
1

CPU-specific optimization

Example of a target CPU core:

ARM Cortex-M4F core inside

LM4F120H5QR microcontroller

in Stellaris LM4F120 Launchpad.

2

Example of a function

that we want to optimize:

adding 1000 integers mod 232.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

1

CPU-specific optimization

Example of a target CPU core:

ARM Cortex-M4F core inside

LM4F120H5QR microcontroller

in Stellaris LM4F120 Launchpad.

2

Example of a function

that we want to optimize:

adding 1000 integers mod 232.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

1

CPU-specific optimization

Example of a target CPU core:

ARM Cortex-M4F core inside

LM4F120H5QR microcontroller

in Stellaris LM4F120 Launchpad.

2

Example of a function

that we want to optimize:

adding 1000 integers mod 232.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

1

CPU-specific optimization

Example of a target CPU core:

ARM Cortex-M4F core inside

LM4F120H5QR microcontroller

in Stellaris LM4F120 Launchpad.

2

Example of a function

that we want to optimize:

adding 1000 integers mod 232.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

2

Example of a function

that we want to optimize:

adding 1000 integers mod 232.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

2

Example of a function

that we want to optimize:

adding 1000 integers mod 232.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

2

Example of a function

that we want to optimize:

adding 1000 integers mod 232.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

2

Example of a function

that we want to optimize:

adding 1000 integers mod 232.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

3

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

4

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad approach:

Apply random “optimizations”

(and tweak compiler options)

until you get bored/frustrated.

Keep the fastest results.

Try -Os: 8012 cycles.

Try -O1: 8012 cycles.

Try -O2: 8012 cycles.

Try -O3: 8012 cycles.

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

5

Try moving the pointer:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += *x++;

return result;

}

8010 cycles.

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

6

Try counting down:

int sum(int *x)

{

int result = 0;

int i;

for (i = 1000;i > 0;--i)

result += *x++;

return result;

}

8010 cycles.

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

7

Try using an end pointer:

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

while (x != y)

result += *x++;

return result;

}

8010 cycles.

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

4016 cycles. Are we done now?

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

4016 cycles. Are we done now?

8

Back to original. Try unrolling:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 2) {

result += x[i];

result += x[i + 1];

}

return result;

}

5016 cycles.

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

4016 cycles. Are we done now?

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

4016 cycles. Are we done now?

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

4016 cycles. Are we done now?

Most random “optimizations”

that we tried seem useless.

Can spend time trying more.

Does frustration level tell us

that we’re close to optimal?

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

4016 cycles. Are we done now?

Most random “optimizations”

that we tried seem useless.

Can spend time trying more.

Does frustration level tell us

that we’re close to optimal?

Good approach:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

Let’s try this approach.

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

4016 cycles. Are we done now?

Most random “optimizations”

that we tried seem useless.

Can spend time trying more.

Does frustration level tell us

that we’re close to optimal?

Good approach:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

Let’s try this approach.

11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

4016 cycles. Are we done now?

Most random “optimizations”

that we tried seem useless.

Can spend time trying more.

Does frustration level tell us

that we’re close to optimal?

Good approach:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

Let’s try this approach.

11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

9

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;i += 5) {

result += x[i];

result += x[i + 1];

result += x[i + 2];

result += x[i + 3];

result += x[i + 4];

}

return result;

}

10

4016 cycles. Are we done now?

Most random “optimizations”

that we tried seem useless.

Can spend time trying more.

Does frustration level tell us

that we’re close to optimal?

Good approach:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

Let’s try this approach.

11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

10

4016 cycles. Are we done now?

Most random “optimizations”

that we tried seem useless.

Can spend time trying more.

Does frustration level tell us

that we’re close to optimal?

Good approach:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

Let’s try this approach.

11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

10

4016 cycles. Are we done now?

Most random “optimizations”

that we tried seem useless.

Can spend time trying more.

