
1

Quantum algorithms

Daniel J. Bernstein

University of Illinois at Chicago

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

2

Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform

“Hadamard gate”, “T gate”,

“controlled NOT gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”;

: : : “Grover’s algorithm”; etc.

3

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

http://tinyurl.com/y8bwr3ht

3

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

http://tinyurl.com/y8bwr3ht
https://arxiv.org/abs/1111.3633

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any physical computer

can compute efficiently.

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any physical computer

can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

4

Quantum computer type 3 (QC3):

efficiently computes anything

that any physical computer

can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

5

The state of an algorithm

Data (“state”) stored in n bits:

an element of {0; 1}n, viewed as

an element of {0; 1; : : : ; 2n − 1}.

5

The state of an algorithm

Data (“state”) stored in n bits:

an element of {0; 1}n, viewed as

an element of {0; 1; : : : ; 2n − 1}.

State stored in n qubits:

a nonzero element of C2n .

Retrieving this vector is tough!

5

The state of an algorithm

Data (“state”) stored in n bits:

an element of {0; 1}n, viewed as

an element of {0; 1; : : : ; 2n − 1}.

State stored in n qubits:

a nonzero element of C2n .

Retrieving this vector is tough!

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measuring the qubits produces

an element of {0; 1; : : : ; 2n − 1}
and destroys the state.

Measurement produces element q

with probability |aq |2=
P
r |ar |2.

6

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

6

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

(0; 0; 0; 0; 0; 0; 1; 0) is

“|6〉” in standard notation.

Measurement produces 6.

6

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

(0; 0; 0; 0; 0; 0; 1; 0) is

“|6〉” in standard notation.

Measurement produces 6.

(0; 0; 0; 0; 0; 0;−7i ; 0) = −7i |6〉:
Measurement produces 6.

6

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

(0; 0; 0; 0; 0; 0; 1; 0) is

“|6〉” in standard notation.

Measurement produces 6.

(0; 0; 0; 0; 0; 0;−7i ; 0) = −7i |6〉:
Measurement produces 6.

(0; 0; 4; 0; 0; 0; 8; 0) = 4|2〉+ 8|6〉:
Measurement produces

2 with probability 20%,

6 with probability 80%.

7

Fast quantum operations, part 1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a1; a0; a3; a2; a5; a4; a7; a6)

is complementing index bit 0,

hence “complementing qubit 0”.

7

Fast quantum operations, part 1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a1; a0; a3; a2; a5; a4; a7; a6)

is complementing index bit 0,

hence “complementing qubit 0”.

(a0; a1; a2; a3; a4; a5; a6; a7)

is measured as (q0; q1; q2),

representing q = q0 + 2q1 + 4q2,

with probability |aq |2=
P
r |ar |2.

(a1; a0; a3; a2; a5; a4; a7; a6)

is measured as (q0 ⊕ 1; q1; q2),

representing q ⊕ 1,

with probability |aq |2=
P
r |ar |2.

8

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

8

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

8

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

Complementing qubit 2

= swapping qubits 0 and 2

◦ complementing qubit 0

◦ swapping qubits 0 and 2.

Similarly: swapping qubits i ; j .

9

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

9

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

10

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

10

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a2; a3; a4; a5; a7; a6;

a8; a9; a10; a11; a12; a13; a15; a14;

a16; a17; a18; a19; a20; a21; a23; a22;

a24; a25; a26; a27; a28; a29; a31; a30).

11

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):

11

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):

1. Build a traditional circuit

to compute j 7→ p(j)

using NOT/XOR/AND gates.

2. Convert into reversible gates:

e.g., convert AND into Toffoli.

12

Example: Let’s compute

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a7; a0; a1; a2; a3; a4; a5; a6);

permutation q 7→ q + 1 mod 8.

1. Build a traditional circuit

to compute q 7→ q + 1 mod 8.

q0

�� ��2
22

22
22

22
22

22
22

22

!!D
DD

DD
DD

DD
D q1

��

��

q2

��

c1 = q1q0

!!D
DD

DD
DD

DD
D

q0 ⊕ 1 q1 ⊕ q0 q2 ⊕ c1

13

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

13

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

Controlled NOT for q1 ← q1 ⊕ q0:

(a0; a1; a2; a7; a4; a5; a6; a3) 7→
(a0; a7; a2; a1; a4; a3; a6; a5).

13

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

Controlled NOT for q1 ← q1 ⊕ q0:

(a0; a1; a2; a7; a4; a5; a6; a3) 7→
(a0; a7; a2; a1; a4; a3; a6; a5).

NOT for q0 ← q0 ⊕ 1:

(a0; a7; a2; a1; a4; a3; a6; a5) 7→
(a7; a0; a1; a2; a3; a4; a5; a6).

