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Executive summary

Authenticated encryption is the cryptographer’s front-line defense against attackers. It is the
protective shield applied to every network packet. It is the foundation of security for medical
devices, connected vehicles, the financial sector, the smart grid, and the Internet of Things.
But is this shield actually being used? Is it actually working? Is it doing what the users
actually need? Are industry practitioners listening to researchers? Are researchers listening
to industry practitioners?

This white paper identifies critical ongoing problems whose solutions will need concerted
community effort stretching years into the future. The challenges described in this white
paper are classified into four categories:

• Chapter 1: The security target is wrong.

• Chapter 2: The interface is wrong.

• Chapter 3: The performance target is wrong.

• Chapter 4: Mistakes and malice.

This white paper does not mean to suggest that authenticated ciphers are always aiming at
the wrong target. It is important to understand that, for many environments today, using
an existing standard such as AES-128-GCM [19] is simple, safe, and efficient. However, it is
equally important to understand that the existing standards fail to meet the needs of many
other environments. The AES cipher [10] and the AES-GCM authenticated cipher are used
as examples throughout this document to illustrate what can and does go wrong.

Audience

This white paper is aimed at several target groups:

• Practitioners and users, so that they can understand the most important limitations of
today’s cryptography.

• Researchers, so that they can help develop solutions to these problems.

• Managers, so that they can invest their cryptographic resources wisely.

• Standardization bodies, so that they can make better plans for future standards and
updates in current standards.
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2 ECRYPT-CSA

Framework and history

This white paper is produced by ECRYPT-CSA, a Coordination and Support Action spon-
sored by the European Union’s Horizon 2020 programme. ECRYPT-CSA identified key play-
ers from around the world and solicited their input, receiving a tremendous range of feedback;
30 of these key players joined a private mailing list dedicated to this white paper. ECRYPT-
CSA held a public 1-day workshop on 17 July 2015 in Utrecht, the Netherlands, attracting 10
of the key players, additional experts, and other interested parties. The workshop organized
the full group of 36 attendees around a circle and featured a full day of intense discussions,
with smaller group discussions over coffee and lunch in the same room. ECRYPT-CSA also
kicked off a public web site chae.cr.yp.to at the end of June 2015 with an introductory
page and a workshop page. The same web site will host future updates of this white paper.

Chapter 0

A brief introduction to
authenticated encryption

Authenticated encryption allows two parties, say Alice and Bob, to exchange messages. The
prerequisite is that Alice and Bob each have a copy of a secret key. Alice uses the secret key
to encrypt a plaintext message, computing a scrambled ciphertext. Alice then sends the
ciphertext through an untrusted communication channel:

�� ��
// authenticated

encryption
// // // // verified

decryption
//

Bob receives the ciphertext and uses the secret key to decrypt the ciphertext, computing
the original plaintext. Subsequent messages from Alice to Bob (or from Bob to Alice) are
encrypted and decrypted similarly.

0.1 Confidentiality

Authenticated encryption has two fundamental security goals. The first fundamental secu-
rity goal is confidentiality despite espionage by the untrusted network. A spy, given the
ciphertexts, should not be able to figure out anything about the plaintexts.

Of course, a spy who has a copy of the secret key can decrypt messages by simply per-
forming the same computations that Bob performs. It is thus essential for Alice and Bob to
maintain the secrecy of the secret key.

Confidentiality is limited by the exposure of metadata. The spy can see who is sending
a ciphertext (namely Alice), and when the ciphertext is sent, and how long the ciphertext is

3

4 ECRYPT-CSA

(which in turn reveals information about how long the plaintext is), and who is receiving the
ciphertext (namely Bob).

Confidentiality is also limited by the exposure of repeated plaintexts as repeated cipher-
texts. For example, if Alice sends plaintext “WARM” and then plaintext “COLD” and then
plaintext “WARM”, the spy will see that the first and third ciphertexts are the same, and will
deduce that the first and third plaintexts are the same, while the second plaintext is different.

One standard solution to the repeated-plaintext problem is for Alice and Bob to insert a
unique message number (a nonce: “number used once”) at the beginning of each plaintext,
so that plaintexts never repeat: “1 WARM”, “2 COLD”, “3 WARM”. Common practice is
for this nonce to be an unencrypted counter, although this exposes metadata that might
otherwise be more expensive to collect. A common variant is for the nonce to be chosen
randomly (and long enough to avoid random collisions), although this raises questions about
the quality and cost of the random-number generator. It is also possible to encrypt nonces.

