Quantum algorithms
Daniel J. Bernstein
University of Illinois at Chicago
"Quantum algorithm"
means an algorithm that a quantum computer can run.
ie. a sequence of instructions,
where each instruction is in a quantum computer's supported instruction set.

How do we know which instructions a quantum computer will support?

Quantum computer type 1 (QC1): stores many "quits";
can efficiently perform
"Hadamard gate", "T gate", "controlled NOT gate".

Making these instructions work is the main goal of quantumcomputer engineering.

Combine these instructions to compute "Toffoli gate"; "Simon's algorithm"; "Shor's algorithm"; "Grover's algorithm"; etc.

Quantum computer type 2 (QC2): stores a simulated universe; efficiently simulates the laws of quantum physics
with as much accuracy as desired.
This is the original concept of quantum computers introduced by 1982 Feynman "Simulating physics with computers".

Quantum computer type 2 (QC): stores a simulated universe; efficiently simulates the laws of quantum physics
with as much accuracy as desired.
This is the original concept of quantum computers introduced by 1982 Feynman "Simulating physics with computers".

General belief: any QC1 is a QC2. Partial proof: see, e.g.,
2011 Jordan-Lee-Preskill "Quantum algorithms for quantum field theories".

Quantum computer type 3 (QC3): efficiently computes anything that any physical computer can compute efficiently.

Quantum computer type 3 (QC3): efficiently computes anything that any physical computer can compute efficiently.

General belief: any QC2 is a QC3. Argument for belief: any physical computer must follow the laws of quantum physics, so a QC2 can efficiently simulate any physical computer.

Quantum computer type 3 (QC3): efficiently computes anything that any physical computer can compute efficiently.

General belief: any QC2 is a QC3.
Argument for belief:
any physical computer must follow the laws of quantum physics, so a QC2 can efficiently simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.

The state of an algorithm

Data ("state") stored in n bits: an element of $\{0,1\}^{n}$, viewed as
an element of $\left\{0,1, \ldots, 2^{n}-1\right\}$.

The state of an algorithm

Data ("state") stored in n bits: an element of $\{0,1\}^{n}$, viewed as an element of $\left\{0,1, \ldots, 2^{n}-1\right\}$.

State stored in n quits: a nonzero element of $\mathbf{C}^{2^{n}}$.
Retrieving this vector is tough!

The state of an algorithm

Data ("state") stored in n bits:
an element of $\{0,1\}^{n}$, viewed as
an element of $\left\{0,1, \ldots, 2^{n}-1\right\}$.
State stored in n quits:
a nonzero element of $\mathbf{C}^{2^{n}}$.
Retrieving this vector is tough!
If n quits have state
$\left(a_{0}, a_{1}, \ldots, a_{2}{ }^{n}-1\right)$ then measuring the quits produces an element of $\left\{0,1, \ldots, 2^{n}-1\right\}$ and destroys the state.
Measurement produces element q with probability $\left|a_{q}\right|^{2} / \sum_{r}\left|a_{r}\right|^{2}$.

Some examples of 3 -quit states:
$(1,0,0,0,0,0,0,0)$ is
" $|0\rangle$ " in standard notation.
Measurement produces 0 .

Some examples of 3-qubit states:
$(1,0,0,0,0,0,0,0)$ is
" $|0\rangle$ " in standard notation.
Measurement produces 0 .
$(0,0,0,0,0,0,1,0)$ is
" $|6\rangle$ " in standard notation.
Measurement produces 6 .

Some examples of 3-qubit states:
$(1,0,0,0,0,0,0,0)$ is
" $|0\rangle$ " in standard notation.
Measurement produces 0 .
$(0,0,0,0,0,0,1,0)$ is
" $|6\rangle$ " in standard notation.
Measurement produces 6 .
$(0,0,0,0,0,0,-7 i, 0)=-7 i|6\rangle$:
Measurement produces 6 .

Some examples of 3-qubit states:
$(1,0,0,0,0,0,0,0)$ is
" $|0\rangle$ " in standard notation.
Measurement produces 0 .
$(0,0,0,0,0,0,1,0)$ is
" $|6\rangle$ " in standard notation.
Measurement produces 6 .
$(0,0,0,0,0,0,-7 i, 0)=-7 i|6\rangle:$
Measurement produces 6 .
$(0,0,4,0,0,0,8,0)=4|2\rangle+8|6\rangle:$ Measurement produces
2 with probability 20%,
6 with probability 80\%.

