How to multiply big integers

Standard idea: Use polynomial
with coefficients in {0, 1, ..., 9}
to represent integer in radix 10.

Example of representation:

839 = 8-10%4+3-101 +9-10° =
value (at t = 10) of polynomial
8t% + 3t 4 9tV

Convenient to express polynomial
inside computer as array 9, 3, 8

(or 9,3,8,00r9,3,8,0,00r...):
"p[0] =9; pl[1] =3; p[2] = 8"

Multiply two integers
by multiplying polynomials
that represent the integers.

Polynomial multiplication
involves small integer coetficients.
Have split one big multiplication
Into many small operations.

Example, squaring 839:
(8t% + 3t! +9t0)? =

8t%(8t% 4 3t1 + 9tY) +
3t1(8t° + 3t + 9tY) +
0t0(8t2 + 3t! 4 9t0) =
64t* + 4813 415312 + 5411 +81¢t0.

Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:
ct/ — |c/10| ¥

Example, squaring 839:

L+ (c mod 10)¥.

64t% + 48t3 +153¢2 + 5411 + 81¢0:

641" -
64t% -
64t% -

70t% -
7t

0t*

- 4813 -
- 63¢3 -

3t3

0t2

2tl

- 4813 + 153¢2 + 62t + 1¢Y;
- 159¢2 + 21 4 149
- 9¢2 + 2t 4+ 149

- 313 + 982 4 2t + 149,

1¢9.

In other words, 839% = 703921.

What operations were used here?

VAzld

159

divide by 10
/lmod 10

15 9

3 3

/2722781

24 9 7 27
AN
64 24 72 \\\\\\ﬁ
81
yao
8 1
/
153 62
yao
| o
v
48 159
Y
| 6
Y%
64 63
yao
~l 6 3
v’
70
s
70

~ <~

The scaled variation

839 = 800 + 30 + 9 =
value (at t = 1) of polynomial
800t + 30t* + 9tV.

Squaring: (800t% 430t +9tY)? =
640000t* 4+ 48000¢3 + 15300¢% +
540t + 81¢Y.

Carrying:

640000¢* + 48000t3 + 15300t2 +
540t 4 81¢tY;

640000t* 4 48000¢3 + 153002 +

6201t1

1¢9:

700000t +0t* +3000t3 + 9002 +
20t + 149,

What operations were used here?

300 30 9
i imultiply
7200 900 7200
\ l Aj
15300

a

600

VL

15900

S‘”’V lmod 1000

15000 900

Speedup: double inside squaring

(- O f2t2 -+ fltl -+ f0t0)2

has coefficients such as

fafo + f3f1 + fofo + 3 + fofa.
5 mults, 4 adds.

Speedup: double inside squaring

(- O f2t2 -+ fltl -+ f0t0)2

has coefficients such as

fafo + f3f1 + fofo + 3 + fofa.
5 mults, 4 adds.

Compute more efficiently as
2fafy + 231 + o fr.
3 mults, 2 adds, 2 doublings.

Save =~ 1/2 of the mults
if there are many coetfficients.

Faster alternative:
2(f4fg + 3f1) + Fofo.
3 mults, 2 adds, 1 doubling.

Save = 1/2 of the adds
if there are many coetficients.

Faster alternative:
2(f4fg + 3f1) + Fofo.
3 mults, 2 adds, 1 doubling.

Save = 1/2 of the adds
if there are many coetficients.

Even faster alternative:
(2fo)f4 —+ (2f1)f3 + fofr,
after precomputing 21y, 2f1,

3 mults, 2 adds, 0 doublings.
Precomputation ~ 0.5 doublings.

Speedup: allow negative coeffs

Recall 159 +— 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —100.

Use digits {—5, —4, ..., 4,5}
instead of {0,1, ..., 9}.

Small disadvantage: need —.
Several small advantages:
easily handle negative integers;

easily handle subtraction;

reduce products a bit.

10

11
Speedup: delay carries

Computing (e.g.) big ab + c¢*:
multiply a, b polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a= 314, b =271, c = 839:
(3t24+1t1+4t9)(2t2+7t1 +110) =
6t* 4+ 23t3 + 18t + 29¢t! + 449,
carry: 8t* +5t3 +0t° + 9t! + 419

As before (8t° + 3t! 4 9t0)? =
64t% + 48t3 +153¢2 +54¢1 + 81¢0:
7t2 + 0t + 313 + 912 + 2t + 149,

1 724818134102 111t 454V
7t° +8t* + 913 + 0t2 + 1t + 549,

12
Faster: multiply a, b polynomials,

square ¢ polynomial, add, carry.

(6t* 42313 +18t% 420t +4t0) +
(64t*+48t3 +153t° +54t1 +81t0)
= 70t*+71t3+171t2+83t14-8510;
7t° 4 8t* + 913 4 0t% + 11 4 5¢0.

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coefficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size;
out carries are usually a bad idea

before additions, subtractions, etc.

13
Speedup: polynomial Karatsuba

How much work to multiply polys
f=f+At+ -+ fiotl?,
g =go+git+ -+ giot?

Using the obvious method:
400 coeff mults, 361 coeff adds.

Faster: Write f as Fy + F1t10:
Fo=fo+ fit+ -+ fot;
Fi=fio+ fi1t+---+ f19t9.
Similarly write g as Gg + G t10.

