

13,
√

17)

Daniel J. Bernstein multiquad.cr.yp.to 19

Algorithm idea 1: subfields

Multiquadratic fields have a huge number of subfields.
We use 3 specific subfields (plus recursion).

Q

Q(
√

5)Q(
√

13)Q(
√

17)Q(
√

29)Q(
√

65)Q(
√

85)Q(
√

145)Q(
√

221)Q(
√

377)Q(
√

493) Q(
√

640)Q(
√

1105)Q(
√

1885)Q(
√

2465) Q(
√

6409)Q(
√

32045)

Q(
√

5,
√

13) Q(
√

5,
√

17) Q(
√

5,
√

29) Q(
√

5,
√

221) Q(
√

5,
√

377) Q(
√

5,
√

493) Q(
√

5,
√

6409)

Q(
√

5,
√

13,
√

17) Q(
√

5,
√

13,
√

29) Q(
√

5,
√

13,
√

493)

K = Q(
√

5,
√

13,
√

17,
√

29)

Daniel J. Bernstein multiquad.cr.yp.to 19

Algorithm idea 2: the subfield relation

Let σ be the automorphism of L that negates
√
dn and fixes other

√
dj .

Define Kσ = {x ∈ L : σ(x) = x} as the field fixed by σ.
The norm Nσ(x) of x ∈ L is defined as xσ(x). Then Nσ(x) ∈ Kσ.

Let τ be the automorphism of L that negates
√
dn−1 and fixes other

√
dj .

Nσ(x) = xσ(x)

Nτ (x) = xτ(x)

σ(Nστ (x)) = σ(xσ(τ(x))) = σ(x)τ(x)

Nσ(x)Nτ (x)

σ(Nστ (x))
= x2

assuming x 6= 0.

Daniel J. Bernstein multiquad.cr.yp.to 20

Algorithm idea 2: the subfield relation

Let σ be the automorphism of L that negates
√
dn and fixes other

√
dj .

Define Kσ = {x ∈ L : σ(x) = x} as the field fixed by σ.
The norm Nσ(x) of x ∈ L is defined as xσ(x). Then Nσ(x) ∈ Kσ.

Let τ be the automorphism of L that negates
√

dn−1 and fixes other
√

dj .

Nσ(x) = xσ(x)

Nτ (x) = xτ(x)

σ(Nστ (x)) = σ(xσ(τ(x)))

= σ(x)τ(x)

Nσ(x)Nτ (x)

σ(Nστ (x))
= x2

assuming x 6= 0.

Daniel J. Bernstein multiquad.cr.yp.to 20

Algorithm idea 2: the subfield relation

Let σ be the automorphism of L that negates
√
dn and fixes other

√
dj .

Define Kσ = {x ∈ L : σ(x) = x} as the field fixed by σ.
The norm Nσ(x) of x ∈ L is defined as xσ(x). Then Nσ(x) ∈ Kσ.

Let τ be the automorphism of L that negates
√

dn−1 and fixes other
√

dj .

Nσ(x) = xσ(x)

Nτ (x) = xτ(x)

σ(Nστ (x)) = σ(xσ(τ(x))) = σ(x)τ(x)

Nσ(x)Nτ (x)

σ(Nστ (x))
= x2

assuming x 6= 0.

Daniel J. Bernstein multiquad.cr.yp.to 20

Algorithm idea 2: the subfield relation

Let σ be the automorphism of L that negates
√
dn and fixes other

√
dj .

Define Kσ = {x ∈ L : σ(x) = x} as the field fixed by σ.
The norm Nσ(x) of x ∈ L is defined as xσ(x). Then Nσ(x) ∈ Kσ.

Let τ be the automorphism of L that negates
√

dn−1 and fixes other
√

dj .

Nσ(x) = xσ(x)

Nτ (x) = xτ(x)

σ(Nστ (x)) = σ(xσ(τ(x))) = σ(x)τ(x)

Nσ(x)Nτ (x)

σ(Nστ (x))
= x2

assuming x 6= 0.

Daniel J. Bernstein multiquad.cr.yp.to 20

Algorithm idea 3: computing units via subfields

Can use the subfield relation to find the unit group O×L :

u2 =
Nσ(u)Nτ (u)

σ(Nστ (u))

If UL = O×Kσ · O
×
Kτ
· σ(O×Kστ), then

(O×L)2 ⊆ UL ⊆ O×L

So if we can find a basis for (O×L)2, taking square roots gives O×L .