Fast quantum operations, part 1

$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{1}, a_{0}, a_{3}, a_{2}, a_{5}, a_{4}, a_{7}, a_{6}\right)$
is complementing index bit 0 , hence "complementing quit 0".

Fast quantum operations, part 1

$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{1}, a_{0}, a_{3}, a_{2}, a_{5}, a_{4}, a_{7}, a_{6}\right)$
is complementing index bit 0 , hence "complementing quit 0 ".
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right)$ is measured as $\left(q_{0}, q_{1}, q_{2}\right)$, representing $q=q_{0}+2 q_{1}+4 q_{2}$, with probability $\left|a_{q}\right|^{2} / \sum_{r}\left|a_{r}\right|^{2}$.
$\left(a_{1}, a_{0}, a_{3}, a_{2}, a_{5}, a_{4}, a_{7}, a_{6}\right)$ is measured as $\left(q_{0} \oplus 1, q_{1}, q_{2}\right)$, representing $q \oplus 1$, with probability $\left|a_{q}\right|^{2} / \sum_{r}\left|a_{r}\right|^{2}$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{4}, a_{5}, a_{6}, a_{7}, a_{0}, a_{1}, a_{2}, a_{3}\right)$
is "complementing qubit 2":
$\left(q_{0}, q_{1}, q_{2}\right) \mapsto\left(q_{0}, q_{1}, q_{2} \oplus 1\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{4}, a_{5}, a_{6}, a_{7}, a_{0}, a_{1}, a_{2}, a_{3}\right)$
is "complementing qubit 2":
$\left(q_{0}, q_{1}, q_{2}\right) \mapsto\left(q_{0}, q_{1}, q_{2} \oplus 1\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{0}, a_{4}, a_{2}, a_{6}, a_{1}, a_{5}, a_{3}, a_{7}\right)$
is "swapping qubits 0 and 2 ":
$\left(q_{0}, q_{1}, q_{2}\right) \mapsto\left(q_{2}, q_{1}, q_{0}\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{4}, a_{5}, a_{6}, a_{7}, a_{0}, a_{1}, a_{2}, a_{3}\right)$
is "complementing quit 2":
$\left(q_{0}, q_{1}, q_{2}\right) \mapsto\left(q_{0}, q_{1}, q_{2} \oplus 1\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{0}, a_{4}, a_{2}, a_{6}, a_{1}, a_{5}, a_{3}, a_{7}\right)$
is "swapping quits 0 and 2 ":
$\left(q_{0}, q_{1}, q_{2}\right) \mapsto\left(q_{2}, q_{1}, q_{0}\right)$.
Complementing quit 2
$=$ swapping quits 0 and 2 - complementing quit 0 - swapping quits 0 and 2 .

Similarly: swapping quits i, j.
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{0}, a_{1}, a_{3}, a_{2}, a_{4}, a_{5}, a_{7}, a_{6}\right)$
is a "reversible XOR gate" = "controlled NOT gate":
$\left(q_{0}, q_{1}, q_{2}\right) \mapsto\left(q_{0} \oplus q_{1}, q_{1}, q_{2}\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{0}, a_{1}, a_{3}, a_{2}, a_{4}, a_{5}, a_{7}, a_{6}\right)$ is a "reversible XOR gate" = "controlled NOT gate":
$\left(q_{0}, q_{1}, q_{2}\right) \mapsto\left(q_{0} \oplus q_{1}, q_{1}, q_{2}\right)$.
Example with more quits:
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right.$,
$a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}$,
$a_{16}, a_{17}, a_{18}, a_{19}, a_{20}, a_{21}, a_{22}, a_{23}$, $\left.a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{30}, a_{31}\right)$ $\mapsto\left(a_{0}, a_{1}, a_{3}, a_{2}, a_{4}, a_{5}, a_{7}, a_{6}\right.$, $a_{8}, a_{9}, a_{11}, a_{10}, a_{12}, a_{13}, a_{15}, a_{14}$, $a_{16}, a_{17}, a_{19}, a_{18}, a_{20}, a_{21}, a_{23}, a_{22}$, $\left.a_{24}, a_{25}, a_{27}, a_{26}, a_{28}, a_{29}, a_{31}, a_{30}\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{7}, a_{6}\right)$
is a "Toffoli gate" =
"controlled controlled NOT gate":
$\left(q_{0}, q_{1}, q_{2}\right) \mapsto\left(q_{0} \oplus q_{1} q_{2}, q_{1}, q_{2}\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{7}, a_{6}\right)$
is a "Toffoli gate" =
"controlled controlled NOT gate":
$\left(q_{0}, q_{1}, q_{2}\right) \mapsto\left(q_{0} \oplus q_{1} q_{2}, q_{1}, q_{2}\right)$.
Example with more quits:
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right.$,
$a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}$,
$a_{16}, a_{17}, a_{18}, a_{19}, a_{20}, a_{21}, a_{22}, a_{23}$, $\left.a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{30}, a_{31}\right)$ $\mapsto\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{7}, a_{6}\right.$, $a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{15}, a_{14}$, $a_{16}, a_{17}, a_{18}, a_{19}, a_{20}, a_{21}, a_{23}, a_{22}$, $\left.a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{31}, a_{30}\right)$.