Current standards and proposals for authenticated ciphers vary in how much damage
is done if a message number repeats. At one extreme, AES-GCM loses all security in this
scenario; the user is responsible for ensuring proper use of nonces. At the opposite extreme,
some new proposals guarantee “maximum nonce misuse resistance”: the only damage done
by a repeated message number is exposure of whether the plaintext repeated. There are
intermediate possibilities, and there is now considerable literature analyzing the resulting
tradeoffs between security and performance.

0.2 Integrity

The second fundamental security goal of authenticated encryption is integrity despite sabo-
tage by the untrusted network. Each ciphertext includes an authenticator that is verified as
part of the decryption process, so any modification of the ciphertext by the untrusted network
will be recognized:

�� ��
// authenticated

encryption
// // // // verified

decryption
//?

Integrity does not guarantee availability of the correct plaintext: Alice and Bob need further
mechanisms to react to a verification failure, somehow ensuring that the correct plaintext is
sent again.

Integrity is limited by the ability of the network to replay messages. If Bob receives
“PAY CHARLIE 1000 EUR” and then later “PAY CHARLIE 1000 EUR”, was Alice in
fact sending this message twice, or is the network maliciously copying the old message? A
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standard solution is for the sender to include a unique message number at the beginning of
each plaintext (which also helps confidentiality, as discussed above), and for the receiver to
discard any message number used previously under the same key. If message numbers are
always selected in increasing order then the receiver can simply remember the last message
number accepted, and reject any message number that is not larger.

Integrity is also limited by the ability of the network to reflect messages. Reflection is
a special type of replay: the network takes a message from Alice to Bob, and sends it as a
message from Bob to Alice. A standard solution is for plaintexts to explicitly identify their
direction. Another standard solution is to include the Alice-to-Bob or Bob-to-Alice metadata
as associated data that is also authenticated without being encrypted.

0.3 Performance

Exponential increases in computer power have been accompanied by exponential increases in
the amount of data transmitted. It is essential for authenticated ciphers to be able to keep
up with all this data: otherwise users will be forced to expose some data to espionage and
sabotage. Obtaining the best possible tradeoffs between security and performance, and in
particular the best possible security subject to the users’ performance constraints, has always
been one of the central goals of research in this area.

Common platforms for cryptographic software include 8-bit, 16-bit, and 32-bit embedded
CPUs; 32-bit and 64-bit smartphone CPUs; 32-bit and 64-bit laptop CPUs; 64-bit desktop
CPUs; and 64-bit server CPUs. Cryptographic software performance is measured primarily
by the number of CPU clock cycles required to process messages of various lengths. This
number can vary between encryption, decryption of valid ciphertexts, and rejection of forged
ciphertexts.

There are also many chips that include cryptographic hardware. Important performance
metrics for hardware include throughput (how much data can be processed per second),
latency (how much real time elapses before results are available), chip area (both the area used
to store state and the area used for computation), power, and energy consumption. Hardware
implementations can be prototyped on field-programmable gate arrays (FPGAs) before being
burned into application-specific integrated circuits (ASICs); in many cases FPGAs are already
fast enough to be used in production, and their agility often reduces total costs.

Chapter 1

The security target is wrong

Often an authenticated cipher is designed to achieve security against one type of attack, while
the user actually needs security against another type of attack. In some cases the cipher ends
up being broken because the security targets were set too low; see, e.g., the side-channel
example below. In other cases the cipher ends up being unnecessarily expensive, hampering
deployment in performance-sensitive environments, because the security targets were set too
high; see, e.g., the 80-bit example below.

1.1 Side-channel attacks—the security target is too low

The standardization process for the AES cipher carefully considered ways that an attacker
might learn something from inspecting the AES outputs. The process concluded that AES
was strong. However, a decade ago Osvik, Shamir, and Tromer [22] presented a 65-millisecond
attack successfully stealing AES keys used for disk encryption. This attack did not inspect
the AES outputs; instead it made observations of metadata regarding the AES computation,
specifically the time required to access cache lines evicted by the AES computation.

