
Post-quantum RSA

We built a great, great 1-terabyte RSA wall,

and we had the university pay for the electricity

Daniel J. Bernstein

Joint work with:
Nadia Heninger

Paul Lou
Luke Valenta

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

The referees are questioning applicability . . .

I Reviewer 1: “The cryptosystem is an interesting thought
experiment, but I cannot believe it will be actually used”

I Reviewer 2: “I can’t see it ever being used. . . . the main result
is almost comical”

I Reviewer 3: “I’m not really convinced by the practicality of the
scheme. . . . I can’t imagine exchanging 1 terabyte keys to
secure communications”

I Reviewer 4: “a paranoid post-quantum solution may be sought
at the great expense of performance”

I Reviewer 5: “not cheap”

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

The referees are questioning applicability . . .

I Reviewer 1: “The cryptosystem is an interesting thought
experiment, but I cannot believe it will be actually used”

I Reviewer 2: “I can’t see it ever being used. . . . the main result
is almost comical”

I Reviewer 3: “I’m not really convinced by the practicality of the
scheme. . . . I can’t imagine exchanging 1 terabyte keys to
secure communications”

I Reviewer 4: “a paranoid post-quantum solution may be sought
at the great expense of performance”

I Reviewer 5: “not cheap”

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

The referees are questioning applicability . . .

I Reviewer 1: “The cryptosystem is an interesting thought
experiment, but I cannot believe it will be actually used”

I Reviewer 2: “I can’t see it ever being used. . . . the main result
is almost comical”

I Reviewer 3: “I’m not really convinced by the practicality of the
scheme. . . . I can’t imagine exchanging 1 terabyte keys to
secure communications”

I Reviewer 4: “a paranoid post-quantum solution may be sought
at the great expense of performance”

I Reviewer 5: “not cheap”

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

The referees are questioning applicability . . .

I Reviewer 1: “The cryptosystem is an interesting thought
experiment, but I cannot believe it will be actually used”

I Reviewer 2: “I can’t see it ever being used. . . . the main result
is almost comical”

I Reviewer 3: “I’m not really convinced by the practicality of the
scheme. . . . I can’t imagine exchanging 1 terabyte keys to
secure communications”

I Reviewer 4: “a paranoid post-quantum solution may be sought
at the great expense of performance”

I Reviewer 5: “not cheap”

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

The referees are questioning applicability . . .

I Reviewer 1: “The cryptosystem is an interesting thought
experiment, but I cannot believe it will be actually used”

I Reviewer 2: “I can’t see it ever being used. . . . the main result
is almost comical”

I Reviewer 3: “I’m not really convinced by the practicality of the
scheme. . . . I can’t imagine exchanging 1 terabyte keys to
secure communications”

I Reviewer 4: “a paranoid post-quantum solution may be sought
at the great expense of performance”

I Reviewer 5: “not cheap”

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

. . . so how do we respond?

I Appeal to the past:

“Make RSA Great Again!”

I Appeal to the future: “Moore’s law says it’ll be okay!”

I Double down: “Digital cash with RSA blind signatures!”

I FUD: “Maybe all the alternatives will be broken!”

I Put it in perspective: “It’s better than QKD!”

I The real answer: “Someone is wrong on the Internet.”

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

https://www.xkcd.com/386/

. . . so how do we respond?

I Appeal to the past: “Make RSA Great Again!”

I Appeal to the future: “Moore’s law says it’ll be okay!”

I Double down: “Digital cash with RSA blind signatures!”

I FUD: “Maybe all the alternatives will be broken!”

I Put it in perspective: “It’s better than QKD!”

I The real answer: “Someone is wrong on the Internet.”

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

https://www.xkcd.com/386/

. . . so how do we respond?

I Appeal to the past: “Make RSA Great Again!”

I Appeal to the future:

“Moore’s law says it’ll be okay!”

I Double down: “Digital cash with RSA blind signatures!”

I FUD: “Maybe all the alternatives will be broken!”

I Put it in perspective: “It’s better than QKD!”

I The real answer: “Someone is wrong on the Internet.”

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

https://www.xkcd.com/386/

. . . so how do we respond?

I Appeal to the past: “Make RSA Great Again!”

I Appeal to the future: “Moore’s law says it’ll be okay!”

I Double down: “Digital cash with RSA blind signatures!”

I FUD: “Maybe all the alternatives will be broken!”

I Put it in perspective: “It’s better than QKD!”

I The real answer: “Someone is wrong on the Internet.”

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

https://www.xkcd.com/386/

. . . so how do we respond?

I Appeal to the past: “Make RSA Great Again!”

