CPU-specific optimization Example of a function

that we want to optimize:
adding 1000 integers mod 23.

Example of a target CPU core:
ARM Cortex-M4F core inside

LM4F120H5QR microcontroller Reference implementation:
in Stellaris LM4F120 Launchpad.

int sum(int *x)
{
int result = 0;
int 1;
for (i = 0;1 < 1000;++1i)
result += x[i];

return result;

cific optimization

 of a target CPU core:

rtex-M4F core inside
OH5QR microcontroller
ris LM4F120 Launchpad.

Example of a function

that we want to optimize:
adding 1000 integers mod 23.

Reference implementation:

int sum(int *x)
{
int result = O;
int 1;
for (1 = 0;1i < 1000;++1i)
result += x[i];

return result;

Countin;

static -
xcons:

= (vo.

int bef
int res:
int aft
UARTpri:

resul:

Output
Change

nization

ot CPU core:
core inside

icrocontroller
20 Launchpad.

Example of a function
that we want to optimize:

adding 1000 integers mod 23.
Reference implementation:

int sum(int *x)
{
int result = 0O;
int 1;
for (i = 0;1 < 1000;++1i)
result += x[i];

return result;

Counting cycles:

static volatile
xconst DWT_CYC
= (void *) OxE

int beforesum =
int result = sum
int aftersum = *
UARTprintf ("sum

result,aftersu

Output shows 801
Change 1000 to 5

re.

ller

1pad.

Example of a function

that we want to optimize:

adding 1000 integers mod

Reference implementation:

int sum(int *x)

{

int result = 0;

int 1;

for (1 = 0;1i < 1000;++1i)
result += x[i];

return result;

232

Counting cycles:

static volatile unsigned
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWT_CYCC
int result = sum(x);

int aftersum = *xDWT_CYCCN
UARTprintf ("sum %d %d\n",

result,aftersum-befores

Output shows 8012 cycles.
Change 1000 to 500: 4012.

Example of a function
that we want to optimize:
adding 1000 integers mod

Reference implementation:

int sum(int *x)
{
int result = 0O;
int 1;
for (i = 0;1 < 1000;++1i)
result += x[i];

return result;

232

Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

' of a function
want to optimize:
000 integers mod

e Implementation:

(int *x)

asult = 0;
i = 0;i < 1000;++1)
11t += x[1i];

n result;

232

Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWI_CYCCNT;
int result = sum(x);

int aftersum = *xDWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, ¢
Um, are
really th

tion
ptimize:
ers mod

ntation:

1000;++1)

il;

232

Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, 8 cycles pe
Um, are microcon
really this slow at

Counting cycles: “Okay, 8 cycles per addition

. , , , Um, are microcontrollers
static volatile unsigned 1int

xconst DWT_CYCCNT
= (void *) 0xE0001004;

really this slow at addition?’

int beforesum = *DWI_CYCCNT;
int result = sum(x);

int aftersum = *xDWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

Counting cycles:

static volatile unsigned 1int

xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;

int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Counting cycles:

static volatile unsigned 1int

xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”
(and tweak compiler options)
until you get bored /frustrated.
Keep the fastest results.

Counting cycles:

static volatile unsigned 1int

xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad approach:
Apply random “optimizations”
(and tweak compiler options)

until you get bored /frustrated.
Keep the fastest results.

Try -0s: 8012 cycles.

Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad approach:
Apply random “optimizations”
(and tweak compiler options)

until you get bored /frustrated.
Keep the fastest results.

Try -0s: 8012 cycles.
Try -01: 8012 cycles.

Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad approach:
Apply random “optimizations”
(and tweak compiler options)

until you get bored /frustrated.
Keep the fastest results.

Try -0s: 8012 cycles.
Try -01: 8012 cycles.
Try -02: 8012 cycles.

Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad approach:
Apply random “optimizations”
(and tweak compiler options)

until you get bored /frustrated.
Keep the fastest results.

Try -0s: 8012 cycles.
Try -01: 8012 cycles.
Try -02: 8012 cycles.
Try -03: 8012 cycles.

r cycles:

volatile unsigned int
t DWIT_CYCCNT
id *) 0xE0001004;

oresum = *xDWT_CYCCNT;
11t = sum(x);

orsum = *DWIT_CYCCNT;
ntf ("sum %d %d\n",

t ,aftersum-beforesum) ;

shows 8012 cycles.
1000 to 500: 4012.

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored /frustrated.

Keep the fastest results.

Try —0s: 8012 cycles.
Try —01: 8012 cycles.
Try -02: 8012 cycles.
Try -03: 8012 cycles.

Try mov

int sum

int r
int 1
for (

res

retur:

unsigned int
CNT
0001004 ;

*DWT_CYCCNT;

(x);
DWT_CYCCNT;

/d hd\n",

m-beforesum) ;

2 cycles.
00: 4012.

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored /frustrated.

Keep the fastest results.

Try -0s: 8012 cycles.
Try -01: 8012 cycles.
Try -02: 8012 cycles.
Try -03: 8012 cycles.

Try moving the pc

int sum(int *x)
{
int result = 0
int 1;
for (i = 0;1 <
result += *x

return result;

int

NT;

um) ;

“Okay, 8 cycles per addition.

Um,

are microcontrollers

really this slow at addition?”

Bad

App
(anc

unti

approach:

y random “optimizations”

tweak compiler options)

you get bored/frustrated.

Keep the fastest results.

Try -0s: 8012 cycles.
Try -01: 8012 cycles.
Try —02: 8012 cycles.
Try -03: 8012 cycles.

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int 1;

for (1 = 0;1 < 1000;++i
result += *xx++;

return result;

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored /frustrated.

Keep the fastest results.

Try -0s: 8012 cycles.
Try -01: 8012 cycles.
Try -02: 8012 cycles.
Try -03: 8012 cycles.

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int 1;

for (i = 0;1i < 1000;++1i)
result += *xx++;

return result;

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored /frustrated.

Keep the fastest results.

Try -0s: 8012 cycles.
Try -01: 8012 cycles.
Try -02: 8012 cycles.
Try -03: 8012 cycles.

Try moving the pointer:

int sum(int *x)
{
int result = 0;
int 1;
for (i = 0;1i < 1000;++1i)
result += *xx++;

return result;

¥
8010 cycles.

3 cycles per addition.

microcontrol

ers

Is slow at addition?”

roach:

ndom “optimizations”

2ak compiler options)

| get bored/frustrated.

~ fastest results.

- 8012 cyc
- 8012 cyc
- 8012 cyc

€sS.
€sS.
€s.

- 8012 cycles.

Try moving the pointer:

int sum(int *x)
{
int result = 0;
int 1;
for (i = 0;i < 1000;++1)
result += *xx++;

return result;

+
8010 cycles.

Try cour

int sum
int
int 1
for (.
res:

retur:

r addition.
trollers

addition?”

timizations’

er options)

1 /frustrated.

osults.

1€S.

1€S.

|es.
les.

Try moving the pointer:

int sum(int *x)
{
int result = O;
int 1;
for (i = 0;i < 1000;++1i)
result += *xx++;

return result;

¥
8010 cycles.

Try counting dowr

int sum(int *x)
{
int result = 0
int 1;
for (i = 1000;
result += *x

return result;

Try moving the pointer: Try counting down:
int sum(int *x) int sum(int *x)
{ {
int result = 0; int result = 0;
int 1; int 1;
for (i = 0;i < 1000;++i) for (i = 1000;i > 0;--1
result += *xx++; result += *xx++;
return result; return result;
F F

8010 cycles.

Try moving the pointer: Try counting down:
int sum(int *x) int sum(int *x)
{ {
int result = 0; int result = 0;
int 1; int 1;
for (i = 0;i < 1000;++i) for (i = 1000;i > 0;--1)
result += *xx++; result += *xx++;
return result; return result;
¥ ¥

8010 cycles.

Try moving the pointer: Try counting down:
int sum(int *x) int sum(int *x)
{ {
int result = 0; int result = 0;
int 1; int 1;
for (i = 0;i < 1000;++i) for (i = 1000;i > 0;--1)
result += *xx++; result += *xx++;
return result; return result;
¥ ¥

8010 cycles. 8010 cycles.

Ing the pointer:

(int *x)

osult = 0;
i = 0;i < 1000;++1i)
11t += *xx++;

n result;

"les.

Try counting down:

int sum(int *x)
{
int result = 0;
int 1;
for (i = 1000;i > 0;--1)
result += *xx++;

return result;

+
8010 cycles.

Try usin

int sum
int
int
while
res:

retur:

inter:

1000 ;++1)

++

)

Try counting down:

int sum(int *x)
{
int result = O;
int 1;
for (i = 1000;i > 0;--1)
result += *xx++;

return result;

¥
8010 cycles.

Try using an end |

int sum(int *x)
{
int result = 0
int *y = x + 1
while (x != y)
result += *x

return result;

Try counting down: Try using an end pointer:
int sum(int *x) int sum(int *x)
{ {
int result = 0; int result = 0;
int 1; int *y = x + 1000;
for (i = 1000;i > 0;--1i) while (x !'= y)
result += *xx++; result += *xx++;
return result; return result;
F F

8010 cycles.

Try counting down:

int sum(int *x)
{
int result = 0;
int 1;
for (i = 1000;i > 0;--1)
result += *xx++;

return result;

¥
8010 cycles.

Try using an end pointer:

int sum(int *x)
{
int result = 0;
int *y = x + 1000;
while (x != y)
result += *xx++;

return result;

Try counting down:

int sum(int *x)
{
int result = 0;
int 1;
for (i = 1000;i > 0;--1)
result += *xx++;

return result;

¥
8010 cycles.

Try using an end pointer:

int sum(int *x)
{
int result = 0;
int *y = x + 1000;
while (x != y)
result += *xx++;

return result;

¥
8010 cycles.

1ting down:

(int *x)

osult = 0;
i = 1000;i > 0;--1)
11t += *xx++;

n result;

"les.

Try using an end pointer:

int sum(int *x)
{
int result = 0;
int *y = x + 1000;
while (x != y)
result += *xx++;

return result;

+
8010 cycles.

Back to

int sum

{

int r
int 1
for (
res
res

}

retur:

i > 0;--1)

ot

Try using an end pointer:

int sum(int *x)
{
int result = O;
int *y = x + 1000;
while (x != y)
result += *xx++;

return result;

¥
8010 cycles.

Back to original.

int sum(int *x)

{

int result = 0

int 1;

for (i = 0;1 <
result += x

result += x

¥

return result;

Try using an end pointer:

int sum(int *x)
{
int result = 0;
int *y = x + 1000;
while (x != y)
result += *xx++;

return result;

+
8010 cycles.

Back to original. Try unrolli

int sum(int *x)

{

int result = 0;
int 1;
for (1 = 0;1 < 1000;1i +

result += x[i];

result += x[i + 1];

}

return result;

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)
result += *xx++;

return result;

¥
8010 cycles.

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;
int 1;
for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

¥

return result;

Try using an end pointer:

int sum(int *x)
{
int result = 0;
int *y = x + 1000;
while (x != y)
result += *xx++;

return result;

¥
8010 cycles.

Back to original. Try unrolling:

int sum(int *x)

{
int result = 0;
int 1;
for (i = 0;i < 1000;i += 2) {
result += x[i];
result += x[i + 1];
F
return result;
¥

5016 cycles.

g an end pointer:

(int *x)

osult = 0;

y = x + 1000;
(x '= y)

11t += *xx++;

n result;

"les.

