
1

Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. SECRET: stop at 1.

• SAAAAA vs. SECRET: stop at 2.

• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

2

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

uint32 diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.



1

Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. SECRET: stop at 1.

• SAAAAA vs. SECRET: stop at 2.

• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

2

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

uint32 diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

3

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.



1

Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. SECRET: stop at 1.

• SAAAAA vs. SECRET: stop at 2.

• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

2

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

uint32 diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

3

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.



1

Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. SECRET: stop at 1.

• SAAAAA vs. SECRET: stop at 2.

• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

2

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

uint32 diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

3

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.



2

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

uint32 diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

3

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.



2

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

uint32 diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

3

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many current examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;



2

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

uint32 diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

3

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many current examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

4

Do timing attacks really work?

Objection: “Timings are noisy!”



2

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

uint32 diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

3

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many current examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

4

Do timing attacks really work?

Objection: “Timings are noisy!”



2

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

uint32 diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

3

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many current examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

4

Do timing attacks really work?

Objection: “Timings are noisy!”



3

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many current examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

4

Do timing attacks really work?

Objection: “Timings are noisy!”



3

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many current examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

4

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.



3

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many current examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

4

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.



3

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many current examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

4

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.



3

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many current examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

4

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

5

Examples of successful attacks:

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols” steals

plaintext using decryption timings.

2014 van de Pol–Smart–Yarom

steals Bitcoin key from timings

of 25 OpenSSL signatures.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.



3

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many current examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

4

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

5

Examples of successful attacks:

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols” steals

plaintext using decryption timings.

2014 van de Pol–Smart–Yarom

steals Bitcoin key from timings

of 25 OpenSSL signatures.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.



3

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many current examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

4

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

5

Examples of successful attacks:

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols” steals

plaintext using decryption timings.

2014 van de Pol–Smart–Yarom

steals Bitcoin key from timings

of 25 OpenSSL signatures.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.



4

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

5

Examples of successful attacks:

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols” steals

plaintext using decryption timings.

2014 van de Pol–Smart–Yarom

steals Bitcoin key from timings

of 25 OpenSSL signatures.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.



4

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

5

Examples of successful attacks:

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols” steals

plaintext using decryption timings.

2014 van de Pol–Smart–Yarom

steals Bitcoin key from timings

of 25 OpenSSL signatures.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

6

Constant-time ECC

ECDH computation: a; P 7→ aP

where a is your secret key.

Key generation: a 7→ aB.

Signing: r 7→ rB.

All of these use secret data.

Does timing leak this data?

Are there any branches in

ECC ops? Point ops? Field ops?

Do the underlying machine insns

take variable time?



4

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

5

Examples of successful attacks:

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols” steals

plaintext using decryption timings.

2014 van de Pol–Smart–Yarom

steals Bitcoin key from timings

of 25 OpenSSL signatures.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

6

Constant-time ECC

ECDH computation: a; P 7→ aP

where a is your secret key.

Key generation: a 7→ aB.

Signing: r 7→ rB.

All of these use secret data.

Does timing leak this data?

Are there any branches in

ECC ops? Point ops? Field ops?

Do the underlying machine insns

take variable time?



4

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

5

Examples of successful attacks:

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols” steals

plaintext using decryption timings.

2014 van de Pol–Smart–Yarom

steals Bitcoin key from timings

of 25 OpenSSL signatures.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

6

Constant-time ECC

ECDH computation: a; P 7→ aP

where a is your secret key.

Key generation: a 7→ aB.

Signing: r 7→ rB.

All of these use secret data.

Does timing leak this data?

Are there any branches in

ECC ops? Point ops? Field ops?

Do the underlying machine insns

take variable time?



5

Examples of successful attacks:

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols” steals

plaintext using decryption timings.

2014 van de Pol–Smart–Yarom

steals Bitcoin key from timings

of 25 OpenSSL signatures.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

6

Constant-time ECC

ECDH computation: a; P 7→ aP

where a is your secret key.

Key generation: a 7→ aB.

Signing: r 7→ rB.

All of these use secret data.

Does timing leak this data?

Are there any branches in

ECC ops? Point ops? Field ops?

Do the underlying machine insns

take variable time?



5

Examples of successful attacks:

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols” steals

plaintext using decryption timings.

2014 van de Pol–Smart–Yarom

steals Bitcoin key from timings

of 25 OpenSSL signatures.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

6

Constant-time ECC

ECDH computation: a; P 7→ aP

where a is your secret key.

Key generation: a 7→ aB.

Signing: r 7→ rB.

All of these use secret data.

Does timing leak this data?

Are there any branches in

ECC ops? Point ops? Field ops?

Do the underlying machine insns

take variable time?

7

Recall left-to-right binary method

to compute n; P 7→ nP

using point addition:

def scalarmult(n,P):

if n == 0: return 0

if n == 1: return P

R = scalarmult(n//2,P)

R = R + R

if n % 2: R = R + P

return R

Many branches here.

NAF etc. also use many branches.



5

Examples of successful attacks:

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols” steals

plaintext using decryption timings.

2014 van de Pol–Smart–Yarom

steals Bitcoin key from timings

of 25 OpenSSL signatures.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

6

Constant-time ECC

ECDH computation: a; P 7→ aP

where a is your secret key.

Key generation: a 7→ aB.

Signing: r 7→ rB.

All of these use secret data.

Does timing leak this data?

Are there any branches in

ECC ops? Point ops? Field ops?

Do the underlying machine insns

take variable time?

7

Recall left-to-right binary method

to compute n; P 7→ nP

using point addition:

def scalarmult(n,P):

if n == 0: return 0

if n == 1: return P

R = scalarmult(n//2,P)

R = R + R

if n % 2: R = R + P

return R

Many branches here.

NAF etc. also use many branches.



5

Examples of successful attacks:

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols” steals

plaintext using decryption timings.

2014 van de Pol–Smart–Yarom

steals Bitcoin key from timings

of 25 OpenSSL signatures.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

6

Constant-time ECC

ECDH computation: a; P 7→ aP

where a is your secret key.

Key generation: a 7→ aB.

Signing: r 7→ rB.

All of these use secret data.

Does timing leak this data?

Are there any branches in

ECC ops? Point ops? Field ops?

Do the underlying machine insns

take variable time?

7

Recall left-to-right binary method

to compute n; P 7→ nP

using point addition:

def scalarmult(n,P):

if n == 0: return 0

if n == 1: return P

R = scalarmult(n//2,P)

R = R + R

if n % 2: R = R + P

return R

Many branches here.

NAF etc. also use many branches.



6

Constant-time ECC

ECDH computation: a; P 7→ aP

where a is your secret key.

Key generation: a 7→ aB.

Signing: r 7→ rB.

All of these use secret data.

Does timing leak this data?

Are there any branches in

ECC ops? Point ops? Field ops?

Do the underlying machine insns

take variable time?

7

Recall left-to-right binary method

to compute n; P 7→ nP

using point addition:

def scalarmult(n,P):

if n == 0: return 0

if n == 1: return P

R = scalarmult(n//2,P)

R = R + R

if n % 2: R = R + P

return R

Many branches here.

NAF etc. also use many branches.



6

Constant-time ECC

ECDH computation: a; P 7→ aP

where a is your secret key.

Key generation: a 7→ aB.

Signing: r 7→ rB.

All of these use secret data.

Does timing leak this data?

Are there any branches in

ECC ops? Point ops? Field ops?

Do the underlying machine insns

take variable time?

7

Recall left-to-right binary method

to compute n; P 7→ nP

using point addition:

def scalarmult(n,P):

if n == 0: return 0

if n == 1: return P

R = scalarmult(n//2,P)

R = R + R

if n % 2: R = R + P

return R

Many branches here.

NAF etc. also use many branches.

8

Even if each point addition

takes the same amount of time

(certainly not true in Python),

total time depends on n.

If 2e−1 ≤ n < 2e and

n has exactly w bits set:

number of additions is e + w − 2.

Particularly fast total time

usually indicates very small n.

“Lattice attacks” on signatures

compute the secret key given

positions of very small nonces r .



6

Constant-time ECC

ECDH computation: a; P 7→ aP

where a is your secret key.

Key generation: a 7→ aB.

Signing: r 7→ rB.

All of these use secret data.

Does timing leak this data?

Are there any branches in

ECC ops? Point ops? Field ops?

Do the underlying machine insns

take variable time?

7

Recall left-to-right binary method

to compute n; P 7→ nP

using point addition:

def scalarmult(n,P):

if n == 0: return 0

if n == 1: return P

R = scalarmult(n//2,P)

R = R + R

if n % 2: R = R + P

return R

Many branches here.

NAF etc. also use many branches.

8

Even if each point addition

takes the same amount of time

(certainly not true in Python),

total time depends on n.

If 2e−1 ≤ n < 2e and

n has exactly w bits set:

number of additions is e + w − 2.

Particularly fast total time

usually indicates very small n.

“Lattice attacks” on signatures

compute the secret key given

positions of very small nonces r .



6

Constant-time ECC

ECDH computation: a; P 7→ aP

where a is your secret key.

Key generation: a 7→ aB.

Signing: r 7→ rB.

All of these use secret data.