Reversible computation
Say p is a permutation
of $\left\{0,1, \ldots, 2^{n}-1\right\}$.
General strategy to compose these fast quantum operations to obtain index permutation $\left(a_{0}, a_{1}, \ldots, a_{2}{ }^{n}-1\right)$
$\left(a_{p^{-1}(0)}, a_{p^{-1}(1)}, \ldots, a_{p^{-1}\left(2^{n}-1\right)}\right)$:

$\underline{\text { Reversible computation }}$

Say p is a permutation
of $\left\{0,1, \ldots, 2^{n}-1\right\}$.
General strategy to compose these fast quantum operations to obtain index permutation $\left(a_{0}, a_{1}, \ldots, a_{2^{n}-1}\right)$ \mapsto
$\left(a_{p^{-1}(0)}, a_{p^{-1}(1)}, \ldots, a_{p^{-1}\left(2^{n}-1\right)}\right)$:

1. Build a traditional circuit to compute $j \mapsto p(j)$ using NOT/XOR/AND gates.
2. Convert into reversible gates: e.g., convert AND into Toffoli.

Example: Let's compute

$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{7}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$;
permutation $q \mapsto q+1 \bmod 8$.

1. Build a traditional circuit to compute $q \mapsto q+1 \bmod 8$.
q_{0}
q_{1}
q_{2}

$q_{0} \oplus 1$
$q_{1} \oplus q_{0}$
$q_{2} \oplus c_{1}$
2. Convert into reversible gates.

Toffoli for $q_{2} \leftarrow q_{2} \oplus q_{1} q_{0}$:

$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{0}, a_{1}, a_{2}, a_{7}, a_{4}, a_{5}, a_{6}, a_{3}\right)$.
2. Convert into reversible gates.

Toffoli for $q_{2} \leftarrow q_{2} \oplus q_{1} q_{0}$:

$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{0}, a_{1}, a_{2}, a_{7}, a_{4}, a_{5}, a_{6}, a_{3}\right)$.
Controlled NOT for $q_{1} \leftarrow q_{1} \oplus q_{0}$:
$\left(a_{0}, a_{1}, a_{2}, a_{7}, a_{4}, a_{5}, a_{6}, a_{3}\right) \mapsto$
$\left(a_{0}, a_{7}, a_{2}, a_{1}, a_{4}, a_{3}, a_{6}, a_{5}\right)$.
2. Convert into reversible gates.

Toffoli for $q_{2} \leftarrow q_{2} \oplus q_{1} q_{0}$:
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{0}, a_{1}, a_{2}, a_{7}, a_{4}, a_{5}, a_{6}, a_{3}\right)$.
Controlled NOT for $q_{1} \leftarrow q_{1} \oplus q_{0}$:
$\left(a_{0}, a_{1}, a_{2}, a_{7}, a_{4}, a_{5}, a_{6}, a_{3}\right) \mapsto$
$\left(a_{0}, a_{7}, a_{2}, a_{1}, a_{4}, a_{3}, a_{6}, a_{5}\right)$.
NOT for $q_{0} \leftarrow q_{0} \oplus 1$:
$\left(a_{0}, a_{7}, a_{2}, a_{1}, a_{4}, a_{3}, a_{6}, a_{5}\right) \mapsto$
$\left(a_{7}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$.

This permutation example was deceptively easy.

It didn't need many operations.
For large n, most permutations p need many operations \Rightarrow slow. Really want fast circuits.

This permutation example was deceptively easy.

It didn't need many operations.
For large n, most permutations p need many operations \Rightarrow slow. Really want fast circuits.

Also, it didn't need extra storage: circuit operated "in place" after computation $c_{1} \leftarrow q_{1} q_{0}$ was merged into $q_{2} \leftarrow q_{2} \oplus c_{1}$.