Then fg = (Fg+ F1)(Gg + Gl)tlo
-+ (F()G() — F1G1t10)(1 — th)_

14

20 adds for Fg + F1, Gg + G7.
300 mults for three products
FoGo, F1G1, (Fo + F1)(Go + G1).
243 adds for those products.

O adds for FoGg — F1G1 t10

with subs counted as adds

and with delayed negations.
19 adds for - -- (1 — t10).
19 adds to finish.

Total 300 mults, 310 adds.
Larger coefficients, slight expense;
still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebraic speedups
in polynomial multiplication:
“Toom,” "FFT,” etc.

Increasingly important as
polynomial degree grows.
O(nlg nlglg n) coeff operations
to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?
In some cases, yes!

But Karatsuba is the limit
for prime-field ECC/ECDLP

on most current CPUs.

Modular reduction

How to compute f mod p?

Can use definition:
fmodp="Ff—p|f/p].

Can multiply f by a
precomputed 1/p approximation;
easily adjust to obtain |f/p].

Slight speedup: “2-adic inverse”;
“Montgomery reduction.”

16

17
e.g. 314159265358 mod 271828:

Precompute

11000000000000/271828 |
= 3678796.

Compute

314159 - 3673796
= 1155726872564.

Compute

314159265358 — 1155726 - 271828
= 578230.

Oops, too big:

578230 — 271828 = 306402.
306402 — 271828 = 34574.

18
We can do better: normally

p is chosen with a special form
to make f mod p much faster.

Special primes hurt security
for F;, Clock(Fp), etc.,
out not for elliptic curves!

Curve25519: p = 22°° — 19,
NIST P-224: p = 2224 _ 2% 4 1

secpl12rl: p = (2128 — 3)/76439.
Divides special form.

gls1271: p = 2127 — 1, with
degree-2 extension (a bit scary).

19
Small example: p = 1000003.

Then 1000000a + b = b — 3a.

e.g. 314159265358 =

314159 - 1000000 + 265358 =
314159(—3) + 265358 =
—942477 + 265358 =
—677119.

Easily adjust b — 3a

to the range {0,1, ..., p—1}
by adding/subtracting a few p's:
e.g. —6/7119 = 322884.

20
Hmmm, is adjustment so easy?

Conditional branches are slow

and leak secrets through timing.
Can eliminate the branches,
but adjustment isn't free.

Speedup: Skip the adjustment

for intermediate results.
“Lazy reduction.”
Adjust only for output.

b — 3a is small enough
to continue computations.

21
Can delay carries until after

multiplication by 3.

e.g. To square 314159

in Z/1000003: Square poly

3t2 + 1t% + 413 4+ 12 + 5¢1 + 940,
obtaining 9t'0 4 6t7 4 258 +
147 + 48t0 + 72t° + 59t* +
82t3 + 43t% + 90t! 4 810,

Reduce: replace (¢;)t®"' by
(—3c;)t', obtaining 72t° + 32t* +
64t> — 32t% + 48t — 63t

Carry: 8t° — 4t — 2% +
113 + 2t% + 2t1 — 340,

22
To minimize poly degree,

mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 9t10+6¢° +
2588 + 1487 1+ 48t% 17242 1 5014 &
82t3 + 4312 + 90t! + 81+¢Y.

Reduce t19 — % and carry t* —
t° — t% 612 4+ 251 + 14t" +
56t% — 5¢° + 2t% 4 8213 + 43¢2 +
90t + 81t0.

Finish reduction: —5t> + 2t% +

6413 — 322 + 48t1 — 87tY. Carry
t0 5t o 2 o 13 5 % - o
—4¢° =2t 4113 4 2t% — 1t + 3¢V,

23
Speedup: non-integer radix

p=201_1

Five coeffs in radix 2137
att + Kt3 + Ht? + [t + [t
Most coeffs could be 212.

Square - - - +2(faf1 + BH)> +- - -.
Coeff of t° could be > 22°.

Reduce: 2% = 2% in Z/(2%! —1);
4 (22(fafy + BR) +)0
Coeff could be > 227,

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.

Scaled: Evaluate at t = 1.

fa i1s multip

f3 1s multi

f> Is multi

f1 1s multi
fo 1s multi

o+ (2707 + BR) + 7).

Better:
fa 1s multi
f3 1s multi
f> Is multi
f1 1s multi

D
D
D

e of 252;

e of 239;

e of 226;

e of 213;

sle of 20. Reduce:

D
D

D

D

fo is multip

Non-integer radix 2122,

e of 249

e of 237;

e of 225;

e of 213;

e of 20,

Saves a few bits in coeffs.

24

More bad choices from NIST

NIST P-256 prime:

2256 o 2224 4 2192 + 296 1

e 5 — T+t 431
evaluated at t = 232,

25

25
More bad choices from NIST

NIST P-256 prime:

2256 o 2224 4 2192 + 296 1
e S —tl 0431
evaluated at t = 232,

Reduction: replace ¢;t31' with
Cl_t7+i _ Cl_t6+i _ Cl_t3+i 4 C,'ti.
Minor problem: often slower than
small const mult and one add.

25
More bad choices from NIST

NIST P-256 prime:

2256 o 2224 4 2192 + 296 1
e S —tl 0431
evaluated at t = 232,

Reduction: replace ¢;t31' with
Cl_t7+i _ Cl_t6+i _ Cl_t3+i 4 C,'ti.
Minor problem: often slower than
small const mult and one add.

Major problem: With radix 232,

sroducts are almost 204

Sums are slightly above 2°4:
vad for every common CPU.

Need very frequent carries.