Side-channel attacks are applicable far beyond AES, and today remain one of the top
threats against real-world authenticated encryption, as illustrated by various TLS imple-
mentations being broken by the “Lucky Thirteen” [2] and “Lucky Microseconds” [1] timing
attacks. It is well understood in theory how to avoid all leakage of secrets through timing,
but this has only limited support in typical cryptographic software libraries. One of the un-
derlying issues is that constant-time software creates performance problems in most ciphers
and modes of operation; this in turn reflects a lack of attention to side-channel attacks at the
cryptographic-design stage.

Even worse, attackers who are physically close to the device under attack (or who have
control over enough nearby sensors, such as smartphone sensors) can collect information from
many more side channels: power consumption, electromagnetic radiation, etc. It is not at
all clear how to protect secrets from leaking through these side channels. The security of
proposed “countermeasures” is poorly understood, and these countermeasures again create
performance problems in most ciphers.
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1.2 Birthday attacks—the security target is too low

There is a proof guaranteeing that the standard AES-GCM authenticated cipher is almost
as secure as the underlying AES block cipher. Specifically, it is almost true that an attack
against AES-GCM cannot be more successful than an attack against AES. But it is not
exactly true. To be precise, an attack using q blocks of AES-GCM ciphertext can be more
successful than an attack against AES; what the proof guarantees is a particular limit on the
extra success chance. The limit is roughly q2/2123; the exact formula does not matter for the
following comments.

If q = 262 then the AES-GCM security guarantee is useless. Even if q is just 250, the extra
success chance could be as high as one in eight million, which might sound small but is not
a success chance that cryptographers would tolerate for high-value data. Similar comments
apply to most authenticated ciphers, and in many cases researchers have developed birthday
attacks showing that there really is a gap between the security of AES and the security of
systems built on top of AES.

The very recent “SWEET32” attack [5] is a low-cost birthday attack against 64-bit block
ciphers allowed in TLS and OpenVPN. SWEET32 reaches a high success chance using q ≈ 237.
AES has a larger block size, so AES-GCM is not broken at such low cost, but from this
perspective the security margin of AES-GCM is surprisingly small.

There has been some initial work on beyond-birthday-bound cryptography, which ob-
tains meaningful AES-based guarantees for considerably larger values of q by using AES
in a more complicated way, and on bigger-birthday-bound cryptography, which obtains
meaningful guarantees by replacing AES with “larger-block” ciphers. See, e.g., [13] for a
beyond-birthday-bound authenticated cipher and [9] for a bigger-birthday-bound authenti-
cated cipher. The challenge is to understand the fundamental cost of security as a function
of the amount of data transmitted.

1.3 Data limits—the security target is too high

A different response to “birthday attacks” is to design security systems that enforce con-
trols over how often a secret key is used. These controls usually require some key-switching
complexity elsewhere in the system, but almost all systems have this complexity anyway.

As a concrete example: NIST’s GCM standard says that, when its 96-bit nonces are
generated randomly, the “total number of invocations of the authenticated encryption function
shall not exceed 232, including all IV lengths and all instances of the authenticated encryption
function with the given key”. It is not unusual for an application to send more than 232

messages, and then this requirement forces the application to switch keys. This requirement
is important: an application that actually sends 240 messages under the same key would have
an unacceptably high chance of nonces colliding, more than one chance in a million, and
would then lose all security.

The conventional view is that an attack using 250 ciphertexts and 2100 computations would
constitute a “break” of a cipher that has a 128-bit key. However, attackers are constrained
not only by the computation that they can afford, but also by limits on the amount of data
provided to them (known plaintexts, chosen plaintexts, chosen ciphertexts). A consequence
of limiting keys to, e.g., 220 ciphertexts is that users are protected against attacks that use
250, 240, or even 230 ciphertexts. The challenge here is for the cipher designer to build more
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efficient ciphers by taking advantage of this protection.
This research direction is controversial. One argument against checking the nominal num-

ber of ciphertexts used by an attack is that attacks will often work with fewer ciphertexts at
a moderate (linear or quadratic) loss in success probability; this must be carefully taken into
account. Another argument against building ciphers in this way is that the security of the
cipher now depends on other parts of the system to switch keys quickly enough. One coun-
terargument is that the key-switching part of the system is also security-critical and needs
careful cryptographic review in any case; this review can also check whether keys are switched
as often as the cipher requires.