Back to original. Try unrolling:

int sum(int *x)
{
int result = 0;
int 1;
for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

+
5016 cycles.

int sum

{

int r
int 1
for (
res
res
res
res
res

}

retur:

bointer: Back to original. Try unrolling: int sum(int *x)
{

int result = O

int sum(int *x)

{
. int 1;
; int result = O;
S for (1 = 0;i <
000; 1nt 1; i
. _ . result += x|
for (i = 0;i < 1000;i += 2) {]
N result += x|
++: result += x[i]; -
N result += x|
result += x[i + 1];)
) result += x|
result += x[
return result;
}
}

return result;

5016 cycles. 1

Back to original. Try unrolling: int sum(int *x)
{

int result = O;

int sum(int *x)

{

. int 1;
int result = 0;

, , for (1 = 0;1 < 1000;1i +
int 1;

result += x[i];
for (i = 0;i < 1000;i += 2) { L

5 result += x[i + 1];
result += x[i];

result += x[i + 2];

result += x[i + 1];

}

return result;

¥

result += x[i + 3];

result += x[i + 4]

w o

Iy

return result;

5016 cycles. 1

Back to original. Try unrolling: int sum(int *x)
{

int result = O;

int sum(int *x)

{

. int 1;
int result = 0;

. . for (i = 0;i < 1000;i += 5) {
int 1;

result += x[i];
for (i = 0;i < 1000;i += 2) { =

5 result += x[i + 1];
result += x[i];

result += x[i + 2];

result += x[i + 1];

¥

return result;

¥

result += x[i + 3];
result += x[i + 4];

¥

return result;

5016 cycles. 1

original. Try unrolling:

(int *x)

osult = 0;
i = 0;1i < 1000;1i += 2) {

11t += x[1i];

11t += x[1 + 1];

n result;

“les.

int sum(int *x)
{
int result = O;

int 1;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1]

result += x[i + 2]

result += x[i + 3]
result += x[i + 4]

Iy

return result;

w o

4016 cy«

Try unrolling:

1000;i += 2) {

i+ 1];

int sum(int *x)

{

1nt result

int 1;

for (i

¥

result
result
result
result

result

0;i < 1000;i += 5) {

0;

x[i];
x[1i + 1
x[1i + 2

xli + 3];

x[1i + 4];

return result;

4016 cycles. Are \

2) {

int sum(int *x)
{
1nt result =

int 1;

for (i = 0;i < 1000;i += 5) {

result += x
result += x
result += x

result += x

result += x[i + 4]

Iy

return result

0;

i];

i+ 1]

i + 2]

i + 3]

)

w o

4016 cycles. Are we done n¢

int sum(int *x)

{

1nt result

int 1;

for (i

¥

result
result
result
result

result

0;1i < 1000;i += 5) {

=O;

X1

X1

X1

x[i

return result;

x[i];

4016 cycles. Are we done now?

10

int sum(int *x)

{

1nt result

int 1;

for (i

¥

result
result
result
result

result

0;i < 1000;1i += 5) {

=O;

X1

X1

X1

x[i

return result;

x[i];

10
4016 cycles. Are we done now?

Most random “optimizations”
that we tried seem useless.
Can spend time trying more.
Does frustration level tell us
that we're close to optimal?

int sum(int *x) 4016 cycles. Are we done now?
{

int result = O;

Most random “optimizations”

that we tried seem useless.
int 1;

Can spend time trying more.
for (i = 0;i < 1000;i += 5) {

Does frustration level tell us

result += x[i]; , .
that we're close to optimal?

result += x[i + 1];

result += x[i + 2]; Good approach:

result += x[i + 3]; Figure out lower bound for

result += x[i + 4]: cycles spent on arithmetic etc.
} Understand gap between
return result; lower bound and observed time.

Let's try this approach.

11t += x[1i];

n result;

10
4016 cycles. Are we done now?

Most random “optimizations”
that we tried seem useless.
Can spend time trying more.
Does frustration level tell us
that we're close to optimal?

Good approach:

Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.

Let's try this approach.

Find “A
Technic:

Rely on
MAF = |

Manual
“Implem

architect

Points t
Architec

which d
e.g., A

First ma
ADD tal

1000;i += 5) {
il ;

i+ 1];

i+ 2];

i + 3];

i+ 4];

10
4016 cycles. Are we done now?

Most random “optimizations”
that we tried seem useless.
Can spend time trying more.
Does frustration level tell us
that we're close to optimal?

Good approach:

Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.

Let's try this approach.

Find "ARM Corte:
Technical Referenc
Rely on Wikipedia
M4F = M4 + float

Manual says that
“Implements the /
architecture profile

Points to the “AR
Architecture Refer

which defines insti
e.g., "ADD" for 3

First manual says
ADD takes just 1

5) {

10
4016 cycles. Are we done now?

Most random “optimizations”
that we tried seem useless.
Can spend time trying more.
Does frustration level tell us
that we're close to optimal?

Good approach:

Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.

Let's try this approach.

Find “ARM Cortex-M4 Proc
Technical Reference Manual
Rely on Wikipedia comment
M4F = M4 + tloating-point

Manual says that Cortex-M4
“Implements the ARMv7E-N
architecture profile” .

Points to the "ARMv7-M
Architecture Reference Man
which defines instructions:

e.g., ADD" for 32-bit addi

First manual says that
ADD takes just 1 cycle.

10
4016 cycles. Are we done now?

Most random “optimizations”
that we tried seem useless.
Can spend time trying more.
Does frustration level tell us
that we're close to optimal?

Good approach:

Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.

Let's try this approach.

11
Find “ARM Cortex-M4 Processor

Technical Reference Manual”.
Rely on Wikipedia comment that
MA4F = M4 + tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

“les. Are we done now?

rdom “optimizations”
tried seem useless.
nd time trying more.
stration level tell us
re close to optimal?

proach:

ut lower bound for
yent on arithmetic etc.
and gap between

und and observed time.

“this approach.

10

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 4 tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv/7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

11

Inputs a
“Integer
has 16 1
special-f
and “prec

Each ele
be “loac

Basic lo.
Manual
a note a
Then m
Instructi
address
then It s

10
ve done now?

fimizations’”
1 useless.
ying more.
vel tell us
) optimal?

ound for
thmetic etc.
atween

bserved time.

oach.

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 + tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M

architecture profile” .

Points to the "ARMv7-M

Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

11

Inputs and output
“Integer registers”
has 16 integer reg
special-purpose ‘s
and “program cou

Each element of x
be “loaded” Into :

Basic load instruct
Manual says 2 cyc
a note about “pip
Then more explan
Instruction is also
address not based
then 1t saves 1 cyc

W ?

V)

LC.

me.

10

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 4 tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv/7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

11

Inputs and output of ADD =
ARMVvT-

has 16 integer registers, incl

“Integer registers’ .

special-purpose “stack point
and “program counter’ .

Each element of x array nee
be “loaded” into a register.

Basic load instruction: LDR
Manual says 2 cycles but ad
a note about “pipelining”.
Then more explanation: if n
instruction is also LDR (witl
address not based on first L
then 1t saves 1 cycle.

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 4 tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

11

12
Inputs and output of ADD are

ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose ‘stack pointer”
and “program counter .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

RM Cortex-M4 Processor
| Reference Manual”.

Wikipedia comment that
M4 4 tloating-point unit.

says that Cortex-M4
ents the ARMv/7/E-M

ure profile” .

0 the "ARMv7-M

ture Reference Manual”,

>fines instructions:
DD" for 32-bit addition.

nual says that
es Jjust 1 cycle.

11

Inputs and output of ADD are
ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose “stack pointer”
and “program counter’ .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

12

n CONSEC
takes on
(“more |
pipelinec

Can ach
In other
but nott

Lower b
2n—+1c
n cycles

Why ob:
non-con:
costs of

x-M4 Processor
e Manual”.

comment that
Ing-point unit.

Cortex-M4
\RMv7E-M

1
a

Mv7-M
ence Manual”,

‘uctions:
2-bit addition.

that
cycle.

11

Inputs and output of ADD are
ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose ‘stack pointer”
and “program counter .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

12

n consecutive LDF
takes only n+1 ¢
(“more multiple L
pipelined together

Can achieve this s
in other ways (LD
but nothing seems

Lower bound for r
2n + 1 cycles, incl
n cycles of arithm

Why observed tim
non-consecutive L
costs of manipulat

_.E€SSOr

that

unit.

ual’,

1on.

11

Inputs and output of ADD are
ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose “stack pointer”
and “program counter’ .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

12

n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can &
pipelined together”).

Can achieve this speed
in other ways (LDRD, LDM
but nothing seems faster.

Lower bound for nLDR + n
2n + 1 cycles, including
n cycles of arithmetic.

Why observed time is highel
non-consecutive LDRs;
costs of manipulating i.

Inputs and output of ADD are
“Integer registers’. ARMv7-M
has 16 integer registers, including
special-purpose ‘stack pointer”
and “program counter .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

12

13
n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together”).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR + n ADD:

2n + 1 cycles, including
n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

nd output of ADD are
ARMv7-M

teger registers, including

registers’ .

yurpose stack pointer”
gram counter’ .

ment of x array needs to
led” Into a register.

ad instruction: LDR.
says 2 cycles but adds
bout “pipelining”.

ore explanation: if next
on is also LDR (with

not based on first LDR)
aves 1 cycle.

12

n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together”).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR + n ADD:

2n + 1 cycles, including
n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

13

2281 cye

y = X
p=xX

.l.

result :

loop:

x19
X183
xXi7
X1i6
X15
xid
xi3

X122

of ADD are

. ARMv7-M
isters, including
tack pointer”
nter” .

“array needs to
) register.

sion: LDR.
les but adds
elining”™ .
ation: iIf next
LDR (with
on first LDR)
le.

12

n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together”).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR + n ADD:

2n + 1 cycles, including
n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

13

2281 cycles using

y = x + 4000

P = X

result = 0O

loop:
xi9 = *(uint32
xi8 = *(uint32
xi7 = *(uint32
xi6 = *(uint32
xib = *(uint32
xid = *x(uint32
xi3 = *(uint32
xi2 = *(uint32

14S

uding

er

ds to

ext

DR)

12

n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together”).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR + n ADD:

2n + 1 cycles, including
n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

13

2281 cycles using 1dr.w:

y = x + 4000

P = X

result = 0

loop:
xi9 = *(uint32
xi8 = *(uint32
xi7 = *(uint32
xi6 = *(uint32
xib = *(uint32
xid = *x(uint32
xi3 = *x(uint32
xi2 = *(uint32

+ + + + + + + +

n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together”).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR + n ADD:

2n + 1 cycles, including
n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

13

2281 cycles using 1dr.w:

y = x + 4000

P = X

result = 0O

loop:
xi9 = *(uint32
xi8 = *(uint32
xi7 = *(uint32
xi6 = *(uint32
xib = *(uint32
xid = *x(uint32
xi3 = *(uint32
xi2 = *(uint32

+ + + + + + + +

76)
72)
63)
64)
60)
56)
52)
48)

14

utive LDRs

ly n+ 1 cycles
nultiple LDRs can be
| together”).

leve this speed
ways (LDRD, LDM)
\ing seems faster.

ound for nLDR + n ADD:

ycles, including
of arithmetic.

served time Is higher:
secutive LDRs:
manipulating i.

