Smartphone/tablet CPUs

iPad 1 (2010) was the first popular tablet: more than 15 million sold.

iPad 1 contains 45nm Apple A4 system-on-chip.

Apple A4 contains 1GHz ARM Cortex-A8 CPU core + PowerVR SGX 535 GPU.

Cortex-A8 CPU core (2005) supports ARMv7-A insn set, including NEON vector insns. Apple A4 also appeared in iPhone 4 (2010).

45nm 1GHz Samsung Exynos 3110 in Samsung Galaxy S (2010) contains Cortex-A8 CPU core.

45nm 1GHz TI OMAP3630 in Motorola Droid X (2010) contains Cortex-A8 CPU core.

65nm 800MHz Freescale i.MX50 in Amazon Kindle 4 (2011) contains Cortex-A8 CPU core. ARM designed more cores supporting same ARMv7-A insns: Cortex-A9 (2007), Cortex-A5 (2009), Cortex-A15 (2010), Cortex-A7 (2011), Cortex-A17 (2014), etc.

Also some larger 64-bit cores.

A9, A15, A17, and some 64-bit cores are "out of order": CPU tries to reorder instructions to compensate for dumb compilers.

A5, A7, original A8 are in-order, fewer insns at once.

A5, A7, original A8 are in-order, fewer insns at once. \Rightarrow Simpler, cheaper, more energy-efficient. A5, A7, original A8 are in-order, fewer insns at once. \Rightarrow Simpler, cheaper, more energy-efficient.

More than one billion Cortex-A7 devices have been sold.

Popular in low-cost and mid-range smartphones: Mobiistar Buddy, Mobiistar Kool, Mobiistar LAI Z1, Samsung Galaxy J1 Ace Neo, etc.

Also used in typical TV boxes, Sony SmartWatch 3, Samsung Gear S2, Raspberry Pi 2, etc.

NEON crypto

Basic ARM insn set uses 16 32-bit registers: 512 bits. **Optional NEON** extension uses 16 128-bit registers: 2048 bits. Cortex-A7 and Cortex-A8 (and Cortex-A15 and Cortex-A17 and Qualcomm Scorpion and Qualcomm Krait) always have NEON insns.

Cortex-A5 and Cortex-A9 sometimes have NEON insns.

2012 Bernstein–Schwabe "NEON crypto" software: new Cortex-A8 speed records for various crypto primitives.

e.g. Curve25519 ECDH: 460200 cycles on Cortex-A8-fast, 498284 cycles on Cortex-A8-slow.

Compare to OpenSSL cycles on Cortex-A8-slow for NIST P-256 ECDH: 9 million for OpenSSL 0.9.8k. 4.8 million for OpenSSL 1.0.1c. 3.9 million for OpenSSL 1.0.2j.

NEON instructions

4x a = b + c

- is a vector of 4 32-bit additions:
 - a[0] = b[0] + c[0];
 - a[1] = b[1] + c[1];
 - a[2] = b[2] + c[2];
 - a[3] = b[3] + c[3].

NEON instructions

4x a = b + c

is a vector of 4 32-bit additions:

- a[0] = b[0] + c[0];
- a[1] = b[1] + c[1];
- a[2] = b[2] + c[2];
- a[3] = b[3] + c[3].

Cortex-A8 NEON arithmetic unit can do this every cycle.

NEON instructions

4x a = b + c

is a vector of 4 32-bit additions:

a[0] = b[0] + c[0];

- a[1] = b[1] + c[1];
- a[2] = b[2] + c[2];
- a[3] = b[3] + c[3].

Cortex-A8 NEON arithmetic unit can do this every cycle.

Stage N2: reads b and c. Stage N3: performs addition. Stage N4: a is ready.

 $ADD \xrightarrow{2 \text{ cycles}} ADD \xrightarrow{2 \text{ cycles}} ADD$

4x a = b - c

is a vector of 4 32-bit subtractions:

 $ADD \longrightarrow SUB$

Also logic insns, shifts, etc.