Does timing leak this data?

Are there any branches in

ECC ops? Point ops? Field ops?

Do the underlying machine insns

take variable time?

7

Recall left-to-right binary method

to compute n; P 7→ nP

using point addition:

def scalarmult(n,P):

if n == 0: return 0

if n == 1: return P

R = scalarmult(n//2,P)

R = R + R

if n % 2: R = R + P

return R

Many branches here.

NAF etc. also use many branches.

8

Even if each point addition

takes the same amount of time

(certainly not true in Python),

total time depends on n.

If 2e−1 ≤ n < 2e and

n has exactly w bits set:

number of additions is e + w − 2.

Particularly fast total time

usually indicates very small n.

“Lattice attacks” on signatures

compute the secret key given

positions of very small nonces r .



7

Recall left-to-right binary method

to compute n; P 7→ nP

using point addition:

def scalarmult(n,P):

if n == 0: return 0

if n == 1: return P

R = scalarmult(n//2,P)

R = R + R

if n % 2: R = R + P

return R

Many branches here.

NAF etc. also use many branches.

8

Even if each point addition

takes the same amount of time

(certainly not true in Python),

total time depends on n.

If 2e−1 ≤ n < 2e and

n has exactly w bits set:

number of additions is e + w − 2.

Particularly fast total time

usually indicates very small n.

“Lattice attacks” on signatures

compute the secret key given

positions of very small nonces r .



7

Recall left-to-right binary method

to compute n; P 7→ nP

using point addition:

def scalarmult(n,P):

if n == 0: return 0

if n == 1: return P

R = scalarmult(n//2,P)

R = R + R

if n % 2: R = R + P

return R

Many branches here.

NAF etc. also use many branches.

8

Even if each point addition

takes the same amount of time

(certainly not true in Python),

total time depends on n.

If 2e−1 ≤ n < 2e and

n has exactly w bits set:

number of additions is e + w − 2.

Particularly fast total time

usually indicates very small n.

“Lattice attacks” on signatures

compute the secret key given

positions of very small nonces r .

9

Even worse:

CPUs do not try to protect

metadata regarding branches.

Actual time for a branch

affects, and is affected by,

detailed state of code cache,

branch predictor, etc.

Attacker interacts with this state,

often sees pattern of branches.

Exploited in, e.g., Bitcoin attack.



7

Recall left-to-right binary method

to compute n; P 7→ nP

using point addition:

def scalarmult(n,P):

if n == 0: return 0

if n == 1: return P

R = scalarmult(n//2,P)

R = R + R

if n % 2: R = R + P

return R

Many branches here.

NAF etc. also use many branches.

8

Even if each point addition

takes the same amount of time

(certainly not true in Python),

total time depends on n.

If 2e−1 ≤ n < 2e and

n has exactly w bits set:

number of additions is e + w − 2.

Particularly fast total time

usually indicates very small n.

“Lattice attacks” on signatures

compute the secret key given

positions of very small nonces r .

9

Even worse:

CPUs do not try to protect

metadata regarding branches.

Actual time for a branch

affects, and is affected by,

detailed state of code cache,

branch predictor, etc.

Attacker interacts with this state,

often sees pattern of branches.

Exploited in, e.g., Bitcoin attack.



7

Recall left-to-right binary method

to compute n; P 7→ nP

using point addition:

def scalarmult(n,P):

if n == 0: return 0

if n == 1: return P

R = scalarmult(n//2,P)

R = R + R

if n % 2: R = R + P

return R

Many branches here.

NAF etc. also use many branches.

8

Even if each point addition

takes the same amount of time

(certainly not true in Python),

total time depends on n.

If 2e−1 ≤ n < 2e and

n has exactly w bits set:

number of additions is e + w − 2.

Particularly fast total time

usually indicates very small n.

“Lattice attacks” on signatures

compute the secret key given

positions of very small nonces r .

9

Even worse:

CPUs do not try to protect

metadata regarding branches.

Actual time for a branch

affects, and is affected by,

detailed state of code cache,

branch predictor, etc.

Attacker interacts with this state,

often sees pattern of branches.

Exploited in, e.g., Bitcoin attack.



8

Even if each point addition

takes the same amount of time

(certainly not true in Python),

total time depends on n.

If 2e−1 ≤ n < 2e and

n has exactly w bits set:

number of additions is e + w − 2.

Particularly fast total time

usually indicates very small n.

“Lattice attacks” on signatures

compute the secret key given

positions of very small nonces r .

9

Even worse:

CPUs do not try to protect

metadata regarding branches.

Actual time for a branch

affects, and is affected by,

detailed state of code cache,

branch predictor, etc.

Attacker interacts with this state,

often sees pattern of branches.

Exploited in, e.g., Bitcoin attack.



8

Even if each point addition

takes the same amount of time

(certainly not true in Python),

total time depends on n.

If 2e−1 ≤ n < 2e and

n has exactly w bits set:

number of additions is e + w − 2.

Particularly fast total time

usually indicates very small n.

“Lattice attacks” on signatures

compute the secret key given

positions of very small nonces r .

9

Even worse:

CPUs do not try to protect

metadata regarding branches.

Actual time for a branch

affects, and is affected by,

detailed state of code cache,

branch predictor, etc.

Attacker interacts with this state,

often sees pattern of branches.

Exploited in, e.g., Bitcoin attack.

Confidence-inspiring solution:

Avoid all data flow from

secrets to branch conditions.



8

Even if each point addition

takes the same amount of time

(certainly not true in Python),

total time depends on n.

If 2e−1 ≤ n < 2e and

n has exactly w bits set:

number of additions is e + w − 2.

Particularly fast total time

usually indicates very small n.

“Lattice attacks” on signatures

compute the secret key given

positions of very small nonces r .

9

Even worse:

CPUs do not try to protect

metadata regarding branches.

Actual time for a branch

affects, and is affected by,

detailed state of code cache,

branch predictor, etc.

Attacker interacts with this state,

often sees pattern of branches.

Exploited in, e.g., Bitcoin attack.

Confidence-inspiring solution:

Avoid all data flow from

secrets to branch conditions.

10

Double-and-add-always

Eliminate branches by

always computing both results:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

return S[n % 2]

Works for 0 ≤ n < 2b.

Always takes 2b additions

(including b doublings).

Use public b: bits allowed in n.



8

Even if each point addition

takes the same amount of time

(certainly not true in Python),

total time depends on n.

If 2e−1 ≤ n < 2e and

n has exactly w bits set:

number of additions is e + w − 2.

Particularly fast total time

usually indicates very small n.

“Lattice attacks” on signatures

compute the secret key given

positions of very small nonces r .

9

Even worse:

CPUs do not try to protect

metadata regarding branches.

Actual time for a branch

affects, and is affected by,

detailed state of code cache,

branch predictor, etc.

Attacker interacts with this state,

often sees pattern of branches.

Exploited in, e.g., Bitcoin attack.

Confidence-inspiring solution:

Avoid all data flow from

secrets to branch conditions.

10

Double-and-add-always

Eliminate branches by

always computing both results:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

return S[n % 2]

Works for 0 ≤ n < 2b.

Always takes 2b additions

(including b doublings).

Use public b: bits allowed in n.



8

Even if each point addition

takes the same amount of time

(certainly not true in Python),

total time depends on n.

If 2e−1 ≤ n < 2e and

n has exactly w bits set:

number of additions is e + w − 2.

Particularly fast total time

usually indicates very small n.

“Lattice attacks” on signatures

compute the secret key given

positions of very small nonces r .

9

Even worse:

CPUs do not try to protect

metadata regarding branches.

Actual time for a branch

affects, and is affected by,

detailed state of code cache,

branch predictor, etc.

Attacker interacts with this state,

often sees pattern of branches.

Exploited in, e.g., Bitcoin attack.

Confidence-inspiring solution:

Avoid all data flow from

secrets to branch conditions.

10

Double-and-add-always

Eliminate branches by

always computing both results:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

return S[n % 2]

Works for 0 ≤ n < 2b.

Always takes 2b additions

(including b doublings).

Use public b: bits allowed in n.



9

Even worse:

CPUs do not try to protect

metadata regarding branches.

Actual time for a branch

affects, and is affected by,

detailed state of code cache,

branch predictor, etc.

Attacker interacts with this state,

often sees pattern of branches.

Exploited in, e.g., Bitcoin attack.

Confidence-inspiring solution:

Avoid all data flow from

secrets to branch conditions.

10

Double-and-add-always

Eliminate branches by

always computing both results:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

return S[n % 2]

Works for 0 ≤ n < 2b.

Always takes 2b additions

(including b doublings).

Use public b: bits allowed in n.



9

Even worse:

CPUs do not try to protect

metadata regarding branches.

Actual time for a branch

affects, and is affected by,

detailed state of code cache,

branch predictor, etc.

Attacker interacts with this state,

often sees pattern of branches.

Exploited in, e.g., Bitcoin attack.

Confidence-inspiring solution:

Avoid all data flow from

secrets to branch conditions.

10

Double-and-add-always

Eliminate branches by

always computing both results:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

return S[n % 2]

Works for 0 ≤ n < 2b.

Always takes 2b additions

(including b doublings).

Use public b: bits allowed in n.

11

Another big problem:

CPUs do not try to protect

metadata regarding array indices.

Actual time for x[i]

affects, and is affected by,

detailed state of data cache,

store-to-load forwarder, etc.

Exploited in, e.g., CacheBleed,

despite Intel and OpenSSL

claiming their code was safe.



9

Even worse:

CPUs do not try to protect

metadata regarding branches.

Actual time for a branch

affects, and is affected by,

detailed state of code cache,

branch predictor, etc.

Attacker interacts with this state,

often sees pattern of branches.

Exploited in, e.g., Bitcoin attack.

Confidence-inspiring solution:

Avoid all data flow from

secrets to branch conditions.

10

Double-and-add-always

Eliminate branches by

always computing both results:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

return S[n % 2]

Works for 0 ≤ n < 2b.

Always takes 2b additions

(including b doublings).

Use public b: bits allowed in n.

11

Another big problem:

CPUs do not try to protect

metadata regarding array indices.

Actual time for x[i]

affects, and is affected by,

detailed state of data cache,

store-to-load forwarder, etc.

Exploited in, e.g., CacheBleed,

despite Intel and OpenSSL

claiming their code was safe.



9

Even worse:

CPUs do not try to protect

metadata regarding branches.

Actual time for a branch

affects, and is affected by,

detailed state of code cache,

branch predictor, etc.

Attacker interacts with this state,

often sees pattern of branches.

Exploited in, e.g., Bitcoin attack.

Confidence-inspiring solution:

Avoid all data flow from

secrets to branch conditions.

10

Double-and-add-always

Eliminate branches by

always computing both results:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

return S[n % 2]

Works for 0 ≤ n < 2b.

Always takes 2b additions

(including b doublings).

Use public b: bits allowed in n.

11

Another big problem:

CPUs do not try to protect

metadata regarding array indices.

Actual time for x[i]

affects, and is affected by,

detailed state of data cache,

store-to-load forwarder, etc.

Exploited in, e.g., CacheBleed,

despite Intel and OpenSSL

claiming their code was safe.



10

Double-and-add-always

Eliminate branches by

always computing both results:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

return S[n % 2]

Works for 0 ≤ n < 2b.

Always takes 2b additions

(including b doublings).

Use public b: bits allowed in n.

11

Another big problem:

CPUs do not try to protect

metadata regarding array indices.

Actual time for x[i]

affects, and is affected by,

detailed state of data cache,

store-to-load forwarder, etc.

Exploited in, e.g., CacheBleed,

despite Intel and OpenSSL

claiming their code was safe.



10

Double-and-add-always

Eliminate branches by

always computing both results:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

return S[n % 2]

Works for 0 ≤ n < 2b.

Always takes 2b additions

(including b doublings).

Use public b: bits allowed in n.

11

Another big problem:

CPUs do not try to protect

metadata regarding array indices.

Actual time for x[i]

affects, and is affected by,

detailed state of data cache,

store-to-load forwarder, etc.

Exploited in, e.g., CacheBleed,

despite Intel and OpenSSL

claiming their code was safe.

Confidence-inspiring solution:

Avoid all data flow from

secrets to memory addresses.



10

Double-and-add-always

Eliminate branches by

always computing both results:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

return S[n % 2]

Works for 0 ≤ n < 2b.

Always takes 2b additions

(including b doublings).

Use public b: bits allowed in n.

11

Another big problem:

CPUs do not try to protect

metadata regarding array indices.

Actual time for x[i]

affects, and is affected by,

detailed state of data cache,

store-to-load forwarder, etc.

Exploited in, e.g., CacheBleed,

despite Intel and OpenSSL

claiming their code was safe.

Confidence-inspiring solution:

Avoid all data flow from

secrets to memory addresses.

12

Table lookups via arithmetic

Always read all table entries.

Use bit operations to select

the desired table entry:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

mask = -(n % 2)

return S[0]^(mask&(S[1]^S[0]))



10

Double-and-add-always

Eliminate branches by

always computing both results:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

return S[n % 2]

Works for 0 ≤ n < 2b.

Always takes 2b additions

(including b doublings).

Use public b: bits allowed in n.

11

Another big problem:

CPUs do not try to protect

metadata regarding array indices.

Actual time for x[i]

affects, and is affected by,

detailed state of data cache,

store-to-load forwarder, etc.

Exploited in, e.g., CacheBleed,

despite Intel and OpenSSL

claiming their code was safe.

Confidence-inspiring solution:

Avoid all data flow from

secrets to memory addresses.

12

Table lookups via arithmetic

Always read all table entries.

Use bit operations to select

the desired table entry:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

mask = -(n % 2)

return S[0]^(mask&(S[1]^S[0]))



10

Double-and-add-always

Eliminate branches by

always computing both results:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

return S[n % 2]

Works for 0 ≤ n < 2b.

Always takes 2b additions

(including b doublings).

Use public b: bits allowed in n.

11

Another big problem:

CPUs do not try to protect

metadata regarding array indices.

Actual time for x[i]

affects, and is affected by,

detailed state of data cache,

store-to-load forwarder, etc.

Exploited in, e.g., CacheBleed,

despite Intel and OpenSSL

claiming their code was safe.

Confidence-inspiring solution:

Avoid all data flow from

secrets to memory addresses.

12

Table lookups via arithmetic

Always read all table entries.

Use bit operations to select

the desired table entry:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

mask = -(n % 2)

return S[0]^(mask&(S[1]^S[0]))



11

Another big problem:

CPUs do not try to protect

metadata regarding array indices.

Actual time for x[i]

affects, and is affected by,

detailed state of data cache,

store-to-load forwarder, etc.

Exploited in, e.g., CacheBleed,

despite Intel and OpenSSL

claiming their code was safe.

Confidence-inspiring solution:

Avoid all data flow from

secrets to memory addresses.

12

Table lookups via arithmetic

Always read all table entries.

Use bit operations to select

the desired table entry:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

mask = -(n % 2)

return S[0]^(mask&(S[1]^S[0]))



11

Another big problem:

CPUs do not try to protect

metadata regarding array indices.

Actual time for x[i]

affects, and is affected by,

detailed state of data cache,

store-to-load forwarder, etc.

Exploited in, e.g., CacheBleed,

despite Intel and OpenSSL

claiming their code was safe.

Confidence-inspiring solution:

Avoid all data flow from

secrets to memory addresses.

12

Table lookups via arithmetic

Always read all table entries.

Use bit operations to select

the desired table entry:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

mask = -(n % 2)

return S[0]^(mask&(S[1]^S[0]))

13

Width-2 unsigned fixed windows

def fixwin2(n,b,table):

if b <= 0: return 0

T = table[0]

mask = (-(1 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[1])

mask = (-(2 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[2])

mask = (-(3 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[3])

R = fixwin2(n//4,b-2,table)

R = R + R

R = R + R

return R + T



11

Another big problem:

CPUs do not try to protect

metadata regarding array indices.

Actual time for x[i]

affects, and is affected by,

detailed state of data cache,

store-to-load forwarder, etc.

Exploited in, e.g., CacheBleed,

despite Intel and OpenSSL

claiming their code was safe.

Confidence-inspiring solution:

Avoid all data flow from

secrets to memory addresses.

12

Table lookups via arithmetic

Always read all table entries.

Use bit operations to select

the desired table entry:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

mask = -(n % 2)

return S[0]^(mask&(S[1]^S[0]))

13

Width-2 unsigned fixed windows

def fixwin2(n,b,table):

if b <= 0: return 0

T = table[0]

mask = (-(1 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[1])

mask = (-(2 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[2])

mask = (-(3 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[3])

R = fixwin2(n//4,b-2,table)

R = R + R

R = R + R

return R + T



11

Another big problem:

CPUs do not try to protect

metadata regarding array indices.

Actual time for x[i]

affects, and is affected by,

detailed state of data cache,

store-to-load forwarder, etc.

Exploited in, e.g., CacheBleed,

despite Intel and OpenSSL

claiming their code was safe.

Confidence-inspiring solution:

Avoid all data flow from

secrets to memory addresses.

12

Table lookups via arithmetic

Always read all table entries.

Use bit operations to select

the desired table entry:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

mask = -(n % 2)

return S[0]^(mask&(S[1]^S[0]))

13

Width-2 unsigned fixed windows

def fixwin2(n,b,table):

if b <= 0: return 0

T = table[0]

mask = (-(1 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[1])

mask = (-(2 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[2])

mask = (-(3 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[3])

R = fixwin2(n//4,b-2,table)

R = R + R

R = R + R

return R + T



12

Table lookups via arithmetic

Always read all table entries.

Use bit operations to select

the desired table entry:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

mask = -(n % 2)

return S[0]^(mask&(S[1]^S[0]))

13

Width-2 unsigned fixed windows

def fixwin2(n,b,table):

if b <= 0: return 0

T = table[0]

mask = (-(1 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[1])

mask = (-(2 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[2])

mask = (-(3 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[3])

R = fixwin2(n//4,b-2,table)

R = R + R

R = R + R

return R + T



12

Table lookups via arithmetic

Always read all table entries.