Does frustration level tell us

that we’re close to optimal?

Good approach:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

Let’s try this approach.

11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

10

4016 cycles. Are we done now?

Most random “optimizations”

that we tried seem useless.

Can spend time trying more.

Does frustration level tell us

that we’re close to optimal?

Good approach:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

Let’s try this approach.

11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

10

4016 cycles. Are we done now?

Most random “optimizations”

that we tried seem useless.

Can spend time trying more.

Does frustration level tell us

that we’re close to optimal?

Good approach:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

Let’s try this approach.

11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

11

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)

12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)

12

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)

13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)

13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)

15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)

13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)

15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)

13

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles, including

n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)

15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)

14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)

15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)

14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)

15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)

16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)

15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)

16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

14

2281 cycles using ldr.w:

y = x + 4000

p = x

result = 0

loop:

xi9 = *(uint32 *) (p + 76)

xi8 = *(uint32 *) (p + 72)

xi7 = *(uint32 *) (p + 68)

xi6 = *(uint32 *) (p + 64)

xi5 = *(uint32 *) (p + 60)

xi4 = *(uint32 *) (p + 56)

xi3 = *(uint32 *) (p + 52)

xi2 = *(uint32 *) (p + 48)

15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)

16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)

16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)

16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7

15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)

16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7

15

xi1 = *(uint32 *) (p + 44)

xi0 = *(uint32 *) (p + 40)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p + 36)

xi8 = *(uint32 *) (p + 32)

xi7 = *(uint32 *) (p + 28)

16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7

16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7

16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7

18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)

16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7

18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)

16

xi6 = *(uint32 *) (p + 24)

xi5 = *(uint32 *) (p + 20)

xi4 = *(uint32 *) (p + 16)

xi3 = *(uint32 *) (p + 12)

xi2 = *(uint32 *) (p + 8)

xi1 = *(uint32 *) (p + 4)

xi0 = *(uint32 *) p; p += 160

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7

18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)

17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7

18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)

17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7

18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)

19

xi1 = *(uint32 *) (p - 76)

xi0 = *(uint32 *) (p - 80)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

=? p - y

goto loop if !=

17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7

18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)

19

xi1 = *(uint32 *) (p - 76)

xi0 = *(uint32 *) (p - 80)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

=? p - y

goto loop if !=

17

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 4)

xi8 = *(uint32 *) (p - 8)

xi7 = *(uint32 *) (p - 12)

xi6 = *(uint32 *) (p - 16)

xi5 = *(uint32 *) (p - 20)

xi4 = *(uint32 *) (p - 24)

xi3 = *(uint32 *) (p - 28)

xi2 = *(uint32 *) (p - 32)

xi1 = *(uint32 *) (p - 36)

xi0 = *(uint32 *) (p - 40)

result += xi9

result += xi8

result += xi7

18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)

19

xi1 = *(uint32 *) (p - 76)

xi0 = *(uint32 *) (p - 80)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

=? p - y

goto loop if !=

18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)

19

xi1 = *(uint32 *) (p - 76)

xi0 = *(uint32 *) (p - 80)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

=? p - y

goto loop if !=

18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)

19

xi1 = *(uint32 *) (p - 76)

xi0 = *(uint32 *) (p - 80)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

=? p - y

goto loop if !=

20

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)

19

xi1 = *(uint32 *) (p - 76)

xi0 = *(uint32 *) (p - 80)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

=? p - y

goto loop if !=

20

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

18

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

xi9 = *(uint32 *) (p - 44)

xi8 = *(uint32 *) (p - 48)

xi7 = *(uint32 *) (p - 52)

xi6 = *(uint32 *) (p - 56)

xi5 = *(uint32 *) (p - 60)

xi4 = *(uint32 *) (p - 64)

xi3 = *(uint32 *) (p - 68)

xi2 = *(uint32 *) (p - 72)

19

xi1 = *(uint32 *) (p - 76)

xi0 = *(uint32 *) (p - 80)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

=? p - y

goto loop if !=

20

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

19

xi1 = *(uint32 *) (p - 76)

xi0 = *(uint32 *) (p - 80)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

=? p - y

goto loop if !=

20

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

19

xi1 = *(uint32 *) (p - 76)

xi0 = *(uint32 *) (p - 80)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

=? p - y

goto loop if !=

20

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

Reality: The fastest software

today relies on human experts

understanding the CPU.