Typical circuits aren't in-place.

Start from any circuit:
inputs $b_{1}, b_{2}, \ldots, b_{i}$;
$b_{i+1}=1 \oplus b_{f(i+1)} b_{g(i+1)}$;
$b_{i+2}=1 \oplus b_{f(i+2)} b_{g(i+2)}$;
$b_{T}=1 \oplus b_{f(T)} b_{g(T)}$; specified outputs.

Start from any circuit:
inputs $b_{1}, b_{2}, \ldots, b_{i}$;
$b_{i+1}=1 \oplus b_{f(i+1)} b_{g(i+1)}$;
$b_{i+2}=1 \oplus b_{f(i+2)} b_{g(i+2)}$;
$b_{T}=1 \oplus b_{f(T)} b_{g(T)}$;
specified outputs.
Reversible but dirty:
inputs $b_{1}, b_{2}, \ldots, b_{T}$;
$b_{i+1} \leftarrow 1 \oplus b_{i+1} \oplus b_{f(i+1)} b_{g(i+1)}$;
$b_{i+2} \leftarrow 1 \oplus b_{i+2} \oplus b_{f(i+2)} b_{g(i+2)} ;$
$b_{T} \leftarrow 1 \oplus b_{T} \oplus b_{f(T)} b_{g(T)}$.
Same outputs if all of
b_{i+1}, \ldots, b_{T} started as 0 .

Reversible and clean:
after finishing dirty computation, set non-outputs back to 0 , by repeating same operations on non-outputs in reverse order.

Original computation:
(inputs) \mapsto
(inputs, dirt, outputs).
Dirty reversible computation:
(inputs, zeros, zeros) \mapsto
(inputs, dirt, outputs).
Clean reversible computation:
(inputs, zeros, zeros) \mapsto
(inputs, zeros, outputs).

Given fast circuit for p and fast circuit for p^{-1}, build fast reversible circuit for (x, zeros $) \mapsto(p(x)$, zeros $)$.

Given fast circuit for p and fast circuit for p^{-1},
build fast reversible circuit for $(x$, zeros $) \mapsto(p(x)$, zeros $)$.

Replace reversible bit operations with Toffoli gates etc.
permuting $\mathbf{C}^{2^{n+z}} \rightarrow \mathbf{C}^{2^{n+z}}$.
Permutation on first 2^{n} entries is
$\left(a_{0}, a_{1}, \ldots, a_{2}{ }^{n}-1\right)$

$\left(a_{p^{-1}(0)}, a_{p^{-1}(1)}, \ldots, a_{p^{-1}\left(2^{n}-1\right)}\right)$.
Typically prepare vectors supported on first 2^{n} entries so don't care how permutation acts on last $2^{n+z}-2^{n}$ entries.

Warning: Number of quits \approx number of bit operations in original p, p^{-1} circuits.

This can be much larger than number of bits stored in the original circuits.

Warning: Number of quits \approx number of bit operations in original p, p^{-1} circuits.

This can be much larger than number of bits stored in the original circuits.

Many useful techniques
to compress into fewer quits,
but often these lose time.
Many subtle tradeoffs.

Warning: Number of quits \approx number of bit operations in original p, p^{-1} circuits.

This can be much larger than number of bits stored in the original circuits.

Many useful techniques
to compress into fewer quits,
but often these lose time. Many subtle tradeoffs.

Crude "poly-time" analyses
don't care about this, but serious cryptanalysis is much more precise.

Fast quantum operations, part 2

"Hadamard":

$$
\left(a_{0}, a_{1}\right) \mapsto\left(a_{0}+a_{1}, a_{0}-a_{1}\right) .
$$

Fast quantum operations, part 2

"Hadamard":
$\left(a_{0}, a_{1}\right) \mapsto\left(a_{0}+a_{1}, a_{0}-a_{1}\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \mapsto$
$\left(a_{0}+a_{1}, a_{0}-a_{1}, a_{2}+a_{3}, a_{2}-a_{3}\right)$.

Fast quantum operations, part 2

"Hadamard":
$\left(a_{0}, a_{1}\right) \mapsto\left(a_{0}+a_{1}, a_{0}-a_{1}\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \mapsto$
$\left(a_{0}+a_{1}, a_{0}-a_{1}, a_{2}+a_{3}, a_{2}-a_{3}\right)$.
Same for quit 1 :
$\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \mapsto$
$\left(a_{0}+a_{2}, a_{1}+a_{3}, a_{0}-a_{2}, a_{1}-a_{3}\right)$.