Use bit operations to select

the desired table entry:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

mask = -(n % 2)

return S[0]^(mask&(S[1]^S[0]))

13

Width-2 unsigned fixed windows

def fixwin2(n,b,table):

if b <= 0: return 0

T = table[0]

mask = (-(1 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[1])

mask = (-(2 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[2])

mask = (-(3 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[3])

R = fixwin2(n//4,b-2,table)

R = R + R

R = R + R

return R + T

14

def scalarmult(n,b,P):

P2 = P+P

table = [0,P,P2,P2+P]

return fixwin2(n,b,table)

Public branches, public indices.

For b ∈ 2Z:

Always b doublings.

Always b=2 additions of T .

Always 2 additions for table.

Can similarly protect

larger-width fixed windows.

Unsigned is slightly easier.

Signed is slightly faster.



12

Table lookups via arithmetic

Always read all table entries.

Use bit operations to select

the desired table entry:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

mask = -(n % 2)

return S[0]^(mask&(S[1]^S[0]))

13

Width-2 unsigned fixed windows

def fixwin2(n,b,table):

if b <= 0: return 0

T = table[0]

mask = (-(1 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[1])

mask = (-(2 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[2])

mask = (-(3 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[3])

R = fixwin2(n//4,b-2,table)

R = R + R

R = R + R

return R + T

14

def scalarmult(n,b,P):

P2 = P+P

table = [0,P,P2,P2+P]

return fixwin2(n,b,table)

Public branches, public indices.

For b ∈ 2Z:

Always b doublings.

Always b=2 additions of T .

Always 2 additions for table.

Can similarly protect

larger-width fixed windows.

Unsigned is slightly easier.

Signed is slightly faster.



12

Table lookups via arithmetic

Always read all table entries.

Use bit operations to select

the desired table entry:

def scalarmult(n,b,P):

if b == 0: return 0

R = scalarmult(n//2,b-1,P)

R2 = R + R

S = [R2,R2 + P]

mask = -(n % 2)

return S[0]^(mask&(S[1]^S[0]))

13

Width-2 unsigned fixed windows

def fixwin2(n,b,table):

if b <= 0: return 0

T = table[0]

mask = (-(1 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[1])

mask = (-(2 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[2])

mask = (-(3 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[3])

R = fixwin2(n//4,b-2,table)

R = R + R

R = R + R

return R + T

14

def scalarmult(n,b,P):

P2 = P+P

table = [0,P,P2,P2+P]

return fixwin2(n,b,table)

Public branches, public indices.

For b ∈ 2Z:

Always b doublings.

Always b=2 additions of T .

Always 2 additions for table.

Can similarly protect

larger-width fixed windows.

Unsigned is slightly easier.

Signed is slightly faster.



13

Width-2 unsigned fixed windows

def fixwin2(n,b,table):

if b <= 0: return 0

T = table[0]

mask = (-(1 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[1])

mask = (-(2 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[2])

mask = (-(3 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[3])

R = fixwin2(n//4,b-2,table)

R = R + R

R = R + R

return R + T

14

def scalarmult(n,b,P):

P2 = P+P

table = [0,P,P2,P2+P]

return fixwin2(n,b,table)

Public branches, public indices.

For b ∈ 2Z:

Always b doublings.

Always b=2 additions of T .

Always 2 additions for table.

Can similarly protect

larger-width fixed windows.

Unsigned is slightly easier.

Signed is slightly faster.



13

Width-2 unsigned fixed windows

def fixwin2(n,b,table):

if b <= 0: return 0

T = table[0]

mask = (-(1 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[1])

mask = (-(2 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[2])

mask = (-(3 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[3])

R = fixwin2(n//4,b-2,table)

R = R + R

R = R + R

return R + T

14

def scalarmult(n,b,P):

P2 = P+P

table = [0,P,P2,P2+P]

return fixwin2(n,b,table)

Public branches, public indices.

For b ∈ 2Z:

Always b doublings.

Always b=2 additions of T .

Always 2 additions for table.

Can similarly protect

larger-width fixed windows.

Unsigned is slightly easier.

Signed is slightly faster.

15

Fixed-base scalar multiplication

Obvious way to handle keygen

a 7→ aB and signing r 7→ rB:

reuse n; P 7→ nP from ECDH.



13

Width-2 unsigned fixed windows

def fixwin2(n,b,table):

if b <= 0: return 0

T = table[0]

mask = (-(1 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[1])

mask = (-(2 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[2])

mask = (-(3 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[3])

R = fixwin2(n//4,b-2,table)

R = R + R

R = R + R

return R + T

14

def scalarmult(n,b,P):

P2 = P+P

table = [0,P,P2,P2+P]

return fixwin2(n,b,table)

Public branches, public indices.

For b ∈ 2Z:

Always b doublings.

Always b=2 additions of T .

Always 2 additions for table.

Can similarly protect

larger-width fixed windows.

Unsigned is slightly easier.

Signed is slightly faster.

15

Fixed-base scalar multiplication

Obvious way to handle keygen

a 7→ aB and signing r 7→ rB:

reuse n; P 7→ nP from ECDH.



13

Width-2 unsigned fixed windows

def fixwin2(n,b,table):

if b <= 0: return 0

T = table[0]

mask = (-(1 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[1])

mask = (-(2 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[2])

mask = (-(3 ^ (n % 4))) >> 2

T ^= ~mask & (T^table[3])

R = fixwin2(n//4,b-2,table)

R = R + R

R = R + R

return R + T

14

def scalarmult(n,b,P):

P2 = P+P

table = [0,P,P2,P2+P]

return fixwin2(n,b,table)

Public branches, public indices.

For b ∈ 2Z:

Always b doublings.

Always b=2 additions of T .

Always 2 additions for table.

Can similarly protect

larger-width fixed windows.

Unsigned is slightly easier.

Signed is slightly faster.

15

Fixed-base scalar multiplication

Obvious way to handle keygen

a 7→ aB and signing r 7→ rB:

reuse n; P 7→ nP from ECDH.



14

def scalarmult(n,b,P):

P2 = P+P

table = [0,P,P2,P2+P]

return fixwin2(n,b,table)

Public branches, public indices.

For b ∈ 2Z:

Always b doublings.

Always b=2 additions of T .

Always 2 additions for table.

Can similarly protect

larger-width fixed windows.

Unsigned is slightly easier.

Signed is slightly faster.

15

Fixed-base scalar multiplication

Obvious way to handle keygen

a 7→ aB and signing r 7→ rB:

reuse n; P 7→ nP from ECDH.



14

def scalarmult(n,b,P):

P2 = P+P

table = [0,P,P2,P2+P]

return fixwin2(n,b,table)

Public branches, public indices.

For b ∈ 2Z:

Always b doublings.

Always b=2 additions of T .

Always 2 additions for table.

Can similarly protect

larger-width fixed windows.

Unsigned is slightly easier.

Signed is slightly faster.

15

Fixed-base scalar multiplication

Obvious way to handle keygen

a 7→ aB and signing r 7→ rB:

reuse n; P 7→ nP from ECDH.

Can do much better since B is

a constant: standard base point.

e.g. For b = 256: Compute

(2128n1 + n0)B as n1B1 + n0B

using double-scalar fixed windows,

after precomputing B1 = 2128B.

Fun exercise: For each k , try to

minimize number of additions

using k precomputed points.



14

def scalarmult(n,b,P):

P2 = P+P

table = [0,P,P2,P2+P]

return fixwin2(n,b,table)

Public branches, public indices.

For b ∈ 2Z:

Always b doublings.

Always b=2 additions of T .

Always 2 additions for table.

Can similarly protect

larger-width fixed windows.

Unsigned is slightly easier.

Signed is slightly faster.

15

Fixed-base scalar multiplication

Obvious way to handle keygen

a 7→ aB and signing r 7→ rB:

reuse n; P 7→ nP from ECDH.

Can do much better since B is

a constant: standard base point.

e.g. For b = 256: Compute

(2128n1 + n0)B as n1B1 + n0B

using double-scalar fixed windows,

after precomputing B1 = 2128B.

Fun exercise: For each k , try to

minimize number of additions

using k precomputed points.

16

Recall Chou timings:

57164 cycles for keygen,

63526 cycles for signature,

205741 cycles for verification,

159128 cycles for ECDH.

ECDH is single-scalar mult.

Verification is double-scalar mult,

somewhat slower than ECDH.

(But batch verification is faster.)

Keygen is fixed-base scalar mult,

much faster than ECDH.

Signing is keygen plus overhead

depending on message length.



14

def scalarmult(n,b,P):

P2 = P+P

table = [0,P,P2,P2+P]

return fixwin2(n,b,table)

Public branches, public indices.

For b ∈ 2Z:

Always b doublings.

Always b=2 additions of T .

Always 2 additions for table.

Can similarly protect

larger-width fixed windows.

Unsigned is slightly easier.

Signed is slightly faster.

15

Fixed-base scalar multiplication

Obvious way to handle keygen

a 7→ aB and signing r 7→ rB:

reuse n; P 7→ nP from ECDH.

Can do much better since B is

a constant: standard base point.

e.g. For b = 256: Compute

(2128n1 + n0)B as n1B1 + n0B

using double-scalar fixed windows,

after precomputing B1 = 2128B.

Fun exercise: For each k, try to

minimize number of additions

using k precomputed points.