I Appeal to the future: “Moore’s law says it’ll be okay!”

I Double down:

“Digital cash with RSA blind signatures!”

I FUD: “Maybe all the alternatives will be broken!”

I Put it in perspective: “It’s better than QKD!”

I The real answer: “Someone is wrong on the Internet.”

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

https://www.xkcd.com/386/

. . . so how do we respond?

I Appeal to the past: “Make RSA Great Again!”

I Appeal to the future: “Moore’s law says it’ll be okay!”

I Double down: “Digital cash with RSA blind signatures!”

I FUD: “Maybe all the alternatives will be broken!”

I Put it in perspective: “It’s better than QKD!”

I The real answer: “Someone is wrong on the Internet.”

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

https://www.xkcd.com/386/

. . . so how do we respond?

I Appeal to the past: “Make RSA Great Again!”

I Appeal to the future: “Moore’s law says it’ll be okay!”

I Double down: “Digital cash with RSA blind signatures!”

I FUD:

“Maybe all the alternatives will be broken!”

I Put it in perspective: “It’s better than QKD!”

I The real answer: “Someone is wrong on the Internet.”

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

https://www.xkcd.com/386/

. . . so how do we respond?

I Appeal to the past: “Make RSA Great Again!”

I Appeal to the future: “Moore’s law says it’ll be okay!”

I Double down: “Digital cash with RSA blind signatures!”

I FUD: “Maybe all the alternatives will be broken!”

I Put it in perspective: “It’s better than QKD!”

I The real answer: “Someone is wrong on the Internet.”

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

https://www.xkcd.com/386/

. . . so how do we respond?

I Appeal to the past: “Make RSA Great Again!”

I Appeal to the future: “Moore’s law says it’ll be okay!”

I Double down: “Digital cash with RSA blind signatures!”

I FUD: “Maybe all the alternatives will be broken!”

I Put it in perspective:

“It’s better than QKD!”

I The real answer: “Someone is wrong on the Internet.”

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

https://www.xkcd.com/386/

. . . so how do we respond?

I Appeal to the past: “Make RSA Great Again!”

I Appeal to the future: “Moore’s law says it’ll be okay!”

I Double down: “Digital cash with RSA blind signatures!”

I FUD: “Maybe all the alternatives will be broken!”

I Put it in perspective: “It’s better than QKD!”

I The real answer: “Someone is wrong on the Internet.”

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

https://www.xkcd.com/386/

. . . so how do we respond?

I Appeal to the past: “Make RSA Great Again!”

I Appeal to the future: “Moore’s law says it’ll be okay!”

I Double down: “Digital cash with RSA blind signatures!”

I FUD: “Maybe all the alternatives will be broken!”

I Put it in perspective: “It’s better than QKD!”

I The real answer:

“Someone is wrong on the Internet.”

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

https://www.xkcd.com/386/

. . . so how do we respond?

I Appeal to the past: “Make RSA Great Again!”

I Appeal to the future: “Moore’s law says it’ll be okay!”

I Double down: “Digital cash with RSA blind signatures!”

I FUD: “Maybe all the alternatives will be broken!”

I Put it in perspective: “It’s better than QKD!”

I The real answer: “Someone is wrong on the Internet.”

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

https://www.xkcd.com/386/

RSA scalability vs. Shor scalability

Conventional wisdom:

I Shor’s algorithm has the same scalability as legitimate usage of
RSA.

I “there’s not going to be a larger key-size where a classical user
of RSA gains [a] significant advantage over a quantum
computing attacker”

I “If you increase the key size, it’d still be just as easy to break
it as it is to encrypt”

What is the actual scalability of integer factorization?
What is the actual scalability of legitimate usage of RSA?

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

What is the fastest sorting algorithm?

def blindsort(x):

while not issorted(x):

permuterandomly(x)

def bubblesort(x):

for j in range(len(x)):

for i in reversed(range(j)):

x[i],x[i+1] = min(x[i],x[i+1]),max(x[i],x[i+1])

bubblesort takes poly time. Θ(n2) comparisons.
Huge speedup over blindsort!
Is this the end of the story? No, still not optimal.

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

What is the fastest sorting algorithm?

def blindsort(x):

while not issorted(x):

permuterandomly(x)

def bubblesort(x):

for j in range(len(x)):

for i in reversed(range(j)):

x[i],x[i+1] = min(x[i],x[i+1]),max(x[i],x[i+1])

bubblesort takes poly time. Θ(n2) comparisons.
Huge speedup over blindsort!

Is this the end of the story? No, still not optimal.