13

2281 cycles using 1dr.w:

y = x + 4000

P = X

result = 0

loop:
xi9 = *(uint32
xi8 = *(uint32
xi7 = *(uint32
xi6 = *(uint32
xib = *(uint32
xid = *x(uint32
xi3 = *x(uint32
xi2 = *(uint32

+ + + + + + + +

76)
72)
63)
64)
60)
56)
52)
48)

14

x11

x10
resul
resul
resul
resul
resul
resul
resul
resul
resul

resul:

x19

x18

X1’/

13 14
s 2281 cycles using 1dr.w: xil = *(uint32
ycles . 2000 xi0 = *(uint32
y = X
DRs can be result += xi9
’ p = X
). 14 0 result += x18
result =
beed result += xi7
RD LD|\/|)) result += xi6
: oop:
foctar result += x195
| result += xi4d
xi9 = *(uint32 *) (p + 76) " .
LDR + n ADD: result += xi3
. xi8 = *(uint32 *) (p + 72)
uding result += xi2
. xi7 = *(uint32 *) (p + 68)
etiIC. result += xil
xi6 = *(uint32 *) (p + 64)
e is higher: xi5 = *(uint32 *) (p + 60) result += xi0
0 w1
DRs; xi4 = *(uint32 *) (p + 56) K19 (uint32
. . 18 = *(ulnt32
ing i. xi3 = *(uint32 *) (p + 52) = (ui
xi7 = *(uint32
xi2 = *(uint32 *) (p + 48)

13 14

2281 cycles using 1dr.w: xil = *(uint32 *) (p +

v = x + 4000 xi0 = *(uint32 *) (p +
IS result += x1i9

p =X

result += x1i8
result = 0

result += xi7
) 1 result += x16
o0p:

result += x15

result += xi4d

| xi9 = *(uint32 *x) (p + 76)
ADD: , , result += xi3
xi8 = *(uint32 *) (p + 72)
, , result += xi2
xi7 = *(uint32 *) (p + 68)
. . result += xil
xi6 = *(uint32 *) (p + 64)
. , result += x1i0
xi5 = *(uint32 *) (p + 60)
. , xi9 = *(uint32 *) (p +
xi4 = *(uint32 *) (p + 56)
| | xi8 = *(uint32 *) (p +
xi3 = *(uint32 *) (p + 52)
| | xi7 = *(uint32 *) (p +
xi2 = *(uint32 *) (p + 48)

2281 cycles using 1dr.w:

y = x + 4000

P = X

result 0

loop:
xi9 = *(uint32
xi8 = *(uint32
xi7 = *(uint32
xi6 = *(uint32
xib = *(uint32
xid = *x(uint32
xi3 = *(uint32
xi2 = *(uint32

+ + + + + + + +

76)
72)
68)
64)
60)
56)
52)
48)

14

xil = *(uint32 *) (p + 44)
xi0 = *(uint32 *) (p + 40)
result += xi9
result += xid
result += xi7
result += xi6
result += x1b
result += xi4d
result += xi3
result += xi?2
result += xil
result += xi0

xi9 = *(uint32 *) (p + 36)
*(uint32 *) (p + 32)
*(uint32 *x) (p + 28)

x18 =

xil =

15

“les using 1dr.w:

4000

* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32

+ + + + + + + +

76)
72)
63)
64)
60)
56)
52)
48)

14

x1l =

x10 =

x(uint32 *) (p + 44)
*(uint32 *) (p + 40)

result += xi9

result
result
result
result
result
result
result
result
result
x19 =
X138 =

xXil =

+=

*(uint32 *) (p + 36)
*(uint32 *) (p + 32)
*(uint32 *) (p + 28)

x18
xi'’7
X16
X155
xid
xi3
X12
xil

x10

15

X16
X15
xi4d
xi3
xXi2
xi1

x1i0

resul-

resul-

resul-

resul-

resul:

resul:

resul:

resul:

ldr.w:

+ + + + + + + +

76)
72)
63)
64)
60)
56)
52)
48)

14

xil =
x10 =
result
result
result
result
result
result
result
result
result
result
x19 =
X138 =

xXil =

x(uint32 *x) (p + 44)
*(uint32 *x) (p + 40)

+=

*(uint32 *) (p + 36)
*(uint32 *) (p + 32)
*(uint32 *x) (p + 28)

x1i9
xX18
X1’
X16
xX1b
xi4d
xi3
X12
x11

x10

15

X16

X15

x14

x13
X12 =
xil =
xi0 =
result
result
result
result
result
result
result

result

* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
+= x19
+= x18
+= x1i7
+= x16
+= X155
+= xi4
+= x1i3

+= xi2

76)
72)
63)
64)
60)
56)
52)
48)

14

xil =
x10 =
result
result
result
result
result
result
result
result
result
result
x19 =
X138 =

xXil =

x(uint32 *x) (p + 44)
*(uint32 *) (p + 40)

+=

*(uint32 *) (p + 36)
*(uint32 *) (p + 32)
*(uint32 *) (p + 28)

xi9
x18
xi7
X16
X155
xid
xi3
X12
xil

x10

15

X16

X15

x14

x13
X12 =
xil =
xi0 =
result
result
result
result
result
result
result

result

* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
+= x19
+= x18
+= x1i7
+= x16
+= X105
+= xi4
+= xi3

+= xi2

+ + + + + o+

O

xil =
x10 =
result
result
result
result
result
result
result
result
result
result
x19 =
X138 =

xil =

x(uint32 *x) (p + 44)
*(uint32 *x) (p + 40)

+=

+=

*(uint32 *) (p + 36)
*(uint32 *) (p + 32)
*(uint32 *x) (p + 28)

x1i9
xX18
X1’
X16
xX1b
xi4d
xi3
X12
x11

x10

X16

X15

x14

x13
X12 =
xil =
xi0 =
result
result
result
result
result
result
result

result

* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
+= x19
+= x18
+= xi7
+= x16
+= X155
+= xi4
+= x1i3

+= xi12

+ + + + + +

YO

x(uint32 *) (p + 44) : xi6 = *(uint32 *) (p + 24) ’ resul
*(uint32 *) (p + 40) xi5 = *(uint32 *) (p + 20) resul
t += xi9 xi4 = *x(uint32 *) (p + 16) xi9 =
t += xi8 xi3 = *(uint32 *) (p + 12) xi8 =
t += xi7 xi2 = *(uint32 *) (p + 8) xi7 =
t += xi6 xil = *(uint32 *) (p + 4) xi6 =
t += xib xi0 = *(uint32 *) p; p += 160 xib =
t += xi4d result += xi9 xi4d =
t += x13 result += xi8 X13 =
E += x12 result += x1i7 X12 =
t += x1il result += xi6 X1l =
t += x10 result += x15 x10 =
*(uint32 *x) (p + 36) result += xi4 resul
*(uint32 *) (p + 32) result += xi3 resul
*(uint32 *) (p + 28) result += xi2 resul

) (p + 44)
) (p + 40)

x) (p + 36)
x) (p + 32)
*) (p + 28)

15

xX16
X155
xi4d
xi3
xXi2
xi1

xi0

result +=

*x (uint32
*x (uint32
*x (uint32
* (uint32
*x (uint32
* (uint32
* (uint32

x1i9

result
result
result
result
result
result

result

xi8
xXi7
X16
X155
xi4d
xX13

xX12

+ + + + + +

g,

16

result +=

result +=

x11

x10

xi9 = x(uint32

xi8 = *(uint32
xi7 = *(uint32
xi6 = *(uint32
xib = *(uint32
xid = *x(uint32
xi3 = *x(uint32
xi2 = *(uint32
xil = *(uint32
xi0 = *(uint32
result += xi9
result += xi8
result += xi7

44)
40)

36)
32)
28)

15

xX16
X15
xi4d
xi3
xXi2
x1i1

xi0

result +=

*x (uint32
*x (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32

x1i9

result
result
result
result
result
result

result

xi8
xXi7
xX16
X15
xi4d
xX1i3

xX12

+ + + + + o+

YO

16

result += xil
result += xi0
xi9 = *(uint32
xi8 = *(uint32
xi7 = *(uint32
xi6 = *(uint32
xib = *(uint32
xid = *x(uint32
xi3 = *(uint32
xi2 = *(uint32
xil = *(uint32
xi0 = *(uint32
result += xi9
result += xid
result += xi7

xX16
X155
xi4d
xi3
xXi2
xi1

xi0

*x (uint32
*x (uint32
*x (uint32
* (uint32
* (uint32
* (uint32
* (uint32

result
result
result
result
result
result
result

result

x19
xi8
xXi7
X16
X155
xi4d
xX13

xX12

+ + + + + +

g,

16

result += xil
result += xi0
xi9 = *(uint32
xi8 = *(uint32
xi7 = *(uint32
xi6 = *(uint32
xib = *(uint32
xid = *(uint32
xi3 = *x(uint32
xi2 = *(uint32
xil = *(uint32
xi0 = *(uint32
result += xi9
result += xi8
result += xi7

17

C
C
C

T T cr cr T

* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
+= x19
+= x18
+= x1i7
+= x16
+= X155
+= xi4
+= xi3

+= xi2

+ + + + + o+

YO

16

result += xil

result += xi0

xi9 = *(uint32
xi8 = *(uint32
xi7 = *(uint32
xi6 = *(uint32
xib = *(uint32
xid = *x(uint32
xi3 = *(uint32
xi2 = *(uint32
xil = *(uint32
xi0 = *(uint32

result += xi9

result +=

result +=

x18

X1l

17

resul
resul
resul
resul
resul
resul

resul-

x1i9

x18

X1/

xX16

X15

x14

x13

xX12

+ + + + + +

o

16

result += xil

result += xi0

xi9 = *(uint32
xi8 = *(uint32
xi7 = *(uint32
xi6 = *(uint32
xib = *(uint32
xid = *x(uint32
xi3 = *(uint32
xi2 = *(uint32
xil = *(uint32
xi0 = *(uint32

result += xi9

result +=

result +=

x18

xil

17

result
result
result
result
result
result

result

X16
X1b5
xi4d
xXi3
xXi2
x1i1

xi0

x19
xi8
xXi7
X16
X155
xi4d
X13

xX12

* (uint32
* (uint32
* (uint32
* (uint32
*x (uint32
*x (uint32
*x (uint32
* (uint32

16

result += xil
result += xi0
xi9 = *(uint32
xi8 = *(uint32
xi7 = *(uint32
xi6 = *(uint32
xib = *(uint32
xid = *x(uint32
xi3 = *(uint32
xi2 = *(uint32
xil = *(uint32
xi0 = *(uint32
result += xi9
result += xid
result += xi7

17

result
result
result
result
result
result

result

X16
X15
xi4d
xi3
xXi2
xil

x1i0

x19
xi8
xXi7
X16
X15
xi4d
xXi3

xX12

* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
*x (uint32
* (uint32

result += xil
result += xi0
xi9 = *(uint32
xi8 = *(uint32
xi7 = *(uint32
xi6 = *(uint32
xib = *(uint32
xid = *(uint32
xi3 = *(uint32
xi2 = *(uint32
xil = *(uint32
xi0 = *(uint32
result += xi9
result += xid8
result += xi7

17

result
result
result
result
result
result

result

X16
X1b5
xi4d
xXi3
xXi2
x1i1

xi0

x19
xi8
xXi7
X16
X155
xi4d
X13

xX12

* (uint32
* (uint32
* (uint32
* (uint32
*x (uint32
*x (uint32
*x (uint32
* (uint32

44)
48)
52)
56)
60)
64)
68)
72)

18

17 18

t += x1il result += xi6 X1l =
t += x10 result += x15 x10 =
*(uint32 *x) (p - 4) result += xi4 resul
*(uint32 *) (p - 8) result += xi3 resul
*(uint32 *) (p - 12) result += xi2 resul
*(uint32 *) (p - 16) result += xil resul
*(uint32 *) (p - 20) result += xi0 resul
*(uint32 *) (p - 24) xi9 = *(uint32 *) (p - 44) resul
*(uint32 *) (p - 28) xi8 = *(uint32 *) (p - 48) resul
*(uint32 *x) (p - 32) xi7 = *(uint32 *) (p - 52) resul
*(uint32 *x) (p - 36) xi6 = *(uint32 *) (p - 56) resul
*(uint32 *x) (p - 40) xi5 = *(uint32 *) (p - 60) resul
t += xi9 xi4 = *(uint32 *) (p - 64)

t += xi8 xi3 = *(uint32 *) (p - 68)

b += xi7 xi2 = *(uint32 *) (p - 72) goto lo

17

result
result
result
result
result
result
result
x19 =
X138 =

xXil =

X16

X15

x14

x13

xX12

+= x16
+= x1b5
+= xi4d
+= x1i3
+= x1i2
+= xil
+= x1i0
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
*x (uint32
* (uint32
* (uint32

44)
48)
52)
56)
60)
64)
68)
72)