16

Recall Chou timings:

57164 cycles for keygen,

63526 cycles for signature,

205741 cycles for verification,

159128 cycles for ECDH.

ECDH is single-scalar mult.

Verification is double-scalar mult,

somewhat slower than ECDH.

(But batch verification is faster.)

Keygen is fixed-base scalar mult,

much faster than ECDH.

Signing is keygen plus overhead

depending on message length.



14

def scalarmult(n,b,P):

P2 = P+P

table = [0,P,P2,P2+P]

return fixwin2(n,b,table)

Public branches, public indices.

For b ∈ 2Z:

Always b doublings.

Always b=2 additions of T .

Always 2 additions for table.

Can similarly protect

larger-width fixed windows.

Unsigned is slightly easier.

Signed is slightly faster.

15

Fixed-base scalar multiplication

Obvious way to handle keygen

a 7→ aB and signing r 7→ rB:

reuse n; P 7→ nP from ECDH.

Can do much better since B is

a constant: standard base point.

e.g. For b = 256: Compute

(2128n1 + n0)B as n1B1 + n0B

using double-scalar fixed windows,

after precomputing B1 = 2128B.

Fun exercise: For each k, try to

minimize number of additions

using k precomputed points.

16

Recall Chou timings:

57164 cycles for keygen,

63526 cycles for signature,

205741 cycles for verification,

159128 cycles for ECDH.

ECDH is single-scalar mult.

Verification is double-scalar mult,

somewhat slower than ECDH.

(But batch verification is faster.)

Keygen is fixed-base scalar mult,

much faster than ECDH.

Signing is keygen plus overhead

depending on message length.



15

Fixed-base scalar multiplication

Obvious way to handle keygen

a 7→ aB and signing r 7→ rB:

reuse n; P 7→ nP from ECDH.

Can do much better since B is

a constant: standard base point.

e.g. For b = 256: Compute

(2128n1 + n0)B as n1B1 + n0B

using double-scalar fixed windows,

after precomputing B1 = 2128B.

Fun exercise: For each k , try to

minimize number of additions

using k precomputed points.

16

Recall Chou timings:

57164 cycles for keygen,

63526 cycles for signature,

205741 cycles for verification,

159128 cycles for ECDH.

ECDH is single-scalar mult.

Verification is double-scalar mult,

somewhat slower than ECDH.

(But batch verification is faster.)

Keygen is fixed-base scalar mult,

much faster than ECDH.

Signing is keygen plus overhead

depending on message length.



15

Fixed-base scalar multiplication

Obvious way to handle keygen

a 7→ aB and signing r 7→ rB:

reuse n; P 7→ nP from ECDH.

Can do much better since B is

a constant: standard base point.

e.g. For b = 256: Compute

(2128n1 + n0)B as n1B1 + n0B

using double-scalar fixed windows,

after precomputing B1 = 2128B.

Fun exercise: For each k , try to

minimize number of additions

using k precomputed points.

16

Recall Chou timings:

57164 cycles for keygen,

63526 cycles for signature,

205741 cycles for verification,

159128 cycles for ECDH.

ECDH is single-scalar mult.

Verification is double-scalar mult,

somewhat slower than ECDH.

(But batch verification is faster.)

Keygen is fixed-base scalar mult,

much faster than ECDH.

Signing is keygen plus overhead

depending on message length.

17

Let’s move down a level:

ECC ops: e.g.,
verify SB = R + hA

windowing etc.
��

Point ops: e.g.,
P;Q 7→ P + Q

faster doubling etc.
��

Field ops: e.g.,
x1; x2 7→ x1x2 in Fp

delayed carries etc.
��

Machine insns: e.g.,
32-bit multiplication

��
pipelining etc.
��

Gates: e.g.,
AND, OR, XOR



15

Fixed-base scalar multiplication

Obvious way to handle keygen

a 7→ aB and signing r 7→ rB:

reuse n; P 7→ nP from ECDH.

Can do much better since B is

a constant: standard base point.

e.g. For b = 256: Compute

(2128n1 + n0)B as n1B1 + n0B

using double-scalar fixed windows,

after precomputing B1 = 2128B.

Fun exercise: For each k , try to

minimize number of additions

using k precomputed points.

16

Recall Chou timings:

57164 cycles for keygen,

63526 cycles for signature,

205741 cycles for verification,

159128 cycles for ECDH.

ECDH is single-scalar mult.

Verification is double-scalar mult,

somewhat slower than ECDH.

(But batch verification is faster.)

Keygen is fixed-base scalar mult,

much faster than ECDH.

Signing is keygen plus overhead

depending on message length.

17

Let’s move down a level:

ECC ops: e.g.,
verify SB = R + hA

windowing etc.
��

Point ops: e.g.,
P;Q 7→ P + Q

faster doubling etc.
��

Field ops: e.g.,
x1; x2 7→ x1x2 in Fp

delayed carries etc.
��

Machine insns: e.g.,
32-bit multiplication

��
pipelining etc.
��

Gates: e.g.,
AND, OR, XOR



15

Fixed-base scalar multiplication

Obvious way to handle keygen

a 7→ aB and signing r 7→ rB:

reuse n; P 7→ nP from ECDH.

Can do much better since B is

a constant: standard base point.

e.g. For b = 256: Compute

(2128n1 + n0)B as n1B1 + n0B

using double-scalar fixed windows,

after precomputing B1 = 2128B.

Fun exercise: For each k , try to

minimize number of additions

using k precomputed points.

16

Recall Chou timings:

57164 cycles for keygen,

63526 cycles for signature,

205741 cycles for verification,

159128 cycles for ECDH.

ECDH is single-scalar mult.

Verification is double-scalar mult,

somewhat slower than ECDH.

(But batch verification is faster.)

Keygen is fixed-base scalar mult,

much faster than ECDH.

Signing is keygen plus overhead

depending on message length.

17

Let’s move down a level:

ECC ops: e.g.,
verify SB = R + hA

windowing etc.
��

Point ops: e.g.,
P;Q 7→ P + Q

faster doubling etc.
��

Field ops: e.g.,
x1; x2 7→ x1x2 in Fp

delayed carries etc.
��

Machine insns: e.g.,
32-bit multiplication

��
pipelining etc.
��

Gates: e.g.,
AND, OR, XOR



16

Recall Chou timings:

57164 cycles for keygen,

63526 cycles for signature,

205741 cycles for verification,

159128 cycles for ECDH.

ECDH is single-scalar mult.

Verification is double-scalar mult,

somewhat slower than ECDH.

(But batch verification is faster.)

Keygen is fixed-base scalar mult,

much faster than ECDH.

Signing is keygen plus overhead

depending on message length.

17

Let’s move down a level:

ECC ops: e.g.,
verify SB = R + hA

windowing etc.
��

Point ops: e.g.,
P;Q 7→ P + Q

faster doubling etc.
��

Field ops: e.g.,
x1; x2 7→ x1x2 in Fp

delayed carries etc.
��

Machine insns: e.g.,
32-bit multiplication

��
pipelining etc.
��

Gates: e.g.,
AND, OR, XOR



16

Recall Chou timings:

57164 cycles for keygen,

63526 cycles for signature,

205741 cycles for verification,

159128 cycles for ECDH.

ECDH is single-scalar mult.

Verification is double-scalar mult,

somewhat slower than ECDH.

(But batch verification is faster.)

Keygen is fixed-base scalar mult,

much faster than ECDH.

Signing is keygen plus overhead

depending on message length.

17

Let’s move down a level:

ECC ops: e.g.,
verify SB = R + hA

windowing etc.
��

Point ops: e.g.,
P;Q 7→ P + Q

faster doubling etc.
��

Field ops: e.g.,
x1; x2 7→ x1x2 in Fp

delayed carries etc.
��

Machine insns: e.g.,
32-bit multiplication

��
pipelining etc.
��

Gates: e.g.,
AND, OR, XOR

18

Eliminating divisions

Have to do many additions

of curve points: P;Q 7→ P + Q.

How to efficiently decompose

additions into field ops?

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 − x1x2)=(1− dx1x2y1y2))

uses expensive divisions.



16

Recall Chou timings:

57164 cycles for keygen,

63526 cycles for signature,

205741 cycles for verification,

159128 cycles for ECDH.

ECDH is single-scalar mult.

Verification is double-scalar mult,

somewhat slower than ECDH.

(But batch verification is faster.)

Keygen is fixed-base scalar mult,

much faster than ECDH.

Signing is keygen plus overhead

depending on message length.

17

Let’s move down a level:

ECC ops: e.g.,
verify SB = R + hA

windowing etc.
��

Point ops: e.g.,
P;Q 7→ P + Q

faster doubling etc.
��

Field ops: e.g.,
x1; x2 7→ x1x2 in Fp

delayed carries etc.
��

Machine insns: e.g.,
32-bit multiplication

��
pipelining etc.
��

Gates: e.g.,
AND, OR, XOR

18

Eliminating divisions

Have to do many additions

of curve points: P;Q 7→ P + Q.

How to efficiently decompose

additions into field ops?

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 − x1x2)=(1− dx1x2y1y2))

uses expensive divisions.



16

Recall Chou timings:

57164 cycles for keygen,

63526 cycles for signature,

205741 cycles for verification,

159128 cycles for ECDH.

ECDH is single-scalar mult.

Verification is double-scalar mult,

somewhat slower than ECDH.

(But batch verification is faster.)

Keygen is fixed-base scalar mult,

much faster than ECDH.

Signing is keygen plus overhead

depending on message length.

17

Let’s move down a level:

ECC ops: e.g.,
verify SB = R + hA

windowing etc.
��

Point ops: e.g.,
P;Q 7→ P + Q

faster doubling etc.
��

Field ops: e.g.,
x1; x2 7→ x1x2 in Fp

delayed carries etc.
��

Machine insns: e.g.,
32-bit multiplication

��
pipelining etc.
��

Gates: e.g.,
AND, OR, XOR

18

Eliminating divisions

Have to do many additions

of curve points: P;Q 7→ P + Q.

How to efficiently decompose

additions into field ops?

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 − x1x2)=(1− dx1x2y1y2))

uses expensive divisions.



17

Let’s move down a level:

ECC ops: e.g.,
verify SB = R + hA

windowing etc.
��

Point ops: e.g.,
P;Q 7→ P + Q

faster doubling etc.
��

Field ops: e.g.,
x1; x2 7→ x1x2 in Fp

delayed carries etc.
��

Machine insns: e.g.,
32-bit multiplication

��
pipelining etc.
��

Gates: e.g.,
AND, OR, XOR

18

Eliminating divisions

Have to do many additions

of curve points: P;Q 7→ P + Q.

How to efficiently decompose

additions into field ops?

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 − x1x2)=(1− dx1x2y1y2))

uses expensive divisions.



17

Let’s move down a level:

ECC ops: e.g.,
verify SB = R + hA

windowing etc.
��

Point ops: e.g.,
P;Q 7→ P + Q

faster doubling etc.
��

Field ops: e.g.,
x1; x2 7→ x1x2 in Fp

delayed carries etc.
��

Machine insns: e.g.,
32-bit multiplication

��
pipelining etc.
��

Gates: e.g.,
AND, OR, XOR

18

Eliminating divisions

Have to do many additions

of curve points: P;Q 7→ P + Q.

How to efficiently decompose

additions into field ops?

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 − x1x2)=(1− dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as (X : Y : Z)

with x = X=Z, y = Y=Z, Z 6= 0.



17

Let’s move down a level:

ECC ops: e.g.,
verify SB = R + hA

windowing etc.
��

Point ops: e.g.,
P;Q 7→ P + Q

faster doubling etc.
��

Field ops: e.g.,
x1; x2 7→ x1x2 in Fp

delayed carries etc.
��

Machine insns: e.g.,
32-bit multiplication

��
pipelining etc.
��

Gates: e.g.,
AND, OR, XOR

18

Eliminating divisions

Have to do many additions

of curve points: P;Q 7→ P + Q.

How to efficiently decompose

additions into field ops?

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 − x1x2)=(1− dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as (X : Y : Z)

with x = X=Z, y = Y=Z, Z 6= 0.

19

Addition now has to

handle fractions as input:„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
− X1

Z1

X2
Z2

1− d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=



17

Let’s move down a level:

ECC ops: e.g.,
verify SB = R + hA

windowing etc.
��

Point ops: e.g.,
P;Q 7→ P + Q

faster doubling etc.
��

Field ops: e.g.,
x1; x2 7→ x1x2 in Fp

delayed carries etc.
��

Machine insns: e.g.,
32-bit multiplication

��
pipelining etc.
��

Gates: e.g.,
AND, OR, XOR

18

Eliminating divisions

Have to do many additions

of curve points: P;Q 7→ P + Q.

How to efficiently decompose

additions into field ops?

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 − x1x2)=(1− dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as (X : Y : Z)

with x = X=Z, y = Y=Z, Z 6= 0.

19

Addition now has to

handle fractions as input:„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
− X1

Z1

X2
Z2

1− d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=



17

Let’s move down a level:

ECC ops: e.g.,
verify SB = R + hA

windowing etc.
��

Point ops: e.g.,
P;Q 7→ P + Q

faster doubling etc.
��

Field ops: e.g.,
x1; x2 7→ x1x2 in Fp

delayed carries etc.
��

Machine insns: e.g.,
32-bit multiplication

��
pipelining etc.
��

Gates: e.g.,
AND, OR, XOR

18

Eliminating divisions

Have to do many additions

of curve points: P;Q 7→ P + Q.

How to efficiently decompose

additions into field ops?

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 − x1x2)=(1− dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as (X : Y : Z)

with x = X=Z, y = Y=Z, Z 6= 0.

19

Addition now has to

handle fractions as input:„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
− X1

Z1

X2
Z2

1− d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=



18

Eliminating divisions

Have to do many additions

of curve points: P;Q 7→ P + Q.

How to efficiently decompose

additions into field ops?

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 − x1x2)=(1− dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as (X : Y : Z)

with x = X=Z, y = Y=Z, Z 6= 0.

19

Addition now has to

handle fractions as input:„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
− X1

Z1

X2
Z2

1− d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=



18

Eliminating divisions

Have to do many additions

of curve points: P;Q 7→ P + Q.

How to efficiently decompose

additions into field ops?

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 − x1x2)=(1− dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as (X : Y : Z)

with x = X=Z, y = Y=Z, Z 6= 0.

19

Addition now has to

handle fractions as input:„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
− X1

Z1

X2
Z2

1− d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 − X1X2)

Z2
1Z

2
2 − dX1X2Y1Y2

!



18

Eliminating divisions

Have to do many additions

of curve points: P;Q 7→ P + Q.

How to efficiently decompose

additions into field ops?

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 − x1x2)=(1− dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as (X : Y : Z)

with x = X=Z, y = Y=Z, Z 6= 0.

19

Addition now has to

handle fractions as input:„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
− X1

Z1

X2
Z2

1− d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 − X1X2)

Z2
1Z

2
2 − dX1X2Y1Y2

!

20

i.e.

„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

„
X3

Z3
;
Y3

Z3

«
where

F = Z2
1Z

2
2 − dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 − X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!



18

Eliminating divisions

Have to do many additions

of curve points: P;Q 7→ P + Q.

How to efficiently decompose

additions into field ops?

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 − x1x2)=(1− dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as (X : Y : Z)

with x = X=Z, y = Y=Z, Z 6= 0.

19

Addition now has to

handle fractions as input:„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
− X1

Z1

X2
Z2

1− d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 − X1X2)

Z2
1Z

2
2 − dX1X2Y1Y2

!

20

i.e.

„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

„
X3

Z3
;
Y3

Z3

«
where

F = Z2
1Z

2
2 − dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 − X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!



18

Eliminating divisions

Have to do many additions

of curve points: P;Q 7→ P + Q.

How to efficiently decompose

additions into field ops?

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 − x1x2)=(1− dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as (X : Y : Z)

with x = X=Z, y = Y=Z, Z 6= 0.

19

Addition now has to

handle fractions as input:„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
− X1

Z1

X2
Z2

1− d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 − X1X2)

Z2
1Z

2
2 − dX1X2Y1Y2

!

20

i.e.

„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

„
X3

Z3
;
Y3

Z3

«
where

F = Z2
1Z

2
2 − dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 − X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!



19

Addition now has to

handle fractions as input:„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
− X1

Z1

X2
Z2

1− d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 − X1X2)

Z2
1Z

2
2 − dX1X2Y1Y2

!

20

i.e.

„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

„
X3

Z3
;
Y3

Z3

«
where

F = Z2
1Z

2
2 − dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 − X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!



19

Addition now has to

handle fractions as input:„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
− X1

Z1

X2
Z2

1− d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 − X1X2)

Z2
1Z

2
2 − dX1X2Y1Y2

!

20

i.e.

„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

„
X3

Z3
;
Y3

Z3

«
where

F = Z2
1Z

2
2 − dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 − X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!

21

Eliminate common subexpressions

to save multiplications:

A = Z1 · Z2; B = A2;

C = X1 · X2;

D = Y1 · Y2;

E = d · C ·D;

F = B − E; G = B + E;

X3 = A · F · (X1 · Y2 + Y1 · X2);

Y3 = A · G · (D − C);

Z3 = F · G.

Cost: 11M + 1S + 1Md where

M;S are costs of mult, square.

Choose small d for cheap Md .



19

Addition now has to

handle fractions as input:„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
− X1

Z1

X2
Z2

1− d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 − X1X2)

Z2
1Z

2
2 − dX1X2Y1Y2

!

20

i.e.

„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

„
X3

Z3
;
Y3

Z3

«
where

F = Z2
1Z

2
2 − dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 − X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!

21

Eliminate common subexpressions

to save multiplications:

A = Z1 · Z2; B = A2;

C = X1 · X2;

D = Y1 · Y2;

E = d · C ·D;

F = B − E; G = B + E;

X3 = A · F · (X1 · Y2 + Y1 · X2);

Y3 = A · G · (D − C);

Z3 = F · G.

Cost: 11M + 1S + 1Md where

M;S are costs of mult, square.

Choose small d for cheap Md .



19

Addition now has to

handle fractions as input:„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
− X1

Z1

X2
Z2

1− d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 − X1X2)

Z2
1Z

2
2 − dX1X2Y1Y2

!

20

i.e.

„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

„
X3

Z3
;
Y3

Z3

«
where

F = Z2
1Z

2
2 − dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 − X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!

21

Eliminate common subexpressions

to save multiplications:

A = Z1 · Z2; B = A2;

C = X1 · X2;

D = Y1 · Y2;

E = d · C ·D;

F = B − E; G = B + E;

X3 = A · F · (X1 · Y2 + Y1 · X2);

Y3 = A · G · (D − C);

Z3 = F · G.

Cost: 11M + 1S + 1Md where

M;S are costs of mult, square.

Choose small d for cheap Md .



20

i.e.

„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

„
X3

Z3
;
Y3

Z3

«
where

F = Z2
1Z

2
2 − dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 − X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!

21

Eliminate common subexpressions

to save multiplications:

A = Z1 · Z2; B = A2;

C = X1 · X2;

D = Y1 · Y2;

E = d · C ·D;

F = B − E; G = B + E;

X3 = A · F · (X1 · Y2 + Y1 · X2);

Y3 = A · G · (D − C);

Z3 = F · G.

Cost: 11M + 1S + 1Md where

M;S are costs of mult, square.

Choose small d for cheap Md .



20

i.e.

„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

„
X3

Z3
;
Y3

Z3

«
where

F = Z2
1Z

2
2 − dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 − X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!

21

Eliminate common subexpressions

to save multiplications:

A = Z1 · Z2; B = A2;

C = X1 · X2;

D = Y1 · Y2;

E = d · C ·D;

F = B − E; G = B + E;

X3 = A · F · (X1 · Y2 + Y1 · X2);

Y3 = A · G · (D − C);

Z3 = F · G.

Cost: 11M + 1S + 1Md where

M;S are costs of mult, square.

Choose small d for cheap Md .

22

Can do better: 10M + 1S + 1Md .

Obvious 4M method to

compute product C + Mt + Dt2

of polys X1 + Y1t, X2 + Y2t:

C = X1 · X2;

D = Y1 · Y2;

M = X1 · Y2 + Y1 · X2.



20

i.e.

„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

„
X3

Z3
;
Y3

Z3

«
where

F = Z2
1Z

2
2 − dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 − X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!

21

Eliminate common subexpressions

to save multiplications:

A = Z1 · Z2; B = A2;

C = X1 · X2;

D = Y1 · Y2;

E = d · C ·D;

F = B − E; G = B + E;

X3 = A · F · (X1 · Y2 + Y1 · X2);

Y3 = A · G · (D − C);

Z3 = F · G.

Cost: 11M + 1S + 1Md where

M;S are costs of mult, square.

Choose small d for cheap Md .

22

Can do better: 10M + 1S + 1Md .

Obvious 4M method to

compute product C + Mt + Dt2

of polys X1 + Y1t, X2 + Y2t:

C = X1 · X2;

D = Y1 · Y2;

M = X1 · Y2 + Y1 · X2.



20

i.e.

„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

„
X3

Z3
;
Y3

Z3

«
where

F = Z2
1Z

2
2 − dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 − X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!

21

Eliminate common subexpressions

to save multiplications:

A = Z1 · Z2; B = A2;

C = X1 · X2;

D = Y1 · Y2;

E = d · C ·D;

F = B − E; G = B + E;

X3 = A · F · (X1 · Y2 + Y1 · X2);

Y3 = A · G · (D − C);

Z3 = F · G.

Cost: 11M + 1S + 1Md where

M;S are costs of mult, square.

Choose small d for cheap Md .

22

Can do better: 10M + 1S + 1Md .

Obvious 4M method to

compute product C + Mt + Dt2

of polys X1 + Y1t, X2 + Y2t:

C = X1 · X2;

D = Y1 · Y2;

M = X1 · Y2 + Y1 · X2.



21

Eliminate common subexpressions

to save multiplications:

A = Z1 · Z2; B = A2;

C = X1 · X2;

D = Y1 · Y2;

E = d · C ·D;

F = B − E; G = B + E;

X3 = A · F · (X1 · Y2 + Y1 · X2);

Y3 = A · G · (D − C);

Z3 = F · G.

Cost: 11M + 1S + 1Md where

M;S are costs of mult, square.

Choose small d for cheap Md .

22

Can do better: 10M + 1S + 1Md .

Obvious 4M method to

compute product C + Mt + Dt2

of polys X1 + Y1t, X2 + Y2t:

C = X1 · X2;

D = Y1 · Y2;

M = X1 · Y2 + Y1 · X2.



21

Eliminate common subexpressions

to save multiplications:

A = Z1 · Z2; B = A2;

C = X1 · X2;

D = Y1 · Y2;

E = d · C ·D;

F = B − E; G = B + E;

X3 = A · F · (X1 · Y2 + Y1 · X2);

Y3 = A · G · (D − C);

Z3 = F · G.

Cost: 11M + 1S + 1Md where

M;S are costs of mult, square.

Choose small d for cheap Md .

22

Can do better: 10M + 1S + 1Md .

Obvious 4M method to

compute product C + Mt + Dt2

of polys X1 + Y1t, X2 + Y2t:

C = X1 · X2;

D = Y1 · Y2;

M = X1 · Y2 + Y1 · X2.

Karatsuba’s 3M method:

C = X1 · X2;

D = Y1 · Y2;

M = (X1 +Y1) · (X2 +Y2)−C−D.



21

Eliminate common subexpressions

to save multiplications:

A = Z1 · Z2; B = A2;

C = X1 · X2;

D = Y1 · Y2;

E = d · C ·D;

F = B − E; G = B + E;

X3 = A · F · (X1 · Y2 + Y1 · X2);

Y3 = A · G · (D − C);

Z3 = F · G.

Cost: 11M + 1S + 1Md where

M;S are costs of mult, square.

Choose small d for cheap Md .

22

Can do better: 10M + 1S + 1Md .

Obvious 4M method to

compute product C + Mt + Dt2

of polys X1 + Y1t, X2 + Y2t:

C = X1 · X2;

D = Y1 · Y2;

M = X1 · Y2 + Y1 · X2.

Karatsuba’s 3M method:

C = X1 · X2;

D = Y1 · Y2;

M = (X1 +Y1) · (X2 +Y2)−C−D.

23

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1−x1x1)=(1−dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1 y

2
1 ),

(y2
1−x2

1 )=(1− dx2
1 y

2
1 )).



21

Eliminate common subexpressions

to save multiplications:

A = Z1 · Z2; B = A2;

C = X1 · X2;

D = Y1 · Y2;

E = d · C ·D;

F = B − E; G = B + E;

X3 = A · F · (X1 · Y2 + Y1 · X2);

Y3 = A · G · (D − C);

Z3 = F · G.

Cost: 11M + 1S + 1Md where

M;S are costs of mult, square.

Choose small d for cheap Md .

22

Can do better: 10M + 1S + 1Md .

Obvious 4M method to

compute product C + Mt + Dt2

of polys X1 + Y1t, X2 + Y2t:

C = X1 · X2;

D = Y1 · Y2;

M = X1 · Y2 + Y1 · X2.

Karatsuba’s 3M method:

C = X1 · X2;

D = Y1 · Y2;

M = (X1 +Y1) · (X2 +Y2)−C−D.

23

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1−x1x1)=(1−dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1 y

2
1 ),

(y2
1−x2

1 )=(1− dx2
1 y

2
1 )).



21

Eliminate common subexpressions

to save multiplications:

A = Z1 · Z2; B = A2;

C = X1 · X2;

D = Y1 · Y2;

E = d · C ·D;

F = B − E; G = B + E;

X3 = A · F · (X1 · Y2 + Y1 · X2);

Y3 = A · G · (D − C);

Z3 = F · G.

Cost: 11M + 1S + 1Md where

M;S are costs of mult, square.

Choose small d for cheap Md .

22

Can do better: 10M + 1S + 1Md .

Obvious 4M method to

compute product C + Mt + Dt2

of polys X1 + Y1t, X2 + Y2t:

C = X1 · X2;

D = Y1 · Y2;

M = X1 · Y2 + Y1 · X2.

Karatsuba’s 3M method:

C = X1 · X2;

D = Y1 · Y2;

M = (X1 +Y1) · (X2 +Y2)−C−D.

23

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1−x1x1)=(1−dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1 y

2
1 ),

(y2
1−x2

1 )=(1− dx2
1 y

2
1 )).



22

Can do better: 10M + 1S + 1Md .

Obvious 4M method to

compute product C + Mt + Dt2

of polys X1 + Y1t, X2 + Y2t:

C = X1 · X2;

D = Y1 · Y2;

M = X1 · Y2 + Y1 · X2.

Karatsuba’s 3M method:

C = X1 · X2;

D = Y1 · Y2;

M = (X1 +Y1) · (X2 +Y2)−C−D.

23

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1−x1x1)=(1−dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1 y

2
1 ),

(y2
1−x2

1 )=(1− dx2
1 y

2
1 )).



22

Can do better: 10M + 1S + 1Md .

Obvious 4M method to

compute product C + Mt + Dt2

of polys X1 + Y1t, X2 + Y2t:

C = X1 · X2;

D = Y1 · Y2;

M = X1 · Y2 + Y1 · X2.