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

What is the fastest sorting algorithm?

def blindsort(x):

while not issorted(x):

permuterandomly(x)

def bubblesort(x):

for j in range(len(x)):

for i in reversed(range(j)):

x[i],x[i+1] = min(x[i],x[i+1]),max(x[i],x[i+1])

bubblesort takes poly time. Θ(n2) comparisons.
Huge speedup over blindsort!
Is this the end of the story? No, still not optimal.

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

What is the fastest factoring algorithm?

Shor’s algorithm?

I Poly time. Huge speedup over NFS!

I b2(log b)1+o(1) qubit operations to factor b-bit integer,
using standard subroutines for fast integer arithmetic.

I Is this the end of the story? No, still not optimal.

Exercise to illustrate suboptimality of Shor’s algorithm:
Find a prime divisor of

⌊
103009π

⌋
.

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

What is the fastest factoring algorithm?

Shor’s algorithm?

I Poly time. Huge speedup over NFS!

I b2(log b)1+o(1) qubit operations to factor b-bit integer,
using standard subroutines for fast integer arithmetic.

I Is this the end of the story? No, still not optimal.

Exercise to illustrate suboptimality of Shor’s algorithm:
Find a prime divisor of

⌊
103009π

⌋
.

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

⌊
103009π

⌋
314159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664
709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316
527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789259036
001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272
489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513
200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196
086403441815981362977477130996051870721134999999837297804995105973173281609631859502445945534690830264252230825334468503
526193118817101000313783875288658753320838142061717766914730359825349042875546873115956286388235378759375195778185778053
217122680661300192787661119590921642019893809525720106548586327886593615338182796823030195203530185296899577362259941389
124972177528347913151557485724245415069595082953311686172785588907509838175463746493931925506040092770167113900984882401
285836160356370766010471018194295559619894676783744944825537977472684710404753464620804668425906949129331367702898915210
475216205696602405803815019351125338243003558764024749647326391419927260426992279678235478163600934172164121992458631503
028618297455570674983850549458858692699569092721079750930295532116534498720275596023648066549911988183479775356636980742
654252786255181841757467289097777279380008164706001614524919217321721477235014144197356854816136115735255213347574184946
843852332390739414333454776241686251898356948556209921922218427255025425688767179049460165346680498862723279178608578438
382796797668145410095388378636095068006422512520511739298489608412848862694560424196528502221066118630674427862203919494
504712371378696095636437191728746776465757396241389086583264599581339047802759009946576407895126946839835259570982582262
052248940772671947826848260147699090264013639443745530506820349625245174939965143142980919065925093722169646151570985838
741059788595977297549893016175392846813826868386894277415599185592524595395943104997252468084598727364469584865383673622
262609912460805124388439045124413654976278079771569143599770012961608944169486855584840635342207222582848864815845602850
601684273945226746767889525213852254995466672782398645659611635488623057745649803559363456817432411251507606947945109659
609402522887971089314566913686722874894056010150330861792868092087476091782493858900971490967598526136554978189312978482
168299894872265880485756401427047755513237964145152374623436454285844479526586782105114135473573952311342716610213596953
623144295248493718711014576540359027993440374200731057853906219838744780847848968332144571386875194350643021845319104848
100537061468067491927819119793995206141966342875444064374512371819217999839101591956181467514269123974894090718649423196
1567945208

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

When can we beat Shor’s algorithm?

Costs for various algorithms (log factors suppressed):

I b2 ops for Shor’s algorithm.
Assume best case: qubit ops as cheap as bit ops.

I by ops for trial division to find primes q ≤ y .
Beats Shor’s algorithm for y below b.

I b + y ops to first compute
∏

q≤y q, then gcd.

Beats Shor’s algorithm for y below b2.

I b
√
y ops for rho method to find primes q ≤ y .

Not helpful here.

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

When can we beat Shor’s algorithm?

Costs for various algorithms (log factors suppressed):

I b2 ops for Shor’s algorithm.
Assume best case: qubit ops as cheap as bit ops.

I by ops for trial division to find primes q ≤ y .
Beats Shor’s algorithm for y below b.

I b + y ops to first compute
∏

q≤y q, then gcd.

Beats Shor’s algorithm for y below b2.

I b
√
y ops for rho method to find primes q ≤ y .

Not helpful here.

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

When can we beat Shor’s algorithm?

Costs for various algorithms (log factors suppressed):

I b2 ops for Shor’s algorithm.
Assume best case: qubit ops as cheap as bit ops.

I by ops for trial division to find primes q ≤ y .
Beats Shor’s algorithm for y below b.

I b + y ops to first compute
∏

q≤y q, then gcd.