14

This permutation example

was deceptively easy.

It didn’t need many operations.

For large n, most permutations p

need many operations ⇒ slow.

Really want fast circuits.

14

This permutation example

was deceptively easy.

It didn’t need many operations.

For large n, most permutations p

need many operations ⇒ slow.

Really want fast circuits.

Also, it didn’t need extra storage:

circuit operated “in place” after

computation c1 ← q1q0 was

merged into q2 ← q2 ⊕ c1.

Typical circuits aren’t in-place.

15

Start from any circuit:

inputs b1; b2; : : : ; bi ;

bi+1 = 1⊕ bf (i+1)bg(i+1);

bi+2 = 1⊕ bf (i+2)bg(i+2);

: : :

bT = 1⊕ bf (T)bg(T);

specified outputs.

15

Start from any circuit:

inputs b1; b2; : : : ; bi ;

bi+1 = 1⊕ bf (i+1)bg(i+1);

bi+2 = 1⊕ bf (i+2)bg(i+2);

: : :

bT = 1⊕ bf (T)bg(T);

specified outputs.

Reversible but dirty:

inputs b1; b2; : : : ; bT ;

bi+1 ← 1⊕ bi+1 ⊕ bf (i+1)bg(i+1);

bi+2 ← 1⊕ bi+2 ⊕ bf (i+2)bg(i+2);

: : :

bT ← 1⊕ bT ⊕ bf (T)bg(T).

Same outputs if all of

bi+1; : : : ; bT started as 0.

16

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:

(inputs) 7→
(inputs; dirt; outputs).

Dirty reversible computation:

(inputs; zeros; zeros) 7→
(inputs; dirt; outputs).

Clean reversible computation:

(inputs; zeros; zeros) 7→
(inputs; zeros; outputs).

17

Given fast circuit for p

and fast circuit for p−1,

build fast reversible circuit for

(x; zeros) 7→ (p(x); zeros).

17

Given fast circuit for p

and fast circuit for p−1,

build fast reversible circuit for

(x; zeros) 7→ (p(x); zeros).

Replace reversible bit operations

with Toffoli gates etc.

permuting C2n+z → C2n+z
.

Permutation on first 2n entries is

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)).

Typically prepare vectors

supported on first 2n entries

so don’t care how permutation

acts on last 2n+z − 2n entries.

18

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

18

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.

Many subtle tradeoffs.

18

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.

Many subtle tradeoffs.

Crude “poly-time” analyses

don’t care about this,

but serious cryptanalysis

is much more precise.

19

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

19

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

(a0; a1; a2; a3) 7→
(a0 + a1; a0 − a1; a2 + a3; a2 − a3).

19

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

(a0; a1; a2; a3) 7→
(a0 + a1; a0 − a1; a2 + a3; a2 − a3).

Same for qubit 1:

(a0; a1; a2; a3) 7→
(a0 + a2; a1 + a3; a0 − a2; a1 − a3).

19

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

(a0; a1; a2; a3) 7→
(a0 + a1; a0 − a1; a2 + a3; a2 − a3).

Same for qubit 1:

(a0; a1; a2; a3) 7→
(a0 + a2; a1 + a3; a0 − a2; a1 − a3).

Qubit 0 and then qubit 1:

(a0; a1; a2; a3) 7→
(a0 +a1; a0−a1; a2 +a3; a2−a3) 7→
(a0 +a1 +a2 +a3; a0−a1 +a2−a3,

a0 +a1−a2−a3; a0−a1−a2 +a3).

20

Repeat n times: e.g.,

(1; 0; 0; : : : ; 0) 7→ (1; 1; 1; : : : ; 1).

Measuring (1; 0; 0; : : : ; 0)

always produces 0.

Measuring (1; 1; 1; : : : ; 1)

can produce any output:

Pr[output = q] = 1=2n.

20

Repeat n times: e.g.,

(1; 0; 0; : : : ; 0) 7→ (1; 1; 1; : : : ; 1).

Measuring (1; 0; 0; : : : ; 0)

always produces 0.

Measuring (1; 1; 1; : : : ; 1)

can produce any output:

Pr[output = q] = 1=2n.

Aside from “normalization”

(irrelevant to measurement),

have Hadamard = Hadamard−1,

so easily work backwards

from “uniform superposition”

(1; 1; 1; : : : ; 1) to “pure state”

(1; 0; 0; : : : ; 0).

21

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

21

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

We don’t have enough data

if f has many periods.

Assume: {periods} = {0; s}.

21

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

We don’t have enough data

if f has many periods.

Assume: {periods} = {0; s}.

