All crypto is broken?

FUD: “Nobody knows exactly when quantum computing will become a reality, but when and if it does, it will signal the end of traditional cryptography.”
All crypto is broken?

FUD: “Nobody knows exactly when quantum computing will become a reality, but when and if it does, it will signal the end of traditional cryptography.”

Sales pitch: Buy QKD! (Never mind QKD security disasters.)
All crypto is broken?

FUD: “Nobody knows exactly when quantum computing will become a reality, but when and if it does, it will signal the end of traditional cryptography.”

Sales pitch: Buy QKD!
(Never mind QKD security disasters.)

Fact check: Actually, many cryptosystems are unbroken.
Public-key crypto is broken?

FUD: “When the first quantum factoring devices are built the security of public-key cryptosystems will vanish.”
Public-key crypto is broken?

FUD: “When the first quantum factoring devices are built the security of public-key cryptosystems will vanish.”

Sales pitch: Buy QKD!
(Never mind lack of functionality.)
Public-key crypto is broken?

FUD: “When the first quantum factoring devices are built the security of public-key cryptosystems will vanish.”

Sales pitch: Buy QKD!
(Never mind lack of functionality.)

Fact check: Actually, many public-key cryptosystems are unbroken.

Countering quantum FUD
Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta
RSA and ECC are broken?

FUD: RSA is dead. “There’s not going to be a larger key-size where a classical user of RSA gains a significant advantage over a quantum computing attacker.”
RSA and ECC are broken?

FUD: RSA is dead. “There’s not going to be a larger key-size where a classical user of RSA gains a significant advantage over a quantum computing attacker.”

Sales pitch: Buy codes! Lattices! Multivariates! Hash signatures!
RSA and ECC are broken?

FUD: RSA is dead. “There’s not going to be a larger key-size where a classical user of RSA gains a significant advantage over a quantum computing attacker.”

Sales pitch: Buy codes! Lattices! Multivariates! Hash signatures!

Fact check (new): Actually, RSA survives with big keys.

Countering quantum FUD Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta
RSA: Back from the dead

Countering quantum FUD Daniel J. Bernstein, Nadia Heninger, Paul Lou, Luke Valenta
Post-quantum RSA

https://eprint.iacr.org/2017/351

We generated a 1TB RSA key.

Preliminary security analysis:

$>2^{100}$ security against all known attacks.
Post-quantum RSA

We generated a 1TB RSA key.

Preliminary security analysis:
\(> 2^{100} \) security against all known attacks.

Used only about 2 million core-hours.

Also have preliminary implementation of RSA-KEM encryption and decryption.