Beats Shor’s algorithm for y below b2.

I b
√
y ops for rho method to find primes q ≤ y .

Not helpful here.

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

When can we beat Shor’s algorithm?

Costs for various algorithms (log factors suppressed):

I b2 ops for Shor’s algorithm.
Assume best case: qubit ops as cheap as bit ops.

I by ops for trial division to find primes q ≤ y .
Beats Shor’s algorithm for y below b.

I b + y ops to first compute
∏

q≤y q, then gcd.

Beats Shor’s algorithm for y below b2.

I b
√
y ops for rho method to find primes q ≤ y .

Not helpful here.

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

When does ECM beat Shor’s algorithm?
b exp((log y)1/2+o(1)) ops for ECM to find primes q ≤ y .
Beats Shor’s algorithm for log y below (log b)2+o(1).

I Choose ECM parameter z with
z ∈ exp((α + o(1))

√
log y log log y).

I Each prime q ≤ y is found by 1/C of all curves
where C ∈ exp((1/2α + o(1))

√
log y log log y).

I ECM searches through C 1+o(1) curves.
Choose α = 1/

√
2. Cost: exp((

√
2 + o(1))

√
log y log log y).

I New: Use a Grover search through C 1+o(1) curves.
Choose α = 1/2. Cost: exp((1 + o(1))

√
log y log log y).

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

When does ECM beat Shor’s algorithm?
b exp((log y)1/2+o(1)) ops for ECM to find primes q ≤ y .
Beats Shor’s algorithm for log y below (log b)2+o(1).

I Choose ECM parameter z with
z ∈ exp((α + o(1))

√
log y log log y).

I Each prime q ≤ y is found by 1/C of all curves
where C ∈ exp((1/2α + o(1))

√
log y log log y).

I ECM searches through C 1+o(1) curves.
Choose α = 1/

√
2. Cost: exp((

√
2 + o(1))

√
log y log log y).

I New: Use a Grover search through C 1+o(1) curves.
Choose α = 1/2. Cost: exp((1 + o(1))

√
log y log log y).

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

When does ECM beat Shor’s algorithm?
b exp((log y)1/2+o(1)) ops for ECM to find primes q ≤ y .
Beats Shor’s algorithm for log y below (log b)2+o(1).

I Choose ECM parameter z with
z ∈ exp((α + o(1))

√
log y log log y).

I Each prime q ≤ y is found by 1/C of all curves
where C ∈ exp((1/2α + o(1))

√
log y log log y).

I ECM searches through C 1+o(1) curves.
Choose α = 1/

√
2. Cost: exp((

√
2 + o(1))

√
log y log log y).

I New: Use a Grover search through C 1+o(1) curves.
Choose α = 1/2. Cost: exp((1 + o(1))

√
log y log log y).

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

When does ECM beat Shor’s algorithm?
b exp((log y)1/2+o(1)) ops for ECM to find primes q ≤ y .
Beats Shor’s algorithm for log y below (log b)2+o(1).

I Choose ECM parameter z with
z ∈ exp((α + o(1))

√
log y log log y).

I Each prime q ≤ y is found by 1/C of all curves
where C ∈ exp((1/2α + o(1))

√
log y log log y).

I ECM searches through C 1+o(1) curves.
Choose α = 1/

√
2. Cost: exp((

√
2 + o(1))

√
log y log log y).

I New: Use a Grover search through C 1+o(1) curves.
Choose α = 1/2. Cost: exp((1 + o(1))

√
log y log log y).

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

Post-quantum RSA (PQRSA)

Make RSA fast again (see paper for asymptotics):

I Build public key N as product of many small primes.

I New: Batch generation of primes.

I Take exponent 3. (Could 2 be better? Not clear.)

I Use CRT for decryption.

Security ≥2100 qubit ops against all known attacks:

I Take b = 243 bits in N .

I Take 212 bits in each prime.

I Use proper padding to stop chosen-ciphertext attacks.

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

Implementing PQRSA
OpenSSL doesn’t support large key sizes

0http://fm4dd.com/openssl/certexamples.htm
Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

Implementing PQRSA
OpenSSL doesn’t support large key sizes

0http://fm4dd.com/openssl/certexamples.htm
Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

Implementing PQRSA

We implemented RSA key generation, encryption, decryption
in C with modified version of GMP library:

I Change mpz struct internal typing from int to int64 t.

I Extend upper bound on memory allocation for mpz t.

I Extend output and input functions to accomodate new mpz
struct type.