Traditional solution:

Compute f for many inputs,

sort, analyze collisions.

Success probability is very low

until #inputs approaches 2n=2.

22

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

22

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Say f maps n bits to m bits using

z “ancilla” bits for reversibility.

Prepare n +m + z qubits

in pure zero state:

vector (1; 0; 0; : : :).

22

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Say f maps n bits to m bits using

z “ancilla” bits for reversibility.

Prepare n +m + z qubits

in pure zero state:

vector (1; 0; 0; : : :).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:

(1; 1; 1; : : : ; 1; 0; 0; : : :)

with 2n entries 1, others 0.

23

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

23

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply n-fold Hadamard.

23

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply n-fold Hadamard.

Measure. By symmetry,

output is orthogonal to s.

23

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply n-fold Hadamard.

Measure. By symmetry,

output is orthogonal to s.

Repeat n + 10 times.

Use Gaussian elimination

to (probably) find s.

24

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7.

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

24

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

24

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Complete table shows that

f (x) = f (x ⊕ 5) for all x .

Let’s watch Simon’s algorithm

for f , using 6 qubits.

25

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

25

Step 2. Hadamard on qubit 0:

1; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

25

Step 3. Hadamard on qubit 1:

1; 1; 1; 1; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

25

Step 4. Hadamard on qubit 2:

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

25

Step 5. (q; 0) 7→ (q; f (q)):

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 0; 0; 1; 0; 0; 1; 0;

1; 0; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0:

25

Step 6. Hadamard on qubit 0:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 1; 0; 0; 1; 1;

0; 0; 1; 1; 0; 0; 1; 1;

1; 1; 0; 0; 1; 1; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 0; 0; 1; 1; 0; 0:

Notation: 1 = −1.

25

Step 7. Hadamard on qubit 1:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 1; 1; 1; 1; 1; 1;

1; 1; 1; 1; 1; 1; 1; 1;

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 1; 1; 1; 1; 1; 1:

25

Step 8. Hadamard on qubit 2:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

25

Step 8. Hadamard on qubit 2:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9. Measure.

First 3 qubits are uniform random

vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

26

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

26

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

27

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

28

Normalized graph of q 7→ aq
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after Step 1:

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after Step 1 + Step 2:

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after Step 1 + Step 2 + Step 1:

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 2× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 3× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 4× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 5× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 6× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 7× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 8× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 9× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 10× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 11× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 12× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 13× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 14× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 15× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 16× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 17× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 18× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 19× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 20× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 25× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 30× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 35× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Good moment to stop, measure.

28

Normalized graph of q 7→ aq
for an example with n = 12

after 40× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 45× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 50× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Traditional stopping point.

28

Normalized graph of q 7→ aq
for an example with n = 12

after 60× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 70× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 80× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 90× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

28

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

29

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

30

Textbook algorithm analysis

“WHAT is your algorithm?”

30

Textbook algorithm analysis

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

30

Textbook algorithm analysis

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

30

Textbook algorithm analysis

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

“It sorts the input array in place.

Here’s a proof.”

30

Textbook algorithm analysis

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

“It sorts the input array in place.

Here’s a proof.”

“WHAT is its run time?”

30

Textbook algorithm analysis

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

“It sorts the input array in place.

Here’s a proof.”

“WHAT is its run time?”

“O(n lg n) comparisons;

and Θ(n lg n) comparisons

for most inputs. Here’s a proof.”

30

Textbook algorithm analysis

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

“It sorts the input array in place.

Here’s a proof.”

“WHAT is its run time?”

“O(n lg n) comparisons;

and Θ(n lg n) comparisons

for most inputs. Here’s a proof.”

“You may pass.”

31

Algorithms to attack crypto

Critical question for ECC security:

How hard is ECDLP?

31

Algorithms to attack crypto

Critical question for ECC security:

How hard is ECDLP?

Standard estimate for “strong”

ECC groups of prime order ‘:

Latest “negating” variants of

“distinguished point” rho methods

break an average ECDLP instance

using ≈0:886
√
‘ additions.

31

Algorithms to attack crypto

Critical question for ECC security:

How hard is ECDLP?

Standard estimate for “strong”

ECC groups of prime order ‘:

Latest “negating” variants of

“distinguished point” rho methods

break an average ECDLP instance

using ≈0:886
√
‘ additions.

Is this proven? No!

Is this provable? Maybe not!

31

Algorithms to attack crypto

Critical question for ECC security:

How hard is ECDLP?

Standard estimate for “strong”

ECC groups of prime order ‘:

Latest “negating” variants of

“distinguished point” rho methods

break an average ECDLP instance

using ≈0:886
√
‘ additions.

