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CPU-specific optimization

Example of a target CPU core:

ARM Cortex-M4F core inside

LM4F120H5QR microcontroller

in Stellaris LM4F120 Launchpad.

2

Example of a function

that we want to optimize:

adding 1000 integers mod 232.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}
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Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",
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Output shows 8012 cycles.

Change 1000 to 500: 4012.
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“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”



2

Example of a function

that we want to optimize:

adding 1000 integers mod 232.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”



2

Example of a function

that we want to optimize:

adding 1000 integers mod 232.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”



3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”



3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.



3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.



3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.



3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.



3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.



3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}



3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}



3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}



4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}



4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.



4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}



4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}



4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}



5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}



5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.



5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}



5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}



5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}



6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}



6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.



6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}



6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}



6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}



7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}



7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.



7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}



7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}



7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}



8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}



8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

4016 cycles. Are we done now?



8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

4016 cycles. Are we done now?



8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

4016 cycles. Are we done now?



9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

4016 cycles. Are we done now?



9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

4016 cycles. Are we done now?

Most random “optimizations”

that we tried seem useless.

Can spend time trying more.

Does frustration level tell us

that we’re close to optimal?



9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

4016 cycles. Are we done now?

Most random “optimizations”

that we tried seem useless.

Can spend time trying more.

Does frustration level tell us

that we’re close to optimal?

Good approach:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

Let’s try this approach.



9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

4016 cycles. Are we done now?

Most random “optimizations”

that we tried seem useless.

Can spend time trying more.

Does frustration level tell us

that we’re close to optimal?

Good approach:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

Let’s try this approach.

11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.



9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

4016 cycles. Are we done now?

Most random “optimizations”

that we tried seem useless.

Can spend time trying more.

Does frustration level tell us

that we’re close to optimal?

Good approach:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

Let’s try this approach.

11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.



9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

4016 cycles. Are we done now?

Most random “optimizations”

that we tried seem useless.

Can spend time trying more.

Does frustration level tell us

that we’re close to optimal?

Good approach:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

Let’s try this approach.

11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.



10

4016 cycles. Are we done now?

Most random “optimizations”

that we tried seem useless.

Can spend time trying more.

Does frustration level tell us

that we’re close to optimal?

Good approach:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

Let’s try this approach.

11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.



10

4016 cycles. Are we done now?

Most random “optimizations”

that we tried seem useless.

Can spend time trying more.

Does frustration level tell us

that we’re close to optimal?

Good approach:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

Let’s try this approach.

11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.



10

4016 cycles. Are we done now?

Most random “optimizations”

that we tried seem useless.

Can spend time trying more.

Does frustration level tell us

that we’re close to optimal?

Good approach:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

Let’s try this approach.

11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.



10

4016 cycles. Are we done now?

Most random “optimizations”

that we tried seem useless.

Can spend time trying more.

Does frustration level tell us

that we’re close to optimal?

Good approach:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

Let’s try this approach.

11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.



11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.



11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.



11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.



11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.



12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.



12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)



12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)



12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)



13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)



13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)

15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)



13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)

15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)



13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)

15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)



14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)

15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)



14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)

15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)

16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2



14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)

15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)

16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2



14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)

15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)

16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2



15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)

16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2



15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)

16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7



15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)

16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7



15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)

16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7



16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7



16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7

18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)



16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7

18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)



16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7

18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)



17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7

18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)



17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7

18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)

19

xi1 = *(uint32 *) (p - 76)

xi0 = *(uint32 *) (p - 80)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

=? p - y

goto loop if !=



17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7

18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)

19

xi1 = *(uint32 *) (p - 76)

xi0 = *(uint32 *) (p - 80)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

=? p - y

goto loop if !=



17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7

18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)

19

xi1 = *(uint32 *) (p - 76)

xi0 = *(uint32 *) (p - 80)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

=? p - y

goto loop if !=



18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)

19

xi1 = *(uint32 *) (p - 76)

xi0 = *(uint32 *) (p - 80)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

=? p - y

goto loop if !=



18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)

19

xi1 = *(uint32 *) (p - 76)

xi0 = *(uint32 *) (p - 80)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

=? p - y

goto loop if !=

20

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”
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32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read
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26

Add more flexibility.

More arithmetic:

replace (i ; j; k) with
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30

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.
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“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.



30

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.



30

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.



31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.



31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.



31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.



31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.



31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.



31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.



32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.



32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .



32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

34

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×



32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

34

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×



32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

34

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×



33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

34

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×



33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

34

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

35
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Sort all n cells
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With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.
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for each row, can prove

that this sorts whole array.
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For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2
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alternately ←, →:
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← or → as desired:
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9 9 9 9 9 9 9 9

43

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.
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← or → as desired:
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GPUs: parallel + global RAM.
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Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

43

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.
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Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

43

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

Algorithm designers

don’t even get the right exponent

without taking this into account.
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Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

43

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

Algorithm designers

don’t even get the right exponent

without taking this into account.

Shock waves from subroutines

into high-level algorithm design.


