CPU-specific optimization Example of a function

that we want to optimize:
adding 1000 integers mod 23.

Example of a target CPU core:
ARM Cortex-M4F core inside

LM4F120H5QR microcontroller Reference implementation:
in Stellaris LM4F120 Launchpad.

int sum(int *x)
{
int result = 0;
int 1;
for (i = 0;1 < 1000;++1i)
result += x[i];

return result;
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int sum(int *x)
{
int result = O;
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Most random “optimizations”

that we tried seem useless.
int 1;
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Does frustration level tell us
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that we're close to optimal?
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result += x[i + 2]; Good approach:

result += x[i + 3]; Figure out lower bound for

result += x[i + 4]: cycles spent on arithmetic etc.
} Understand gap between
return result; lower bound and observed time.

Let's try this approach.
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The big picture

CPUs are evolving
farther and farther away
from naive models of CPUs.

Minor optimization challenges:
e Pipelining.
e Superscalar processing.

Major optimization challenges:
e \ectorization.
e Many threads; many cores.
e [he memory hierarchy;

the ring; the mesh.

e Larger-scale parallelism.

e Larger-scale networking.
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Goal: Stage n handles instruction
one tick after stage n — 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruction.

After next clock tick,
Instruction decode

uncompresses this instruction,
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reads another instruction.
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Goal: Stage n handles instruction
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Instruction decode

uncompresses this instruction,
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“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;
"AVX2" has n = 8;
"AVX-512" has n = 16;

GPUs have larger n.
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Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;
"AVX2" has n = 8;
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GPUs have larger n.
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“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “AVX2" has n = 8;

Intel “AVX-512" has n = 16;

GPUs have larger n.

nx speedup if

nx arithmetic circuits,

nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
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Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2.....nN
represented in binary.

Output: array of n numbers
in Increasing order,
represented In binary:;

same multiset as input.
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“Vector' processing: Network on chip: the mesh

Expand each 32-bit integer How expensive is sorting?
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “"AVX2" has n = 8;

Intel “AVX-512" has n = 16;
GPUs have larger n. Output: array of n numbers,
In Increasing order,

Input: array of n numbers.
Each number In {1, 2. ..., n2},
represented in binary.

nx speedup if represented In binary;

nx arithmetic circuits, . .
S same multiset as input.
nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.
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Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2. ..., n2},
represented in binary.

Output: array of n numbers,
In Increasing order,
represented In binary;

same multiset as input.

Metric: seconds used by
circuit of area nito(l),

For simplicity assume n = 4k
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represented in binary.

Output: array of n numbers,
In Increasing order,
represented In binary;

same multiset as input.

Metric: seconds used by
circuit of area nito(l),

For simplicity assume n = 4k
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How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2. ..., nz},
represented in binary.

Output: array of n numbers,
In Increasing order,
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same multiset as input.
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Network on chip: the mesh Spread array across

How expensive is sorting? square mesh of n small cells

each of area n°(1),

ers.
Input: array of n numbers. with near-neighbor wiring:
; 2
Each number in {1,2,...,n°}, VARV VIV VIV
'_ represented in binary. e S S S S Ne s
Output: array of n numbers, XXX X X XXX
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uits. Metric: seconds used by
circuit of area n .
XX —— X —X—X—X—X—X—
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How expensive is sorting? square mesh of n small cells,

each of area n°1),
Input: array of n numbers. with near-neighbor wiring:

Each number iIn {1, 2. ..., nz},
represented in binary.

K—X—X—X—X—X

K—X—X—X—X

Output: array of n numbers,

In Increasing order,

represented In binary;

same multiset as input.
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Sort row of n®> cells
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N N seconds:

e Sort each pair in parallel.
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e Sort alternate pairs in par
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e Repeat until number of st
equals row length.
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Sort row of n%> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+
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e Sort alternate pairs in parallel.
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Sort row of n%> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+
131459026

e Sort alternate pairs in parallel.

1314592606 +—
113452906

e Repeat until number of steps
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In a total of n seconds.
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N N seconds:
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In a total of n 1) seconds.
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e Recur:

In par:
e Sort e
e Sort e
e Sort e
e Sort e

With pre
left-to-ri
for each
that this



S
small cells,

r WIring:

(—X—X

X
X

KX—X—X—X—X—X—X—X
K —X—X—X—X—X—X—X
X—X—X—X—X—X—X—X—X—X

K —X— XK —X— XK —X—X—X—X—X

34

Sort row of n%> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+~
131459026

e Sort alternate pairs in parallel.