18

xil =
x10 =
result
result
result
result
result
result
result
result
result

result

* (uint32
* (uint32

+= x19
+= x18
+= xi7
+= x16
+= x15
+= xi4
+= x13
+= x12
+= x11

+= xi0

=7

goto loop if !=

17

result
result
result
result
result
result
result
x19 =
X138 =

xXil =

xX16

X15

x14

x13

xX12

+= x16
+= X105
+= xi4
+= x13
+= xi2
+= xil
+= x10
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32

44)
48)
52)
56)
60)
64)
68)
72)

18

xil =
x10 =
result
result
result
result
result
result
result
result
result

result

x(uint32 *x) (p -
x(uint32 *) (p -

+= x19
+= x18
+= xi7
+= x16
+= x15
+= x14
+= x13
+= x12
+= x11
+= x10

=Tp -y
goto loop 1if !=

result
result
result
result
result
result
result
x19 =
X138 =

xXil =

X16

X15

x14

x13

xX12

+= x16
+= x1b5
+= xi4d
+= x1i3
+= x1i2
+= xil
+= x1i0
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32

44)
48)
52)
56)
60)
64)
68)
72)

18

xil =
x10 =
result
result
result
result
result
result
result
result
result

result

x(uint32 *) (p - 76)
+(uint32 *) (p - 80)

+=

x1i9
xX18
X1’
xX16
xX1b5
xi4d
xi3
X12
x11

x10

=Tp -y
goto loop 1if !=

19

T T T cr T cr T

+= x16
+= X105
+= xi4
+= x13
+= xi2
+= xil
+= x1i0
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32
* (uint32

44)
48)
52)
56)
60)
64)
68)
72)

18

x1l =

x10 =

x(uint32 *) (p - 76)
x(uint32 *) (p - 80)

result += xi9

result
result
result
result
result
result
result
result

result

+=

x18
xi'’7
X16
X155
xid
xi3
X12
xil

x10

=Tp -y

goto loop 1if !=

19

Wikiped
even per
optimizi
perform:

44)
48)
52)
56)
60)
64)
68)
72)

18

xil =
x10 =
result
result
result
result
result
result
result
result
result

result

x(uint32 *) (p - 76)
+(uint32 *) (p - 80)

+=

x19
xX18
X1’
X16
xX1b
xi4d
xi3
X12
x11

x10

=Tp -y

goto loop if !=

19

Wikipedia: "By tf
even performance
optimizing compils
performance of hu

44)
48)
52)
56)
60)
64)
68)
72)

18

xil =
x10 =
result
result
result
result
result
result
result
result
result

result

x(uint32 *) (p - 76)
x(uint32 *) (p - 80)

+=

xi9
x18
xi7
X16
X155
xid
xi3
X12
xil

x10

=Tp -y

goto loop 1if !=

19

Wikipedia: "By the late 19C€
even performance sensitive ¢
optimizing compilers exceed
performance of human expe

xil =
x10 =
result
result
result
result
result
result
result
result
result

result

x(uint32 *) (p - 76)
*(uint32 *) (p - 80)

+=

x19
xX18
X1’
X16
xX1b
xi4d
xi3
X12
xil

x10

=Tp -y

goto loop if !=

19

20
Wikipedia: "By the late 1990s for

even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”

19 20

xil = *(uint32 *) (p - 76) Wikipedia: "By the late 1990s for
xi0 = *(uint32 *) (p - 80) even performance sensitive code,
result += xi9 optimizing compilers exceeded the
result += xi8 performance of human experts.”

1t += xi7 :
resu x4 Reality: The fastest software

result += x1i6 :
today relies on human experts

understanding the CPU.

result += x1b5

result += xi4
result += xi3 Cannot trust compiler to

result += xi?2 optimize instruction selection.
+= X] _
result x11 Cannot trust compiler to

result += xi0 optimize instruction scheduling.

2 p -y Cannot trust compiler to

goto loop if != optimize register allocation.

C
C
C

cr T T T T T T

x(uint32 *) (p - 76)
x(uint32 *) (p - 80)

+=

+=

xi9
x18
xi7
X16
X155
xid
xi3
X12
xil
xi0

op 1f !I=

TP -y

19

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”

Reality: The fastest software
today relies on human experts
understanding the CPU.

Cannot trust compiler to
optimize instruction selection.

Cannot trust compiler to
optimize instruction scheduling.

Cannot trust compiler to
optimize register allocation.

20

The big

CPUs ar
farther

from nai

%) (p - 76)
%) (p - 80)
p =Yy

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”

Reality: The fastest software
today relies on human experts
understanding the CPU.

Cannot trust compiler to

optimize instruction selection.

Cannot trust compiler to
optimize instruction scheduling.

Cannot trust compiler to

optimize register allocation.

20

The big picture

CPUs are evolving
farther and farthet
from naive models

76)
80)

19

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”

Reality: The fastest software
today relies on human experts
understanding the CPU.

Cannot trust compiler to
optimize instruction selection.

Cannot trust compiler to
optimize instruction scheduling.

Cannot trust compiler to
optimize register allocation.

20

The big picture

CPUs are evolving
farther and farther away
from naive models of CPUs.

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”

Reality: The fastest software
today relies on human experts
understanding the CPU.

Cannot trust compiler to
optimize instruction selection.

Cannot trust compiler to
optimize instruction scheduling.

Cannot trust compiler to

optimize register allocation.

20

The big picture

CPUs are evolving
farther and farther away
from naive models of CPUs.

21

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”

Reality: The fastest software
today relies on human experts
understanding the CPU.

Cannot trust compiler to
optimize instruction selection.

Cannot trust compiler to
optimize instruction scheduling.

Cannot trust compiler to
optimize register allocation.

20

21
The big picture

CPUs are evolving
farther and farther away
from naive models of CPUs.

Minor optimization challenges:
e Pipelining.
e Superscalar processing.

Major optimization challenges:
e \ectorization.
e Many threads; many cores.
e [he memory hierarchy;

the ring; the mesh.

e Larger-scale parallelism.

e Larger-scale networking.

ia: "By the late 1990s for
formance sensitive code,
ng compilers exceeded the
ance of human experts.”

The fastest software

lies on human experts
nding the CPU.

trust compiler to
Instruction selection.

trust compiler to
instruction scheduling.

trust compiler to
' register allocation.

20

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:
e Pipelining.

e Superscalar processing.

Major optimization challenges:

e \Vectorization.

e Many threads; many cores.

e [he memory hierarchy;

the ring; t
e Larger-sca
e Larger-sca

NE€ MESN.

e parallelism.

e networking.

21

CPU des
fo 8
I 2
A 7
|
7 7

Gates &
product
of intege

e late 1990s for
sensitive code,
rs exceeded the
man experts.”

st software
man experts

CPU.

iler to
n selection.

iler to
n scheduling.

yiler to
llocation.

20

The big picture

the ring; t
e Larger-sca
e Larger-sca

e Pipelining.

CPUs are evolving

e \Vectorization.

ne mes
e para

farther and farther away
from naive models of CPUs.

Minor optimization challenges:

e Superscalar processing.

Major optimization challenges:

e Many threads; many cores.
e [he memory hierarchy;

1.

lelism.

e networking.

21

CPU design in a n

¢>g><

N
%K/
AU

\ﬁ/ A

Y TE Y

he b ha

Gates x:a,b— 1
product hg + 2hy -
of integers fo + 2f

)Os for

ode,
ed the

rts.
=

s

Ing.

20
The big picture

CPUs are evolving
farther and farther away
from naive models of CPUs.

e Pipelining.
e Superscalar processing.

e Vectorization.

e Many threads; many cores.

e [he memory hierarchy;
the ring; the mesh.

e Larger-scale parallelism.

e Larger-scale networking.

Minor optimization challenges:

Major optimization challenges:

21

CPU design in a nutshell

¢>&><m

NS

hp h1 h3 h

> <= >

N

/NN

i

Y V

Gates ~:a, b— 1 — ab com
product hg + 2hy +4hy + 8
of integers fo + 2f1, g0 + 2g

21
The big picture

CPUs are evolving
farther and farther away
from naive models of CPUs.

Minor optimization challenges:
e Pipelining.
e Superscalar processing.

Major optimization challenges:
e \ectorization.
e Many threads; many cores.
e [he memory hierarchy;

the ring; the mesh.

e Larger-scale parallelism.

e Larger-scale networking.

CPU design in a nutshell

Exgoxglxil
T
v
W/\Q\ﬁ
\ \
ol

Gates = : a, b— 1 — ab computing
product hg + 2h1 + 4hy + 8h3
of integers fy + 2f1, go + 2g1.-

picture

e evolving

nd farther away
ve models of CPUs.

otimization challenges:

1ng.
scalar processing.

otimization challenges:

1zation.
threads; many cores.
iemory hierarchy;

g, the mesh.

-scale parallelism.

-scale networking.

21

CPU design in a nutshell

¢>&><m

NS

ho hi hy ho

> <= >

N

/NN

o

/ V

Gates = : a, b— 1 — ab computing
product hg + 2h1 + 4hy + 8h3
of integers fo + 2f1, go + 2g41.

22

Electrici
percolat
It fo, A1,
then ho,

a few m

- away

- of CPUs.

n challenges:

essing.
1 challenges:
nany cores.

rarchy;
sh.

yllelism.

yvorking.

21

CPU design in a nutshell

K/
W/\Q\ﬁ

! !
A A

Gates = : a, b— 1 — ab computing

product hg + 2h1 + 4hy + 8h3
of integers fy + 2f1, go + 2g1.

22

Electricity takes ti
percolate through

|t fo, fl,go,gl are
then ho, hi, ho, h3

a few moments la1

CS.

eS.

21

CPU design in a nutshell

¢>@ﬁ>< ;ﬁi
AN !

A
hp h1 h3 h

> <= >

N

Q
Y

/NN

Q
V

Gates = : a, b— 1 — ab computing
product hg + 2h1 + 4hy + 8h3
of integers fy + 2f1, go + 2g41.

22

Electricity takes time to
percolate through wires and
If fo, f1, g0, g1 are stable
then hg, h1, ho, h3 are stable
a few moments later.

CPU design in a nutshell

Exgoxglxil
N
ﬁ/
2
! !
A

Gates = : a, b— 1 — ab computing
product hg + 2h1 + 4hy + 8h3
of integers fy + 2f1, go + 2g1.

22

Electricity takes time to
percolate through wires and gates.
If fo, f1, g0, g1 are stable

then hg, hy1, ho, h3 are stable
a few moments later.

23

CPU design in a nutshell

K/
W/\Q\ﬁ
! !
A
ho hi hs ho

Gates = : a, b— 1 — ab computing
product hg + 2h1 + 4hy + 8h3
of integers fy + 2f1, go + 2g1.

22

Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, hy1, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

23

S1gn In a nutshell

0 g1 N
> X
A

I
A

Y

hs ho

> <= >

Q
V

XS
AN

- a,br— 1— ab computing
hg + 2h1 + 4hy 4 8h3
rs fo + 2f1, g0 + 2471.

22

Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, h1, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

23

Build cit
32-bit in
given 4-
and 32-I

reg
ré

utshell

— ab computing
+ 4hy + 8h3

1,80 + 241

22

Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, hy1, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

23

Build circuit to co
32-bit integer r;

given 4-bit integer
and 32-bit integer

registet
read

puting

22 23
Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, h1, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

Build circuit to compute
32-bit Integer r;
given 4-bit integer |

and 32-bit integers rg, r1, . ..

register
read

Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, hy, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

23

Build circuit to compute
32-bit integer r;
given 4-bit integer |

and 32-bit integers rg, 1, ..., r15:

register
read

24

Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, hy, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

23

24
Build circuit to compute

32-bit integer r;
given 4-bit integer |
and 32-bit integers rg, 1, ..., r15:

register
read

Build circuit for “register write":

M0, -1 115, S, [+ £y, ..., I1c
I, I __
where ri = rj except r; =s.

Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, hy, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

23

24
Build circuit to compute

32-bit integer r;
given 4-bit integer |
and 32-bit integers rg, 1, ..., r15:

register
read

Build circuit for “register write":

M0, -1 115, S, [+ £y, ..., I1c
I, I __
where ri = rj except r; =s.