1.4 Attack economics—the security target is too high

An even more controversial research direction is to assess how much the attacker gains from
an attack, compare it to the cost of the attack, and choose key sizes so that the cost outweighs
the benefit.

For example, many lightweight ciphers use 80-bit keys, even though it is clearly feasible
for a well-funded attacker to search through all 280 possible keys. The usual argument that
80-bit keys are sufficient is that the attacker’s expected benefit is smaller than the attacker’s
expected cost, so the attacker will not carry out the attack.

The usual counterargument is that it is actually quite tricky to evaluate the costs and
benefits of an attack. The challenge is to do this correctly. One difficulty is that many com-
plicated layers of security systems are built under the assumption that the underlying crypto
is unbroken; evaluating the impact of key recovery, plaintext recovery, forgery, etc. requires a
holistic understanding of the entire system. Another difficulty is that, if breaking one key is
feasible, then breaking many keys often has surprisingly little extra cost; see, e.g., [8] and [4].

Similar comments apply to short authenticators, say 32-bit or 16-bit authenticators. The
Internet of Things will have very large numbers of devices with very small amounts of data to
send each time they communicate, and the overhead for transmitting a long authenticator can
be quite problematic, especially for devices that run off batteries. It is of course unacceptable
if an attacker can steal some money or fire a missile by forging a single 32-bit authenticator;
but often authenticators are protecting low-value data, and often preexisting redundancies in
data effectively increase the length of an authenticator. The challenge is again to accurately
evaluate the costs and benefits of an attack.

Perhaps performance requirements prevent deployment of 128-bit keys and 128-bit authen-
ticators. Perhaps the most that the user can afford is an 80-bit key and a 32-bit authenticator.
The only hope for security is then to analyze all of these complications and redesign systems
accordingly.

1.5 Quantum computers—the security target is too low

Michele Mosca, Deputy Director of the Institute for Quantum Computing at the University of
Waterloo, has estimated a “1/7 chance” of a useful quantum computer—one that can break
RSA-2048—by the year 2026 and a “1/2 chance” by 2031. See [21].

Quantum computation would not have such dramatic effects on authenticated ciphers
(Shor’s algorithm [23], the quantum algorithm that breaks RSA-2048, is not applicable to
most ciphers and authenticators), but it would have some effect. Specifically, the same
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computers would also be able to run Grover’s algorithm [11], which searches through 2k

possible keys using only 2k/2 quantum operations.
One way to react to Grover’s algorithm is to replace k-bit keys with 2k-bit keys: for

example, switch from AES-128 to AES-256. However, this is likely to be overkill, for at
least three reasons. First, the number of rounds in AES-256 was selected to provide 2256

security against more advanced attacks than brute-force search; it seems likely that quantum
computation would have less impact upon these attacks than upon brute-force search, so
fewer rounds are required. Second, Grover’s algorithm is inherently serial, so the speedup
that it provides is limited by the time available, not by the product of time and hardware
area. Third, even under optimistic projections regarding progress in quantum computation,
the ultimate cost of qubit operations is likely to be considerably more expensive than the
ultimate cost of bit operations.

The challenge here is to analyze what is actually required for security against future quan-
tum computers. Note that attackers storing ciphertext today can target the ciphertext using
quantum computers in the future, and upgrading users to new cryptographic systems takes
time (especially in applications where the old systems are built into long-lasting hardware
units that are hard to upgrade, such as typical smartcards and implanted medical devices),
so there is an urgent need to respond to the threat of quantum computers many years before
quantum computers are built.

Chapter 2

The interface is wrong

Encryption has slowly gained in sophistication through a series of focused competitions over
the past two decades:

• The AES competition called for block ciphers. A block cipher encrypts fixed-length
blocks: in particular, AES encrypts 16-byte blocks.

• The eSTREAM competition called for stream ciphers. A stream cipher is more flexible
than a block cipher: it encrypts variable-length messages.

• The ongoing CAESAR competition called for authenticated ciphers. An authenti-
cated cipher encrypts and authenticates variable-length messages.