Multiplication insn: c[0,1] = a[0] signed* b[0]; c[2,3] = a[1] signed* b[1] Two cycles on Cortex-A8.

Multiply-accumulate insn: c[0,1] += a[0] signed* b[0]; c[2,3] += a[1] signed* b[1]

Also two cycles on Cortex-A8.

Stage N1: reads b. Stage N2: reads a. Stage N3: reads c if accumulate.

Stage N8: c is ready.

Typical sequence of three insns:

- c[0,1] = a[0] signed* b[0]; c[2,3] = a[1] signed* b[1]
- c[0,1] += e[2] signed* f[2]; c[2,3] += e[3] signed* f[3]
- c[0,1] += g[0] signed* h[2]; c[2,3] += g[1] signed* h[3]
- Cortex-A8 recognizes this pattern. Reads c in N6 instead of N3.

Time	N1	N2	N3	N4	N5	N6	N7	N8
1	b							
2		а						
3	f		\times					
4		е		\times				
5	h		\times		\times			
6		g		\times		\times		
7			\times		\times			
8				\times		\times		С
9					\times		+	
10						\times		С
11							+	
12								С

NEON also has load/store insns and permutation insns: e.g., r = s[1] t[2] r[2,3]

Cortex-A8 has a separate NEON load/store unit that runs in parallel with NEON arithmetic unit.

Arithmetic is typically most important bottleneck: can often schedule insns to hide loads/stores/perms.

Cortex-A7 is different: one unit handling all NEON insns.

Curve25519 on NEON

Radix $2^{25.5}$: Use small integers $(f_0, f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9)$ to represent the integer $f = f_0 + 2^{26}f_1 + 2^{51}f_2 + 2^{77}f_3 + 2^{102}f_4 + 2^{128}f_5 + 2^{153}f_6 + 2^{179}f_7 + 2^{204}f_8 + 2^{230}f_9 \mod 2^{255} - 19.$

Unscaled polynomial view: f is value at $2^{25.5}$ of the poly $f_0t^0 + 2^{0.5}f_1t^1 + f_2t^2 + 2^{0.5}f_3t^3 + f_4t^4 + 2^{0.5}f_5t^5 + f_6t^6 + 2^{0.5}f_7t^7 + f_8t^8 + 2^{0.5}f_9t^9$.