Is this proven? No!

Is this provable? Maybe not!

So why do we think it’s true?

32

2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.

32

2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos–Kleinjung–Lenstra:

a plausible interpretation of

that algorithm is non-functional.

32

2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos–Kleinjung–Lenstra:

a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein–Lange–

Schwabe for more history

and better algorithms.

https://eprint.iacr.org/2011/003
https://eprint.iacr.org/2011/003

32

2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos–Kleinjung–Lenstra:

a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein–Lange–

Schwabe for more history

and better algorithms.

Why do we believe that

the latest algorithms work

at the claimed speeds?

Experiments!

https://eprint.iacr.org/2011/003
https://eprint.iacr.org/2011/003

33

Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.

33

Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.

Code-based cryptography:

we don’t have proofs for the

best decoding algorithms.

33

Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.

Code-based cryptography:

we don’t have proofs for the

best decoding algorithms.

Lattice-based cryptography:

we don’t have proofs for the

best lattice algorithms.

33

Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.

Code-based cryptography:

we don’t have proofs for the

best decoding algorithms.

Lattice-based cryptography:

we don’t have proofs for the

best lattice algorithms.

MQ-based cryptography:

we don’t have proofs for the

best system-solving algorithms.

33

Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.

Code-based cryptography:

we don’t have proofs for the

best decoding algorithms.

Lattice-based cryptography:

we don’t have proofs for the

best lattice algorithms.

MQ-based cryptography:

we don’t have proofs for the

best system-solving algorithms.

Confidence relies on experiments.

34

Where’s my quantum computer?

Quantum-algorithm design

is moving beyond textbook stage

into algorithms without proofs.

Example: subset-sum

exponent ≈0:241 from 2013

Bernstein–Jeffery–Lange–Meurer.

Don’t expect proofs or provability

for the best quantum algorithms

to attack post-quantum crypto.

How do we obtain confidence

in analysis of these algorithms?

Quantum experiments are hard.

35

Where’s my big computer?

Analogy: Public hasn’t carried out

a 280 NFS RSA-1024 experiment.

35

Where’s my big computer?

Analogy: Public hasn’t carried out

a 280 NFS RSA-1024 experiment.

But public has carried out

250, 260, 270 NFS experiments.

Hopefully not too much

extrapolation error for 280.

35

Where’s my big computer?

Analogy: Public hasn’t carried out

a 280 NFS RSA-1024 experiment.

But public has carried out

250, 260, 270 NFS experiments.

Hopefully not too much

extrapolation error for 280.

Vastly larger extrapolation

for the quantum situation.

Imagine attacker performing

280 operations on 240 qubits;

compare to today’s challenges

of 21, 22, 23, 24, 25, 26 qubits.

36

Simulations

2014.04 Chou → Ambainis:

Simulation shows error in

proof of 2003 Ambainis

distinctness algorithm.

36

Simulations

2014.04 Chou → Ambainis:

Simulation shows error in

proof of 2003 Ambainis

distinctness algorithm.

Ambainis: Yes, thanks, will fix.

36

Simulations

2014.04 Chou → Ambainis:

Simulation shows error in

proof of 2003 Ambainis

distinctness algorithm.

Ambainis: Yes, thanks, will fix.

2014.04 Chou → Childs:

Simulation shows that 2003

Childs–Eisenberg distinctness

algorithm is non-functional;

need to take half angle.

36

Simulations

2014.04 Chou → Ambainis:

Simulation shows error in

proof of 2003 Ambainis

distinctness algorithm.

Ambainis: Yes, thanks, will fix.

2014.04 Chou → Childs:

Simulation shows that 2003

Childs–Eisenberg distinctness

algorithm is non-functional;

need to take half angle.

Childs: Yes. Typo, already

fixed in 2005 journal version.

37

Do we know the best attacks?

Maybe, maybe not.

How many researchers have

looked for better attacks?

37

Do we know the best attacks?

Maybe, maybe not.

How many researchers have

looked for better attacks?

Do those researchers

have the right experience?

37

Do we know the best attacks?

Maybe, maybe not.

How many researchers have

looked for better attacks?

Do those researchers

have the right experience?

Did they carefully study

all possible avenues of attack?

37

Do we know the best attacks?

Maybe, maybe not.

How many researchers have

looked for better attacks?

Do those researchers

have the right experience?

Did they carefully study

all possible avenues of attack?

Is this auditable and audited?

37

Do we know the best attacks?

Maybe, maybe not.

How many researchers have

looked for better attacks?

Do those researchers

have the right experience?

Did they carefully study

all possible avenues of attack?

Is this auditable and audited?

Real-world security systems

cannot avoid these questions.