1966 Wada: We can do this—in exponential time!
Check which products of subsets of basis vectors for UL are squares.

Better: polynomial time, adapting 1991 Adleman idea from NFS.
Define many quadratic characters χi : O×L → Z/2Z.
Almost certainly (O×L)2 = UL ∩ (

⋂
i Kerχi). Compute by linear algebra.

Daniel J. Bernstein multiquad.cr.yp.to 21

Algorithm idea 3: computing units via subfields

Can use the subfield relation to find the unit group O×L :

u2 =
Nσ(u)Nτ (u)

σ(Nστ (u))

If UL = O×Kσ · O
×
Kτ
· σ(O×Kστ), then

(O×L)2 ⊆ UL ⊆ O×L

So if we can find a basis for (O×L)2, taking square roots gives O×L .

1966 Wada: We can do this—in exponential time!
Check which products of subsets of basis vectors for UL are squares.

Better: polynomial time, adapting 1991 Adleman idea from NFS.
Define many quadratic characters χi : O×L → Z/2Z.
Almost certainly (O×L)2 = UL ∩ (

⋂
i Kerχi). Compute by linear algebra.

Daniel J. Bernstein multiquad.cr.yp.to 21

Algorithm idea 3: computing units via subfields

Can use the subfield relation to find the unit group O×L :

u2 =
Nσ(u)Nτ (u)

σ(Nστ (u))

If UL = O×Kσ · O
×
Kτ
· σ(O×Kστ), then

(O×L)2 ⊆ UL ⊆ O×L

So if we can find a basis for (O×L)2, taking square roots gives O×L .

1966 Wada: We can do this—in exponential time!
Check which products of subsets of basis vectors for UL are squares.

Better: polynomial time, adapting 1991 Adleman idea from NFS.
Define many quadratic characters χi : O×L → Z/2Z.
Almost certainly (O×L)2 = UL ∩ (

⋂
i Kerχi). Compute by linear algebra.

Daniel J. Bernstein multiquad.cr.yp.to 21

Algorithm idea 3: computing units via subfields

Can use the subfield relation to find the unit group O×L :

u2 =
Nσ(u)Nτ (u)

σ(Nστ (u))

If UL = O×Kσ · O
×
Kτ
· σ(O×Kστ), then

(O×L)2 ⊆ UL ⊆ O×L

So if we can find a basis for (O×L)2, taking square roots gives O×L .

1966 Wada: We can do this—in exponential time!
Check which products of subsets of basis vectors for UL are squares.

Better: polynomial time, adapting 1991 Adleman idea from NFS.
Define many quadratic characters χi : O×L → Z/2Z.
Almost certainly (O×L)2 = UL ∩ (

⋂
i Kerχi). Compute by linear algebra.

Daniel J. Bernstein multiquad.cr.yp.to 21

Algorithm idea 4: recovering generators via subfields

Fact

Can compute Nσ(g)OKσ quickly from gOL.

Apply algorithm recursively to find generator hσ of Nσ(g)OKσ .
i.e. hσ = uσNσ(g) for some unit uσ.

Similarly hτ , hστ . Compute

h =
hσhτ
σ(hστ)

=
uσNσ(g)uτNτ (g)

σ(uστ)σ(Nστ (g))
.

Subfield relation: h = ug2 for some u ∈ O×L .

Problem: This is not necessarily a square!
Solution: Use quadratic characters to find v ∈ O×L with square vh.

Last step is to shorten the generator u′g =
√
vh by solving the BDD

problem in the log-unit lattice.

Daniel J. Bernstein multiquad.cr.yp.to 22

Algorithm idea 4: recovering generators via subfields

Fact

Can compute Nσ(g)OKσ quickly from gOL.

Apply algorithm recursively to find generator hσ of Nσ(g)OKσ .
i.e. hσ = uσNσ(g) for some unit uσ.

Similarly hτ , hστ . Compute

h =
hσhτ
σ(hστ)

=
uσNσ(g)uτNτ (g)

σ(uστ)σ(Nστ (g))
.

Subfield relation: h = ug2 for some u ∈ O×L .

Problem: This is not necessarily a square!
Solution: Use quadratic characters to find v ∈ O×L with square vh.