Build circuit for addition. Etc.

ty takes time to

e through wires and gates.

0y, g1 are stable
hi, ho, h3 are stable
oments later.

cult with more gates
ply (e.g.) 32-bit integers:

omitted.)

23

24
Build circuit to compute

32-bit Integer r;
given 4-bit integer |
and 32-bit integers ry, 1, ..., r5:

register
read

Build circuit for “register write":

M0, ..., 15,5, 1+ 1y, ..., I1c
I, I _

where ri = rj except r; = s.

Build circuit for addition. Etc.

o,...,r

where ré

regils
rea

me to

wires and gates.

stable
are stable

er.

more gates
32-bit integers:

23

Build circuit to compute
32-bit integer r;
given 4-bit integer |

and 32-bit integers rg, r1, ..., rs:

register
read

Build circuit for “register write":

n, ..., rs,S, i1y, ..., e
I, I
where ri = rj except r; = s.

Build circuit for addition. Etc.

24

where r, = rp exce

register|reg
read | r

registe
write

gates.

gers:

23

Build circuit to compute

32-bit Integer r;

given 4-bit integer |

and 32-bit integers rg, r1, . . ., rs:

register
read

Build circuit for “register write":

n, ..., M5, S, 0 — 1y, ..., e
I . I
where ri = rj except r; = s.

Build circuit for addition. Etc.

24

n, ..., rs, i, j, k—rg, ..., r
) I .
where r, = ry except r; = r;.

registerregister
read | read

register
write

Build circuit to compute
32-bit integer r;
given 4-bit integer |

and 32-bit integers rg, r1, ..., rs:

register
read

Build circuit for “register write":

n, ..., rs,S, i1y, ..., e
I, I __
where ri = rj except r; = s.

Build circuit for addition. Etc.

24

n, ..., rs, i j, k—ry, ..., e
r_ I
where r, = ry except r; = rjry:

registerjregister
read | read

register
write

25

cult to compute
teger r;
DIt Integer |

oIt Integers rg, 1, .. ., rs:

|1ster
2ad

cuit for “register write":

15, S, 0 — Iy, ..., e
o r_
= rj except r; =s.

cuit for addition. Etc.

24

n, ..., rs, i, j, k—ry, ..., e
I I
where r, = ry except r; = rjr:

registerregister
read | read

register
write

25

Add mo

More ari
replace |

egister write';

/ /
0 - - - s

pt rl =s.
Idition. Etc.

24

n, ..., rs, i j, k—ry, ..., e

/ / .
where r, = ry except r; = rjry:

register
read

register
read

register
write

25

Add more flexibilit

More arithmetic:

replace (i, J, k) wil
(“x",1i,J, k) anc
(“4+",1,j, k) and r

ite”:

LC.

24

n, ..., rs, i, j, k—ry, ..., e
I I
where r, = ry except r; = rjr:

registerregister
read | read

register
write

25

Add more flexibility.

More arithmetic:

replace (1, j, k) with

(“x",1i,Jj, k) ana

(“4",1,J, k) anc

more optio

n, ..., rs, i j, k—ry, ..., e
r_ I
where r, = ry except r; = rjry:

registerjregister
read | read

register
write

25

Add more flexibility.

More arithmetic:

replace (1, J, k) with

(“x",1i,Jj, k) anc
(“4",1,J, k) anc

more options.

26

n, ..., rs, i j, k—ry, ..., e
r_ I
where r, = ry except r; = rjry:

registerjregister
read | read

register
write

25

Add more flexibility.

More arithmetic:

replace (1, J, k) with

(“x",1i,Jj, k) anc

(“4",1,J, k) anc

more options.

More (but slower) storage:

“load” from and

“store’ to

larger "RAM" arrays.

26

n, ..., rs, i j, k—ry, ..., e
r_ I
where r, = ry except r; = rjry:

registerjregister
read | read

register
write

25

Add more flexibility.

More arithmetic:
replace (1, J, k) with
(“x",1i,Jj, k) anc

(“4",1,j, k) and more options.

More (but slower) storage:
“load” from and “store’ to
larger "RAM" arrays.

“Instruction fetch":

p > 0p,ip, jp, kp, P'.

26

n, ..., rs, i j, k—ry, ..., e
r_ I
where r, = ry except r; = rjry:

registerjregister
read | read

register
write

25

26
Add more flexibility.

More arithmetic:
replace (1, J, k) with
(“x",1i,Jj, k) anc

(“4",1,j, k) and more options.

More (but slower) storage:
“load” from and “store’ to
larger "RAM" arrays.

“Instruction fetch™:
p > 0p,ip, jp, kp, P'.

“Instruction decode’

decompression of compressed
= = ,

format for op, Ip, jp, kp, P’

, - /
15,/,./,ka0 I’15
= ry except ri = rjry:

terregister
d | read

egister
write

25

Add more flexibility.

More arithmetic:
replace (1, j, k) with
(“x",1i,Jj, k) ana

(“4",1,j, k) and more options.

More (but slower) storage:
“load” from and “store” to
larger “"RAM" arrays.

“Instruction fetch™:
p > 0p, ip, Jp, kp, .

“Instruction decode”:

decompression of compressed
- " /

format for op, Ip, jp, kp, P’

26

Build “fl
storing (

Hook (f
flip-flops

Hook oL
Into the

At each
flip-flops
with the

Clock ne
for elect
all the w
from flig

> Iy s
pt rl = rjry:
rister
ead

1

25

Add more flexibility.

More arithmetic:
replace (7, J, k) with
(“x",1i,Jj, k) anc

(“4",1i,j, k) and more options.

More (but slower) storage:
“load” from and “store’ to
larger "RAM" arrays.

“Instruction fetch":

p > 0p,ip, jp, kp, P'.

“Instruction decode’

decompression of compressed
= = ,

format for op, Ip, jp, kp, P’

26

Build “flip-flops”
storing (p, ro, . . .,

Hook (p, o, ..., N
flip-flops into circt

Hook outputs (p,
into the same flip-

At each “clock tic
flip-tlops are overv
with the outputs.

Clock needs to be
for electricity to p
all the way throug
from flip-flops to f

15

25

Add more flexibility.

More arithmetic:
replace (1, J, k) with
(“x",1i,Jj, k) ana

(“4",1,j, k) and more options.

More (but slower) storage:
“load” from and “store” to
larger “"RAM" arrays.

“Instruction fetch™:
p > 0p, ip, Jp, kp, P'.

“Instruction decode”:

decompression of compressed
- - /

format for op, Ip, jp, kp, P’

26

Build “flip-flops”
storing (p, rg, ..., 5).

Hook (p, n, ..., r15)
flip-tlops into circuit inputs.

Hook outputs (p, r, .. ., 11
into the same flip-flops.

At each “clock tick”,
flip-tlops are overwritten
with the outputs.

Clock needs to be slow enol
for electricity to percolate
all the way through the circ
from flip-flops to flip-flops.

Add more flexibility.

More arithmetic:
replace (1, Jj, k) with
(“x",1i,Jj, k) anc

(“4",1,j, k) and more options.

More (but slower) storage:
“load” from and “store’ to
larger "RAM" arrays.

“Instruction fetch™:
p > 0p,ip, jp, kp, P'.

“Instruction decode’

decompression of compressed
= = ,

format for op, Ip, jp, kp, P’

26

27

Build “flip-flops”
storing (p, ro, ..., s5).
Hook (p, n, ..., r15)

flip-tlops into circuit inputs.

Hook outputs (p, 1, ..., ris)

into the same flip-flops.

At each “clock tick™,
flip-tlops are overwritten
with the outputs.

Clock needs to be slow enough
for electricity to percolate
all the way through the circuit,
from flip-flops to flip-flops.

re flexibility.
thmetic:

i, J, k) with
j, k) anc

j, k) and more options.

ut slower) storage:

rom and ‘‘store’ to
RAM™ arrays.

tion fetch™:

I, Jp, Kp, p'.

tion decode”:

ession of compressed

. " " /
or Op, Ip, Jp, Kp, P’

26

Build “flip-flops”
storing (p, rg, ..., 5).

Hook (p, n, ..., r15)
flip-tlops into circuit inputs.

Hook outputs (p', 1, . .., ris)
into the same flip-flops.

At each “clock tick™,
flip-tlops are overwritten
with the outputs.

Clock needs to be slow enough
for electricity to percolate
all the way through the circuit,
from flip-flops to flip-flops.

27

Now ha\

regist
reac

/

Ié

\

Further
e.g., log

26 27

V. Build “flip-flops” Now have semi-fle
storing (p, rg, ..., r15). flip-flops
Insn
h Hook (p, rg, ..., rs) fatch

flip-tlops into circuit inputs.

. Insn
nore options.

Hook outputs (p, 1, . .., ris) decode
storage: into the same flip-tlops. registerlregister
store’ to) oo read | read

At each “clock tick’,

s flip-tlops are overwritten >< _

with the outputs.

S register
Clock needs to be slow enough write

e :
compressed all the way through the circuit, Further flexibility |
>, kp, P from flip-flops to flip-flops. e.g., logic instruct

for electricity to percolate

27

Build “flip-flops” Now have semi-flexible CPU
storing (p, rg, ..., r5). flip-flops
Hook (p, n, ..., r15) flentinh
flip-tlops into circuit inputs. |
Insn
Hook outputs (p', 1, . .., ris) decode
into the same flip-flops. register|register
_ read | read
At each “clock tick"”,

flip-flops are overwritten ><

with the outputs.

register
Clock needs to be slow enough write

for electricity to percolate
all the way through the circuit, Further flexibility is useful:
from flip-flops to flip-flops. e.g., logic instructions.

Build “flip-flops”
storing (p, rg, ..., 5).

Hook (p, n, ..., r15)
flip-tlops into circuit inputs.

Hook outputs (p, 1y, ..., ris)
into the same flip-flops.

At each “clock tick™,
flip-flops are overwritten
with the outputs.

Clock needs to be slow enough
for electricity to percolate
all the way through the circuit,
from flip-flops to flip-flops.

21

Now have semi-flexible CPU:

flip-flops

INsn
fetch

Insn
decode

registerjregister
read | read

X

register
write

Further flexibility is useful:
e.g., logic Instructions.

23

ip-flops”
P, 1, ..., H5).
, 10y - -y 115)

 Into circuit inputs.

tputs (p', ry, ..., 1{s)

same flip-flops.

“clock tick’,
, are overwritten
outputs.

eds to be slow enough
ricity to percolate
/ay through the circult,
-flops to flip-flops.

27

Now have semi-flexible CPU:

flip-flops

INsn
fetch

Insn
decode

registerjregister
read | read

X

register
write

Further flexibility is useful:
e.g., logic Instructions.

28

"Pipelin
fli

r15)-

5)

11t inputs.

ry, - -1 1s)

flops.

kll |
vritten

slow enough
ercolate
h the circuit,
lip-flops.

21

Now have semi-flexible CPU:

flip-flops

INsn
fetch

Insn
decode

registerjregister
read | read

X

register
write

Further flexibility is useful:
e.g., logic Instructions.

23

“Pipelining” allow

thip-flops

Insn
fetch
flip-flops

Insn
decode

flip-flops

registerjregister
read | read

flip-flops

|-

flip-flops

register
write

1igh

It,

27

Now have semi-flexible CPU:

flip-flops

INsn
fetch

Insn
decode

registerjregister
read | read

X

register
write

Further flexibility is useful:
e.g., logic Instructions.

28

“Pipelining” allows faster cls

f

Ip-tlops

INsn
fetch

lip-flops

Insn
decode

f

lip-flops

register
read

register
read

lip-tlops

Pl

tlip-flops

register
write

stag

stag

stage

stag

stag

23

Now have semi-flexible CPU: "Pipelining” allows faster clock:
flip-flops flip-flops
Insn insn
fetch fatch stage 1
e flip-flops

registerlregister

read | read flip-flops

registerlregister

stage 3
>< read | read &
flip-flops
register tage 4
write

flip-flops
Further flexibility is useful: register g 5
e.g., logic instructions. write

/e semi-flexible CPU:
p-flops

INsn
fetch

Insn
ecode

erregister
I | read

gister
write

flexibility is useful:

IC Instructions.