1314592606 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

In a total of n seconds.

35

Sort all n cells

in n0-5to(1) secon

e Recursively sort

in parallel, if n>

e Sort eac
e Sort eac
e Sort eac
e Sort eac

N colum
N row In

N colum

N row In

With proper choic
left-to-right /right-
for each row, can

that this sorts whe



34

Sort row of n%> cells

0.540(1)

N N seconds:

e Sort each pair in parallel.
31415926 —
13145926

e Sort alternate pairs in parallel.

13145926 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.54+0(

In a total of n 1) seconds.

35

Sort all n cells

0.5+0(1)

N N seconds:

e Recursively sort quadrants
in parallel, if n > 1.

e Sort each column in parall

e Sort each row in parallel.

e Sort each column in parall

e Sort each row in parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove
that this sorts whole array.



Sort row of n%> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+~
131459026

e Sort alternate pairs in parallel.

1314592606 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

In a total of n seconds.

35

Sort all n cells
in n0-5to(1) seconds:

e Recursively sort quadrants
in parallel, if n > 1.

e Sort each column in parallel.

e Sort each row in parallel.

e Sort each column in parallel.

e Sort each row in parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove
that this sorts whole array.

36



of n%° cells
(1) seconds:

ach pair in parallel.
15926 +—
415926

lternate pairs in parallel.

415926 +—
415296

t until number of steps
row length.

h row, In parallel,

0.54+0(

[ of n 1) seconds.

35

Sort all n cells

N n

0.5+0(1)

seconds:

e Recursively sort quadrants

in parallel, if n > 1.

e Sort eac
e Sort eac
e Sort eac
e Sort eac

n column in parallel.

n row In parallel.

n column in parallel.

n row In parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove

that this sorts whole array.

36

For exar
this 8 X
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o||s
1s:

' parallel.
—

airs In parallel.

—

nber of steps
h.

parallel,
o(1) seconds.

35

Sort all n cells
in n0-5to(1) seconds:

e Recursively sort quadrants
in parallel, if n > 1.

e Sort each column in parallel.

e Sort each row in parallel.

e Sort each column in parallel.

e Sort each row in parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove
that this sorts whole array.

36

For example, assu
this 8 x 8 array Is

5
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35 36

Sort all n cells For example, assume that
in n9-50(1) seconds: this 8 x 8 array Is in cells:
e Recursively sort quadrants 31 415 9 26
in parallel, it n > 1. 5 35 8 0 7 O 3
e Sort each column in parallel. > 38 46 2 6 4
el e Sort each row in p.araIIeI. 1383027095
e Sort each column in parallel.
. 0 2 8 8 41 9 7
e Sort each row in parallel.
1 6 9 3 9 9 3 7
DS With pr.oper c-hoice of 5 1058920 0
left-to-right /right-to-left
{4 9 4 4 5 9 2
for each row, can prove

that this sorts whole array.




36

Sort all n cells For example, assume that
in n9-5t0(1) seconds: this 8 x 8 array Is in cells:
e Recursively sort quadrants 31 415 9 2 6
in parallel, it n > 1. 5 35 8 0 7 O 3
e Sort each column in parallel. > 38 46 2 6 4
t | llel.
e Sort each row in p.ara e 338130270 5
e Sort each column in parallel.
. 0 2 8 8 41 9 7
e Sort each row in parallel.
1 6 9 3 9 9 3 7
With pr?per c.hoice of 5 1058920 0
left-to-right /right-to-left
{4 9 4 4 5 9 2
for each row, can prove

that this sorts whole array.




n cells

(1) seconds:

sively sort quadrants
allel, if n > 1.

dC
dC
dC
dC

n row In parallel.

n row In parallel.

bper choice of
ght /right-to-left
row, can prove

, sorts whole array.

n column in parallel.

n column in parallel.