Fast quantum operations, part 2

"Hadamard":
$\left(a_{0}, a_{1}\right) \mapsto\left(a_{0}+a_{1}, a_{0}-a_{1}\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \mapsto$
$\left(a_{0}+a_{1}, a_{0}-a_{1}, a_{2}+a_{3}, a_{2}-a_{3}\right)$.
Same for quit 1:
$\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \mapsto$
$\left(a_{0}+a_{2}, a_{1}+a_{3}, a_{0}-a_{2}, a_{1}-a_{3}\right)$.
Quit 0 and then quit 1 :
$\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \mapsto$
$\left(a_{0}+a_{1}, a_{0}-a_{1}, a_{2}+a_{3}, a_{2}-a_{3}\right) \mapsto$
$\left(a_{0}+a_{1}+a_{2}+a_{3}, a_{0}-a_{1}+a_{2}-a_{3}\right.$,
$\left.a_{0}+a_{1}-a_{2}-a_{3}, a_{0}-a_{1}-a_{2}+a_{3}\right)$.

Repeat n times: e.g.,
$(1,0,0, \ldots, 0) \mapsto(1,1,1, \ldots, 1)$.
Measuring $(1,0,0, \ldots, 0)$ always produces 0 .

Measuring $(1,1,1, \ldots, 1)$ can produce any output: $\operatorname{Pr}[$ output $=q]=1 / 2^{n}$.

Repeat n times: e.g.,
$(1,0,0, \ldots, 0) \mapsto(1,1,1, \ldots, 1)$.
Measuring $(1,0,0, \ldots, 0)$ always produces 0 .

Measuring $(1,1,1, \ldots, 1)$
can produce any output:
$\operatorname{Pr}[$ output $=q]=1 / 2^{n}$.
Aside from "normalization"
(irrelevant to measurement),
have Hadamard $=$ Hadamard $^{-1}$,
so easily work backwards
from "uniform superposition"
$(1,1,1, \ldots, 1)$ to "pure state"
$(1,0,0, \ldots, 0)$.

Simon's algorithm
Assume: nonzero $s \in\{0,1\}^{n}$ satisfies $f(x)=f(x \oplus s)$ for every $x \in\{0,1\}^{n}$.
Can we find this period s, given a fast circuit for f ?

Simon's algorithm

Assume: nonzero $s \in\{0,1\}^{n}$ satisfies $f(x)=f(x \oplus s)$ for every $x \in\{0,1\}^{n}$.
Can we find this period s, given a fast circuit for f ?

We don't have enough data if f has many periods.
Assume: $\{$ periods $\}=\{0, s\}$.

Simon's algorithm

Assume: nonzero $s \in\{0,1\}^{n}$ satisfies $f(x)=f(x \oplus s)$ for every $x \in\{0,1\}^{n}$.
Can we find this period s, given a fast circuit for f ?

We don't have enough data if f has many periods.
Assume: $\{$ periods $\}=\{0, s\}$.
Traditional solution:
Compute f for many inputs, sort, analyze collisions.
Success probability is very low until \#inputs approaches $2^{n / 2}$.

Simon's algorithm uses
far fewer quit operations
if n is large and reversibility overhead is low.

Simon's algorithm uses
far fewer quit operations
if n is large and reversibility overhead is low.

Say f maps n bits to m bits using
z "ancilla" bits for reversibility.
Prepare $n+m+z$ quits
in pure zero state:
vector $(1,0,0, \ldots)$.

Simon's algorithm uses
far fewer quit operations
if n is large and reversibility overhead is low.

Say f maps n bits to m bits using
z "ancilla" bits for reversibility.
Prepare $n+m+z$ quits
in pure zero state:
vector $(1,0,0, \ldots)$.
Use n-fold Hadamard to move first n quits into uniform superposition:
$(1,1,1, \ldots, 1,0,0, \ldots)$
with 2^{n} entries 1 , others 0 .

Apply fast vector permutation for reversible f computation: 1 in position ($q, 0,0$) moves to position ($q, f(q), 0)$.

Note symmetry between 1 at $(q, f(q), 0)$ and
1 at $(q \oplus s, f(q), 0)$.

Apply fast vector permutation for reversible f computation: 1 in position ($q, 0,0$) moves to position $(q, f(q), 0)$.

Note symmetry between 1 at $(q, f(q), 0)$ and 1 at $(q \oplus s, f(q), 0)$.

Apply n-fold Hadamard.