14 $h \equiv fg \pmod{2^{255} - 19}$ where $h_0 = f_0 g_0 + 38f_1 g_9 + 19f_2 g_8 + 38f_3 g_7 + 19f_4 g_6 + 66f_1 g_9 + 19f_2 g_8 + 38f_3 g_7 + 19f_4 g_6 + 66f_1 g_9 + 19f_2 g_8 + 38f_3 g_7 + 19f_4 g_6 + 66f_1 g_9 + 19f_2 g_8 + 38f_3 g_7 + 19f_4 g_6 + 66f_1 g_9 + 19f_2 g_8 + 38f_3 g_7 + 19f_4 g_6 + 66f_1 g_9 + 19f_2 g_8 + 38f_3 g_7 + 19f_4 g_6 + 66f_1 g_9 + 19f_2 g_8 + 38f_3 g_7 + 19f_4 g_6 + 66f_1 g_9 + 19f_2 g_8 + 38f_3 g_7 + 19f_4 g_6 + 66f_1 g_9 + 19f_2 g_8 + 38f_3 g_7 + 19f_4 g_6 + 66f_1 g_9 + 19f_2 g_8 + 38f_3 g_7 + 19f_4 g_6 + 66f_1 g_9 + 19f_2 g_8 + 38f_3 g_7 + 19f_4 g_6 + 66f_1 g_9 + 19f_2 g_8 + 19f_3 g_7 + 19f_4 g_6 + 66f_1 g_9 + 19f_2 g_8 + 19f_3 g_7 + 19f_4 g_6 + 66f_1 g_8 + 19f_2 g_8 + 19f_3 g_7 + 19f_4 g_6 + 66f_1 g_8 + 19f_2 g_8 + 19f_3 g_7 + 19f_4 g_6 + 66f_1 g_8 + 19f_2 g_8 + 19f_3 g_7 + 19f_4 g_8 + 19f_6 g_8 + 19f_8 g_8 + 19f_8 g_8 + 19f_8 g_8 +$ $h_1 = f_0 g_1 + f_1 g_0 + 19 f_2 g_9 + 19 f_3 g_8 + 19 f_4 g_7 + g_7 + g_8 + 19 f_4 g_7 + g_8 + 19 f_8 g_8$ $h_2 = f_0 g_2 + 2f_1 g_1 +$ $f_2g_0 + 38f_3g_9 + 19f_4g_8 +$ $h_3 = f_0g_3 + f_1g_2 + f_2g_1 + f_3g_0 + 19f_4g_9 + f_3g_0 + f$ $h_4 = f_0 g_4 + 2f_1 g_3 +$ $f_2g_2 + 2f_3g_1 +$ $f_4g_0 +$ $h_5 = f_0 g_5 + f_1 g_4 +$ $f_2g_3 + f_3g_2 + f_4g_1 +$ $h_6 = f_0 g_6 + 2f_1 g_5 +$ $f_2g_4 + 2f_3g_3 +$ $f_4g_2 +$ $f_4g_3 +$ $h_7 = f_0 g_7 + f_1 g_6 +$ $f_2g_5 + f_3g_4 +$ $h_8 = f_0 g_8 + 2f_1 g_7 +$ $f_2g_6 + 2f_3g_5 +$ $f_4g_4 +$

 $h_9 = f_0 g_9 + f_1 g_8 + f_2 g_7 + f_3 g_6 + f_4 g_5 +$

Proof: multiply polys mod $t^{10} - 19$.

 $38f_5g_5 + 19f_6g_4 + 38f_7g_3 + 19f_8g_2 + 38f_9g_1$, $19f_5g_6 + 19f_6g_5 + 19f_7g_4 + 19f_8g_3 + 19f_9g_2$, $38f_5g_7 + 19f_6g_6 + 38f_7g_5 + 19f_8g_4 + 38f_9g_3$, $19f_5g_8 + 19f_6g_7 + 19f_7g_6 + 19f_8g_5 + 19f_9g_4$, $38f_5g_9 + 19f_6g_8 + 38f_7g_7 + 19f_8g_6 + 38f_9g_5$, $f_5g_0 + 19f_6g_9 + 19f_7g_8 + 19f_8g_7 + 19f_9g_6,$ $f_6g_0 + 38f_7g_9 + 19f_8g_8 + 38f_9g_7$, 2*f*₅*g*₁+ $f_7g_0 + 19f_8g_9 + 19f_9g_8$, $f_5g_2 +$ $f_6g_1 +$ $2f_5g_3 +$ $f_6g_2 + 2f_7g_1 + f_8g_0 + 38f_9g_9$ $f_6g_3 + f_7g_2 + f_8g_1 +$ fgg0. $f_5g_4 +$

15

Each h_i is a sum of ten products after precomputation of $2f_1$, $2f_3$, $2f_5$, $2f_7$, $2f_9$, $19g_1$, $19g_2$, ..., $19g_9$.

Each h_i fits into 64 bits under reasonable limits on sizes of $f_1, g_1, \ldots, f_9, g_9$.

(Analyze this very carefully: bugs can slip past most tests! See 2011 Brumley–Page– Barbosa–Vercauteren and several recent OpenSSL bugs.)

 h_0, h_1, \ldots are too large for subsequent multiplication. Carry $h_0 \rightarrow h_1$: i.e., replace (h_0, h_1) with $(h_0 \mod 2^{26}, h_1 + \lfloor h_0/2^{26} \rfloor)$. This makes h_0 small.