One can build a stream cipher and an authenticator from a block cipher: for example, the
AES-CTR stream cipher and the AES-OMAC authenticator [14] use AES. One can build an
authenticated cipher from a stream cipher and an authenticator: for example, the AES-EAX
authenticated cipher [3] uses AES-CTR for encryption and AES-OMAC for authentication.
This might sound simple, but there are many options for the details at each layer, with many
opportunities to damage security and performance. For example, AES-EAX is much slower
than AES-GCM; “EAXPrime”, an ANSI standard that tried to streamline EAX, was shown
in 2013 [20] to be easily breakable.

A cipher designer who directly targets an authenticated cipher produces simpler, smaller,
faster, more robust designs than a cipher designer who merely targets a block cipher. Some
of the ciphers selected for the third round of the CAESAR competition use different internal
layering, for example building authenticated encryption out of a tweakable block cipher
or a permutation; some of the ciphers have just one layer; all of the ciphers have clear
advantages over AES-GCM.

To summarize, the shift of focus from block ciphers up to stream ciphers and then to
authenticated ciphers is obviously progress. However, there are still some important gaps
between what today’s authenticated ciphers provide and what applications actually need.

2.1 Streams

What network applications typically want is authentication and encryption for a stream of
data from a sender to a receiver, or for streams of data both ways between a client and a
server.
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An authenticated cipher might at first sound like a perfect fit for the job of protecting
(e.g.) a web page sent from a web server to a web browser. The server simply formats the web
page as a message, encrypts and authenticates the message using the authenticated cipher,
and sends the ciphertext to the browser through the Internet’s Transmission Control Protocol
(TCP). The browser verifies and decrypts the message and displays the resulting web page.

However, this authentication structure means that a forgery cannot be discovered until
the entire web page is transmitted. The web browser actually starts displaying parts of the
web page as soon as those parts are received; this is also what the user wants to see. This
causes two levels of serious problems:

• Many ciphers are vulnerable to release of unverified plaintext. This means that, if
a cipher implementation starts decrypting a forged message and sending out the results,
and if those results are visible somehow to the attacker, then the attacker can forge or
decrypt other messages. The ciphers are not designed to be secure in this scenario.

• Even when ciphers are safe against release of unverified plaintext, the attacker is free
to modify almost all of the data being given to the browser. There is no guarantee that
the forgery will ever be detected: the attacker might flood the network just before the
authenticator is sent.

The general picture is that the receiver of a stream often acts immediately upon the data it
has received, so this data needs to be immediately (incrementally) verified.

A closer look shows even more problems. TCP splits streams of data between a client and a
server into limited-length packets sent through the network; for example, a web page sent by
a web server usually fills thousands of packets, while the initial request for the web page might
have fit into a single packet. Sometimes packets are randomly lost (most commonly because
of unreliable radio links or temporary network congestion); TCP includes mechanisms to
acknowledge packets that were received and retransmit packets that were lost. Unfortunately,
this metadata is subject to forgery even if the contents of every packet are authenticated. An
attacker can destroy a TCP connection by sending a single forged packet; this denial-of-service
attack is much less expensive than flooding the network.

The problems described above are concerned solely with integrity and availability, pro-
tecting against forgeries. Even more problems arise when the user needs to protect the
confidentiality of metadata (for example, how much data is being sent at which moments)
or to provide “forward secrecy”, protecting confidentiality against future theft of secret keys.
The overall challenge here is to integrate authenticated encryption into networking in a way
that provides the security properties that applications actually need for network data.

2.2 Files

Further problems appear in applications that authenticate and encrypt access to files: for
example, files stored on a disk that might be stolen, or files stored on an untrustworthy cloud
provider. One can again think of a file as a message to be encrypted and authenticated all at
once, but again the reality is that users expect to be able to process parts of a file without first
buffering and verifying the entire file. Sometimes a smartphone is accessing a huge file stored
on the cloud and does not even have enough storage to hold the entire file, even when latency
is not an issue. An analogous problem appears when a small Trusted Execution Environment
is accessing a much larger amount of data stored in untrusted RAM.
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Deployed disk encryption today is typically “AES-XTS”, which is vulnerable to active
attacks. The security picture is generally getting worse rather than better, as illustrated by
Microsoft significantly weakening its BitLocker disk-encryption system starting in Windows
8 for the sake of “performance on low-powered devices”. See [17].

The extra challenge for files, compared to streams, is that portions of a file can be ac-
cessed in any order. A network delivers packets but does not try to store packets; a disk or
cloud provider has the extra feature of storing large amounts of data, giving the receiver the
opportunity to access the data repeatedly, to search through different positions in the data,
etc.

