How to multiply big integers

Standard idea: Use polynomial with coefficients in $\{0,1, \ldots, 9\}$ to represent integer in radix 10 .

Example of representation:
$839=8 \cdot 10^{2}+3 \cdot 10^{1}+9 \cdot 10^{0}=$
value (at $t=10$) of polynomial $8 t^{2}+3 t^{1}+9 t^{0}$.

Convenient to express polynomial inside computer as array $9,3,8$ (or $9,3,8,0$ or $9,3,8,0,0$ or . .) : "p [0] $=9 ; p[1]=3 ; p[2]=8 "$

Multiply two integers
by multiplying polynomials
that represent the integers.
Polynomial multiplication
involves small integer coefficients.
Have split one big multiplication into many small operations.

Example, squaring 839:
$\left(8 t^{2}+3 t^{1}+9 t^{0}\right)^{2}=$
$8 t^{2}\left(8 t^{2}+3 t^{1}+9 t^{0}\right)+$
$3 t^{1}\left(8 t^{2}+3 t^{1}+9 t^{0}\right)+$
$9 t^{0}\left(8 t^{2}+3 t^{1}+9 t^{0}\right)=$
$64 t^{4}+48 t^{3}+153 t^{2}+54 t^{1}+81 t^{0}$.

Oops, product polynomial usually has coefficients >9.
So "carry" extra digits:
$c t^{j} \rightarrow\lfloor c / 10\rfloor t^{j+1}+(c \bmod 10) t^{j}$.
Example, squaring 839:
$64 t^{4}+48 t^{3}+153 t^{2}+54 t^{1}+81 t^{0} ;$
$64 t^{4}+48 t^{3}+153 t^{2}+62 t^{1}+1 t^{0} ;$ $64 t^{4}+48 t^{3}+159 t^{2}+2 t^{1}+1 t^{0} ;$ $64 t^{4}+63 t^{3}+9 t^{2}+2 t^{1}+1 t^{0} ;$
$70 t^{4}+3 t^{3}+9 t^{2}+2 t^{1}+1 t^{0}$;
$7 t^{5}+0 t^{4}+3 t^{3}+9 t^{2}+2 t^{1}+1 t^{0}$.
In other words, $839^{2}=703921$.

What operations were used here?

divide by 10

The scaled variation

$839=800+30+9=$
value (at $t=1$) of polynomial
$800 t^{2}+30 t^{1}+9 t^{0}$.
Squaring: $\left(800 t^{2}+30 t^{1}+9 t^{0}\right)^{2}=$ $640000 t^{4}+48000 t^{3}+15300 t^{2}+$ $540 t^{1}+81 t^{0}$.
Carrying:
$640000 t^{4}+48000 t^{3}+15300 t^{2}+$ $540 t^{1}+81 t^{0}$;
$640000 t^{4}+48000 t^{3}+15300 t^{2}+$ $620 t^{1}+1 t^{0}$;
$700000 t^{5}+0 t^{4}+3000 t^{3}+900 t^{2}+$ $20 t^{1}+1 t^{0}$.

What operations were used here?

Speedup: double inside squaring
$\left(\cdots+f_{2} t^{2}+f_{1} t^{1}+f_{0} t^{0}\right)^{2}$
has coefficients such as
$f_{4} f_{0}+f_{3} f_{1}+f_{2} f_{2}+f_{1} f_{3}+f_{0} f_{4}$.
5 muts, 4 adds.

Speedup: double inside squaring
$\left(\cdots+f_{2} t^{2}+f_{1} t^{1}+f_{0} t^{0}\right)^{2}$
has coefficients such as
$f_{4} f_{0}+f_{3} f_{1}+f_{2} f_{2}+f_{1} f_{3}+f_{0} f_{4}$.
5 milts, 4 adds.
Compute more efficiently as
$2 f_{4} f_{0}+2 f_{3} f_{1}+f_{2} f_{2}$.
3 musts, 2 adds, 2 doublings.
Save $\approx 1 / 2$ of the molts
if there are many coefficients.