Apply fast vector permutation for reversible f computation: 1 in position ($q, 0,0$) moves to position $(q, f(q), 0)$.

Note symmetry between 1 at $(q, f(q), 0)$ and 1 at $(q \oplus s, f(q), 0)$.

Apply n-fold Hadamard.
Measure. By symmetry, output is orthogonal to s.

Apply fast vector permutation for reversible f computation: 1 in position ($q, 0,0$) moves to position $(q, f(q), 0)$.

Note symmetry between 1 at $(q, f(q), 0)$ and 1 at $(q \oplus s, f(q), 0)$.

Apply n-fold Hadamard.
Measure. By symmetry, output is orthogonal to s.

Repeat $n+10$ times.
Use Gaussian elimination to (probably) find s.

Example, 3 bits to 3 bits:

$f(0)=4$.
$f(1)=7$.
$f(2)=2$.
$f(3)=3$.
$f(4)=7$.
$f(5)=4$.
$f(6)=3$.
$f(7)=2$.

Example, 3 bits to 3 bits:

$f(0)=4$.
$f(1)=7$.
$f(2)=2$.
$f(3)=3$.
$f(4)=7$.
$f(5)=4$.

$f(6)=3$.
$f(7)=2$.

Example, 3 bits to 3 bits:

$f(0)=4$.
$f(1)=7$.
$f(2)=2$.
$f(3)=3$.
$f(4)=7$.
$f(5)=4$.

$f(6)=3$.
$f(7)=2$.
Complete table shows that
$f(x)=f(x \oplus 5)$ for all x.
Let's watch Simon's algorithm for f, using 6 quits.

Step 1. Set up pure zero state:
$1,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$.

Step 2. Hadamard on qubit 0:
$1,1,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$.

Step 3. Hadamard on qubit 1:
$1,1,1,1,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$.

Step 4. Hadamard on qubit 2:
$1,1,1,1,1,1,1,1$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$.

Step 5. $(q, 0) \mapsto(q, f(q))$:
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,1,0,0,0,0,1$,
$0,0,0,1,0,0,1,0$,
$1,0,0,0,0,1,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,1,0,0,1,0,0,0$.

Step 6. Hadamard on qubit 0:
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,1,1,0,0,1, \overline{1}$,
$0,0,1, \overline{1}, 0,0,1,1$,
$1,1,0,0,1, \overline{1}, 0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$1, \overline{1}, 0,0,1,1,0,0$.
Notation: $\overline{1}=-1$.

Step 7. Hadamard on qubit 1:
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$1,1, \overline{1}, \overline{1}, 1, \overline{1}, \overline{1}, 1$,
$1, \overline{1}, \overline{1}, 1,1,1, \overline{1}, \overline{1}$,
$1,1,1,1,1, \overline{1}, 1, \overline{1}$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$1, \overline{1}, 1, \overline{1}, 1,1,1,1$.

Step 8. Hadamard on qubit 2:
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0, \overline{2}, 0, \overline{2}$,
$2,0, \overline{2}, 0,0, \overline{2}, 0,2$,
$2,0,2,0,0,2,0,2$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$2,0,2,0,0, \overline{2}, 0, \overline{2}$.

Step 8. Hadamard on quit 2:
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0, \overline{2}, 0, \overline{2}$,
$2,0, \overline{2}, 0,0, \overline{2}, 0,2$,
$2,0,2,0,0,2,0,2$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$2,0,2,0,0, \overline{2}, 0, \overline{2}$.
Step 9. Measure.
First 3 quits are uniform random vector orthogonal to 101: ie.,
$000,010,101$, or 111.

Grover's algorithm

Assume: unique $s \in\{0,1\}^{n}$ has $f(s)=0$.

Traditional algorithm to find s : compute f for many inputs, hope to find output 0 .
Success probability is very low until \#inputs approaches 2^{n}.

Grover's algorithm

Assume: unique $s \in\{0,1\}^{n}$ has $f(s)=0$.

Traditional algorithm to find s : compute f for many inputs, hope to find output 0 .
Success probability is very low until \#inputs approaches 2^{n}.

Grover's algorithm takes only $2^{n / 2}$ reversible computations of f. Typically: reversibility overhead is small enough that this easily beats traditional algorithm.

Start from uniform superposition over all n-bit strings q.

Step 1: Set $a \leftarrow b$ where $b_{q}=-a_{q}$ if $f(q)=0$,
$b_{q}=a_{q}$ otherwise.
This is fast.
Step 2: "Grover diffusion". Negate a around its average. This is also fast.

Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n quits.
With high probability this finds s.

Normalized graph of $q \mapsto a_{q}$
for an example with $n=12$ after 0 steps:

1.0
0.5
0
0.0
0

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after Step 1:

1.0
0.5
0.0
0
0

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after Step $1+$ Step 2:

1.0
0.5
0
0.0
0

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after Step $1+$ Step $2+$ Step 1 :

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $2 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $3 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $4 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $5 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $6 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $7 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $8 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $9 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $10 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $11 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $12 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $13 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $14 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $15 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $16 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $17 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $18 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $19 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $20 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $25 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $30 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $35 \times($ Step $1+$ Step 2$)$:

Good moment to stop, measure.

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $40 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $45 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $50 \times($ Step $1+$ Step 2$)$:

1.0

Traditional stopping point.

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $60 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $70 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $80 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $90 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $100 \times($ Step $1+$ Step 2$)$:

Very bad stopping point.
$q \longmapsto a_{q}$ is completely described by a vector of two numbers
(with fixed multiplicities):
(1) a_{q} for roots q;
(2) a_{q} for non-roots q.

Step $1+$ Step 2
act linearly on this vector.
Easily compute eigenvalues
and powers of this linear map
to understand evolution
of state of Grover's algorithm.
\Rightarrow Probability is ≈ 1
after $\approx(\pi / 4) 2^{0.5 n}$ iterations.

Textbook algorithm analysis

"WHAT is your algorithm?"

Textbook algorithm analysis

"WHAT is your algorithm?"
"Heapsort. Here's the code."

Textbook algorithm analysis

"WHAT is your algorithm?"
"Heapsort. Here's the code."
"WHAT does it accomplish?"

Textbook algorithm analysis

"WHAT is your algorithm?"

"Heapsort. Here's the code."

"WHAT does it accomplish?"

"It sorts the input array in place. Here's a proof."

Textbook algorithm analysis

"WHAT is your algorithm?"

"Heapsort. Here's the code."

"WHAT does it accomplish?"

"It sorts the input array in place. Here's a proof."
"WHAT is its run time?"

Textbook algorithm analysis

"WHAT is your algorithm?"

"Heapsort. Here's the code."
"WHAT does it accomplish?"
"It sorts the input array in place. Here's a proof."
"WHAT is its run time?"
" $O(n \lg n)$ comparisons;
and $\Theta(n \lg n)$ comparisons
for most inputs. Here's a proof."

Textbook algorithm analysis

"WHAT is your algorithm?"

"Heapsort. Here's the code."
"WHAT does it accomplish?"
"It sorts the input array in place. Here's a proof."
"WHAT is its run time?"
" $O(n \lg n)$ comparisons;
and $\Theta(n \lg n)$ comparisons
for most inputs. Here's a proof."
"You may pass."

Algorithms to attack crypto

Critical question for ECC security: How hard is ECDLP?

Algorithms to attack crypto

Critical question for ECC security: How hard is ECDLP?

Standard estimate for "strong" ECC groups of prime order ℓ : Latest "negating" variants of "distinguished point" rho methods break an average ECDLP instance using $\approx 0.886 \sqrt{\ell}$ additions.

Algorithms to attack crypto

Critical question for ECC security: How hard is ECDLP?

Standard estimate for "strong" ECC groups of prime order ℓ : Latest "negating" variants of "distinguished point" rho methods break an average ECDLP instance using $\approx 0.886 \sqrt{\ell}$ additions.

Is this proven? No!
Is this provable? Maybe not!

Algorithms to attack crypto

Critical question for ECC security: How hard is ECDLP?

Standard estimate for "strong" ECC groups of prime order ℓ : Latest "negating" variants of "distinguished point" rho methods break an average ECDLP instance using $\approx 0.886 \sqrt{\ell}$ additions.

Is this proven? No!
Is this provable? Maybe not!
So why do we think it's true?

2000 Gallant-Lambert-Vanstone: inadequately specified statement of a negating rho algorithm.

2000 Gallant-Lambert-Vanstone: inadequately specified statement of a negating rho algorithm.

2010 Bos-Kleinjung-Lenstra: a plausible interpretation of that algorithm is non-functional.

2000 Gallant-Lambert-Vanstone: inadequately specified statement of a negating rho algorithm.

2010 Bos-Kleinjung-Lenstra:
a plausible interpretation of that algorithm is non-functional.

See 2011 Bernstein-LangeSchwabe for more history and better algorithms.