2.3 Noisy channels

Physical communication channels, such as the radio waves used by WiFi and mobile tele-
phones, always have some amount of noise. Some bits are flipped from 0 to 1 or 1 to 0;
sometimes these errors occur in bursts; sometimes stretches of data are erased.

Standard practice is to apply an error-correcting code to each message, mathematically
expanding the message in a way that allows the receiver to correct a few errors and often
to detect more errors. However, if the message is already an authenticated ciphertext, then
the original plaintext was already mathematically expanded in a way that allows the receiver
to reliably detect any number of errors. Surely this two-stage combination is not the most
efficient way to build what the user actually needs, namely error-correcting authenticated
encryption, allowing the receiver to correct a few errors and reliably detect any number of
errors.

Part of the challenge here is mathematical: optimizing the design of error-correcting au-
thenticated ciphers, and in particular error-correcting message-authentication codes. Another
part of the challenge is network engineering: today’s networks are typically built as layers,
with error correction handled at a different layer from cryptography, so deploying an error-
correcting authenticated cipher would require the layers to be rearchitected.

2.4 Software engineering and hardware engineering

Cryptographic software libraries provide the interfaces used by practically all cryptographic
software. Often there is a severe mismatch between these interfaces and the abstract interfaces
defined in cryptographic papers.

For example, most libraries provide “streaming” interfaces to encryption and decryption,
allowing a few bytes of data to be encrypted or decrypted at a time, even though most papers
design and analyze ciphers for a simpler all-at-once interface. The software interface makes
it easy for applications to release unverified plaintext, creating the problems described in
Section 2.1. As another example, items labeled as “nonce” or “random” in library interfaces
usually have many caveats that do not appear in papers.

Similar comments apply to cryptographic hardware. The challenge for both software and
hardware is to eliminate the gap between the interfaces analyzed in papers and the interfaces
actually used in the real world.

Chapter 3

The performance target is wrong

Modern authenticated encryption has low enough cost for many applications, but not all.
Performance concerns often push security backwards. The problematic cases usually feature
a separation between the type of cost that the cipher designer optimized for and the type of
cost that actually matters for the user.

3.1 Denial-of-service attacks

Authenticated ciphers are usually optimized for the cost of handling legitimate data: the
costs of encrypting and authenticating plaintext, and the costs of verifying and decrypting a
legitimate ciphertext. This focus on legitimate traffic fails to acknowledge the reality faced by
large Internet providers: these providers overprovision their servers so that they can handle
distributed denial-of-service attacks.

Sometimes the attacker has enough resources to flood the network routers, and then
some legitimate data is prevented from getting through no matter how ciphers are chosen.
Sometimes, however, the network is adequately provisioned but a denial-of-service attack
targets the computation on CPUs. The challenge here is to minimize the cost of rejecting
forged packets.

3.2 Very short inputs

Another increasingly common scenario is that an authenticated cipher is applied to many
small messages. Authenticated ciphers are normally optimized for the cost of handling long
messages: for example, there has been very little attention to the costs of internally handling
messages using large-block permutations, even though large blocks force short messages to be
padded to the next block boundary. The challenge here is to minimize overhead.

3.3 Higher-level protocols

Authentication and encryption are best known as mechanisms to directly protect user data,
but they are also applied inside fancier cryptographic protocols, and their costs inside these
protocols are often quite different from their direct costs. Very recent work has begun to
explore the possibility of designing new ciphers as tools for multiparty computation and fully
homomorphic encryption.
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3.4 Flexibility

Google and CloudFlare have both announced that they are now using the “ChaCha20” cipher
(and the “Poly1305” authenticator) for a significant fraction of their TLS traffic. The reason
is that ChaCha20 is faster than AES at encrypting data on typical 32-bit smartphones (and
similarly Poly1305 is faster than the authenticator in GCM). See [6], [24], and [16].

On the other hand, typical 64-bit smartphones, desktop CPUs, and server CPUs have fast
AES instructions (and GMAC-related instructions) in hardware, making AES (and GMAC)
faster than ChaCha20 (and Poly1305) on those CPUs. From the perspective of a typical server
at Google or CloudFlare, if the client also has AES hardware then using AES obviously saves
time for both the client and the server. The tricky case is that the client does not have
AES hardware: then choosing AES saves time for the server, while choosing ChaCha20 saves
time for the client. Google and CloudFlare have chosen the second option, in effect paying
performance penalties on their servers to save time for smartphones.