28

tlip-tlops

INsn
fetch

flip-flops

Insn
decode

flip-flops

register
read

register
read

flip-

lops

Pl

tlip-flops

regi

write

ster

"Pipelining” allows faster clock:

stage 1

stage 2

stage 3

stage 4

stage 5

29

Goal: St
one tick

Instructi
reads ne

feeds p’

After ne
Instructi
uncompl
while ins

reads an

Some ex
Also ext
preserve
e.g., sta

xible CPU:

s useful:
10NS.

23

“Pipelining” allows faster clock:

thip-flops

INsn
fetch

flip-flops

Insn
decode

flip-flops

registerjregister
read | read

flip-flops

X

flip-flops

register
write

stage 1

stage 2

stage 3

stage 4

stage 5

29

Goal: Stage n har
one tick after stag

Instruction fetch
reads next Instruci

feeds p’ back, sen

After next clock ti
Instruction decode

uncompresses this
while instruction f
reads another inst

Some extra flip-flc
Also extra area to
preserve Instructio
e.g., stall on read-

28

“Pipelining” allows faster clock:

f

Ip-tlops

INsn
fetch

lip-flops

Insn
decode

f

lip-flops

register
read

register
read

lip-tlops

Pl

tlip-flops

register
write

stage 1

stage 2

stage 3

stage 4

stage 5

29

Goal: Stage n handles instri
one tick after stage n — 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruct

After next clock tick,
Instruction decode

uncompresses this instructio
while instruction fetch
reads another instruction.

Some extra flip-flop area.
Also extra area to

preserve Instruction semanti
e.g., stall on read-after-write

“Pipelining” allows faster clock:

thip-flops

INsn
fetch

flip-flops

Insn
decode

flip-flops

registerjregister
read | read

flip-flops

X

flip-flops

register
write

stage 1

stage 2

stage 3

stage 4

stage 5

29

Goal: Stage n handles instruction
one tick after stage n — 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruction.

After next clock tick,
Instruction decode

uncompresses this instruction,
while instruction fetch
reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve Instruction semantics:
e.g., stall on read-after-write.

30

ing" allows faster clock:

p-flops

INsn
fetch

p-flops

Insn
ecode

p-flops

er|register
read

p-flops

X

p-flops

gister
write

stage 1

stage 2

stage 3

stage 4

stage 5

29

Goal: Stage n handles instruction
one tick after stage n — 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruction.

After next clock tick,
Instruction decode

uncompresses this instruction,
while instruction fetch
reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve Iinstruction semantics:
e.g., stall on read-after-write.

30

“Supers

register
read

Ié€

s faster clock:

stage 1

stage 2

stage 3

stage 4

stage 5

29

Goal: Stage n handles instruction
one tick after stage n — 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruction.

After next clock tick,
Instruction decode

uncompresses this instruction,
while instruction fetch
reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve Instruction semantics:
e.g., stall on read-after-write.

30

“Superscalar” prot

flip-flops

INsn
fetch

INSI
fetc

flip-1

lops

Insn
decode

INSI
deco

flip-

lops

register
read

register
read

regis
rea

flip-

lops

>< |

flip-

flops

register
write

regis

writ

ock:

29

Goal: Stage n handles instruction
one tick after stage n — 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruction.

After next clock tick,

Instruction decode

uncompresses this instruction,
while instruction fetch
reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:
e.g., stall on read-after-write.

30

“Superscalar” processing:

thip-t

ops

INsn
fetch

Insn
fetch

flip-

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

Pt

flip-flops

register
write

register
write

Goal: Stage n handles instruction
one tick after stage n — 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruction.

After next clock tick,
Instruction decode

uncompresses this instruction,
while instruction fetch
reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve Instruction semantics:
e.g., stall on read-after-write.

30

“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

X

flip-

flops

register
write

register
write

31

age n handles instruction
after stage n — 1.

on fetch
xt Instruction,
back, sends instruction.

xt clock tick,

on decode

esses this instruction,
truction fetch

other instruction.

tra flip-flop area.

ra area to

Instruction semantics:
| on read-after-write.

30

“Superscalar” processing:

thip-t

ops

INsn
fetch

Insn
fetch

flip-

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

Pt

flip-flops

register
write

register
write

31

“Vector

Expand

INtO N-V¢
ARM “|

Inte
Inte

AN
AN

GPUs h:

dles instruction

en—1.

jon,
ds instruction.

ck,

Instruction,
etch
ruction.

p area.

n semantics:
after-write.

30

“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

X

flip-

flops

register

register
write

write

31

“Vector” processir

Expand each 32-b
Into n-vector of 3.
ARM “NEON" ha

Inte
Inte

"AVX2" has
"AVX-512" |

GPUs have larger

Iction

on.

CS.

\v

30

“Superscalar’ processing:

thip-t

ops

INsn
fetch

Insn
fetch

flip-

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

Pl

flip-flops

register
write

register

write

31

“Vector’ processing:

Expand each 32-bit integer

into n-vector of 32-bit integ
ARM “NEON" has n = 4;

Inte
Inte

"AVX2" has n = 8;
"AVX-512" has n =16

GPUs have larger n.

“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

X

flip-

flops

register
write

register
write

31

“Vector’ processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON" has n = 4;

Inte
Inte

"AVX2" has n = 3;
"AVX-512" has n = 16;

GPUs have larger n.

32

“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

X

flip-

flops

register
write

register

write

31

“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;
"AVX2" has n = 8;
"AVX-512" has n = 16;

GPUs have larger n.

Inte

Inte

nx speedup if
nx arithmetic circuits,
nx read/write circuits.

Benefit: Amortizes insn circuits.

32

“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

X

flip-

flops

register
write

register

write

31

32
“Vector' processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;
"AVX2" has n = 8;
"AVX-512" has n = 16;

GPUs have larger n.

Inte

Inte

nx speedup if

nx arithmetic circuits,

nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

calar” processing:

~ flip-flops

INsn
fetch

Insn
fetch

~ flip-

lops

Insn
ecode

Insn
decode

~ flip-

lops

gister
read

register
read

register
read

~ flip-

lops

| X

flip-flops

gister
write

register
write

“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “AVX2" has n = 8;

Intel “AVX-512" has n = 16;

GPUs have larger n.

nx speedup if
nx arithmetic circuits,
nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

32

Network

How exf

Input: a
Each nu

represen

Output:
IN INCrea
represen
same mi

Cessing:

register
read

Ler

“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “AVX2" has n = 8;

Intel “AVX-512" has n = 16;

GPUs have larger n.

nx speedup if
nx arithmetic circuits,
nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

32

Network on chip:

How expensive Is

Input: array of nr
Each number in {
represented In bin;

Output: array of 1
In Increasing order
represented In bin:
same multiset as |

31

“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “AVX2" has n = 8;

Intel “AVX-512" has n = 16;

GPUs have larger n.

nx speedup if

nx arithmetic circuits,

nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

32

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2.....nN
represented in binary.

Output: array of n numbers
in Increasing order,
represented In binary:;

same multiset as input.

32 33
“Vector' processing: Network on chip: the mesh

Expand each 32-bit integer How expensive is sorting?
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “"AVX2" has n = 8;

Intel “AVX-512" has n = 16;
GPUs have larger n. Output: array of n numbers,
In Increasing order,

Input: array of n numbers.
Each number In {1, 2. ..., n2},
represented in binary.

nx speedup if represented In binary;

nx arithmetic circuits, . .
S same multiset as input.
nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;
"AVX2" has n = 8;
"AVX-512" has n = 16;

GPUs have larger n.

Inte

Inte

nx speedup if
nx arithmetic circuits,
nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

32

33
Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2. ..., n2},
represented in binary.

Output: array of n numbers,
In Increasing order,
represented In binary;

same multiset as input.

Metric: seconds used by
circuit of area nito(l),

For simplicity assume n = 4k

" processing:

each 32-bit integer
actor of 32-bit integers.
\[EON" has n = 4;
VX2" has n = 8;
VX-512" has n = 16;

e larger n.

dup if
metic circults,
/write circuits.

Amortizes insnh circuits.

ect on higher-level
ns and data structures.

32

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2. ..., nz},
represented in binary.

Output: array of n numbers,
In Increasing order,
represented In binary;

same multiset as input.

Metric: seconds used by
circuit of area nito(l),

For simplicity assume n = 4k

33

Spread ¢
square n
each of
with nec

K —X—X—X—X—X—X—X—X—X
K —X—X—X—X—X—X—X—X—X

X
X
X
X
X
X
X
X
X
X

g

t Integer
-bit integers.
s n=4;

n = 8;

as n = 16;

n.

uits,
“ults.

S INSN CIrcults.

her-level
ta structures.

32

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2. ..., nz},
represented in binary.

Output: array of n numbers,
In Increasing order,
represented In binary;

same multiset as input.

Metric: seconds used by
circuit of area nito(l),

For simplicity assume n = 4k

33

Spread array acros
square mesh of n :
each of area n°()
with near-neighbo

X—X—X

X
X

K —X—X—X—X—X—X—X—X—X
X —X—X—X—X—X—X—X—X—X

>
>
>
>
>
>
>
>
>
>

X—X—X—X—XK—X—X—X—X
X—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X

32 33
Network on chip: the mesh Spread array across

How expensive is sorting? square mesh of n small cells

each of area n°(1),

ers.
Input: array of n numbers. with near-neighbor wiring:
; 2
Each number in {1,2,...,n°}, VARV VIV VIV
'_ represented in binary. e S S S S Ne s
Output: array of n numbers, XXX X X XXX
In Increasing order, XXX X X X X=X
represented In binary; X=X ——X——X——X—X—X—X—
same multiset as input. XXX X=X X X=X
. XX — X —X—X—X—X—X—
uits. Metric: seconds used by
circuit of area n .
XX —— X —X—X—X—X—X—
es. For simplicity assume n = 4k S Y Y S

33
Network on chip: the mesh Spread array across

How expensive is sorting? square mesh of n small cells,

each of area n°1),
Input: array of n numbers. with near-neighbor wiring:

Each number iIn {1, 2. ..., nz},
represented in binary.

K—X—X—X—X—X

K—X—X—X—X

Output: array of n numbers,

In Increasing order,

represented In binary;

same multiset as input.

Metric: seconds used by

circuit of area nlto(l).

K —X—X—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X—X—X
X—X—X—X—XK—X—X—X—X
X—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X
HX—X—X—X—X—X—X—X—X—X

For simplicity assume n = 4k

K —X—X—X— XK —X—X—X—X—X

~on chip: the mesh

ensive Is sorting?

rray of n numbers.
mber in {1,2,..., nz},
ted in binary.

array of n numbers,
sing order,

ted in binary;

iltiset as input.

seconds used by
f area nito(l)

licity assume n = 4.

33

Spread array across

square mesh of n small cells,

each of area no(l),

with near-neighbor wiring:

X

X

K —X—X—X—X—X

X

X

X

X —X—X—X—X—X—X—X—X—X
K —X—X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X—X—X

X —X—X—X—X—X—X—X—X—X

34

Sort row

i n0.5—|—<

e Sort e
314
131

e Sort a
131,
113

e Repea
equals

the mesh

sorting?
yumbers.
1,2,...,n°},
ary.