36

For example, assume that
this 8 x 8 array Is in cells:

31 415 9 26
5 353 9 7 9 3
2 3 3 46 2 6 4
33 8 3 2 7 95
0 2 8 3 4 1 9 7
1 6 9 3 99 3 7
51 05 8 2009
(4 9 4 45 9 2
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top —,

N DY |

) N | oD TN

(¢

O ~N A RO W W =
O O Hh R |IO0O A W =




]s:

quadrants
> 1.

n in parallel.

 parallel.

n in parallel.

 parallel.

e of
to-left
prove

le array.

36

For example, assume that
this 8 x 8 array Is in cells:

31 415 9 26
b 353 9 7 9 3
2 3 3 4606 2 6 4
33 83 2 7 95
0 2 8 3 41 9 7
1 6 9 3 9 9 37
5 1 05 8 2009
4 9 4 45 9 2

37

Recursively sort gt
top —, bottom «+

1 1 2 3[2 2
3 3 3 3|4 5
3 4 4 5|6 6
5 8 8 8|9 0
1 10 0|2 2
4 4 3 2|5 4
7 6 5 5|9 8
0 9 8 8|9 ¢
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Sort each row in

(— or — as desire(

00011 1

2 2 2 2 2 9

3 3 3 3 3 3

4 4 4 4 4 4

5 55 5 5 5
6 6 7 7 7 T

8 8 8 8 8 9

0 999 9 ¢

41

Sort each column

in parallel:

0001|1111

3122221222

31313133333

4044|544 ]4]4
6(5|5|5|6|5[5|5
718|7|7|6|6|7]|7
0(8(8/8/9/9(8(8
0(9]/9]/9]/9[9(9|9

40

arallel,

3

3

9
8

9
8
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Sort each row in parallel,

< or — as desired:

00011111
2 2 2 2 2 2 2 3
333 3 3 3 33
4 4 4 4 4 4 4 5
b 55 5 5 5 6 6
6 6 7 7 7 (7 7 8
8 833 3 8 9 99
99 99 9 9 99

42

Chips are in fact €
towards having thi
parallelism and co

GPUs: parallel 4

Old Xeon Phi: pa
New Xeon Phi: pa




42
Sort each row in parallel, Chips are in fact evolving

< or — as desired: towards having this much
00071111 1 parallelism and communicat
2 2 2 2. 2 2 2 3 GPUs: parallel + global RA
33 3 3 3 3 3 3 Old Xeon Phi: parallel + rir
4 4 4 4 4 4 4 5 New Xeon Phi: parallel 4 n
5 55 5 5 5 6 6

6 6 7 7 7 7 7 8

8 83 83 8 9 9 9

99 9 99 9 9 9
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Sort each row in parallel, Chips are in fact evolving

< or — as desired: towards having this much
00011111 parallelism and communication.
2 2 2 2 2 2 2 3 GPUs: parallel + global RAM.
33 33 3 3 3 3 Old Xeon Phi: parallel + ring.
4 4 4 4 4 4 4 5 New Xeon Phi: parallel + mesh.
b 55 5 5 5 6 6

6 6 7 7 7 7 [ 8

8 38 838 9 9 9

99 99 9 9 99
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Sort each row in parallel, Chips are in fact evolving

< or — as desired: towards having this much
00011111 parallelism and communication.

2 2 2 2 2 2 2 3 GPUs: parallel + global RAM.

3 3 3 3 3 3 3 3 Old Xeon Pf\i:. parallel + ring.

A 4 4 4 4 4 4 5 New Xeon Phi: parallel + mesh.
5 5 5 5 5 5 6 6 Algorithm designers

6 6 7 7 7 7 7 8 dc?n't even get thé r.ight exponent
3 8 888 9 09 0 without taking this into account.
9 99 9 9 9 9 9




42 43

Sort each row in parallel, Chips are in fact evolving

< or — as desired: towards having this much
00011111 parallelism and communication.

2 2 2 2 2 2 2 3 GPUs: parallel + global RAM.

3 3 3 3 3 3 3 3 Old Xeon Phi: parallel + ring.

A 4 4 4 4 4 4 5 New Xeon Phi: parallel + mesh.
5 5 5 5 5 5 6 6 Algorithm designers

6 6 7 7 7 7 7 8 don't even get the right exponent
3 8 888 9 09 0 without taking this into account.
O 999909 909 Shock waves from subroutines

into high-level algorithm design.




