
1

Standardization for the black hat

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

1 bada55.cr.yp.to “BADA55

Crypto” including “How to

manipulate curve standards: a

white paper for the black hat.”

2 projectbullrun.org

including “Dual EC: a

standardized back door.”

2

Includes joint work with

(in alphabetical order):

Tung Chou 1

Chitchanok Chuengsatiansup 1

Andreas Hülsing 1

Eran Lambooij 1

Tanja Lange 1 2

Ruben Niederhagen 1 2

Christine van Vredendaal 1

Inspirational previous work:

ANSI, ANSSI, Brainpool, IETF,

ISO, NIST, OSCCA, SECG, and

especially our buddies at NSA.



1

Standardization for the black hat

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

1 bada55.cr.yp.to “BADA55

Crypto” including “How to

manipulate curve standards: a

white paper for the black hat.”

2 projectbullrun.org

including “Dual EC: a

standardized back door.”

2

Includes joint work with

(in alphabetical order):

Tung Chou 1

Chitchanok Chuengsatiansup 1

Andreas Hülsing 1

Eran Lambooij 1

Tanja Lange 1 2

Ruben Niederhagen 1 2

Christine van Vredendaal 1

Inspirational previous work:

ANSI, ANSSI, Brainpool, IETF,

ISO, NIST, OSCCA, SECG, and

especially our buddies at NSA.

3

The DES key size

IBM: 128! NSA: 32!

IBM: 64! NSA: 48!

Final compromise: 56.



1

Standardization for the black hat

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

1 bada55.cr.yp.to “BADA55

Crypto” including “How to

manipulate curve standards: a

white paper for the black hat.”

2 projectbullrun.org

including “Dual EC: a

standardized back door.”

2

Includes joint work with

(in alphabetical order):

Tung Chou 1

Chitchanok Chuengsatiansup 1

Andreas Hülsing 1

Eran Lambooij 1

Tanja Lange 1 2

Ruben Niederhagen 1 2

Christine van Vredendaal 1

Inspirational previous work:

ANSI, ANSSI, Brainpool, IETF,

ISO, NIST, OSCCA, SECG, and

especially our buddies at NSA.

3

The DES key size

IBM: 128! NSA: 32!

IBM: 64! NSA: 48!

Final compromise: 56.



1

Standardization for the black hat

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

1 bada55.cr.yp.to “BADA55

Crypto” including “How to

manipulate curve standards: a

white paper for the black hat.”

2 projectbullrun.org

including “Dual EC: a

standardized back door.”

2

Includes joint work with

(in alphabetical order):

Tung Chou 1

Chitchanok Chuengsatiansup 1

Andreas Hülsing 1

Eran Lambooij 1

Tanja Lange 1 2

Ruben Niederhagen 1 2

Christine van Vredendaal 1

Inspirational previous work:

ANSI, ANSSI, Brainpool, IETF,

ISO, NIST, OSCCA, SECG, and

especially our buddies at NSA.

3

The DES key size

IBM: 128! NSA: 32!

IBM: 64! NSA: 48!

Final compromise: 56.



2

Includes joint work with

(in alphabetical order):

Tung Chou 1

Chitchanok Chuengsatiansup 1

Andreas Hülsing 1

Eran Lambooij 1

Tanja Lange 1 2

Ruben Niederhagen 1 2

Christine van Vredendaal 1

Inspirational previous work:

ANSI, ANSSI, Brainpool, IETF,

ISO, NIST, OSCCA, SECG, and

especially our buddies at NSA.

3

The DES key size

IBM: 128! NSA: 32!

IBM: 64! NSA: 48!

Final compromise: 56.



2

Includes joint work with

(in alphabetical order):

Tung Chou 1

Chitchanok Chuengsatiansup 1

Andreas Hülsing 1

Eran Lambooij 1

Tanja Lange 1 2

Ruben Niederhagen 1 2

Christine van Vredendaal 1

Inspirational previous work:

ANSI, ANSSI, Brainpool, IETF,

ISO, NIST, OSCCA, SECG, and

especially our buddies at NSA.

3

The DES key size

IBM: 128! NSA: 32!

IBM: 64! NSA: 48!

Final compromise: 56.

Crypto community to NSA+NBS:

Your key size is too small.



2

Includes joint work with

(in alphabetical order):

Tung Chou 1

Chitchanok Chuengsatiansup 1

Andreas Hülsing 1

Eran Lambooij 1

Tanja Lange 1 2

Ruben Niederhagen 1 2

Christine van Vredendaal 1

Inspirational previous work:

ANSI, ANSSI, Brainpool, IETF,

ISO, NIST, OSCCA, SECG, and

especially our buddies at NSA.

3

The DES key size

IBM: 128! NSA: 32!

IBM: 64! NSA: 48!

Final compromise: 56.

Crypto community to NSA+NBS:

Your key size is too small.

NBS: Our key is big enough!

And we know how to use it!



2

Includes joint work with

(in alphabetical order):

Tung Chou 1

Chitchanok Chuengsatiansup 1

Andreas Hülsing 1

Eran Lambooij 1

Tanja Lange 1 2

Ruben Niederhagen 1 2

Christine van Vredendaal 1

Inspirational previous work:

ANSI, ANSSI, Brainpool, IETF,

ISO, NIST, OSCCA, SECG, and

especially our buddies at NSA.

3

The DES key size

IBM: 128! NSA: 32!

IBM: 64! NSA: 48!

Final compromise: 56.

Crypto community to NSA+NBS:

Your key size is too small.

NBS: Our key is big enough!

And we know how to use it!

NBS (now NIST) continues to

promote DES for two decades,

drastically increasing cost

of the inevitable upgrade.



2

Includes joint work with

(in alphabetical order):

Tung Chou 1

Chitchanok Chuengsatiansup 1

Andreas Hülsing 1

Eran Lambooij 1

Tanja Lange 1 2

Ruben Niederhagen 1 2

Christine van Vredendaal 1

Inspirational previous work:

ANSI, ANSSI, Brainpool, IETF,

ISO, NIST, OSCCA, SECG, and

especially our buddies at NSA.

3

The DES key size

IBM: 128! NSA: 32!

IBM: 64! NSA: 48!

Final compromise: 56.

Crypto community to NSA+NBS:

Your key size is too small.

NBS: Our key is big enough!

And we know how to use it!

NBS (now NIST) continues to

promote DES for two decades,

drastically increasing cost

of the inevitable upgrade.

4

Random nonces in DSA/ECDSA

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

Standardize anyway.



2

Includes joint work with

(in alphabetical order):

Tung Chou 1

Chitchanok Chuengsatiansup 1

Andreas Hülsing 1

Eran Lambooij 1

Tanja Lange 1 2

Ruben Niederhagen 1 2

Christine van Vredendaal 1

Inspirational previous work:

ANSI, ANSSI, Brainpool, IETF,

ISO, NIST, OSCCA, SECG, and

especially our buddies at NSA.

3

The DES key size

IBM: 128! NSA: 32!

IBM: 64! NSA: 48!

Final compromise: 56.

Crypto community to NSA+NBS:

Your key size is too small.

NBS: Our key is big enough!

And we know how to use it!

NBS (now NIST) continues to

promote DES for two decades,

drastically increasing cost

of the inevitable upgrade.

4

Random nonces in DSA/ECDSA

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

Standardize anyway.



2

Includes joint work with

(in alphabetical order):

Tung Chou 1

Chitchanok Chuengsatiansup 1

Andreas Hülsing 1

Eran Lambooij 1

Tanja Lange 1 2

Ruben Niederhagen 1 2

Christine van Vredendaal 1

Inspirational previous work:

ANSI, ANSSI, Brainpool, IETF,

ISO, NIST, OSCCA, SECG, and

especially our buddies at NSA.

3

The DES key size

IBM: 128! NSA: 32!

IBM: 64! NSA: 48!

Final compromise: 56.

Crypto community to NSA+NBS:

Your key size is too small.

NBS: Our key is big enough!

And we know how to use it!

NBS (now NIST) continues to

promote DES for two decades,

drastically increasing cost

of the inevitable upgrade.

4

Random nonces in DSA/ECDSA

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

Standardize anyway.



3

The DES key size

IBM: 128! NSA: 32!

IBM: 64! NSA: 48!

Final compromise: 56.

Crypto community to NSA+NBS:

Your key size is too small.

NBS: Our key is big enough!

And we know how to use it!

NBS (now NIST) continues to

promote DES for two decades,

drastically increasing cost

of the inevitable upgrade.

4

Random nonces in DSA/ECDSA

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

Standardize anyway.



3

The DES key size

IBM: 128! NSA: 32!

IBM: 64! NSA: 48!

Final compromise: 56.

Crypto community to NSA+NBS:

Your key size is too small.

NBS: Our key is big enough!

And we know how to use it!

NBS (now NIST) continues to

promote DES for two decades,

drastically increasing cost

of the inevitable upgrade.

4

Random nonces in DSA/ECDSA

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

Standardize anyway.

2010 Bushing–Marcan–Segher–

Sven “PS3 epic fail”: PS3

forgeries—Sony hung itself.



3

The DES key size

IBM: 128! NSA: 32!

IBM: 64! NSA: 48!

Final compromise: 56.

Crypto community to NSA+NBS:

Your key size is too small.

NBS: Our key is big enough!

And we know how to use it!

NBS (now NIST) continues to

promote DES for two decades,

drastically increasing cost

of the inevitable upgrade.

4

Random nonces in DSA/ECDSA

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

Standardize anyway.

2010 Bushing–Marcan–Segher–

Sven “PS3 epic fail”: PS3

forgeries—Sony hung itself.

Add complicated options

for deterministic nonces,

while preserving old options.



3

The DES key size

IBM: 128! NSA: 32!

IBM: 64! NSA: 48!

Final compromise: 56.

Crypto community to NSA+NBS:

Your key size is too small.

NBS: Our key is big enough!

And we know how to use it!

NBS (now NIST) continues to

promote DES for two decades,

drastically increasing cost

of the inevitable upgrade.

4

Random nonces in DSA/ECDSA

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

Standardize anyway.

2010 Bushing–Marcan–Segher–

Sven “PS3 epic fail”: PS3

forgeries—Sony hung itself.

Add complicated options

for deterministic nonces,

while preserving old options.

5

Denial of service via flooding

Suspected terrorists Alice and

Bob are aided and abetted by

“auditors” (= “cryptanalysts”

= “reviewers”) checking for

exploitable security problems

in cryptographic systems.

Example: SHA-3 competition

involved 200 cryptographers

around the world and took

years of sustained public effort.

How can we slip a security

problem past all of them?



3

The DES key size

IBM: 128! NSA: 32!

IBM: 64! NSA: 48!

Final compromise: 56.

Crypto community to NSA+NBS:

Your key size is too small.

NBS: Our key is big enough!

And we know how to use it!

NBS (now NIST) continues to

promote DES for two decades,

drastically increasing cost

of the inevitable upgrade.

4

Random nonces in DSA/ECDSA

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

Standardize anyway.

2010 Bushing–Marcan–Segher–

Sven “PS3 epic fail”: PS3

forgeries—Sony hung itself.

Add complicated options

for deterministic nonces,

while preserving old options.

5

Denial of service via flooding

Suspected terrorists Alice and

Bob are aided and abetted by

“auditors” (= “cryptanalysts”

= “reviewers”) checking for

exploitable security problems

in cryptographic systems.

Example: SHA-3 competition

involved 200 cryptographers

around the world and took

years of sustained public effort.

How can we slip a security

problem past all of them?



3

The DES key size

IBM: 128! NSA: 32!

IBM: 64! NSA: 48!

Final compromise: 56.

Crypto community to NSA+NBS:

Your key size is too small.

NBS: Our key is big enough!

And we know how to use it!

NBS (now NIST) continues to

promote DES for two decades,

drastically increasing cost

of the inevitable upgrade.

4

Random nonces in DSA/ECDSA

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

Standardize anyway.

2010 Bushing–Marcan–Segher–

Sven “PS3 epic fail”: PS3

forgeries—Sony hung itself.

Add complicated options

for deterministic nonces,

while preserving old options.

5

Denial of service via flooding

Suspected terrorists Alice and

Bob are aided and abetted by

“auditors” (= “cryptanalysts”

= “reviewers”) checking for

exploitable security problems

in cryptographic systems.

Example: SHA-3 competition

involved 200 cryptographers

around the world and took

years of sustained public effort.

How can we slip a security

problem past all of them?



4

Random nonces in DSA/ECDSA

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

Standardize anyway.

2010 Bushing–Marcan–Segher–

Sven “PS3 epic fail”: PS3

forgeries—Sony hung itself.

Add complicated options

for deterministic nonces,

while preserving old options.

5

Denial of service via flooding

Suspected terrorists Alice and

Bob are aided and abetted by

“auditors” (= “cryptanalysts”

= “reviewers”) checking for

exploitable security problems

in cryptographic systems.

Example: SHA-3 competition

involved 200 cryptographers

around the world and took

years of sustained public effort.

How can we slip a security

problem past all of them?



4

Random nonces in DSA/ECDSA

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

Standardize anyway.

2010 Bushing–Marcan–Segher–

Sven “PS3 epic fail”: PS3

forgeries—Sony hung itself.

Add complicated options

for deterministic nonces,

while preserving old options.

5

Denial of service via flooding

Suspected terrorists Alice and

Bob are aided and abetted by

“auditors” (= “cryptanalysts”

= “reviewers”) checking for

exploitable security problems

in cryptographic systems.

Example: SHA-3 competition

involved 200 cryptographers

around the world and took

years of sustained public effort.

How can we slip a security

problem past all of them?

6

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),

SP 800-38E (disk encryption),

SP 800-38F (key wrapping),

SP 800-56C (key derivation),

SP 800-57 (key management),

SP 800-67 (block encryption),

SP 800-108 (key derivation),

SP 800-131A (key lengths),

SP 800-133 (key generation),

SP 800-152 (key management),

and related protocol documents

such as SP 800-81r1.



4

Random nonces in DSA/ECDSA

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

Standardize anyway.

2010 Bushing–Marcan–Segher–

Sven “PS3 epic fail”: PS3

forgeries—Sony hung itself.

Add complicated options

for deterministic nonces,

while preserving old options.

5

Denial of service via flooding

Suspected terrorists Alice and

Bob are aided and abetted by

“auditors” (= “cryptanalysts”

= “reviewers”) checking for

exploitable security problems

in cryptographic systems.

Example: SHA-3 competition

involved 200 cryptographers

around the world and took

years of sustained public effort.

How can we slip a security

problem past all of them?

6

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),

SP 800-38E (disk encryption),

SP 800-38F (key wrapping),

SP 800-56C (key derivation),

SP 800-57 (key management),

SP 800-67 (block encryption),

SP 800-108 (key derivation),

SP 800-131A (key lengths),

SP 800-133 (key generation),

SP 800-152 (key management),

and related protocol documents

such as SP 800-81r1.



4

Random nonces in DSA/ECDSA

1992 Rivest: “The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

Standardize anyway.

2010 Bushing–Marcan–Segher–

Sven “PS3 epic fail”: PS3

forgeries—Sony hung itself.

Add complicated options

for deterministic nonces,

while preserving old options.

5

Denial of service via flooding

Suspected terrorists Alice and

Bob are aided and abetted by

“auditors” (= “cryptanalysts”

= “reviewers”) checking for

exploitable security problems

in cryptographic systems.

Example: SHA-3 competition

involved 200 cryptographers

around the world and took

years of sustained public effort.

How can we slip a security

problem past all of them?

6

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),

SP 800-38E (disk encryption),

SP 800-38F (key wrapping),

SP 800-56C (key derivation),

SP 800-57 (key management),

SP 800-67 (block encryption),

SP 800-108 (key derivation),

SP 800-131A (key lengths),

SP 800-133 (key generation),

SP 800-152 (key management),

and related protocol documents

such as SP 800-81r1.



5

Denial of service via flooding

Suspected terrorists Alice and

Bob are aided and abetted by

“auditors” (= “cryptanalysts”

= “reviewers”) checking for

exploitable security problems

in cryptographic systems.

Example: SHA-3 competition

involved 200 cryptographers

around the world and took

years of sustained public effort.

How can we slip a security

problem past all of them?

6

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),

SP 800-38E (disk encryption),

SP 800-38F (key wrapping),

SP 800-56C (key derivation),

SP 800-57 (key management),

SP 800-67 (block encryption),

SP 800-108 (key derivation),

SP 800-131A (key lengths),

SP 800-133 (key generation),

SP 800-152 (key management),

and related protocol documents

such as SP 800-81r1.



5

Denial of service via flooding

Suspected terrorists Alice and

Bob are aided and abetted by

“auditors” (= “cryptanalysts”

= “reviewers”) checking for

exploitable security problems

in cryptographic systems.

Example: SHA-3 competition

involved 200 cryptographers

around the world and took

years of sustained public effort.

How can we slip a security

problem past all of them?

6

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),

SP 800-38E (disk encryption),

SP 800-38F (key wrapping),

SP 800-56C (key derivation),

SP 800-57 (key management),

SP 800-67 (block encryption),

SP 800-108 (key derivation),

SP 800-131A (key lengths),

SP 800-133 (key generation),

SP 800-152 (key management),

and related protocol documents

such as SP 800-81r1.

7

Attention of auditors was

not entirely on SHA-3.

Auditors caught a severe

security flaw in EAX Prime

just before NIST standardization.



5

Denial of service via flooding

Suspected terrorists Alice and

Bob are aided and abetted by

“auditors” (= “cryptanalysts”

= “reviewers”) checking for

exploitable security problems

in cryptographic systems.

Example: SHA-3 competition

involved 200 cryptographers

around the world and took

years of sustained public effort.

How can we slip a security

problem past all of them?

6

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),

SP 800-38E (disk encryption),

SP 800-38F (key wrapping),

SP 800-56C (key derivation),

SP 800-57 (key management),

SP 800-67 (block encryption),

SP 800-108 (key derivation),

SP 800-131A (key lengths),

SP 800-133 (key generation),

SP 800-152 (key management),

and related protocol documents

such as SP 800-81r1.

7

Attention of auditors was

not entirely on SHA-3.

Auditors caught a severe

security flaw in EAX Prime

just before NIST standardization.



5

Denial of service via flooding

Suspected terrorists Alice and

Bob are aided and abetted by

“auditors” (= “cryptanalysts”

= “reviewers”) checking for

exploitable security problems

in cryptographic systems.

Example: SHA-3 competition

involved 200 cryptographers

around the world and took

years of sustained public effort.

How can we slip a security

problem past all of them?

6

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),

SP 800-38E (disk encryption),

SP 800-38F (key wrapping),

SP 800-56C (key derivation),

SP 800-57 (key management),

SP 800-67 (block encryption),

SP 800-108 (key derivation),

SP 800-131A (key lengths),

SP 800-133 (key generation),

SP 800-152 (key management),

and related protocol documents

such as SP 800-81r1.

7

Attention of auditors was

not entirely on SHA-3.

Auditors caught a severe

security flaw in EAX Prime

just before NIST standardization.



6

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),

SP 800-38E (disk encryption),

SP 800-38F (key wrapping),

SP 800-56C (key derivation),

SP 800-57 (key management),

SP 800-67 (block encryption),

SP 800-108 (key derivation),

SP 800-131A (key lengths),

SP 800-133 (key generation),

SP 800-152 (key management),

and related protocol documents

such as SP 800-81r1.

7

Attention of auditors was

not entirely on SHA-3.

Auditors caught a severe

security flaw in EAX Prime

just before NIST standardization.



6

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),

SP 800-38E (disk encryption),

SP 800-38F (key wrapping),

SP 800-56C (key derivation),

SP 800-57 (key management),

SP 800-67 (block encryption),

SP 800-108 (key derivation),

SP 800-131A (key lengths),

SP 800-133 (key generation),

SP 800-152 (key management),

and related protocol documents

such as SP 800-81r1.

7

Attention of auditors was

not entirely on SHA-3.

Auditors caught a severe

security flaw in EAX Prime

just before NIST standardization.

Also a troublesome flaw in

the GCM security “proofs”

years after NIST standardization.



6

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),

SP 800-38E (disk encryption),

SP 800-38F (key wrapping),

SP 800-56C (key derivation),

SP 800-57 (key management),

SP 800-67 (block encryption),

SP 800-108 (key derivation),

SP 800-131A (key lengths),

SP 800-133 (key generation),

SP 800-152 (key management),

and related protocol documents

such as SP 800-81r1.

7

Attention of auditors was

not entirely on SHA-3.

Auditors caught a severe

security flaw in EAX Prime

just before NIST standardization.

Also a troublesome flaw in

the GCM security “proofs”

years after NIST standardization.

Why did this take years?

Scientific advances? No!

We successfully denied service.



6

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),

SP 800-38E (disk encryption),

SP 800-38F (key wrapping),

SP 800-56C (key derivation),

SP 800-57 (key management),

SP 800-67 (block encryption),

SP 800-108 (key derivation),

SP 800-131A (key lengths),

SP 800-133 (key generation),

SP 800-152 (key management),

and related protocol documents

such as SP 800-81r1.

7

Attention of auditors was

not entirely on SHA-3.

Auditors caught a severe

security flaw in EAX Prime

just before NIST standardization.

Also a troublesome flaw in

the GCM security “proofs”

years after NIST standardization.

Why did this take years?

Scientific advances? No!

We successfully denied service.

And NIST is just the tip of the

crypto standardization iceberg.



6

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),

SP 800-38E (disk encryption),

SP 800-38F (key wrapping),

SP 800-56C (key derivation),

SP 800-57 (key management),

SP 800-67 (block encryption),

SP 800-108 (key derivation),

SP 800-131A (key lengths),

SP 800-133 (key generation),

SP 800-152 (key management),

and related protocol documents

such as SP 800-81r1.

7

Attention of auditors was

not entirely on SHA-3.

Auditors caught a severe

security flaw in EAX Prime

just before NIST standardization.

Also a troublesome flaw in

the GCM security “proofs”

years after NIST standardization.

Why did this take years?

Scientific advances? No!

We successfully denied service.

And NIST is just the tip of the

crypto standardization iceberg.

8

Flooding via dishonesty

If we were honest then we

would tell Alice+Bob to reuse

ciphers/hashes as PRNGs.



6

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),

SP 800-38E (disk encryption),

SP 800-38F (key wrapping),

SP 800-56C (key derivation),

SP 800-57 (key management),

SP 800-67 (block encryption),

SP 800-108 (key derivation),

SP 800-131A (key lengths),

SP 800-133 (key generation),

SP 800-152 (key management),

and related protocol documents

such as SP 800-81r1.

7

Attention of auditors was

not entirely on SHA-3.

Auditors caught a severe

security flaw in EAX Prime

just before NIST standardization.

Also a troublesome flaw in

the GCM security “proofs”

years after NIST standardization.

Why did this take years?

Scientific advances? No!

We successfully denied service.

And NIST is just the tip of the

crypto standardization iceberg.

8

Flooding via dishonesty

If we were honest then we

would tell Alice+Bob to reuse

ciphers/hashes as PRNGs.



6

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),

SP 800-38E (disk encryption),

SP 800-38F (key wrapping),

SP 800-56C (key derivation),

SP 800-57 (key management),

SP 800-67 (block encryption),

SP 800-108 (key derivation),

SP 800-131A (key lengths),

SP 800-133 (key generation),

SP 800-152 (key management),

and related protocol documents

such as SP 800-81r1.

7

Attention of auditors was

not entirely on SHA-3.

Auditors caught a severe

security flaw in EAX Prime

just before NIST standardization.

Also a troublesome flaw in

the GCM security “proofs”

years after NIST standardization.

Why did this take years?

Scientific advances? No!

We successfully denied service.

And NIST is just the tip of the

crypto standardization iceberg.

8

Flooding via dishonesty

If we were honest then we

would tell Alice+Bob to reuse

ciphers/hashes as PRNGs.



7

Attention of auditors was

not entirely on SHA-3.

Auditors caught a severe

security flaw in EAX Prime

just before NIST standardization.

Also a troublesome flaw in

the GCM security “proofs”

years after NIST standardization.

Why did this take years?

Scientific advances? No!

We successfully denied service.

And NIST is just the tip of the

crypto standardization iceberg.

8

Flooding via dishonesty

If we were honest then we

would tell Alice+Bob to reuse

ciphers/hashes as PRNGs.



7

Attention of auditors was

not entirely on SHA-3.

Auditors caught a severe

security flaw in EAX Prime

just before NIST standardization.

Also a troublesome flaw in

the GCM security “proofs”

years after NIST standardization.

Why did this take years?

Scientific advances? No!

We successfully denied service.

And NIST is just the tip of the

crypto standardization iceberg.

8

Flooding via dishonesty

If we were honest then we

would tell Alice+Bob to reuse

ciphers/hashes as PRNGs.

But why should we be honest?

Let’s build PRNGs from scratch!



7

Attention of auditors was

not entirely on SHA-3.

Auditors caught a severe

security flaw in EAX Prime

just before NIST standardization.

Also a troublesome flaw in

the GCM security “proofs”

years after NIST standardization.

Why did this take years?

Scientific advances? No!

We successfully denied service.

And NIST is just the tip of the

crypto standardization iceberg.

8

Flooding via dishonesty

If we were honest then we

would tell Alice+Bob to reuse

ciphers/hashes as PRNGs.

But why should we be honest?

Let’s build PRNGs from scratch!

2004: Number-theoretic RNGs

provide “increased assurance.”

2006: Dual EC

“is the only DRBG mechanism

in this Recommendation

whose security is related to a

hard problem in number theory.”



7

Attention of auditors was

not entirely on SHA-3.

Auditors caught a severe

security flaw in EAX Prime

just before NIST standardization.

Also a troublesome flaw in

the GCM security “proofs”

years after NIST standardization.

Why did this take years?

Scientific advances? No!

We successfully denied service.

And NIST is just the tip of the

crypto standardization iceberg.

8

Flooding via dishonesty

If we were honest then we

would tell Alice+Bob to reuse

ciphers/hashes as PRNGs.

But why should we be honest?

Let’s build PRNGs from scratch!

2004: Number-theoretic RNGs

provide “increased assurance.”

2006: Dual EC

“is the only DRBG mechanism

in this Recommendation

whose security is related to a

hard problem in number theory.”

9

Denial of service via hoops

2006 Gjøsteen, independently

2006 Schoenmakers–Sidorenko:

Dual EC flunks well-established

definition of PRNG security.



7

Attention of auditors was

not entirely on SHA-3.

Auditors caught a severe

security flaw in EAX Prime

just before NIST standardization.

Also a troublesome flaw in

the GCM security “proofs”

years after NIST standardization.

Why did this take years?

Scientific advances? No!

We successfully denied service.

And NIST is just the tip of the

crypto standardization iceberg.

8

Flooding via dishonesty

If we were honest then we

would tell Alice+Bob to reuse

ciphers/hashes as PRNGs.

But why should we be honest?

Let’s build PRNGs from scratch!

2004: Number-theoretic RNGs

provide “increased assurance.”

2006: Dual EC

“is the only DRBG mechanism

in this Recommendation

whose security is related to a

hard problem in number theory.”

9

Denial of service via hoops

2006 Gjøsteen, independently

2006 Schoenmakers–Sidorenko:

Dual EC flunks well-established

definition of PRNG security.



7

Attention of auditors was

not entirely on SHA-3.

Auditors caught a severe

security flaw in EAX Prime

just before NIST standardization.

Also a troublesome flaw in

the GCM security “proofs”

years after NIST standardization.

Why did this take years?

Scientific advances? No!

We successfully denied service.

And NIST is just the tip of the

crypto standardization iceberg.

8

Flooding via dishonesty

If we were honest then we

would tell Alice+Bob to reuse

ciphers/hashes as PRNGs.

But why should we be honest?

Let’s build PRNGs from scratch!

2004: Number-theoretic RNGs

provide “increased assurance.”

2006: Dual EC

“is the only DRBG mechanism

in this Recommendation

whose security is related to a

hard problem in number theory.”

9

Denial of service via hoops

2006 Gjøsteen, independently

2006 Schoenmakers–Sidorenko:

Dual EC flunks well-established

definition of PRNG security.



8

Flooding via dishonesty

If we were honest then we

would tell Alice+Bob to reuse

ciphers/hashes as PRNGs.

But why should we be honest?

Let’s build PRNGs from scratch!

2004: Number-theoretic RNGs

provide “increased assurance.”

2006: Dual EC

“is the only DRBG mechanism

in this Recommendation

whose security is related to a

hard problem in number theory.”

9

Denial of service via hoops

2006 Gjøsteen, independently

2006 Schoenmakers–Sidorenko:

Dual EC flunks well-established

definition of PRNG security.



8

Flooding via dishonesty

If we were honest then we

would tell Alice+Bob to reuse

ciphers/hashes as PRNGs.

But why should we be honest?

Let’s build PRNGs from scratch!

2004: Number-theoretic RNGs

provide “increased assurance.”

2006: Dual EC

“is the only DRBG mechanism

in this Recommendation

whose security is related to a

hard problem in number theory.”

9

Denial of service via hoops

2006 Gjøsteen, independently

2006 Schoenmakers–Sidorenko:

Dual EC flunks well-established

definition of PRNG security.

Are all applications broken?

Obviously not! Standardize!



8

Flooding via dishonesty

If we were honest then we

would tell Alice+Bob to reuse

ciphers/hashes as PRNGs.

But why should we be honest?

Let’s build PRNGs from scratch!

2004: Number-theoretic RNGs

provide “increased assurance.”

2006: Dual EC

“is the only DRBG mechanism

in this Recommendation

whose security is related to a

hard problem in number theory.”

9

Denial of service via hoops

2006 Gjøsteen, independently

2006 Schoenmakers–Sidorenko:

Dual EC flunks well-established

definition of PRNG security.

Are all applications broken?

Obviously not! Standardize!

2007 Shumow–Ferguson: Dual

EC has a back door. Would have

been easy to build Q with the key.

2007 Schneier: Never use Dual

EC. “Both NIST and the NSA

have some explaining to do.”



8

Flooding via dishonesty

If we were honest then we

would tell Alice+Bob to reuse

ciphers/hashes as PRNGs.

But why should we be honest?

Let’s build PRNGs from scratch!

2004: Number-theoretic RNGs

provide “increased assurance.”

2006: Dual EC

“is the only DRBG mechanism

in this Recommendation

whose security is related to a

hard problem in number theory.”

9

Denial of service via hoops

2006 Gjøsteen, independently

2006 Schoenmakers–Sidorenko:

Dual EC flunks well-established

definition of PRNG security.

Are all applications broken?

Obviously not! Standardize!

2007 Shumow–Ferguson: Dual

EC has a back door. Would have

been easy to build Q with the key.

2007 Schneier: Never use Dual

EC. “Both NIST and the NSA

have some explaining to do.”

10

Did Shumow and Ferguson

show us the key? No!

Maintain and promote Dual EC

standard. Pay people to use it.

2008.07–2014.03: NIST issues

73 validation certificates

for Dual EC implementations.



8

Flooding via dishonesty

If we were honest then we

would tell Alice+Bob to reuse

ciphers/hashes as PRNGs.

But why should we be honest?

Let’s build PRNGs from scratch!

2004: Number-theoretic RNGs

provide “increased assurance.”

2006: Dual EC

“is the only DRBG mechanism

in this Recommendation

whose security is related to a

hard problem in number theory.”

9

Denial of service via hoops

2006 Gjøsteen, independently

2006 Schoenmakers–Sidorenko:

Dual EC flunks well-established

definition of PRNG security.

Are all applications broken?

Obviously not! Standardize!

2007 Shumow–Ferguson: Dual

EC has a back door. Would have

been easy to build Q with the key.

2007 Schneier: Never use Dual

EC. “Both NIST and the NSA

have some explaining to do.”

10

Did Shumow and Ferguson

show us the key? No!

Maintain and promote Dual EC

standard. Pay people to use it.

2008.07–2014.03: NIST issues

73 validation certificates

for Dual EC implementations.



8

Flooding via dishonesty

If we were honest then we

would tell Alice+Bob to reuse

ciphers/hashes as PRNGs.

But why should we be honest?

Let’s build PRNGs from scratch!

2004: Number-theoretic RNGs

provide “increased assurance.”

2006: Dual EC

“is the only DRBG mechanism

in this Recommendation

whose security is related to a

hard problem in number theory.”

9

Denial of service via hoops

2006 Gjøsteen, independently

2006 Schoenmakers–Sidorenko:

Dual EC flunks well-established

definition of PRNG security.

Are all applications broken?

Obviously not! Standardize!

2007 Shumow–Ferguson: Dual

EC has a back door. Would have

been easy to build Q with the key.

2007 Schneier: Never use Dual

EC. “Both NIST and the NSA

have some explaining to do.”

10

Did Shumow and Ferguson

show us the key? No!

Maintain and promote Dual EC

standard. Pay people to use it.

2008.07–2014.03: NIST issues

73 validation certificates

for Dual EC implementations.



9

Denial of service via hoops

2006 Gjøsteen, independently

2006 Schoenmakers–Sidorenko:

Dual EC flunks well-established

definition of PRNG security.

Are all applications broken?

Obviously not! Standardize!

2007 Shumow–Ferguson: Dual

EC has a back door. Would have

been easy to build Q with the key.

2007 Schneier: Never use Dual

EC. “Both NIST and the NSA

have some explaining to do.”

10

Did Shumow and Ferguson

show us the key? No!

Maintain and promote Dual EC

standard. Pay people to use it.

2008.07–2014.03: NIST issues

73 validation certificates

for Dual EC implementations.



9

Denial of service via hoops

2006 Gjøsteen, independently

2006 Schoenmakers–Sidorenko:

Dual EC flunks well-established

definition of PRNG security.

Are all applications broken?

Obviously not! Standardize!

2007 Shumow–Ferguson: Dual

EC has a back door. Would have

been easy to build Q with the key.

2007 Schneier: Never use Dual

EC. “Both NIST and the NSA

have some explaining to do.”

10

Did Shumow and Ferguson

show us the key? No!

Maintain and promote Dual EC

standard. Pay people to use it.

2008.07–2014.03: NIST issues

73 validation certificates

for Dual EC implementations.

Even after being caught,

continue to burn auditors’ time by

demanding that they jump higher.

NSA’s Dickie George, 2014: Gee,

Dual EC is really hard to exploit!



9

Denial of service via hoops

2006 Gjøsteen, independently

2006 Schoenmakers–Sidorenko:

Dual EC flunks well-established

definition of PRNG security.

Are all applications broken?

Obviously not! Standardize!

2007 Shumow–Ferguson: Dual

EC has a back door. Would have

been easy to build Q with the key.

2007 Schneier: Never use Dual

EC. “Both NIST and the NSA

have some explaining to do.”

10

Did Shumow and Ferguson

show us the key? No!

Maintain and promote Dual EC

standard. Pay people to use it.

2008.07–2014.03: NIST issues

73 validation certificates

for Dual EC implementations.

Even after being caught,

continue to burn auditors’ time by

demanding that they jump higher.

NSA’s Dickie George, 2014: Gee,

Dual EC is really hard to exploit!

11

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,

an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and

Bob are created by an RNG.



9

Denial of service via hoops

2006 Gjøsteen, independently

2006 Schoenmakers–Sidorenko:

Dual EC flunks well-established

definition of PRNG security.

Are all applications broken?

Obviously not! Standardize!

2007 Shumow–Ferguson: Dual

EC has a back door. Would have

been easy to build Q with the key.

2007 Schneier: Never use Dual

EC. “Both NIST and the NSA

have some explaining to do.”

10

Did Shumow and Ferguson

show us the key? No!

Maintain and promote Dual EC

standard. Pay people to use it.

2008.07–2014.03: NIST issues

73 validation certificates

for Dual EC implementations.

Even after being caught,

continue to burn auditors’ time by

demanding that they jump higher.

NSA’s Dickie George, 2014: Gee,

Dual EC is really hard to exploit!

11

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,

an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and

Bob are created by an RNG.



9

Denial of service via hoops

2006 Gjøsteen, independently

2006 Schoenmakers–Sidorenko:

Dual EC flunks well-established

definition of PRNG security.

Are all applications broken?

Obviously not! Standardize!

2007 Shumow–Ferguson: Dual

EC has a back door. Would have

been easy to build Q with the key.

2007 Schneier: Never use Dual

EC. “Both NIST and the NSA

have some explaining to do.”

10

Did Shumow and Ferguson

show us the key? No!

Maintain and promote Dual EC

standard. Pay people to use it.

2008.07–2014.03: NIST issues

73 validation certificates

for Dual EC implementations.

Even after being caught,

continue to burn auditors’ time by

demanding that they jump higher.

NSA’s Dickie George, 2014: Gee,

Dual EC is really hard to exploit!

11

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,

an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and

Bob are created by an RNG.



10

Did Shumow and Ferguson

show us the key? No!

Maintain and promote Dual EC

standard. Pay people to use it.

2008.07–2014.03: NIST issues

73 validation certificates

for Dual EC implementations.

Even after being caught,

continue to burn auditors’ time by

demanding that they jump higher.

NSA’s Dickie George, 2014: Gee,

Dual EC is really hard to exploit!

11

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,

an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and

Bob are created by an RNG.



10

Did Shumow and Ferguson

show us the key? No!

Maintain and promote Dual EC

standard. Pay people to use it.

2008.07–2014.03: NIST issues

73 validation certificates

for Dual EC implementations.

Even after being caught,

continue to burn auditors’ time by

demanding that they jump higher.

NSA’s Dickie George, 2014: Gee,

Dual EC is really hard to exploit!

11

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,

an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and

Bob are created by an RNG.

Reality: random numbers

are created by a much more

complicated ecosystem that

designs, evaluates, standardizes,

selects, implements, and deploys

RNGs. (Same for other crypto.)



10

Did Shumow and Ferguson

show us the key? No!

Maintain and promote Dual EC

standard. Pay people to use it.

2008.07–2014.03: NIST issues

73 validation certificates

for Dual EC implementations.

Even after being caught,

continue to burn auditors’ time by

demanding that they jump higher.

NSA’s Dickie George, 2014: Gee,

Dual EC is really hard to exploit!

11

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,

an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and

Bob are created by an RNG.

Reality: random numbers

are created by a much more

complicated ecosystem that

designs, evaluates, standardizes,

selects, implements, and deploys

RNGs. (Same for other crypto.)

12

This is a critical change in

perspective. Auditor is stuck

defending the wrong targets!

The ecosystem has many

weaknesses that are not visible

inside any particular system.

e.g. Easily take control of ISO.



10

Did Shumow and Ferguson

show us the key? No!

Maintain and promote Dual EC

standard. Pay people to use it.

2008.07–2014.03: NIST issues

73 validation certificates

for Dual EC implementations.

Even after being caught,

continue to burn auditors’ time by

demanding that they jump higher.

NSA’s Dickie George, 2014: Gee,

Dual EC is really hard to exploit!

11

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,

an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and

Bob are created by an RNG.

Reality: random numbers

are created by a much more

complicated ecosystem that

designs, evaluates, standardizes,

selects, implements, and deploys

RNGs. (Same for other crypto.)

12

This is a critical change in

perspective. Auditor is stuck

defending the wrong targets!

The ecosystem has many

weaknesses that are not visible

inside any particular system.

e.g. Easily take control of ISO.



10

Did Shumow and Ferguson

show us the key? No!

Maintain and promote Dual EC

standard. Pay people to use it.

2008.07–2014.03: NIST issues

73 validation certificates

for Dual EC implementations.

Even after being caught,

continue to burn auditors’ time by

demanding that they jump higher.

NSA’s Dickie George, 2014: Gee,

Dual EC is really hard to exploit!

11

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,

an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and

Bob are created by an RNG.

Reality: random numbers

are created by a much more

complicated ecosystem that

designs, evaluates, standardizes,

selects, implements, and deploys

RNGs. (Same for other crypto.)

12

This is a critical change in

perspective. Auditor is stuck

defending the wrong targets!

The ecosystem has many

weaknesses that are not visible

inside any particular system.

e.g. Easily take control of ISO.



11

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,

an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and

Bob are created by an RNG.

Reality: random numbers

are created by a much more

complicated ecosystem that

designs, evaluates, standardizes,

selects, implements, and deploys

RNGs. (Same for other crypto.)

12

This is a critical change in

perspective. Auditor is stuck

defending the wrong targets!

The ecosystem has many

weaknesses that are not visible

inside any particular system.

e.g. Easily take control of ISO.



11

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,

an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and

Bob are created by an RNG.

Reality: random numbers

are created by a much more

complicated ecosystem that

designs, evaluates, standardizes,

selects, implements, and deploys

RNGs. (Same for other crypto.)

12

This is a critical change in

perspective. Auditor is stuck

defending the wrong targets!

The ecosystem has many

weaknesses that are not visible

inside any particular system.

e.g. Easily take control of ISO.

e.g. Propose 20 weak standards.

Some will survive auditing.

Then manipulate selection.



11

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,

an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and

Bob are created by an RNG.

Reality: random numbers

are created by a much more

complicated ecosystem that

designs, evaluates, standardizes,

selects, implements, and deploys

RNGs. (Same for other crypto.)

12

This is a critical change in

perspective. Auditor is stuck

defending the wrong targets!

The ecosystem has many

weaknesses that are not visible

inside any particular system.

e.g. Easily take control of ISO.

e.g. Propose 20 weak standards.

Some will survive auditing.

Then manipulate selection.

Deter publication of weaknesses:

“This attack is trivial. Reject.”



11

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,

an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and

Bob are created by an RNG.

Reality: random numbers

are created by a much more

complicated ecosystem that

designs, evaluates, standardizes,

selects, implements, and deploys

RNGs. (Same for other crypto.)

12

This is a critical change in

perspective. Auditor is stuck

defending the wrong targets!

The ecosystem has many

weaknesses that are not visible

inside any particular system.

e.g. Easily take control of ISO.

e.g. Propose 20 weak standards.

Some will survive auditing.

Then manipulate selection.

Deter publication of weaknesses:

“This attack is trivial. Reject.”

13

Textbook key exchange

using standard point P

on a standard elliptic curve E:

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP



11

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,

an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and

Bob are created by an RNG.

Reality: random numbers

are created by a much more

complicated ecosystem that

designs, evaluates, standardizes,

selects, implements, and deploys

RNGs. (Same for other crypto.)

12

This is a critical change in

perspective. Auditor is stuck

defending the wrong targets!

The ecosystem has many

weaknesses that are not visible

inside any particular system.

e.g. Easily take control of ISO.

e.g. Propose 20 weak standards.

Some will survive auditing.

Then manipulate selection.

Deter publication of weaknesses:

“This attack is trivial. Reject.”

13

Textbook key exchange

using standard point P

on a standard elliptic curve E:

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP



11

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,

an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and

Bob are created by an RNG.

Reality: random numbers

are created by a much more

complicated ecosystem that

designs, evaluates, standardizes,

selects, implements, and deploys

RNGs. (Same for other crypto.)

12

This is a critical change in

perspective. Auditor is stuck

defending the wrong targets!

The ecosystem has many

weaknesses that are not visible

inside any particular system.

e.g. Easily take control of ISO.

e.g. Propose 20 weak standards.

Some will survive auditing.

Then manipulate selection.

Deter publication of weaknesses:

“This attack is trivial. Reject.”

13

Textbook key exchange

using standard point P

on a standard elliptic curve E:

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP



12

This is a critical change in

perspective. Auditor is stuck

defending the wrong targets!

The ecosystem has many

weaknesses that are not visible

inside any particular system.

e.g. Easily take control of ISO.

e.g. Propose 20 weak standards.

Some will survive auditing.

Then manipulate selection.

Deter publication of weaknesses:

“This attack is trivial. Reject.”

13

Textbook key exchange

using standard point P

on a standard elliptic curve E:

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP



12

This is a critical change in

perspective. Auditor is stuck

defending the wrong targets!

The ecosystem has many

weaknesses that are not visible

inside any particular system.

e.g. Easily take control of ISO.

e.g. Propose 20 weak standards.

Some will survive auditing.

Then manipulate selection.

Deter publication of weaknesses:

“This attack is trivial. Reject.”

13

Textbook key exchange

using standard point P

on a standard elliptic curve E:

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

Security depends on choice of E.



12

This is a critical change in

perspective. Auditor is stuck

defending the wrong targets!

The ecosystem has many

weaknesses that are not visible

inside any particular system.

e.g. Easily take control of ISO.

e.g. Propose 20 weak standards.

Some will survive auditing.

Then manipulate selection.

Deter publication of weaknesses:

“This attack is trivial. Reject.”

13

Textbook key exchange

using standard point P

on a standard elliptic curve E:

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

Security depends on choice of E.

14

Our partner Jerry’s
choice of E; P

�� ��

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

This is not the same picture!



12

This is a critical change in

perspective. Auditor is stuck

defending the wrong targets!

The ecosystem has many

weaknesses that are not visible

inside any particular system.

e.g. Easily take control of ISO.

e.g. Propose 20 weak standards.

Some will survive auditing.

Then manipulate selection.

Deter publication of weaknesses:

“This attack is trivial. Reject.”

13

Textbook key exchange

using standard point P

on a standard elliptic curve E:

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

Security depends on choice of E.

14

Our partner Jerry’s
choice of E; P

�� ��

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

This is not the same picture!



12

This is a critical change in

perspective. Auditor is stuck

defending the wrong targets!

The ecosystem has many

weaknesses that are not visible

inside any particular system.

e.g. Easily take control of ISO.

e.g. Propose 20 weak standards.

Some will survive auditing.

Then manipulate selection.

Deter publication of weaknesses:

“This attack is trivial. Reject.”

13

Textbook key exchange

using standard point P

on a standard elliptic curve E:

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

Security depends on choice of E.

14

Our partner Jerry’s
choice of E; P

�� ��

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

This is not the same picture!



13

Textbook key exchange

using standard point P

on a standard elliptic curve E:

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

Security depends on choice of E.

14

Our partner Jerry’s
choice of E; P

�� ��

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

This is not the same picture!



13

Textbook key exchange

using standard point P

on a standard elliptic curve E:

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

Security depends on choice of E.

14

Our partner Jerry’s
choice of E; P

�� ��

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

This is not the same picture!

15

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis open.

: : : Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”



13

Textbook key exchange

using standard point P

on a standard elliptic curve E:

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

Security depends on choice of E.

14

Our partner Jerry’s
choice of E; P

�� ��

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

This is not the same picture!

15

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis open.

: : : Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”



13

Textbook key exchange

using standard point P

on a standard elliptic curve E:

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

Security depends on choice of E.

14

Our partner Jerry’s
choice of E; P

�� ��

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

This is not the same picture!

15

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis open.

: : : Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”



14

Our partner Jerry’s
choice of E; P

�� ��

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

This is not the same picture!

15

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis open.

: : : Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”



14

Our partner Jerry’s
choice of E; P

�� ��

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

This is not the same picture!

15

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis open.

: : : Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”

16

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

if k(B).is_square(): return False

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break



14

Our partner Jerry’s
choice of E; P

�� ��

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

This is not the same picture!

15

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis open.

: : : Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”

16

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

if k(B).is_square(): return False

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break



14

Our partner Jerry’s
choice of E; P

�� ��

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP

%%LL
LLL

LL

Bob’s
public key

bP

yyrrr
rrr

r

{Alice;Bob}’s
shared secret

abP

=
{Bob;Alice}’s
shared secret

baP

This is not the same picture!

15

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis open.

: : : Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”

16

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

if k(B).is_square(): return False

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break



15

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis open.

: : : Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”

16

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

if k(B).is_square(): return False

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break



15

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis open.

: : : Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”

16

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

if k(B).is_square(): return False

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

17

2015: We carefully implemented

the curve-generation procedure

from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 2B98B906DC245F2916C03A2F953EA9AE565C3253E8AEC4BFE84C659E

B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D



15

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis open.

: : : Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”

16

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

if k(B).is_square(): return False

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

17

2015: We carefully implemented

the curve-generation procedure

from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 2B98B906DC245F2916C03A2F953EA9AE565C3253E8AEC4BFE84C659E

B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D



15

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve

parameters have been derived is

not motivated leaving an essential

part of the security analysis open.

: : : Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random

manner using seeds that are

generated in a systematic and

comprehensive way.”

16

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

if k(B).is_square(): return False

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

17

2015: We carefully implemented

the curve-generation procedure

from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 2B98B906DC245F2916C03A2F953EA9AE565C3253E8AEC4BFE84C659E

B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D



16

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

if k(B).is_square(): return False

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

17

2015: We carefully implemented

the curve-generation procedure

from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 2B98B906DC245F2916C03A2F953EA9AE565C3253E8AEC4BFE84C659E

B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D



16

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

if k(B).is_square(): return False

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

17

2015: We carefully implemented

the curve-generation procedure

from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 2B98B906DC245F2916C03A2F953EA9AE565C3253E8AEC4BFE84C659E

B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool

curve is not the same curve:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 68A5E62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43

B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B



16

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

if k(B).is_square(): return False

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

17

2015: We carefully implemented

the curve-generation procedure

from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 2B98B906DC245F2916C03A2F953EA9AE565C3253E8AEC4BFE84C659E

B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool

curve is not the same curve:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 68A5E62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43

B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Next slide: a procedure

that does generate

the standard Brainpool curve.



16

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

if k(B).is_square(): return False

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

17

2015: We carefully implemented

the curve-generation procedure

from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 2B98B906DC245F2916C03A2F953EA9AE565C3253E8AEC4BFE84C659E

B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool

curve is not the same curve:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 68A5E62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43

B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Next slide: a procedure

that does generate

the standard Brainpool curve.

18

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

while True:

S = update(S)

B = fullhash(S)

if not k(B).is_square(): break

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break



16

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

if k(B).is_square(): return False

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

17

2015: We carefully implemented

the curve-generation procedure

from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 2B98B906DC245F2916C03A2F953EA9AE565C3253E8AEC4BFE84C659E

B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool

curve is not the same curve:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 68A5E62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43

B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Next slide: a procedure

that does generate

the standard Brainpool curve.

18

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

while True:

S = update(S)

B = fullhash(S)

if not k(B).is_square(): break

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break



16

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

if k(B).is_square(): return False

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

17

2015: We carefully implemented

the curve-generation procedure

from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 2B98B906DC245F2916C03A2F953EA9AE565C3253E8AEC4BFE84C659E

B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool

curve is not the same curve:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 68A5E62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43

B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Next slide: a procedure

that does generate

the standard Brainpool curve.

18

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

while True:

S = update(S)

B = fullhash(S)

if not k(B).is_square(): break

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break



17

2015: We carefully implemented

the curve-generation procedure

from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 2B98B906DC245F2916C03A2F953EA9AE565C3253E8AEC4BFE84C659E

B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool

curve is not the same curve:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 68A5E62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43

B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Next slide: a procedure

that does generate

the standard Brainpool curve.

18

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

while True:

S = update(S)

B = fullhash(S)

if not k(B).is_square(): break

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break



17

2015: We carefully implemented

the curve-generation procedure

from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 2B98B906DC245F2916C03A2F953EA9AE565C3253E8AEC4BFE84C659E

B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool

curve is not the same curve:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 68A5E62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43

B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Next slide: a procedure

that does generate

the standard Brainpool curve.

18

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

while True:

S = update(S)

B = fullhash(S)

if not k(B).is_square(): break

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

19

Did Brainpool check before

publication? After publication?

Did they know before 2015?

Brainpool procedure is

advertised as “systematic”,

“comprehensive”, “completely

transparent”, etc. Surely we can

say the same for both procedures.



17

2015: We carefully implemented

the curve-generation procedure

from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 2B98B906DC245F2916C03A2F953EA9AE565C3253E8AEC4BFE84C659E

B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool

curve is not the same curve:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 68A5E62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43

B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Next slide: a procedure

that does generate

the standard Brainpool curve.

18

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

while True:

S = update(S)

B = fullhash(S)

if not k(B).is_square(): break

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

19

Did Brainpool check before

publication? After publication?

Did they know before 2015?

Brainpool procedure is

advertised as “systematic”,

“comprehensive”, “completely

transparent”, etc. Surely we can

say the same for both procedures.



17

2015: We carefully implemented

the curve-generation procedure

from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 2B98B906DC245F2916C03A2F953EA9AE565C3253E8AEC4BFE84C659E

B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool

curve is not the same curve:

p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

A 68A5E62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43

B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Next slide: a procedure

that does generate

the standard Brainpool curve.

18

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

while True:

S = update(S)

B = fullhash(S)

if not k(B).is_square(): break

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

19

Did Brainpool check before

publication? After publication?

Did they know before 2015?

Brainpool procedure is

advertised as “systematic”,

“comprehensive”, “completely

transparent”, etc. Surely we can

say the same for both procedures.



18

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

while True:

S = update(S)

B = fullhash(S)

if not k(B).is_square(): break

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

19

Did Brainpool check before

publication? After publication?

Did they know before 2015?

Brainpool procedure is

advertised as “systematic”,

“comprehensive”, “completely

transparent”, etc. Surely we can

say the same for both procedures.



18

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

while True:

S = update(S)

B = fullhash(S)

if not k(B).is_square(): break

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

19

Did Brainpool check before

publication? After publication?

Did they know before 2015?

Brainpool procedure is

advertised as “systematic”,

“comprehensive”, “completely

transparent”, etc. Surely we can

say the same for both procedures.

Can quietly manipulate choice

to take the weaker procedure.



18

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

while True:

S = update(S)

B = fullhash(S)

if not k(B).is_square(): break

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

19

Did Brainpool check before

publication? After publication?

Did they know before 2015?

Brainpool procedure is

advertised as “systematic”,

“comprehensive”, “completely

transparent”, etc. Surely we can

say the same for both procedures.

Can quietly manipulate choice

to take the weaker procedure.

Interesting Brainpool quote: “It

is envisioned to provide additional

curves on a regular basis.”



18

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

while True:

S = update(S)

B = fullhash(S)

if not k(B).is_square(): break

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

19

Did Brainpool check before

publication? After publication?

Did they know before 2015?

Brainpool procedure is

advertised as “systematic”,

“comprehensive”, “completely

transparent”, etc. Surely we can

say the same for both procedures.

Can quietly manipulate choice

to take the weaker procedure.

Interesting Brainpool quote: “It

is envisioned to provide additional

curves on a regular basis.”

20

We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool’s

complications of concatenating

hash outputs: We upgraded

from SHA-1 to state-of-the-art

maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1) = e

and arctan(1) = ı=4, and MD5

uses sin(1), so we used cos(1).

We also used much simpler

pattern of searching for seeds.



18

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

while True:

S = update(S)

B = fullhash(S)

if not k(B).is_square(): break

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

19

Did Brainpool check before

publication? After publication?

Did they know before 2015?

Brainpool procedure is

advertised as “systematic”,

“comprehensive”, “completely

transparent”, etc. Surely we can

say the same for both procedures.

Can quietly manipulate choice

to take the weaker procedure.

Interesting Brainpool quote: “It

is envisioned to provide additional

curves on a regular basis.”

20

We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool’s

complications of concatenating

hash outputs: We upgraded

from SHA-1 to state-of-the-art

maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1) = e

and arctan(1) = ı=4, and MD5

uses sin(1), so we used cos(1).

We also used much simpler

pattern of searching for seeds.



18

import hashlib

def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()

seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

k = GF(p); R.<x> = k[]

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def update(seed):

return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):

return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes):

return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes)

S = nums[2*seedbytes:3*seedbytes]

while True:

A = fullhash(S)

if not (k(A)*x^4+3).roots(): S = update(S); continue

while True:

S = update(S)

B = fullhash(S)

if not k(B).is_square(): break

if not secure(A,B): S = update(S); continue

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

19

Did Brainpool check before

publication? After publication?

Did they know before 2015?

Brainpool procedure is

advertised as “systematic”,

“comprehensive”, “completely

transparent”, etc. Surely we can

say the same for both procedures.

Can quietly manipulate choice

to take the weaker procedure.

Interesting Brainpool quote: “It

is envisioned to provide additional

curves on a regular basis.”

20

We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool’s

complications of concatenating

hash outputs: We upgraded

from SHA-1 to state-of-the-art

maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1) = e

and arctan(1) = ı=4, and MD5

uses sin(1), so we used cos(1).

We also used much simpler

pattern of searching for seeds.



19

Did Brainpool check before

publication? After publication?

Did they know before 2015?

Brainpool procedure is

advertised as “systematic”,

“comprehensive”, “completely

transparent”, etc. Surely we can

say the same for both procedures.

Can quietly manipulate choice

to take the weaker procedure.

Interesting Brainpool quote: “It

is envisioned to provide additional

curves on a regular basis.”

20

We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool’s

complications of concatenating

hash outputs: We upgraded

from SHA-1 to state-of-the-art

maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1) = e

and arctan(1) = ı=4, and MD5

uses sin(1), so we used cos(1).

We also used much simpler

pattern of searching for seeds.



19

Did Brainpool check before

publication? After publication?

Did they know before 2015?

Brainpool procedure is

advertised as “systematic”,

“comprehensive”, “completely

transparent”, etc. Surely we can

say the same for both procedures.

Can quietly manipulate choice

to take the weaker procedure.

Interesting Brainpool quote: “It

is envisioned to provide additional

curves on a regular basis.”

20

We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool’s

complications of concatenating

hash outputs: We upgraded

from SHA-1 to state-of-the-art

maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1) = e

and arctan(1) = ı=4, and MD5

uses sin(1), so we used cos(1).

We also used much simpler

pattern of searching for seeds.

21

import simplesha3

hash = simplesha3.sha3512

p = 2^224 - 2^96 + 1

k = GF(p)

seedbytes = 20

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1

and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def complement(seed):

return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):

return int2str(Integer(RealField(8*bytes)(seed)*256^bytes),bytes)

sizeofint = 4

nums = real2str(cos(1),seedbytes - sizeofint)

for counter in xrange(0,256^sizeofint):

S = int2str(counter,sizeofint) + nums

T = complement(S)

A = str2int(hash(S))

B = str2int(hash(T))

if secure(A,B):

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break



19

Did Brainpool check before

publication? After publication?

Did they know before 2015?

Brainpool procedure is

advertised as “systematic”,

“comprehensive”, “completely

transparent”, etc. Surely we can

say the same for both procedures.

Can quietly manipulate choice

to take the weaker procedure.

Interesting Brainpool quote: “It

is envisioned to provide additional

curves on a regular basis.”

20

We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool’s

complications of concatenating

hash outputs: We upgraded

from SHA-1 to state-of-the-art

maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1) = e

and arctan(1) = ı=4, and MD5

uses sin(1), so we used cos(1).

We also used much simpler

pattern of searching for seeds.

21

import simplesha3

hash = simplesha3.sha3512

p = 2^224 - 2^96 + 1

k = GF(p)

seedbytes = 20

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1

and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def complement(seed):

return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):

return int2str(Integer(RealField(8*bytes)(seed)*256^bytes),bytes)

sizeofint = 4

nums = real2str(cos(1),seedbytes - sizeofint)

for counter in xrange(0,256^sizeofint):

S = int2str(counter,sizeofint) + nums

T = complement(S)

A = str2int(hash(S))

B = str2int(hash(T))

if secure(A,B):

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break



19

Did Brainpool check before

publication? After publication?

Did they know before 2015?

Brainpool procedure is

advertised as “systematic”,

“comprehensive”, “completely

transparent”, etc. Surely we can

say the same for both procedures.

Can quietly manipulate choice

to take the weaker procedure.

Interesting Brainpool quote: “It

is envisioned to provide additional

curves on a regular basis.”

20

We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool’s

complications of concatenating

hash outputs: We upgraded

from SHA-1 to state-of-the-art

maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1) = e

and arctan(1) = ı=4, and MD5

uses sin(1), so we used cos(1).

We also used much simpler

pattern of searching for seeds.

21

import simplesha3

hash = simplesha3.sha3512

p = 2^224 - 2^96 + 1

k = GF(p)

seedbytes = 20

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1

and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def complement(seed):

return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):

return int2str(Integer(RealField(8*bytes)(seed)*256^bytes),bytes)

sizeofint = 4

nums = real2str(cos(1),seedbytes - sizeofint)

for counter in xrange(0,256^sizeofint):

S = int2str(counter,sizeofint) + nums

T = complement(S)

A = str2int(hash(S))

B = str2int(hash(T))

if secure(A,B):

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break



20

We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool’s

complications of concatenating

hash outputs: We upgraded

from SHA-1 to state-of-the-art

maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1) = e

and arctan(1) = ı=4, and MD5

uses sin(1), so we used cos(1).

We also used much simpler

pattern of searching for seeds.

21

import simplesha3

hash = simplesha3.sha3512

p = 2^224 - 2^96 + 1

k = GF(p)

seedbytes = 20

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1

and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def complement(seed):

return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):

return int2str(Integer(RealField(8*bytes)(seed)*256^bytes),bytes)

sizeofint = 4

nums = real2str(cos(1),seedbytes - sizeofint)

for counter in xrange(0,256^sizeofint):

S = int2str(counter,sizeofint) + nums

T = complement(S)

A = str2int(hash(S))

B = str2int(hash(T))

if secure(A,B):

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break



20

We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool’s

complications of concatenating

hash outputs: We upgraded

from SHA-1 to state-of-the-art

maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1) = e

and arctan(1) = ı=4, and MD5

uses sin(1), so we used cos(1).

We also used much simpler

pattern of searching for seeds.

21

import simplesha3

hash = simplesha3.sha3512

p = 2^224 - 2^96 + 1

k = GF(p)

seedbytes = 20

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1

and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def complement(seed):

return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):

return int2str(Integer(RealField(8*bytes)(seed)*256^bytes),bytes)

sizeofint = 4

nums = real2str(cos(1),seedbytes - sizeofint)

for counter in xrange(0,256^sizeofint):

S = int2str(counter,sizeofint) + nums

T = complement(S)

A = str2int(hash(S))

B = str2int(hash(T))

if secure(A,B):

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

22

Output: 7144BA12CE8A0C3BEFA053EDBADA55...



20

We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool’s

complications of concatenating

hash outputs: We upgraded

from SHA-1 to state-of-the-art

maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1) = e

and arctan(1) = ı=4, and MD5

uses sin(1), so we used cos(1).

We also used much simpler

pattern of searching for seeds.

21

import simplesha3

hash = simplesha3.sha3512

p = 2^224 - 2^96 + 1

k = GF(p)

seedbytes = 20

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1

and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def complement(seed):

return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):

return int2str(Integer(RealField(8*bytes)(seed)*256^bytes),bytes)

sizeofint = 4

nums = real2str(cos(1),seedbytes - sizeofint)

for counter in xrange(0,256^sizeofint):

S = int2str(counter,sizeofint) + nums

T = complement(S)

A = str2int(hash(S))

B = str2int(hash(T))

if secure(A,B):

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

22

Output: 7144BA12CE8A0C3BEFA053EDBADA55...



20

We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool’s

complications of concatenating

hash outputs: We upgraded

from SHA-1 to state-of-the-art

maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1) = e

and arctan(1) = ı=4, and MD5

uses sin(1), so we used cos(1).

We also used much simpler

pattern of searching for seeds.

21

import simplesha3

hash = simplesha3.sha3512

p = 2^224 - 2^96 + 1

k = GF(p)

seedbytes = 20

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1

and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def complement(seed):

return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):

return int2str(Integer(RealField(8*bytes)(seed)*256^bytes),bytes)

sizeofint = 4

nums = real2str(cos(1),seedbytes - sizeofint)

for counter in xrange(0,256^sizeofint):

S = int2str(counter,sizeofint) + nums

T = complement(S)

A = str2int(hash(S))

B = str2int(hash(T))

if secure(A,B):

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

22

Output: 7144BA12CE8A0C3BEFA053EDBADA55...



21

import simplesha3

hash = simplesha3.sha3512

p = 2^224 - 2^96 + 1

k = GF(p)

seedbytes = 20

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1

and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def complement(seed):

return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):

return int2str(Integer(RealField(8*bytes)(seed)*256^bytes),bytes)

sizeofint = 4

nums = real2str(cos(1),seedbytes - sizeofint)

for counter in xrange(0,256^sizeofint):

S = int2str(counter,sizeofint) + nums

T = complement(S)

A = str2int(hash(S))

B = str2int(hash(T))

if secure(A,B):

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

22

Output: 7144BA12CE8A0C3BEFA053EDBADA55...



21

import simplesha3

hash = simplesha3.sha3512

p = 2^224 - 2^96 + 1

k = GF(p)

seedbytes = 20

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1

and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def complement(seed):

return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):

return int2str(Integer(RealField(8*bytes)(seed)*256^bytes),bytes)

sizeofint = 4

nums = real2str(cos(1),seedbytes - sizeofint)

for counter in xrange(0,256^sizeofint):

S = int2str(counter,sizeofint) + nums

T = complement(S)

A = str2int(hash(S))

B = str2int(hash(T))

if secure(A,B):

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

22

Output: 7144BA12CE8A0C3BEFA053EDBADA55...

We actually generated >1000000

curves for this prime, each having

a Brainpool-like explanation,

even without complicating

hashing, seed search, etc.; e.g.,

BADA55-VPR2-224 uses exp(1).



21

import simplesha3

hash = simplesha3.sha3512

p = 2^224 - 2^96 + 1

k = GF(p)

seedbytes = 20

def secure(A,B):

n = EllipticCurve([k(A),k(B)]).cardinality()

return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1

and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def int2str(seed,bytes):

return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):

return Integer(seed.encode(’hex’),16)

def complement(seed):

return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):

return int2str(Integer(RealField(8*bytes)(seed)*256^bytes),bytes)

sizeofint = 4

nums = real2str(cos(1),seedbytes - sizeofint)

for counter in xrange(0,256^sizeofint):

S = int2str(counter,sizeofint) + nums

T = complement(S)

A = str2int(hash(S))

B = str2int(hash(T))

if secure(A,B):

print ’p’,hex(p).upper()

print ’A’,hex(A).upper()

print ’B’,hex(B).upper()

break

22

Output: 7144BA12CE8A0C3BEFA053EDBADA55...

We actually generated >1000000

curves for this prime, each having

a Brainpool-like explanation,

even without complicating

hashing, seed search, etc.; e.g.,

BADA55-VPR2-224 uses exp(1).

See bada55.cr.yp.to for

much more: full paper; scripts;

detailed Brainpool analysis;

manipulating “minimal” primes

and curves (Microsoft “NUMS”);

manipulating security criteria.