Last step is to shorten the generator u′g =
√
vh by solving the BDD

problem in the log-unit lattice.

Daniel J. Bernstein multiquad.cr.yp.to 22

Algorithm idea 4: recovering generators via subfields

Fact

Can compute Nσ(g)OKσ quickly from gOL.

Apply algorithm recursively to find generator hσ of Nσ(g)OKσ .
i.e. hσ = uσNσ(g) for some unit uσ.

Similarly hτ , hστ . Compute

h =
hσhτ
σ(hστ)

=
uσNσ(g)uτNτ (g)

σ(uστ)σ(Nστ (g))
.

Subfield relation: h = ug2 for some u ∈ O×L .

Problem: This is not necessarily a square!

Solution: Use quadratic characters to find v ∈ O×L with square vh.

Last step is to shorten the generator u′g =
√
vh by solving the BDD

problem in the log-unit lattice.

Daniel J. Bernstein multiquad.cr.yp.to 22

Algorithm idea 4: recovering generators via subfields

Fact

Can compute Nσ(g)OKσ quickly from gOL.

Apply algorithm recursively to find generator hσ of Nσ(g)OKσ .
i.e. hσ = uσNσ(g) for some unit uσ.

Similarly hτ , hστ . Compute

h =
hσhτ
σ(hστ)

=
uσNσ(g)uτNτ (g)

σ(uστ)σ(Nστ (g))
.

Subfield relation: h = ug2 for some u ∈ O×L .

Problem: This is not necessarily a square!
Solution: Use quadratic characters to find v ∈ O×L with square vh.

Last step is to shorten the generator u′g =
√
vh by solving the BDD

problem in the log-unit lattice.

Daniel J. Bernstein multiquad.cr.yp.to 22

Algorithm idea 4: recovering generators via subfields

Fact

Can compute Nσ(g)OKσ quickly from gOL.

Apply algorithm recursively to find generator hσ of Nσ(g)OKσ .
i.e. hσ = uσNσ(g) for some unit uσ.

Similarly hτ , hστ . Compute

h =
hσhτ
σ(hστ)

=
uσNσ(g)uτNτ (g)

σ(uστ)σ(Nστ (g))
.

Subfield relation: h = ug2 for some u ∈ O×L .

Problem: This is not necessarily a square!
Solution: Use quadratic characters to find v ∈ O×L with square vh.

Last step is to shorten the generator u′g =
√
vh by solving the BDD

problem in the log-unit lattice.

Daniel J. Bernstein multiquad.cr.yp.to 22

Part IV: Results

Daniel J. Bernstein multiquad.cr.yp.to 23

Coefficients for MQ lattice

Vertical axis: Average absolute coefficients of Log g on MQ basis.
Horizontal axis: 1.11/(2n/2 log(uD)).

Daniel J. Bernstein multiquad.cr.yp.to 24

Success for MQ lattice

Vertical axis: Success probability of simple rounding (in the MQ lattice).
Horizontal axis: d1, using n consecutive primes for (d1, . . . , dn).

Daniel J. Bernstein multiquad.cr.yp.to 25

Time (in seconds) to find full lattice and generator

Sage Sage
tower absolute new new new new

2n units units units units2 gen gen2

8 0.05 0.03 0.90 0.91 0.07 0.07
16 0.48 0.24 2.33 2.39 0.20 0.19
32 6.75 4.73 6.61 7.36 0.56 0.51
64 >700000 >700000 23.30 37.51 1.51 1.51

128 93.02 1560.49 4.95 7.29
256 463.91 31469.23 27.95 100.65

Table: Observed time to compute (once) the units of Q(
√
d1, . . . ,

√
dn); and to

find a generator for the public key in the cryptosystem.

Daniel J. Bernstein multiquad.cr.yp.to 26

Success at finding short generator of ideal

n 3 4 5 6 7 8

psuc(L1) 0.122 0.137 0.132 0.036 0.001 0.000

psuc(Ln) 0.203 0.490 0.648 0.936 0.631 0.423

psuc(Ln2) 0.784 0.981 1.000 1.000 1.000 1.000

Table: Observed attack success probabilities for various multiquadratic fields.

Daniel J. Bernstein multiquad.cr.yp.to 27

Figure: A multitude of quads.

Questions?

Daniel J. Bernstein multiquad.cr.yp.to 28