2000 Gallant-Lambert-Vanstone: inadequately specified statement of a negating rho algorithm.

2010 Bos-Kleinjung-Lenstra:
a plausible interpretation of
that algorithm is non-functional.
See 2011 Bernstein-Lange-
Schwabe for more history
and better algorithms.
Why do we believe that
the latest algorithms work at the claimed speeds?
Experiments!

Similar story for RSA security: we don't have proofs for the best factoring algorithms.

Similar story for RSA security: we don't have proofs for the best factoring algorithms.

Code-based cryptography: we don't have proofs for the best decoding algorithms.

Similar story for RSA security: we don't have proofs for the best factoring algorithms.

Code-based cryptography: we don't have proofs for the best decoding algorithms.

Lattice-based cryptography:
we don't have proofs for the best lattice algorithms.

Similar story for RSA security: we don't have proofs for the best factoring algorithms.

Code-based cryptography: we don't have proofs for the best decoding algorithms.

Lattice-based cryptography: we don't have proofs for the best lattice algorithms.

MQ-based cryptography: we don't have proofs for the best system-solving algorithms.

Similar story for RSA security: we don't have proofs for the best factoring algorithms.

Code-based cryptography: we don't have proofs for the best decoding algorithms.

Lattice-based cryptography: we don't have proofs for the best lattice algorithms.

MQ-based cryptography: we don't have proofs for the best system-solving algorithms.

Confidence relies on experiments.

Where's my quantum computer?
Quantum-algorithm design
is moving beyond textbook stage into algorithms without proofs.

Example: subset-sum exponent ≈ 0.241 from 2013
Bernstein-Jeffery-Lange-Meurer.
Don't expect proofs or provability
for the best quantum algorithms to attack post-quantum crypto.

How do we obtain confidence in analysis of these algorithms?
Quantum experiments are hard.

Where's my big computer?
Analogy: Public hasn't carried out a 2^{80} NFS RSA-1024 experiment.

Where's my big computer?

Analogy: Public hasn't carried out a 2^{80} NFS RSA-1024 experiment.

But public has carried out $2^{50}, 2^{60}, 2^{70}$ NFS experiments.
Hopefully not too much extrapolation error for 2^{80}.

Where's my big computer?
Analogy: Public hasn't carried out a 2^{80} NFS RSA-1024 experiment.

But public has carried out $2^{50}, 2^{60}, 2^{70}$ NFS experiments.
Hopefully not too much extrapolation error for 2^{80}.

Vastly larger extrapolation for the quantum situation. Imagine attacker performing 2^{80} operations on 2^{40} quits; compare to today's challenges of $2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}$ quits.

Simulations
2014.04 Chou \rightarrow Ambainis:

Simulation shows error in proof of 2003 Ambainis distinctness algorithm.

Simulations
2014.04 Chou \rightarrow Ambainis:

Simulation shows error in proof of 2003 Ambainis distinctness algorithm.

Ambainis: Yes, thanks, will fix.

Simulations
2014.04 Chou \rightarrow Ambainis:

Simulation shows error in proof of 2003 Ambainis distinctness algorithm.

Ambainis: Yes, thanks, will fix.
2014.04 Chou \rightarrow Childs:

Simulation shows that 2003
Childs-Eisenberg distinctness
algorithm is non-functional;
need to take half angle.

Simulations
2014.04 Chou \rightarrow Ambainis:

Simulation shows error in proof of 2003 Ambainis distinctness algorithm.

Ambainis: Yes, thanks, will fix.
2014.04 Chou \rightarrow Childs:

Simulation shows that 2003
Childs-Eisenberg distinctness algorithm is non-functional; need to take half angle.

Childs: Yes. Typo, already fixed in 2005 journal version.

Do we know the best attacks?

Maybe, maybe not.
How many researchers have looked for better attacks?

Do we know the best attacks?

Maybe, maybe not.
How many researchers have looked for better attacks?

Do those researchers have the right experience?

Do we know the best attacks?

Maybe, maybe not.
How many researchers have looked for better attacks?

Do those researchers have the right experience?

Did they carefully study all possible avenues of attack?

Do we know the best attacks?

Maybe, maybe not.
How many researchers have looked for better attacks?

Do those researchers have the right experience?

Did they carefully study all possible avenues of attack?

Is this auditable and audited?

Do we know the best attacks?

Maybe, maybe not.
How many researchers have looked for better attacks?

Do those researchers have the right experience?

Did they carefully study all possible avenues of attack?

Is this auditable and audited?
Real-world security systems cannot avoid these questions.