Analogous problems occur when information is communicated between, e.g., a swarm of
tiny Internet of Things devices and a cloud of busy Internet servers. These problems are
quantitatively even more severe than the smartphone/server problems, since performance on
tiny devices is quite poorly correlated with performance on servers. Huge gaps are caused by
variations in hardware capabilities, and also by variations in operational context, as illustrated
by a server processing many messages at once.

Is there a way to resolve this type of tension between cipher performance on different
platforms? The challenge here is to build one cipher that meets the users’ performance
requirements across a broad range of current and future platforms, taking account of what is
actually available in hardware.

3.5 CPU evolution

Another challenge is to jointly optimize the design of authenticated ciphers and the design of
CPUs. This is not the same challenge as designing authenticated ciphers for hardware: it is
heavily constrained by the fact that CPU designers have to optimize their CPUs to be good
at many different tasks simultaneously, not just cryptography. CPU hardware area devoted
to one task is area taken away from other tasks. An instruction useful for many tasks is more
attractive than an instruction useful for only one task. Furthermore, CPUs are expected to
preserve compatibility—once an instruction is added to the CPU’s instruction list, it stays in
the list—so CPU designers tend to be quite conservative, adding instructions only if they are
convinced that the instructions will have long-term value.

Chapter 4

Mistakes and malice

Attackers search for security failures inside the systems used to authenticate and encrypt
data. It is of course essential for the cryptologic community to carry out comprehensive pub-
lic cryptanalysis, finding and eliminating all weaknesses before systems are deployed. But
this is much easier to say than to do. Cryptanalysis has a vast scope, including analysis of
primitives such as AES, modes of operation such as GCM, and implementations in
software and hardware. The state of the art in research is constantly advancing and is far
beyond what has been automated. There are many opportunities to accidentally create secu-
rity flaws that slip past review, especially at the complicated interfaces between primitives,
modes of operation, and implementations. There are also many opportunities to maliciously
insert security flaws into systems.

4.1 Error-prone designs

Cryptographers and cryptanalysts generally assume that designs are implemented and used
exactly as specified. The cryptographer designs systems under this assumption, trying to
protect the user against any subsequent actions by a malicious attacker. The cryptanalyst
evaluates systems under this assumption, trying to figure out whether the user is protected. In
reality, however, implementations often deviate from what was specified, and these deviations
are often a huge source of security holes.

It is traditional for designers to blame implementors for any failures that the implementors
could possibly have avoided. However, in many cases implementors can justifiably blame
designers for creating systems that are hard to implement correctly, hard for the implementor
to test, and hard for anyone else to test. Consider, for example, Gueron and Krasnov [12]
reporting a serious security hole in AES-GCM software that had passed tests and that was
ready for deployment in the next release of the OpenSSL cryptographic library.

It is easy to say that simplicity helps avoid errors, but it is hard to pinpoint what exactly
this means. The challenge here is to identify detailed design principles for implementor-
friendly authenticated encryption.

4.2 Unverifiability

The AES-GCM standard explains how to authenticate and encrypt a message. This expla-
nation is designed solely for human comprehension; it is not in a formal language understood
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by computers.
There are many software libraries in various programming languages that claim to imple-

ment AES-GCM. Auditing these claims is an extremely tedious project, involving extensive
human effort to read, verify, and compare every line of code. Perhaps some of these libraries
have bugs, as illustrated by the Gueron–Krasnov discovery mentioned above. The hardware
situation is even more difficult: there are very few cryptographers who are able to confidently
compare a hardware description written in Verilog to a reference software implementation
written in C.

There are some verification tools that in limited cases allow computers to verify that two
programs (in source code or object code) compute the same function. The challenge here is
to close the gaps between the capabilities of these tools, the high-level structure needed by
designers, and the low-level optimizations needed by implementors. Particularly challenging
would be to build a domain-specific language powerful enough to be simultaneously used
by (1) designers specifying authenticated ciphers, (2) implementors formally verifying that
their implementations (including side-channel-protected implementations and fault-tolerant
implementations) match these specifications, and (3) evaluators investigating cipher security.