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

Key generation

I 1TB multi-prime RSA key uses
2 billion 4096-bit primes

I Use batch algorithm to find
primes

I 1,975,000 core-hours

I Four months on 1,400-core
cluster

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

Key generation

I 1TB multi-prime RSA key uses
2 billion 4096-bit primes

I Use batch algorithm to find
primes

I 1,975,000 core-hours

I Four months on 1,400-core
cluster

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

Key generation

I 1TB multi-prime RSA key uses
2 billion 4096-bit primes

I Use batch algorithm to find
primes

I 1,975,000 core-hours

I Four months on 1,400-core
cluster

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

Key generation (continued...)

I Construct multi-prime RSA modulus from generated primes

I Use product-tree algorithm

I Four days multithreaded on single machine

I Max usage of 3.2TB RAM and 2.5TB swap

I First terabyte RSA key ever created! (At least in public.)

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

Key generation (continued...)

I Construct multi-prime RSA modulus from generated primes

I Use product-tree algorithm

I Four days multithreaded on single machine

I Max usage of 3.2TB RAM and 2.5TB swap

I First terabyte RSA key ever created! (At least in public.)

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

Encryption

I Use RSA-KEM
I Generate random 1TB element with AES-256-CTR mode

I Theoreticians might complain: “Hey, is this indifferentiable?”
I Are there any fast alternatives with indifferentiability proofs?
I Does indifferentiability matter?

I Hash element to construct shared secret for key exchange

I To compute 3rd power: Use multiply-and-reduce algorithm
instead of GMP’s modular exponentiation

I 256GB encryption in 100 hours on a single machine

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

Encryption

I Use RSA-KEM
I Generate random 1TB element with AES-256-CTR mode

I Theoreticians might complain: “Hey, is this indifferentiable?”
I Are there any fast alternatives with indifferentiability proofs?
I Does indifferentiability matter?

I Hash element to construct shared secret for key exchange

I To compute 3rd power: Use multiply-and-reduce algorithm
instead of GMP’s modular exponentiation

I 256GB encryption in 100 hours on a single machine

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

Recent improvements

Reviewer 2: “in a world where most people are anxious to shave
clock cycles, a cryptosystem with one-week encryption times isn’t
going to fly”

Recent work from Josh Fried:

I Cluster-distributed parallelized FFT

I Completed 1TB encryption in about 4 hours with 896 cores

I Expect 1TB key generation (after primegen) to complete in
about 5 hours with 896 cores

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

Recent improvements

Reviewer 2: “in a world where most people are anxious to shave
clock cycles, a cryptosystem with one-week encryption times isn’t
going to fly”

Recent work from Josh Fried:

I Cluster-distributed parallelized FFT

I Completed 1TB encryption in about 4 hours with 896 cores

I Expect 1TB key generation (after primegen) to complete in
about 5 hours with 896 cores

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

Ongoing work

Decryption:

I Precompute di = e−1 mod (pi − 1) and mi = C di mod pi

I Run CRT on pairs of mi ,mj , i 6= j and multiply pi , pj to create
a node in the next level of the tree

I 16GB decryption in about 132 hours on single machine

I In progress: decryption with interpolator (save lg n factor over
CRT-tree)

Try to unify quantum-factoring landscape:

I Gal Dor suggests some bits of Shor, followed by Grover.

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

Ongoing work

Decryption:

I Precompute di = e−1 mod (pi − 1) and mi = C di mod pi
I Run CRT on pairs of mi ,mj , i 6= j and multiply pi , pj to create

a node in the next level of the tree

I 16GB decryption in about 132 hours on single machine

I In progress: decryption with interpolator (save lg n factor over
CRT-tree)

Try to unify quantum-factoring landscape:

I Gal Dor suggests some bits of Shor, followed by Grover.

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

Ongoing work

Decryption:

I Precompute di = e−1 mod (pi − 1) and mi = C di mod pi
I Run CRT on pairs of mi ,mj , i 6= j and multiply pi , pj to create

a node in the next level of the tree

I 16GB decryption in about 132 hours on single machine

I In progress: decryption with interpolator (save lg n factor over
CRT-tree)

Try to unify quantum-factoring landscape:

I Gal Dor suggests some bits of Shor, followed by Grover.

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

Ongoing work

Decryption:

I Precompute di = e−1 mod (pi − 1) and mi = C di mod pi
I Run CRT on pairs of mi ,mj , i 6= j and multiply pi , pj to create

a node in the next level of the tree

I 16GB decryption in about 132 hours on single machine

I In progress: decryption with interpolator (save lg n factor over
CRT-tree)

Try to unify quantum-factoring landscape:

I Gal Dor suggests some bits of Shor, followed by Grover.

Post-quantum RSA Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta

