
1

How to multiply big integers

Standard idea: Use polynomial

with coefficients in {0; 1; : : : ; 9}
to represent integer in radix 10.

Example of representation:

839 = 8 · 102 + 3 · 101 + 9 · 100 =

value (at t = 10) of polynomial

8t2 + 3t1 + 9t0.

Convenient to express polynomial

inside computer as array 9; 3; 8

(or 9; 3; 8; 0 or 9; 3; 8; 0; 0 or : : :):

“p[0] = 9; p[1] = 3; p[2] = 8”

2

Multiply two integers

by multiplying polynomials

that represent the integers.

Polynomial multiplication

involves small integer coefficients.

Have split one big multiplication

into many small operations.

Example, squaring 839:

(8t2 + 3t1 + 9t0)2 =

8t2(8t2 + 3t1 + 9t0) +

3t1(8t2 + 3t1 + 9t0) +

9t0(8t2 + 3t1 + 9t0) =

64t4 + 48t3 + 153t2 + 54t1 + 81t0.

3

Oops, product polynomial

usually has coefficients > 9.

So “carry” extra digits:

ct j → bc=10c t j+1 +(c mod 10)t j .

Example, squaring 839:

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

64t4 + 48t3 + 153t2 + 62t1 + 1t0;

64t4 + 48t3 + 159t2 + 2t1 + 1t0;

64t4 + 63t3 + 9t2 + 2t1 + 1t0;

70t4 + 3t3 + 9t2 + 2t1 + 1t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

In other words, 8392 = 703921.

4

What operations were used here?

8

�� ((PP
PPP

PPP
PPP

P 3

		��

9

vvnnn
nnn

nnn
nnn

multiply
��

72

 @
@@

@@
@ 9

��

72

add~~~~
~~
~~

153

��

. . .

����
��
��

6

add~~}}
}}
}}

159
divide by 10

~~}}
}}
}}
}

mod 10
��

15 9

5

8

�� �� ��

((

00

��

3

�� !! ''

((

��

��
11
11

9
�� �� ""

��

vv

��
72

��

27

��
++
++
++
+ 81

((QQ
QQ

24

��
%%
%%
%%
%%
%%
%%
%%
% 9

��
11
11
11
11
11

27

%%LL
LLL

LLL
81

��
64

��
))
))
))
))
))
))
))
))
))

24

��
44

44
44

44
44

44
44

72

$$
III

III
III

III
54

��

81
��}}||

8
}}||

1

153

��

62
��}}||

6
}}||

2

48

��

159
��}}||

15
}}||

9

64

��

63
��}}||

6
}}||

3

70
��}}||

7
}}||

0

7
��

7

6

The scaled variation

839 = 800 + 30 + 9 =

value (at t = 1) of polynomial

800t2 + 30t1 + 9t0.

Squaring: (800t2 +30t1 +9t0)2 =

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0.

Carrying:

640000t4 + 48000t3 + 15300t2 +

540t1 + 81t0;

640000t4 + 48000t3 + 15300t2 +

620t1 + 1t0; : : :

700000t5 +0t4 +3000t3 +900t2 +

20t1 + 1t0.

7

What operations were used here?

800

��))TTT
TTTT

TTTT
TTT 30

		��

9

uujjjj
jjjj

jjjj
jjj

multiply
��

7200

$$I
II

II
II

900

��

7200

add{{www
ww
ww

15300

��

. . .

}}{{
{{
{{

600

addzzvvv
vvv

v

15900
subtract

zzuuu
uu
uu
u

mod 1000
��

15000 900

8

Speedup: double inside squaring

(· · ·+ f2t
2 + f1t

1 + f0t
0)2

has coefficients such as

f4f0 + f3f1 + f2f2 + f1f3 + f0f4.

5 mults, 4 adds.

8

Speedup: double inside squaring

(· · ·+ f2t
2 + f1t

1 + f0t
0)2

has coefficients such as

f4f0 + f3f1 + f2f2 + f1f3 + f0f4.

5 mults, 4 adds.

Compute more efficiently as

2f4f0 + 2f3f1 + f2f2.

3 mults, 2 adds, 2 doublings.

Save ≈ 1=2 of the mults

if there are many coefficients.

9

Faster alternative:

2(f4f0 + f3f1) + f2f2.

3 mults, 2 adds, 1 doubling.

Save ≈ 1=2 of the adds

if there are many coefficients.

9

Faster alternative:

2(f4f0 + f3f1) + f2f2.

3 mults, 2 adds, 1 doubling.

Save ≈ 1=2 of the adds

if there are many coefficients.

Even faster alternative:

(2f0)f4 + (2f1)f3 + f2f2,

after precomputing 2f0; 2f1; : : :.

3 mults, 2 adds, 0 doublings.

Precomputation ≈ 0:5 doublings.

10

Speedup: allow negative coeffs

Recall 159 7→ 15; 9.

Scaled: 15900 7→ 15000; 900.

Alternative: 159 7→ 16;−1.

Scaled: 15900 7→ 16000;−100.

Use digits {−5;−4; : : : ; 4; 5}
instead of {0; 1; : : : ; 9}.
Small disadvantage: need −.

Several small advantages:

easily handle negative integers;

easily handle subtraction;

reduce products a bit.

11

Speedup: delay carries

Computing (e.g.) big ab + c2:

multiply a; b polynomials, carry,

square c poly, carry, add, carry.

e.g. a = 314, b = 271, c = 839:

(3t2+1t1+4t0)(2t2+7t1+1t0) =

6t4 + 23t3 + 18t2 + 29t1 + 4t0;

carry: 8t4 + 5t3 + 0t2 + 9t1 + 4t0.

As before (8t2 + 3t1 + 9t0)2 =

64t4 + 48t3 + 153t2 + 54t1 + 81t0;

7t5 + 0t4 + 3t3 + 9t2 + 2t1 + 1t0.

+: 7t5+8t4+8t3+9t2+11t1+5t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

12

Faster: multiply a; b polynomials,

square c polynomial, add, carry.

(6t4 + 23t3 + 18t2 + 29t1 + 4t0) +

(64t4 +48t3 +153t2 +54t1 +81t0)

= 70t4+71t3+171t2+83t1+85t0;

7t5 + 8t4 + 9t3 + 0t2 + 1t1 + 5t0.

Eliminate intermediate carries.

Outweighs cost of handling

slightly larger coefficients.

Important to carry between

multiplications (and squarings)

to reduce coefficient size;

but carries are usually a bad idea

before additions, subtractions, etc.

13

Speedup: polynomial Karatsuba

How much work to multiply polys

f = f0 + f1t + · · ·+ f19t
19,

g = g0 + g1t + · · ·+ g19t
19?

Using the obvious method:

400 coeff mults, 361 coeff adds.

Faster: Write f as F0 + F1t
10;

F0 = f0 + f1t + · · ·+ f9t
9;

F1 = f10 + f11t + · · ·+ f19t
9.

Similarly write g as G0 + G1t
10.

Then f g = (F0 + F1)(G0 + G1)t10

+ (F0G0 − F1G1t
10)(1− t10).

14

20 adds for F0 + F1, G0 + G1.

300 mults for three products

F0G0, F1G1, (F0 + F1)(G0 + G1).

243 adds for those products.

9 adds for F0G0 − F1G1t
10

with subs counted as adds

and with delayed negations.

19 adds for · · · (1− t10).

19 adds to finish.

Total 300 mults, 310 adds.

Larger coefficients, slight expense;

still saves time.

Can apply idea recursively

as poly degree grows.

15

Many other algebraic speedups

in polynomial multiplication:

“Toom,” “FFT,” etc.

Increasingly important as

polynomial degree grows.

O(n lg n lg lg n) coeff operations

to compute n-coeff product.

Useful for sizes of n

that occur in cryptography?

In some cases, yes!

But Karatsuba is the limit

for prime-field ECC/ECDLP

on most current CPUs.

16

Modular reduction

How to compute f mod p?

Can use definition:

f mod p = f − p bf =pc.
Can multiply f by a

precomputed 1=p approximation;

easily adjust to obtain bf =pc.

Slight speedup: “2-adic inverse”;

“Montgomery reduction.”

17

e.g. 314159265358 mod 271828:

Precompute

b1000000000000=271828c
= 3678796.

Compute

314159 · 3678796

= 1155726872564.

Compute

314159265358− 1155726 · 271828

= 578230.

Oops, too big:

578230− 271828 = 306402.

306402− 271828 = 34574.

18

We can do better: normally

p is chosen with a special form

to make f mod p much faster.

Special primes hurt security

for F∗p, Clock(Fp), etc.,

but not for elliptic curves!

Curve25519: p = 2255 − 19.

NIST P-224: p = 2224 − 296 + 1.

secp112r1: p = (2128 − 3)=76439.

Divides special form.

gls1271: p = 2127 − 1, with

degree-2 extension (a bit scary).

19

Small example: p = 1000003.

Then 1000000a + b ≡ b − 3a.

e.g. 314159265358 =

314159 · 1000000 + 265358 ≡
314159(−3) + 265358 =

−942477 + 265358 =

−677119.

Easily adjust b − 3a

to the range {0; 1; : : : ; p − 1}
by adding/subtracting a few p’s:

e.g. −677119 ≡ 322884.

20

Hmmm, is adjustment so easy?

Conditional branches are slow

and leak secrets through timing.

Can eliminate the branches,

but adjustment isn’t free.

Speedup: Skip the adjustment

for intermediate results.

“Lazy reduction.”

Adjust only for output.

b − 3a is small enough

to continue computations.

21

Can delay carries until after

multiplication by 3.

e.g. To square 314159

in Z=1000003: Square poly

3t5 + 1t4 + 4t3 + 1t2 + 5t1 + 9t0,

obtaining 9t10 + 6t9 + 25t8 +

14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce: replace (ci)t
6+i by

(−3ci)t
i , obtaining 72t5 + 32t4 +

64t3 − 32t2 + 48t1 − 63t0.

Carry: 8t6 − 4t5 − 2t4 +

1t3 + 2t2 + 2t1 − 3t0.

22

To minimize poly degree,

mix reduction and carrying,

carrying the top sooner.

e.g. Start from square 9t10 +6t9 +

25t8 + 14t7 + 48t6 + 72t5 + 59t4 +

82t3 + 43t2 + 90t1 + 81t0.

Reduce t10 → t4 and carry t4 →
t5 → t6: 6t9 + 25t8 + 14t7 +

56t6 − 5t5 + 2t4 + 82t3 + 43t2 +

90t1 + 81t0.

Finish reduction: −5t5 + 2t4 +

64t3 − 32t2 + 48t1 − 87t0. Carry

t0 → t1 → t2 → t3 → t4 → t5:

−4t5−2t4 + 1t3 + 2t2−1t1 + 3t0.

23

Speedup: non-integer radix

p = 261 − 1.

Five coeffs in radix 213?

f4t
4 + f3t

3 + f2t
2 + f1t

1 + f0t
0.

Most coeffs could be 212.

Square · · ·+ 2(f4f1 + f3f2)t5 + · · ·.
Coeff of t5 could be > 225.

Reduce: 265 = 24 in Z=(261 − 1);

· · ·+ (25(f4f1 + f3f2) + f 2
0)t0.

Coeff could be > 229.

Very little room for

additions, delayed carries, etc.

on 32-bit platforms.

24

Scaled: Evaluate at t = 1.

f4 is multiple of 252;

f3 is multiple of 239;

f2 is multiple of 226;

f1 is multiple of 213;

f0 is multiple of 20. Reduce:

· · ·+ (2−60(f4f1 + f3f2) + f 2
0)t0.

Better: Non-integer radix 212:2.

f4 is multiple of 249;

f3 is multiple of 237;

f2 is multiple of 225;

f1 is multiple of 213;

f0 is multiple of 20.

Saves a few bits in coeffs.

25

More bad choices from NIST

NIST P-256 prime:

2256 − 2224 + 2192 + 296 − 1.

i.e. t8 − t7 + t6 + t3 − 1

evaluated at t = 232.

25

More bad choices from NIST

NIST P-256 prime:

2256 − 2224 + 2192 + 296 − 1.

i.e. t8 − t7 + t6 + t3 − 1

evaluated at t = 232.

Reduction: replace ci t
8+i with

ci t
7+i − ci t

6+i − ci t
3+i + ci t

i .

Minor problem: often slower than

small const mult and one add.

25

More bad choices from NIST

NIST P-256 prime:

2256 − 2224 + 2192 + 296 − 1.

i.e. t8 − t7 + t6 + t3 − 1

evaluated at t = 232.

Reduction: replace ci t
8+i with

ci t
7+i − ci t

6+i − ci t
3+i + ci t

i .

Minor problem: often slower than

small const mult and one add.

Major problem: With radix 232,

products are almost 264.

Sums are slightly above 264:

bad for every common CPU.

Need very frequent carries.