Similarly for other h_i . Eventually all h_i are small enough.

We actually use signed coeffs. Slightly more expensive carries (given details of insn set) but more room for $ab + c^2$ etc.

Some things we haven't tried yet:

- Mix signed, unsigned carries.
- Interleave reduction, carrying.

Minor challenge: pipelining. Result of each insn cannot be used until a few cycles later.

Find an independent insn for the CPU to start working on while the first insn is in progress.

Sometimes helps to adjust higher-level computations.

Example: carries $h_0 \rightarrow h_1 \rightarrow$ $h_2 \rightarrow h_3 \rightarrow h_4 \rightarrow h_5 \rightarrow h_6 \rightarrow$ $h_7 \rightarrow h_8 \rightarrow h_9 \rightarrow h_0 \rightarrow h_1$ have long chain of dependencies. Alternative: carry

$$h_0 \rightarrow h_1$$
 and $h_5 \rightarrow h_6$;
 $h_1 \rightarrow h_2$ and $h_6 \rightarrow h_7$;
 $h_2 \rightarrow h_3$ and $h_7 \rightarrow h_8$;
 $h_3 \rightarrow h_4$ and $h_8 \rightarrow h_9$;
 $h_4 \rightarrow h_5$ and $h_9 \rightarrow h_0$;
 $h_5 \rightarrow h_6$ and $h_0 \rightarrow h_1$.

12 carries instead of 11, but latency is much smaller.

Now much easier to find independent insns for CPU to handle in parallel. Major challenge: vectorization.

e.g. 4x a = b + c does 4 additions at once, but needs particular arrangement of inputs and outputs.

```
On Cortex-A8,
occasional permutations
run in parallel with arithmetic,
but frequent permutations
```

would be a bottleneck.

On Cortex-A7,

every operation costs cycles.

Often higher-level operations do a pair of mults in parallel: h = fg; h' = f'g'.

Vectorize across those mults. Merge f_0, f_1, \ldots, f_9 and f'_0, f'_1, \ldots, f'_9 into vectors (f_i, f'_i) . Similarly (g_i, g'_i) . Then compute (h_i, h'_i) .

Computation fits naturally
into NEON insns: e.g.,
c[0,1] = a[0] signed* b[0];
c[2,3] = a[1] signed* b[1]

Example: Recall $C = X_1 \cdot X_2$; $D = Y_1 \cdot Y_2$ inside point-addition formulas for Edwards curves. Example: Recall $C = X_1 \cdot X_2$; $D = Y_1 \cdot Y_2$ inside point-addition formulas for Edwards curves.

Example: Can compute 2P, 3P, 4P, 5P, 6P, 7P as 2P = P + P; 3P = 2P + P and 4P = 2P + 2P; 5P = 4P + P and 6P = 3P + 3Pand 7P = 4P + 3P. Example: Recall $C = X_1 \cdot X_2$; $D = Y_1 \cdot Y_2$ inside point-addition formulas for Edwards curves.

Example: Can compute 2P, 3P, 4P, 5P, 6P, 7P as 2P = P + P; 3P = 2P + P and 4P = 2P + 2P; 5P = 4P + P and 6P = 3P + 3Pand 7P = 4P + 3P.

Example: Typical algorithms for fixed-base scalarmult have many parallel point adds. Example: A busy server with a backlog of scalarmults can vectorize across them.

Example: A busy server with a backlog of scalarmults can vectorize across them.

Beware a disadvantage of vectorizing across two mults: 256-bit *f*, *f'*, *g*, *g'*, *h*, *h'* occupy at least 1536 bits, leaving very little room for temporary registers.

We use some loads and stores inside vectorized mulmul. Mostly invisible on Cortex-A8, but bigger issue on Cortex-A7. Some field ops are hard to pair inside a single scalarmult.