4.3 Miscommunication of security prerequisites

As noted above, there is a proof guaranteeing that AES-GCM is almost as secure as AES.
This illustrates the following standard pattern: a mode of operation M (for example, GCM)
is accompanied by a theorem stating that if the underlying primitive P (for example, AES)
is secure then the cipher P -M is secure.

Unfortunately, a closer look shows that the assumption that P is “secure” is actually a
cryptic list of highly technical assumptions about P , and similarly the conclusion that P -M
is “secure” makes assumptions about user behavior, with many qualitative and quantitative
traps and pitfalls. These lists are tedious to read even for cryptographic experts. One cannot
simply ignore the details: there are many “secure” choices of P and M for which P -M turns
out to be breakable because of a mismatch between the detailed notions of “security”.

For example, consider again the successful SWEET32 attack against TLS (see Section 1.2).
This attack targets CBC-mode encryption, which has “SemCPA advantage” guaranteed to
be at most the “PRP advantage” of the underlying block cipher plus q2/2n, where q is the
number of blocks encrypted by an attack and n is the number of bits in each block. A block
cipher is typically declared to be “secure” if the “PRP advantage” is small, but this fails to
guarantee a small “SemCPA advantage” for CBC. The formula q2/2n implicitly puts another
security requirement upon the cipher, a quantitative requirement for n to be large enough,
depending on q; SWEET32 exploits the fact that ciphers often fail this requirement. ISO
claims that CBC “will be safe” as long as rekeying takes place every “2n/2 blocks”, but this
claim is flatly wrong: the q2/2n formula provides no security assurance if q = 2n/2, and
SWEET32 successfully breaks security in this scenario.

The point of this section is not birthday attacks in particular. The point of this section is
the severe communication failure, a much broader issue. Designers blame implementors for
not thinking through the q2/2n; not managing keys properly; not managing nonces properly;
not managing randomness properly; releasing unverified plaintexts; not protecting themselves
against side-channel attacks; etc. Implementors blame designers for building an incompre-
hensible minefield. The challenge here is to build an infrastructure that is successful at

D1.1 — Challenges in Authenticated Encryption 19

communicating security requirements among the people jointly building a security system.

4.4 Incorrect proofs

The GCM security proof [19] was published in 2004. Iwata, Ohashi, and Minematsu discovered
in 2012 [15] that the security proof was wrong. With considerable effort they constructed a
replacement proof, but with a quantitatively worse security guarantee.

The security proof [18] for XCBv2, a standard disk-encryption mode designed as an im-
provement to XTS (see Section 2.2), was published in 2007. Chakraborty, Hernandez-Jimenez,
and Sarkar discovered in 2013 [7] that the security proof was wrong. They constructed a
replacement proof for some message lengths, again with a quantitatively worse security guar-
antee. For other message lengths they presented an efficient attack breaking XCBv2.

Security proofs are among the most difficult parts of cryptography to audit, and often
contain errors, as these examples illustrate. The challenge here is to build a new world of
proofs that covers everything needed for authenticated encryption while confidently eliminat-
ing these errors.

4.5 Malicious cryptographic software and hardware

The Snowden revelations have drawn a new level of attention to ways that cryptography
can be silently compromised by providers of cryptographic hardware and software through
covert channels, kleptography, algorithm substitution, etc. For example, an attacker with
some control over a random-number generator can leak secrets by controlling the choice of
random nonces inside a randomized authenticated cipher.

Open-source software is obviously helpful, allowing any number of researchers around the
world to check for security problems; but it is obviously not a guarantee of security. The
challenge here is to design verification tools that protect not merely against accidents but
also against malice. One can draw an analogy here to the ways that messages are encoded
for network transmission in coding theory and in cryptography: coding theory is asked to
protect merely against accidents, while cryptography is also asked to protect against malice.

Even worse, cryptographic software is compiled by an untrustworthy compiler and run on
an untrustworthy laptop that contains untrustworthy chips. Even if the laptop manufacturer
is honest and has a completely secure supply chain, perhaps the laptop was tampered with in
transit, or tampered with while left unattended. It is particularly challenging to address the
gap between verifying the security properties of software for authenticated encryption and
verifying the security properties of the device actually relied upon by cryptographic users.
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