1 numbers,

Ary;
nput.

sed by
o(1)

me n = 4K

33

Spread array across

square mesh of n small cells,

each of area no(l),

with near-neighbor wiring:

K—X—X—X—X—X

X

X

X

X

X

K —X— X —X— X —X—X—X—X—X
X —X—X—X—X—X—X—X—X—X
K—X—X—X—XK—X—X—X—X
X—X—X—X—X—X—X—X

K—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X

HX—X—X—X—X—X—X—X—X—X

K —X— X —X—X—X—X—X—X—X

34

0.5 ¢

Sort row of n ¢

in n0-5To(1) secon

e Sort each pair ir
31415926
13145926

e Sort alternate p:
13145926
113452906

e Repeat until nur
equals row lengt

33

Spread array across

square mesh of n small cells,
each of area no(l),

with near-neighbor wiring:

K—X—X—X—X—X

X—X—X—X—X

X —X—X—X—X—X—X—X—X—X
K —X—X—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X—X
HX—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X—X—X

34

Sort row of n®> cells

0.5+0(1)

N N seconds:

e Sort each pair in parallel.
31415926 +—
13145926

e Sort alternate pairs in par
13145926 +—

11345296

e Repeat until number of st
equals row length.

Spread array across

square mesh of n small cells,

each of area no(l),

with near-neighbor wiring:

K —X—X—X—X—X—X—X

X

K—X—X—X—X—X—X—X

X

X

X

X

X

X

X—X—X—X—X—X—X—X—X

K—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X

HX—X—X—X—X—X—X—X—X—X

K —X— XK —X—X—X—X—X—X—X

34

Sort row of n%> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+
131459026

e Sort alternate pairs in parallel.

1314592606 +—
113452906

e Repeat until number of steps
equals row length.

35

Spread array across

square mesh of n small cells,

each of area no(l),

with near-neighbor wiring:

K —X—X—X—XK—X—X—X—X
X—X—X—X— XK —X—X—X—X
K —X—X—X—XK—X—X—X—X
X—X—X—X—XK—X—X—X—X
K —X—X—X—XK—X—X—X—X
X—X—X—X—XK—X—X—X—X
X —X—X—X—XK—X—XK—X—X
K—X—X—X—XK—X—X—X—X
X—X—X—X— XK —X—X—X—X
K —X—X—X—XK—X—X—X—X

K —X— XK —X—X—X—X—X—X—X

34

Sort row of n%> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+
131459026

e Sort alternate pairs in parallel.

1314592606 +—
113452906

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

In a total of n seconds.

35

Irray across

1esh of n small cells,

area no(l),

r-neighbor wiring:

K—X—X—X—X

X

X

X

X

X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X—X—X

X —X—X—X—X—X—X—X—X—X

34

Sort row of n®> cells

0.5+0(1)

N N seconds:

e Sort each pair in parallel.
31415926 +—
13145926

e Sort alternate pairs in parallel.

13145926 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.54+0(

In a total of n 1) seconds.

35

Sort all

i n0.5—|—<

e Recur:

In par:
e Sort e
e Sort e
e Sort e
e Sort e

With pre
left-to-ri
for each
that this

S
small cells,

r WIring:

(—X—X

X
X

KX—X—X—X—X—X—X—X
K —X—X—X—X—X—X—X
X—X—X—X—X—X—X—X—X—X

K —X— XK —X— XK —X—X—X—X—X

34

Sort row of n%> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+~
131459026

e Sort alternate pairs in parallel.

1314592606 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

In a total of n seconds.

35

Sort all n cells

in n0-5to(1) secon

e Recursively sort

in parallel, if n>

e Sort eac
e Sort eac
e Sort eac
e Sort eac

N colum
N row In

N colum

N row In

With proper choic
left-to-right /right-
for each row, can

that this sorts whe

34

Sort row of n%> cells

0.540(1)

N N seconds:

e Sort each pair in parallel.
31415926 —
13145926

e Sort alternate pairs in parallel.

13145926 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.54+0(

In a total of n 1) seconds.

35

Sort all n cells

0.5+0(1)

N N seconds:

e Recursively sort quadrants
in parallel, if n > 1.

e Sort each column in parall

e Sort each row in parallel.

e Sort each column in parall

e Sort each row in parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove
that this sorts whole array.

Sort row of n%> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+~
131459026

e Sort alternate pairs in parallel.

1314592606 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

In a total of n seconds.

35

Sort all n cells
in n0-5to(1) seconds:

e Recursively sort quadrants
in parallel, if n > 1.

e Sort each column in parallel.

e Sort each row in parallel.

e Sort each column in parallel.

e Sort each row in parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove
that this sorts whole array.

36

of n%° cells
(1) seconds:

ach pair in parallel.
15926 +—
415926

lternate pairs in parallel.

415926 +—
415296

t until number of steps
row length.

h row, In parallel,

0.54+0(

[of n 1) seconds.

35

Sort all n cells

N n

0.5+0(1)

seconds:

e Recursively sort quadrants

in parallel, if n > 1.

e Sort eac
e Sort eac
e Sort eac
e Sort eac

n column in parallel.

n row In parallel.

n column in parallel.

n row In parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove

that this sorts whole array.

36

For exar
this 8 X

¢

~N O m O W N O W
~ B OO DD W W W =
P Ny TN

| N

o||s
1s:

' parallel.
—

airs In parallel.

—

nber of steps
h.

parallel,
o(1) seconds.

35

Sort all n cells
in n0-5to(1) seconds:

e Recursively sort quadrants
in parallel, if n > 1.

e Sort each column in parallel.

e Sort each row in parallel.

e Sort each column in parallel.

e Sort each row in parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove
that this sorts whole array.

36

For example, assu
this 8 x 8 array Is

5

~N OO0 = O W N 61 W
~ B O DD W W W =
© O © OO o o O H
~ 1 W OO W H OO ¥
~ O O H N O O

0
i
2
7
1
0
2
5

35 36

Sort all n cells For example, assume that
in n9-50(1) seconds: this 8 x 8 array Is in cells:
e Recursively sort quadrants 31 415 9 26
in parallel, it n > 1. 5 35 8 0 7 O 3
e Sort each column in parallel. > 38 46 2 6 4
el e Sort each row in p.araIIeI. 1383027095
e Sort each column in parallel.
. 0 2 8 8 41 9 7
e Sort each row in parallel.
1 6 9 3 9 9 3 7
DS With pr.oper c-hoice of 5 1058920 0
left-to-right /right-to-left
{4 9 4 4 5 9 2
for each row, can prove

that this sorts whole array.

36

Sort all n cells For example, assume that
in n9-5t0(1) seconds: this 8 x 8 array Is in cells:
e Recursively sort quadrants 31 415 9 2 6
in parallel, it n > 1. 5 35 8 0 7 O 3
e Sort each column in parallel. > 38 46 2 6 4
t | llel.
e Sort each row in p.ara e 338130270 5
e Sort each column in parallel.
. 0 2 8 8 41 9 7
e Sort each row in parallel.
1 6 9 3 9 9 3 7
With pr?per c.hoice of 5 1058920 0
left-to-right /right-to-left
{4 9 4 4 5 9 2
for each row, can prove

that this sorts whole array.

n cells

(1) seconds:

sively sort quadrants
allel, if n > 1.

dC
dC
dC
dC

n row In parallel.

n row In parallel.

bper choice of
ght /right-to-left
row, can prove

, sorts whole array.

n column in parallel.

n column in parallel.

36

For example, assume that
this 8 x 8 array Is in cells:

31 415 9 26
5 353 9 7 9 3
2 3 3 46 2 6 4
33 8 3 2 7 95
0 2 8 3 4 1 9 7
1 6 9 3 99 3 7
51 05 8 2009
(4 9 4 45 9 2

37

Recursiv
top —,

N DY |

) N | oD TN

(¢

O ~N A RO W W =
O O Hh R |IO0O A W =

]s:

quadrants
> 1.

n in parallel.

 parallel.

n in parallel.

 parallel.

e of
to-left
prove

le array.

36

For example, assume that
this 8 x 8 array Is in cells:

31 415 9 26
b 353 9 7 9 3
2 3 3 4606 2 6 4
33 83 2 7 95
0 2 8 3 41 9 7
1 6 9 3 9 9 37
5 1 05 8 2009
4 9 4 45 9 2

37

Recursively sort gt
top —, bottom «+

1 1 2 3[2 2
3 3 3 3|4 5
3 4 4 5|6 6
5 8 8 8|9 0
1 10 0|2 2
4 4 3 2|5 4
7 6 5 5|9 8
0 9 8 8|9 ¢

S,
= M O ~ OO O ~ O
(qv]
= N IO~ O|lH S ~ O
(QV]
cH
> | |V 1o o oo+ o o
Mm N < © Ol 1O O O

o
(Vp)
VJﬁ M M IO 00| O AN IO o
= 0
2 i & 0|l o 1o ©
E T |l m + 0| <+ © o
-
O
O a
L o= mmwld < ~ O
4

Ne

o
o s
T 2 o O < 1~ N~ O
S
v o |N OV oo Mmoo o
mm O~ N N~ 4 O N O
25 Y
T 2| oo N o o <
.

QO g |H 0o < ™M o m o <
2
& <+ WO 00 00 0O O O O
g X
5 0 |H O o N O — <
w U
O c | L AN ™M O —= O I~
L o

36

el.

el.

38

S,
= M O ~ Ol o ~ o
(@]

s N O~ O+ < ~ O

@V

cH

> |l | o ola & © o

Mm N < © ol O O O
O

(Vp)

VJH.. M M O 00| N 1 o

= 0O

P29 i & 0|0 ®» b ®©

z

= — N < 0|+ < ©O© o

O

O o

L o7 ®m®mw~ < ~ O
4

Ne

o
o s
" 2 o o 9 O~~~ O
me
v o |N O Voo Mmoo o
E o o~ A ~ 4 o & o
> Y
T 2| oo N o o <
1r
D K |- 0o F ™ 0o 0 w1 <
o

00
mx <t O 00 0O 0O O O O
(V]
5 0 |—=H M M o N © — <
. U»
O _c M IO AN M O —-H IO I~
L o

O =
O @©
V' 5 |7 4 o o © 0o o
© a
%wn11334579
0@
o
p
- M O ~ OO0 O ~ O
(qv]
- N O~ O|H < ~ O
(QV]
®
> |l | © o ola o0 o
Mm N < © Ol 1O O O
o
(Vp)
VJﬁ M M IO 00| O AN IO o
= 0
29 i & 0|l o 1o ©
=
W% — N <t 0O - < O O
O o
Dn_mo — M M WO H < N~ O
4
Ne
o
o s
T 2 |l o < 1~ N~ O
S
em29699309
E o~ A~ 4 & & 1
5 v
T 2| oo N o o <
o S
QO g |H 0o < ™ o m 1o <
2 o

L

)
3
3
3
)
)
)

— N (N < O ©O 00 Oy O) |
m N N OO OO O
O O N M ™M IO O 0O
S L o o o < 1O 0 ©
U (O
V5 | = oo & & © 0o o
Y o
nwn11334579

0 @)

o™
p
- M O ~ Ol ™ ~ O
(O
s N O~ O+ < ~ O
Q]
cH
> |l | o ola § ©o o
Mm N < © ol IO O O

o
wn
S DM MmO 0O N 1 ©
= 0
929 i & 0|0 ®» b ®©
N
= M <+ ©O|H < © O
O
O o
L o|r ®m®mw~ < ~ O
4

Ne

o™
o s
T = O O < 1O~ N~ O
S
v O |l o © o o m o o
mn

O M M O~ N~ O O
— AN S O~ N~ O O
- N AN O © 0O O
m N AN OO OO O
O O N M M 1 IO 0O
S 2L o m »m < 10 o ©
U (O
V' 5 |7 4 o o ¢ © 0o o
Y a
%wn11334579
o0
o™
¥
= M © ~ OO M ~ O
Qv
- N O~ O|H < ~ O
Qv
T
> |l |V o ol v ©o o
Mm N < © Ol IO O O
O
Vp]
VJﬁ M M IO 00| O AN IO o
= 0O
2 i & 0w|lo o 1o ©
D
U% — N < O H <t O O
O o
Dn_mo — M M WO H < N~ O
4