Cannot trust compiler to

optimize instruction selection.

Cannot trust compiler to

optimize instruction scheduling.

Cannot trust compiler to

optimize register allocation.

19

xi1 = *(uint32 *) (p - 76)

xi0 = *(uint32 *) (p - 80)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

=? p - y

goto loop if !=

20

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

Reality: The fastest software

today relies on human experts

understanding the CPU.

Cannot trust compiler to

optimize instruction selection.

Cannot trust compiler to

optimize instruction scheduling.

Cannot trust compiler to

optimize register allocation.

21

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

19

xi1 = *(uint32 *) (p - 76)

xi0 = *(uint32 *) (p - 80)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

=? p - y

goto loop if !=

20

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

Reality: The fastest software

today relies on human experts

understanding the CPU.

Cannot trust compiler to

optimize instruction selection.

Cannot trust compiler to

optimize instruction scheduling.

Cannot trust compiler to

optimize register allocation.

21

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

19

xi1 = *(uint32 *) (p - 76)

xi0 = *(uint32 *) (p - 80)

result += xi9

result += xi8

result += xi7

result += xi6

result += xi5

result += xi4

result += xi3

result += xi2

result += xi1

result += xi0

=? p - y

goto loop if !=

20

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

Reality: The fastest software

today relies on human experts

understanding the CPU.

Cannot trust compiler to

optimize instruction selection.

Cannot trust compiler to

optimize instruction scheduling.

Cannot trust compiler to

optimize register allocation.

21

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

20

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

Reality: The fastest software

today relies on human experts

understanding the CPU.

Cannot trust compiler to

optimize instruction selection.

Cannot trust compiler to

optimize instruction scheduling.

Cannot trust compiler to

optimize register allocation.

21

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

20

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

Reality: The fastest software

today relies on human experts

understanding the CPU.

Cannot trust compiler to

optimize instruction selection.

Cannot trust compiler to

optimize instruction scheduling.

Cannot trust compiler to

optimize register allocation.

21

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:

• Pipelining.

• Superscalar processing.

Major optimization challenges:

• Vectorization.

• Many threads; many cores.

• The memory hierarchy;

the ring; the mesh.

• Larger-scale parallelism.

• Larger-scale networking.

20

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

Reality: The fastest software

today relies on human experts

understanding the CPU.

Cannot trust compiler to

optimize instruction selection.

Cannot trust compiler to

optimize instruction scheduling.

Cannot trust compiler to

optimize register allocation.

21

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:

• Pipelining.

• Superscalar processing.

Major optimization challenges:

• Vectorization.

• Many threads; many cores.

• The memory hierarchy;

the ring; the mesh.

• Larger-scale parallelism.

• Larger-scale networking.

22

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

20

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

Reality: The fastest software

today relies on human experts

understanding the CPU.

Cannot trust compiler to

optimize instruction selection.

Cannot trust compiler to

optimize instruction scheduling.

Cannot trust compiler to

optimize register allocation.

21

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:

• Pipelining.

• Superscalar processing.

Major optimization challenges:

• Vectorization.

• Many threads; many cores.

• The memory hierarchy;

the ring; the mesh.

• Larger-scale parallelism.

• Larger-scale networking.

22

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

20

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

Reality: The fastest software

today relies on human experts

understanding the CPU.

Cannot trust compiler to

optimize instruction selection.

Cannot trust compiler to

optimize instruction scheduling.