Example: At end of ECDH, convert fraction (X : Z) into $Z^{-1}X \in \{0, 1, ..., p-1\}.$

Easy, constant time: $Z^{-1} = Z^{p-2}$. 11**M** + 254**S** for $p = 2^{255} - 19$:

- $z^{2} = z^{1^{2^{1}}}$
- $z8 = z2^{2}2^{2}$
- z9 = z1*z8
- z11 = z2*z9
- $z22 = z11^21$
- $z_{5_0} = z_{9*z_2}$
- $z_{10}5 = z_{5}0^{2}5$

 $z_{10} = z_{10} = 5*z_{5}$ $z_{20}10 = z_{10}^{210}$ $z_{20_0} = z_{20_10*z_10_0}$ $z_40_20 = z_20_0^220$ $z_40_0 = z_40_20*z_20_0$ $z_{50}10 = z_{40}^{210}$ $z_{50} = z_{50} = 10 \times z_{10}$ $z_{100}50 = z_{50}^{2}50$ $z_{100_0} = z_{100_50*z_50_0}$ $z_{200}100 = z_{100}^{2100}$ $z_200_0 = z_200_100*z_100_0$ $z_{250}50 = z_{200}^{250}$ $z_{250_0} = z_{250_50*z_50_0}$ $z_{255}5 = z_{250}0^25$ z 255 21 = z 255 5*z11

25

Can still vectorize inside a single field op.

Strategy in our software:

50 mul insns starting from $(f_0, 2f_1), (f_2, 2f_3), (f_4, 2f_5), (f_6, 2f_7), (f_8, 2f_9);$ $(f_1, f_8), (f_3, f_0), (f_5, f_2), (f_7, f_4), (f_9, f_6);$ $(g_0, g_1), (g_2, g_3), (g_4, g_5), (g_6, g_7);$ $(g_0, 19g_1), (g_2, 19g_3), (g_4, 19g_5), (g_6, 19g_7), (g_8, 19g_9);$ $(19g_2, 19g_3), (19g_4, 19g_5), (19g_6, 19g_7), (19g_8, 19g_9);$ $(19g_2, g_3), (19g_4, g_5), (19g_6, g_7), (19g_8, g_9).$

Change carry pattern to vectorize, e.g., $(h_0, h_4) \rightarrow (h_1, h_5)$. Core arithmetic: 100 cycles on mul insns for each field mul. Squarings are somewhat faster.

Some loss for carries etc.

ECDH: \approx 10 field muls \cdot 255 bits.

More detailed analysis: 356019 cycles on arithmetic; ≈78% of software's total Cortex-A8-fast cycles for ECDH. Still some room for improvement. Core arithmetic: 100 cycles on mul insns for each field mul. Squarings are somewhat faster. Some loss for carries etc. ECDH: \approx 10 field muls \cdot 255 bits.

More detailed analysis: 356019 cycles on arithmetic; ≈78% of software's total Cortex-A8-fast cycles for ECDH. Still some room for improvement. Each CPU is a new adventure. e.g. Could it be better to use Cortex-A7 FPU with radix 2^{21.25}?

Much more work to do

https://bench.cr.yp.to: benchmarks for (currently) 2137 public implementations of hundreds of crypto primitives— 39 DH primitives, 56 signature primitives, 304 authenticated ciphers, etc.

Much more work to do

https://bench.cr.yp.to: benchmarks for (currently) 2137 public implementations of hundreds of crypto primitives-39 DH primitives, 56 signature primitives, 304 authenticated ciphers, etc. Many interesting primitives are far slower than necessary

on many important CPUs.

Much more work to do

https://bench.cr.yp.to: benchmarks for (currently) 2137 public implementations of hundreds of crypto primitives-39 DH primitives, 56 signature primitives, 304 authenticated ciphers, etc. Many interesting primitives are far slower than necessary

on many important CPUs.

Exercise: Make them faster!