Faster alternative:
$2\left(f_{4} f_{0}+f_{3} f_{1}\right)+f_{2} f_{2}$.
3 muts, 2 adds, 1 doubling.
Save $\approx 1 / 2$ of the adds
if there are many coefficients.

Faster alternative:
$2\left(f_{4} f_{0}+f_{3} f_{1}\right)+f_{2} f_{2}$.
3 musts, 2 adds, 1 doubling.
Save $\approx 1 / 2$ of the adds
if there are many coefficients.
Even faster alternative:
$\left(2 f_{0}\right) f_{4}+\left(2 f_{1}\right) f_{3}+f_{2} f_{2}$,
after precomputing $2 f_{0}, 2 f_{1}, \ldots$.
3 mults, 2 adds, 0 doublings.
Precomputation ≈ 0.5 doublings.

Speedup: allow negative coeffs
Recall $159 \mapsto 15,9$.
Scaled: $15900 \mapsto 15000,900$.
Alternative: $159 \mapsto 16,-1$. Scaled: $15900 \mapsto 16000,-100$.

Use digits $\{-5,-4, \ldots, 4,5\}$ instead of $\{0,1, \ldots, 9\}$.
Small disadvantage: need - . Several small advantages: easily handle negative integers; easily handle subtraction; reduce products a bit.

Speedup: delay carries

Computing (e.g.) big $a b+c^{2}$: multiply a, b polynomials, carry, square c poly, carry, add, carry.
e.g. $a=314, b=271, c=839$: $\left(3 t^{2}+1 t^{1}+4 t^{0}\right)\left(2 t^{2}+7 t^{1}+1 t^{0}\right)=$ $6 t^{4}+23 t^{3}+18 t^{2}+29 t^{1}+4 t^{0} ;$ carry: $8 t^{4}+5 t^{3}+0 t^{2}+9 t^{1}+4 t^{0}$.

As before $\left(8 t^{2}+3 t^{1}+9 t^{0}\right)^{2}=$ $64 t^{4}+48 t^{3}+153 t^{2}+54 t^{1}+81 t^{0} ;$ $7 t^{5}+0 t^{4}+3 t^{3}+9 t^{2}+2 t^{1}+1 t^{0}$.
$+: 7 t^{5}+8 t^{4}+8 t^{3}+9 t^{2}+11 t^{1}+5 t^{0}$; $7 t^{5}+8 t^{4}+9 t^{3}+0 t^{2}+1 t^{1}+5 t^{0}$.

Faster: multiply a, b polynomials, square c polynomial, add, carry.
$\left(6 t^{4}+23 t^{3}+18 t^{2}+29 t^{1}+4 t^{0}\right)+$ $\left(64 t^{4}+48 t^{3}+153 t^{2}+54 t^{1}+81 t^{0}\right)$
$=70 t^{4}+71 t^{3}+171 t^{2}+83 t^{1}+85 t^{0}$; $7 t^{5}+8 t^{4}+9 t^{3}+0 t^{2}+1 t^{1}+5 t^{0}$.

Eliminate intermediate carries.
Outweighs cost of handling slightly larger coefficients.

Important to carry between multiplications (and squarings) to reduce coefficient size; but carries are usually a bad idea before additions, subtractions, etc.

Speedup: polynomial Karatsuba
How much work to multiply polys
$f=f_{0}+f_{1} t+\cdots+f_{19} t^{19}$,
$g=g_{0}+g_{1} t+\cdots+g_{19} t^{19} ?$
Using the obvious method:
400 coeff milts, 361 coeff adds.
Faster: Write f as $F_{0}+F_{1} t^{10}$;
$F_{0}=f_{0}+f_{1} t+\cdots+f_{9} t^{9}$;
$F_{1}=f_{10}+f_{11} t+\cdots+f_{19} t^{9}$.
Similarly write g as $G_{0}+G_{1} t^{10}$.
Then $f g=\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right) t^{10}$ $+\left(F_{0} G_{0}-F_{1} G_{1} t^{10}\right)\left(1-t^{10}\right)$.

20 adds for $F_{0}+F_{1}, G_{0}+G_{1}$. 300 mults for three products
$F_{0} G_{0}, F_{1} G_{1},\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right)$.
243 adds for those products.
9 adds for $F_{0} G_{0}-F_{1} G_{1} t^{10}$
with subs counted as adds
and with delayed negations.
19 adds for $\cdots\left(1-t^{10}\right)$.
19 adds to finish.
Total 300 mults, 310 adds.
Larger coefficients, slight expense; still saves time.

Can apply idea recursively as poly degree grows.

Many other algebraic speedups in polynomial multiplication: "Toom," "FFT," etc.

Increasingly important as polynomial degree grows.
$O(n \lg n \lg \lg n)$ coeff operations to compute n-coeff product.

Useful for sizes of n
that occur in cryptography?
In some cases, yes!
But Karatsuba is the limit for prime-field ECC/ECDLP on most current PUs.

Modular reduction

How to compute $f \bmod p$?
Can use definition:
$f \bmod p=f-p\lfloor f / p\rfloor$.
Can multiply f by a
precomputed $1 / p$ approximation; easily adjust to obtain $\lfloor f / p\rfloor$.

Slight speedup: "2-adic inverse"; "Montgomery reduction."
e.g. 314159265358 mod 271828 :

Precompute
〔10000000000000/271828」
$=3678796$.
Compute
314159 - 3678796
$=1155726872564$.
Compute
314159265358 - $1155726 \cdot 271828$
$=578230$.
Oops, too big:
$578230-271828=306402$.
$306402-271828=34574$.

We can do better: normally
p is chosen with a special form to make f mod p much faster.

Special primes hurt security
for \mathbf{F}_{p}^{*}, $\operatorname{Clock}\left(\mathbf{F}_{p}\right)$, etc.,
but not for elliptic curves!
Curve 25519: $p=2^{255}-19$.
WIST P-224: $p=2^{224}-2^{96}+1$.
secp112r1: $p=\left(2^{128}-3\right) / 76439$.
Divides special form.
gls1271: $p=2^{127}-1$, with degree-2 extension (a bit scary).

Small example: $p=1000003$.
Then 1000000a $+b \equiv b-3 a$.
e.g. $314159265358=$
$314159 \cdot 1000000+265358 \equiv$
$314159(-3)+265358=$
$-942477+265358=$
-677119.
Easily adjust $b-3 a$
to the range $\{0,1, \ldots, p-1\}$ by adding/subtracting a few p 's: e.g. $-677119 \equiv 322884$.

Hmm, is adjustment so easy?
Conditional branches are slow and leak secrets through timing.
Can eliminate the branches, but adjustment isn't free.

Speedup: Skip the adjustment for intermediate results. "Lazy reduction."
Adjust only for output.
$b-3 a$ is small enough to continue computations.

Can delay carries until after multiplication by 3 .
e.g. To square 314159
in $\mathbf{Z} / 1000003$: Square poly
$3 t^{5}+1 t^{4}+4 t^{3}+1 t^{2}+5 t^{1}+9 t^{0}$,
obtaining $9 t^{10}+6 t^{9}+25 t^{8}+$
$14 t^{7}+48 t^{6}+72 t^{5}+59 t^{4}+$
$82 t^{3}+43 t^{2}+90 t^{1}+81 t^{0}$.
Reduce: replace $\left(c_{i}\right) t^{6+i}$ by
$\left(-3 c_{i}\right) t^{i}$, obtaining $72 t^{5}+32 t^{4}+$
$64 t^{3}-32 t^{2}+48 t^{1}-63 t^{0}$.
Carry: $8 t^{6}-4 t^{5}-2 t^{4}+$ $1 t^{3}+2 t^{2}+2 t^{1}-3 t^{0}$.

To minimize poly degree,
mix reduction and carrying, carrying the top sooner.
e.g. Start from square $9 t^{10}+6 t^{9}+$ $25 t^{8}+14 t^{7}+48 t^{6}+72 t^{5}+59 t^{4}+$ $82 t^{3}+43 t^{2}+90 t^{1}+81 t^{0}$.

Reduce $t^{10} \rightarrow t^{4}$ and carry $t^{4} \rightarrow$ $t^{5} \rightarrow t^{6}: 6 t^{9}+25 t^{8}+14 t^{7}+$ $56 t^{6}-5 t^{5}+2 t^{4}+82 t^{3}+43 t^{2}+$ $90 t^{1}+81 t^{0}$.

Finish reduction: $-5 t^{5}+2 t^{4}+$ $64 t^{3}-32 t^{2}+48 t^{1}-87 t^{0}$. Carry $t^{0} \rightarrow t^{1} \rightarrow t^{2} \rightarrow t^{3} \rightarrow t^{4} \rightarrow t^{5}:$ $-4 t^{5}-2 t^{4}+1 t^{3}+2 t^{2}-1 t^{1}+3 t^{0}$.

Speedup: non-integer radix
$p=2^{61}-1$.
Five coeffs in radix 2^{13} ?
$f_{4} t^{4}+f_{3} t^{3}+f_{2} t^{2}+f_{1} t^{1}+f_{0} t^{0}$.
Most coeffs could be 2^{12}.
Square $\cdots+2\left(f_{4} f_{1}+f_{3} f_{2}\right) t^{5}+\cdots$. Coeff of t^{5} could be $>2^{25}$.

Reduce: $2^{65}=2^{4}$ in $\mathbf{Z} /\left(2^{61}-1\right)$; $\cdots+\left(2^{5}\left(f_{4} f_{1}+f_{3} f_{2}\right)+f_{0}^{2}\right) t^{0}$.
Coeff could be $>2^{29}$.
Very little room for
additions, delayed carries, etc.
on 32-bit platforms.

Scaled: Evaluate at $t=1$.
f_{4} is multiple of 2^{52};
f_{3} is multiple of 2^{39};
f_{2} is multiple of 2^{26};
f_{1} is multiple of 2^{13};
f_{0} is multiple of 2^{0}. Reduce:
$\cdots+\left(2^{-60}\left(f_{4} f_{1}+f_{3} f_{2}\right)+f_{0}^{2}\right) t^{0}$.
Better: Non-integer radix $2^{12.2}$. f_{4} is multiple of 2^{49}; f_{3} is multiple of 2^{37}; f_{2} is multiple of 2^{25}; f_{1} is multiple of 2^{13};
f_{0} is multiple of 2^{0}.
Saves a few bits in coeffs.

More bad choices from NIST
NIST P-256 prime:
$2^{256}-2^{224}+2^{192}+2^{96}-1$.
i.e. $t^{8}-t^{7}+t^{6}+t^{3}-1$
evaluated at $t=2^{32}$.

More bad choices from NIST

NIST P-256 prime:
$2^{256}-2^{224}+2^{192}+2^{96}-1$.
i.e. $t^{8}-t^{7}+t^{6}+t^{3}-1$ evaluated at $t=2^{32}$.

Reduction: replace $c_{i} t^{8+i}$ with $c_{i} t^{7+i}-c_{i} t^{6+i}-c_{i} t^{3+i}+c_{i} t^{i}$. Minor problem: often slower than small const milt and one add.

More bad choices from NIST

NIST P-256 prime:
$2^{256}-2^{224}+2^{192}+2^{96}-1$.
i.e. $t^{8}-t^{7}+t^{6}+t^{3}-1$
evaluated at $t=2^{32}$.
Reduction: replace $c_{i} t^{8+i}$ with $c_{i} t^{7+i}-c_{i} t^{6+i}-c_{i} t^{3+i}+c_{i} t^{i}$. Minor problem: often slower than small const milt and one add.

Major problem: With radix 2^{32}, products are almost 2^{64}.
Sums are slightly above 2^{64} : bad for every common CPU.
Need very frequent carries.