37

39

O M MO O~ N~ O O
— AN < OO~ N~ O O
- N N < 1O © 0 O O
m N N O O OO O
O O N M ™M IO O 0O
S L o o o S 1O 0 ©
U (O
V5 | = oo & & © 0o o
P a
nwn11334579
0@
o™
u
= M O ~ OO0 O ~ O
Qv
s N O~ O+ < ~ O
Qv
®
> L | o ol ¥ © O
Mm N < © ol IO O O
O
Vg
S DM MmO 0O N 1 ©
= 0
P9 i & 0|0 » b ®©
F o
u% — M < O |H < © O
O o
Damo — N M OO <~ O
4

O 5 ~— | AN (A Rk N P SN D)
W @©
V ¢ loladd|lm|wo|<|o|o|o
£ 0O
O = ol |t ||~
V) @©
(@)
o
O M M O~ N~ O O
— AN IO~ N~ O O
- N AN < 1O © 0 o O
m N AN < 1O © O o O
O O N M M 1 IO 0O
S 2L o m »m <+ 10 o ©
C @©
V' 5 |7 4 o - ¢ © 0o o
© a
%wn11334579
0 0)
o
4
= M O ~ OO0 ™ ~ O
Q0]
- N O~ O|H < ~ O
O
T .
> | | w o ol & © O
Mm N < © Ol IO O O
O
(Vp)
Y M M IO 00| O AN IO o
> 0
D o

)
5
|
3
)
3
)
3

= | NSO) OY [O
= T
= ||| |o|lo oo
s |
O — N[O ||~ O
>,
Mm olN|m|wv|gt|~]|o|o
Q)
VY o lojlad|mm || |00]|
£ o
O £ |olm|lm|lo|d|o|~|o
V) @
(@)
o™
O M M O ~ ~ O O
— N < O~ N~ O O
n N N S 1O © 0 O O
m N N OO OO O
O O N M ™M IO O 0O
S L o o o S 1O 0 ©
© (v
V5 | = oo & & © 0o o
Y o
nwn11334579
0 @)
o™
p
- M O ~ OO ™M ~ O
(O
-5 N O~ O+ < ~ O
Q]
—_—

= N ||| ~|wO|l |0
m N | |||~ |]|
(@]
(-
W N ||l |o o
O ¥ N O|O|[O|N~|0 |
>
M Y ol |||~ 0|
(O
V c lolcd|lm|wvo| |0 |0 | o
£ o
O £ lolm|lm|lo|ldgd|lo|~|oo
V) O
(@)
o
O M M O~~~ O O
— AN OO~ N~ O O
- AN N < 1O © 0 O O
m N N < 1O © O o O
S O N M M 1 IO 0O
S 2L o m »m <+ 10 o ©
C (T
V' 5 |7 4 o o © 0o o
© o
%w I= — = N MM < O M~ O

38

40

—= N lH |t | O~ |
ﬂra N[l || | ~|WO | |00
(@]
o - |dH|lN|IS | n|lo|lov| oo
C
W |l N gt |O|lO ||
O Y |l N|O| 1| |~]0 |
>
M O ol |m|w||~]o|o
(O
V o ol |v||0 |0 |
£ O
o X Ol || T ||~
V) (O
(@)
o
O M M O© ~~ I~ O O
— AN <t O~ N~ O O
- N N < OO 0 O O
m N N OO O O O
O O N M ™M IO O 0O
S L o o o S 1O 0 ©
T (T
V5 |m = oo & & © 0o o
© o
%W = —N = N M T O M~ O

O =
W (©
V 5 o oo - 0o 0o o o
© o
%n03346799
o
4
—= Nl |~ |0
m N | |||~ ||
(O
0O - |H|lN|lIFT | Ol ||
= 7T
= | HlN|| gt |O|lO ||
= |
O — | AN | (O[O |~]|00 |
>
Mm ol | wv| g |~]|00]| o
(O
V c lolcd|lmm || |0 |0 | o
£ O
o X Ol ||t ||~
V) O
(@)
o
O M M O© ~~ I~ O O
— N < O~ N~ O O
— N N < OO 0 O O
m N N OO OO O O
O O N M M O IO 0O ©
C

ol

)
)
5
5
:

)
3
3

— |— (N 06 <5 KO O Oy O |
m — N MO < © O O O
O — N ™M O WO N~ 00 O
S L o o < 1O~ 0 o
G (0
Vv 5 o o s 0 0o o o
T a
%un03346799

o

<
—= Nl |||~ |w|O |00
© N[|||~ | |©
gV
0O - |H|N|F | |l || lo|o
-
.W,12346699
O ¥ Il N|O| 1| |~]|]0 |

>
Mm oln|m|w|t|~]0]|o
Q)
V o lolnn|mm|w|<|w|w|o
£ o
O £ |lolnlm|jOo|lg |~
V) @@
(@)
o
O M M O ~ ~ O O
— AN S O~ N~ O O

— N M < IO~ 0O O
— N M < IO~ 00 O
_ — N M < OO O O
m — N M < O O O O
O — N ™M 1O 1O N~ 0 O
S L o »m s 10~ 0 o
C (O
V 5 o o s 0o 0o o o
© o
S c|omm<s o~ o O
(@)
4
= N ||| ~|w|lo |0
m N | |||~ |]|
@V
-
W N ||l |o o
O ¥ N O|O[O|N~|0 |
>
M Y ol |||~ 0|
(O
V c lolcdd|lm|wvo| |0 |0 |
£ o
O £ lolm|lm|lo|ldgd|lo|~|oo
V) (O

39

41

— N M < O N~ 0 O
— N N < O M~ 0 O
n — N N OO O O
m — N MO < © O O O
O — N ™M O WO N~ 00 O
S L o o < 1O~ 0 o
G (0
Vv 5 o o s 0 0o o o
Y a
%un O M MO < O© &~ O O
o
<
= Nl |||~ | |00
© N[|||~ | |©
gV
0O - |H|lN|lF | |l || lo|o
-
W N |n |t |lo|lo oo
O ¥ |l N|O| 1|~]0 |
>
Mm oln|m|w|t|~]0]|o
Q)
V o lolnn|mm|w|<t |0 |o
£ o
O £ |lolnlmjOo|lg|O~|O
V) @@

C \—/ —r’ (N \") N =) | ™= NS \
(@]
VD v ol | |wv|o|o |
+ @)
O O|lN M |<T | |©O© |00 | D
A

i

4

— AN M <t O N~ 00 O
— AN M <t IO~ 00 O

n — AN Nt OO O O
m — AN Nt O O O O
O — N ™M 1O 1O N~ 0 O
S L o »m 1~ 0 o
W (©
V 5 o o s 0 o o o
© o
%W c |[© MO O < O ~ O O

o

4
= Nl || | ~|WO | |00
m N | | gt~ |]|
(O
-
W — N |t Ol ||
m g — ([N | [N | O
C

)
)
5
)
l

3
)

Sort each row in

(— or — as desire(

00011 1

2 2 2 2 2 9

3 3 3 3 3 3

4 4 4 4 4 4

5 55 5 5 5
6 6 7 7 7 T

8 8 8 8 8 9

0 999 9 ¢

41

Sort each column

in parallel:

0001|1111

3122221222

31313133333

4044|544]4]4
6(5|5|5|6|5[5|5
718|7|7|6|6|7]|7
0(8(8/8/9/9(8(8
0(9]/9]/9]/9[9(9|9

40

arallel,

3

3

9
8

9
8

= — || v ol | oo
m — N Mt O~
X o
o 8% Wl ||~ |o
cC .=
T Y AN |||~ O
s o
O v ||| |0 N~ |00 |
ha
S ol | g ||~ |o
“a
VD v ol | |wv|o|o |
._HO
O O|lN| M |<T | |©O© |00 | D
A
i
4
— AN M < IO~ 00 O
— AN M <t IO~ 00 O
n — AN M S 1O O O
m — AN M S O O O O
O — N ™M 1O 1O N~ 0 O
S L o »m 10~ 0 o
MW (v
V 5 o o - 0o 0o o o
© o
S c|omm<s o~ o O

40

42

= — || v|lo|lo|o|o
© — N M| T |O |~ O
8 ©

o 9 |HlN|om|s | wv|~lo o
c .=

T Y | H N ||~ |0 o
S o

O v |V |||~ |
ha

4 oOolNMm || wv|~]|0 |
(O

V L ol || wv|lo ||
+ O

) ol |t | v | |o
»n 4
i
<

— N O < O~ 0 O
— N O < O~ 0 O

n — N N OO O O
m — N O © O O O
O — N M 1O W N~ 0 O
S L o o < 1O~ 0 O
U (O

Vv 5 o o - 10 0o o o
Y o

%un O M MO < O© &~ O O

[

| WV = ee
S e 25 3
c 3 0 0O = 0
O o0 o U 0O =2
@\
4
d, — N ol ool |lo|o
m — AN Mt O~
S S
Q5P |mV|lN |t |o|~lO0 O
cC .=
.W% — | N[| O~ | O
=<
O ,H, |H|N| |||~]00]|OD
ha
O Ol N M| | O|N~|[00 | O
s 1
VD v ol | |wv|o|0 |
._HO
%e O|lN| M |<T | |©O© |00 | D
i
4
— AN M < IO M~ 00 O
— AN 0N < IO~ 00 O
— — AN 0N < OO O O
m — AN 0Nt O O O O
O — N ™M 1O 1O N~ 0 O
hd V. U _ U YV _ U B B U QU Y U

© o N 61 B W N =

© o N 61 B W DN =

41

Sort each row in parallel,

< or — as desired:

00011111
2 2 2 2 2 2 2 3
333 3 3 3 33
4 4 4 4 4 4 4 5
b 55 5 5 5 6 6
6 6 7 7 7 (7 7 8
8 833 3 8 9 99
99 99 9 9 99

42

Chips are in fact €
towards having thi
parallelism and co

GPUs: parallel 4

Old Xeon Phi: pa
New Xeon Phi: pa

42
Sort each row in parallel, Chips are in fact evolving

< or — as desired: towards having this much
00071111 1 parallelism and communicat
2 2 2 2. 2 2 2 3 GPUs: parallel + global RA
33 3 3 3 3 3 3 Old Xeon Phi: parallel + rir
4 4 4 4 4 4 4 5 New Xeon Phi: parallel 4 n
5 55 5 5 5 6 6

6 6 7 7 7 7 7 8

8 83 83 8 9 9 9

99 9 99 9 9 9

42

Sort each row in parallel, Chips are in fact evolving

< or — as desired: towards having this much
00011111 parallelism and communication.
2 2 2 2 2 2 2 3 GPUs: parallel + global RAM.
33 33 3 3 3 3 Old Xeon Phi: parallel + ring.
4 4 4 4 4 4 4 5 New Xeon Phi: parallel + mesh.
b 55 5 5 5 6 6

6 6 7 7 7 7 [8

8 38 838 9 9 9

99 99 9 9 99

42 43

Sort each row in parallel, Chips are in fact evolving

< or — as desired: towards having this much
00011111 parallelism and communication.

2 2 2 2 2 2 2 3 GPUs: parallel + global RAM.

3 3 3 3 3 3 3 3 Old Xeon Pf\i:. parallel + ring.

A 4 4 4 4 4 4 5 New Xeon Phi: parallel + mesh.
5 5 5 5 5 5 6 6 Algorithm designers

6 6 7 7 7 7 7 8 dc?n't even get thé r.ight exponent
3 8 888 9 09 0 without taking this into account.
9 99 9 9 9 9 9

42 43

Sort each row in parallel, Chips are in fact evolving

< or — as desired: towards having this much
00011111 parallelism and communication.

2 2 2 2 2 2 2 3 GPUs: parallel + global RAM.

3 3 3 3 3 3 3 3 Old Xeon Phi: parallel + ring.

A 4 4 4 4 4 4 5 New Xeon Phi: parallel + mesh.
5 5 5 5 5 5 6 6 Algorithm designers

6 6 7 7 7 7 7 8 don't even get the right exponent
3 8 888 9 09 0 without taking this into account.
O 999909 909 Shock waves from subroutines

into high-level algorithm design.

