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def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

if k(B).is_square(): return False

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break



14

Our partner Jerry’s
choice of E; P

�� ��

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

This is not the same picture!

15

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis open.

: : : Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”

16

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

if k(B).is_square(): return False

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break



14

Our partner Jerry’s
choice of E; P

�� ��

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

This is not the same picture!

15

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis open.

: : : Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”

16

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

if k(B).is_square(): return False

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break



15

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis open.

: : : Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”

16

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

if k(B).is_square(): return False

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break



15

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis open.

: : : Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”

16

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

if k(B).is_square(): return False

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

17
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Output of this procedure:
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19

Did Brainpool check before

publication? After publication?
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import simplesha3

hash = simplesha3.sha3512

p = 2^224 - 2^96 + 1

k = GF(p)

seedbytes = 20

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1

and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def complement(seed):

return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):

return int2str(Integer(RealField(8*bytes)(seed)*256^bytes),bytes)

sizeofint = 4

nums = real2str(cos(1),seedbytes - sizeofint)

for counter in xrange(0,256^sizeofint):

S = int2str(counter,sizeofint) + nums

T = complement(S)

A = str2int(hash(S))

B = str2int(hash(T))

if secure(A,B):

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break
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Output: 7144BA12CE8A0C3BEFA053EDBADA55...
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Output: 7144BA12CE8A0C3BEFA053EDBADA55...

We actually generated >1000000

curves for this prime, each having

a Brainpool-like explanation,

even without complicating

hashing, seed search, etc.; e.g.,

BADA55-VPR2-224 uses exp(1).
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curves for this prime, each having

a Brainpool-like explanation,

even without complicating

hashing, seed search, etc.; e.g.,

BADA55-VPR2-224 uses exp(1).

See bada55.cr.yp.to for

much more: full paper; scripts;

detailed Brainpool analysis;

manipulating “minimal” primes

and curves (Microsoft “NUMS”);

manipulating security criteria.