Cannot trust compiler to

optimize register allocation.

21

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:

• Pipelining.

• Superscalar processing.

Major optimization challenges:

• Vectorization.

• Many threads; many cores.

• The memory hierarchy;

the ring; the mesh.

• Larger-scale parallelism.

• Larger-scale networking.

22

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

21

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:

• Pipelining.

• Superscalar processing.

Major optimization challenges:

• Vectorization.

• Many threads; many cores.

• The memory hierarchy;

the ring; the mesh.

• Larger-scale parallelism.

• Larger-scale networking.

22

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

21

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:

• Pipelining.

• Superscalar processing.

Major optimization challenges:

• Vectorization.

• Many threads; many cores.

• The memory hierarchy;

the ring; the mesh.

• Larger-scale parallelism.

• Larger-scale networking.

22

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

23

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

21

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:

• Pipelining.

• Superscalar processing.

Major optimization challenges:

• Vectorization.

• Many threads; many cores.

• The memory hierarchy;

the ring; the mesh.

• Larger-scale parallelism.

• Larger-scale networking.

22

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

23

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

21

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:

• Pipelining.

• Superscalar processing.

Major optimization challenges:

• Vectorization.

• Many threads; many cores.

• The memory hierarchy;

the ring; the mesh.

• Larger-scale parallelism.

• Larger-scale networking.

22

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

23

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

22

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

23

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

22

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

23

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

22

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

23

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

24

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

22

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

23

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

24

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

22

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

23

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

24

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

23

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

24

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

23

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

24

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

23

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

24

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

23

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

24

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

25

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

23

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

24

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

25

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

23

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

24

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

25

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

24

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

25

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

24

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

25

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

26

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

24

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

25

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

26

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

24

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

25

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

26

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

25

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

26

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

25

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

26

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

25

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

26

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

25

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

26

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

25

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

26

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

27

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

25

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

26

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

27

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

25

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

26

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

27

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

26

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

27

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

26

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

27

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

28

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., logic instructions.

26

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

27

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

28

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., logic instructions.

26

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

27

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

28

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., logic instructions.

27

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

28

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., logic instructions.

27

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

28

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., logic instructions.

29

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

27

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

28

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., logic instructions.

29

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

27

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

28

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., logic instructions.

29

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

28

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., logic instructions.

29

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

28

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., logic instructions.

29

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

30

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

28

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., logic instructions.

29

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

30

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

28

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., logic instructions.

29

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

30

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

29

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

30

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

29

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

30

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

29

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

30

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

29

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

30

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

30

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

30

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

30

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

30

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

31

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

34

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

34

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

32

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

34

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

34

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

34

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

35

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

34

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

35

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

33

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

34

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

35

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

34

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

35

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

34

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

35

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

34

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

35

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

36

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

34

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

35

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

36

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

34

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

35

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

36

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

35

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

36

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

35

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

36

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

37

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

35

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

36

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

37

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

35

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

36

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

37

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

36

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

37

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

36

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

37

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

38

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

36

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

37

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

38

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

36

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

37

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

38

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

37

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

38

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

37

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

38

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

39

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

37

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

38

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

39

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

37

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

38

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

39

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

38

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

39

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

38

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

39

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

40

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

38

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

39

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

40

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

38

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

39

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

40

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

39

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

40

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

39

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

40

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

41

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

39

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

40

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

41

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

39

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

40

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

41

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

40

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

41

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

40

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

41

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

42

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

40

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

41

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

42

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

40

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

41

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

42

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

41

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

42

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

41

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

42

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

43

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

41

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

42

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

43

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

41

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

42

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

43

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

42

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

43

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

42

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

43

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

Algorithm designers

don’t even get the right exponent

without taking this into account.

42

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

43

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

Algorithm designers

don’t even get the right exponent

without taking this into account.

Shock waves from subroutines

into high-level algorithm design.