Karatsuba’s 3M method:

C = X1 · X2;

D = Y1 · Y2;

M = (X1 +Y1) · (X2 +Y2)−C−D.

23

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1−x1x1)=(1−dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1 y

2
1 ),

(y2
1−x2

1 )=(1− dx2
1 y

2
1 )).

x2
1 + y2

1 = 1 + dx2
1 y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1 ),

(y2
1−x2

1 )=(2− x2
1 − y2

1 )).



22

Can do better: 10M + 1S + 1Md .

Obvious 4M method to

compute product C + Mt + Dt2

of polys X1 + Y1t, X2 + Y2t:

C = X1 · X2;

D = Y1 · Y2;

M = X1 · Y2 + Y1 · X2.

Karatsuba’s 3M method:

C = X1 · X2;

D = Y1 · Y2;

M = (X1 +Y1) · (X2 +Y2)−C−D.

23

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1−x1x1)=(1−dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1 y

2
1 ),

(y2
1−x2

1 )=(1− dx2
1 y

2
1 )).

x2
1 + y2

1 = 1 + dx2
1 y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1 ),

(y2
1−x2

1 )=(2− x2
1 − y2

1 )).

Again eliminate divisions

using (X : Y : Z): only 3M + 4S.

Much faster than addition.



22

Can do better: 10M + 1S + 1Md .

Obvious 4M method to

compute product C + Mt + Dt2

of polys X1 + Y1t, X2 + Y2t:

C = X1 · X2;

D = Y1 · Y2;

M = X1 · Y2 + Y1 · X2.

Karatsuba’s 3M method:

C = X1 · X2;

D = Y1 · Y2;

M = (X1 +Y1) · (X2 +Y2)−C−D.

23

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1−x1x1)=(1−dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1 y

2
1 ),

(y2
1−x2

1 )=(1− dx2
1 y

2
1 )).

x2
1 + y2

1 = 1 + dx2
1 y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1 ),

(y2
1−x2

1 )=(2− x2
1 − y2

1 )).

Again eliminate divisions

using (X : Y : Z): only 3M + 4S.

Much faster than addition.

24

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 − x2y2)=(x1y2 − x2y1)).

Low degree, no need for d .



22

Can do better: 10M + 1S + 1Md .

Obvious 4M method to

compute product C + Mt + Dt2

of polys X1 + Y1t, X2 + Y2t:

C = X1 · X2;

D = Y1 · Y2;

M = X1 · Y2 + Y1 · X2.

Karatsuba’s 3M method:

C = X1 · X2;

D = Y1 · Y2;

M = (X1 +Y1) · (X2 +Y2)−C−D.

23

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1−x1x1)=(1−dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1 y

2
1 ),

(y2
1−x2

1 )=(1− dx2
1 y

2
1 )).

x2
1 + y2

1 = 1 + dx2
1 y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1 ),

(y2
1−x2

1 )=(2− x2
1 − y2

1 )).

Again eliminate divisions

using (X : Y : Z): only 3M + 4S.

Much faster than addition.

24

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 − x2y2)=(x1y2 − x2y1)).

Low degree, no need for d .



22

Can do better: 10M + 1S + 1Md .

Obvious 4M method to

compute product C + Mt + Dt2

of polys X1 + Y1t, X2 + Y2t:

C = X1 · X2;

D = Y1 · Y2;

M = X1 · Y2 + Y1 · X2.

Karatsuba’s 3M method:

C = X1 · X2;

D = Y1 · Y2;

M = (X1 +Y1) · (X2 +Y2)−C−D.

23

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1−x1x1)=(1−dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1 y

2
1 ),

(y2
1−x2

1 )=(1− dx2
1 y

2
1 )).

x2
1 + y2

1 = 1 + dx2
1 y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1 ),

(y2
1−x2

1 )=(2− x2
1 − y2

1 )).

Again eliminate divisions

using (X : Y : Z): only 3M + 4S.

Much faster than addition.

24

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 − x2y2)=(x1y2 − x2y1)).

Low degree, no need for d .



23

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1−x1x1)=(1−dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1 y

2
1 ),

(y2
1−x2

1 )=(1− dx2
1 y

2
1 )).

x2
1 + y2

1 = 1 + dx2
1 y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1 ),

(y2
1−x2

1 )=(2− x2
1 − y2

1 )).

Again eliminate divisions

using (X : Y : Z): only 3M + 4S.

Much faster than addition.

24

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 − x2y2)=(x1y2 − x2y1)).

Low degree, no need for d .



23

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1−x1x1)=(1−dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1 y

2
1 ),

(y2
1−x2

1 )=(1− dx2
1 y

2
1 )).

x2
1 + y2

1 = 1 + dx2
1 y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1 ),

(y2
1−x2

1 )=(2− x2
1 − y2

1 )).

Again eliminate divisions

using (X : Y : Z): only 3M + 4S.

Much faster than addition.

24

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 − x2y2)=(x1y2 − x2y1)).

Low degree, no need for d .

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.



23

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1−x1x1)=(1−dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1 y

2
1 ),

(y2
1−x2

1 )=(1− dx2
1 y

2
1 )).

x2
1 + y2

1 = 1 + dx2
1 y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1 ),

(y2
1−x2

1 )=(2− x2
1 − y2

1 )).

Again eliminate divisions

using (X : Y : Z): only 3M + 4S.

Much faster than addition.

24

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 − x2y2)=(x1y2 − x2y1)).

Low degree, no need for d .

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

Can test for failure cases.

Can produce constant-time code

by eliminating branches.

For some ECC ops, can prove

that failure cases never happen.



23

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1−x1x1)=(1−dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1 y

2
1 ),

(y2
1−x2

1 )=(1− dx2
1 y

2
1 )).

x2
1 + y2

1 = 1 + dx2
1 y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1 ),

(y2
1−x2

1 )=(2− x2
1 − y2

1 )).

Again eliminate divisions

using (X : Y : Z): only 3M + 4S.

Much faster than addition.

24

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 − x2y2)=(x1y2 − x2y1)).

Low degree, no need for d .

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

Can test for failure cases.

Can produce constant-time code

by eliminating branches.

For some ECC ops, can prove

that failure cases never happen.

25

More coordinate systems: e.g.,

• inverted: x = Z=X, y = Z=Y .

• extended: x = X=Z, y = Y=T .

• completed: x = X=Z, y = Y=Z,

xy = T=Z.

“−1-twisted Edwards curves”

−x2 + y2 = 1 + dx2y2:

further speedups related to

−x2 + y2 = (y − x)(y + x).

Inside modern ECC operations:

8M for addition,

3M + 4S for doubling.



23

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1−x1x1)=(1−dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1 y

2
1 ),

(y2
1−x2

1 )=(1− dx2
1 y

2
1 )).

x2
1 + y2

1 = 1 + dx2
1 y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1 ),

(y2
1−x2

1 )=(2− x2
1 − y2

1 )).

Again eliminate divisions

using (X : Y : Z): only 3M + 4S.

Much faster than addition.

24

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 − x2y2)=(x1y2 − x2y1)).

Low degree, no need for d .

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

Can test for failure cases.

Can produce constant-time code

by eliminating branches.

For some ECC ops, can prove

that failure cases never happen.

25

More coordinate systems: e.g.,

• inverted: x = Z=X, y = Z=Y .

• extended: x = X=Z, y = Y=T .

• completed: x = X=Z, y = Y=Z,

xy = T=Z.

“−1-twisted Edwards curves”

−x2 + y2 = 1 + dx2y2:

further speedups related to

−x2 + y2 = (y − x)(y + x).

Inside modern ECC operations:

8M for addition,

3M + 4S for doubling.



23

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1−x1x1)=(1−dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1 y

2
1 ),

(y2
1−x2

1 )=(1− dx2
1 y

2
1 )).

x2
1 + y2

1 = 1 + dx2
1 y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1 ),

(y2
1−x2

1 )=(2− x2
1 − y2

1 )).

Again eliminate divisions

using (X : Y : Z): only 3M + 4S.

Much faster than addition.

24

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 − x2y2)=(x1y2 − x2y1)).

Low degree, no need for d .

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

Can test for failure cases.

Can produce constant-time code

by eliminating branches.

For some ECC ops, can prove

that failure cases never happen.

25

More coordinate systems: e.g.,

• inverted: x = Z=X, y = Z=Y .

• extended: x = X=Z, y = Y=T .

• completed: x = X=Z, y = Y=Z,

xy = T=Z.

“−1-twisted Edwards curves”

−x2 + y2 = 1 + dx2y2:

further speedups related to

−x2 + y2 = (y − x)(y + x).

Inside modern ECC operations:

8M for addition,

3M + 4S for doubling.



24

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 − x2y2)=(x1y2 − x2y1)).

Low degree, no need for d .

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

Can test for failure cases.

Can produce constant-time code

by eliminating branches.

For some ECC ops, can prove

that failure cases never happen.

25

More coordinate systems: e.g.,

• inverted: x = Z=X, y = Z=Y .

• extended: x = X=Z, y = Y=T .

• completed: x = X=Z, y = Y=Z,

xy = T=Z.

“−1-twisted Edwards curves”

−x2 + y2 = 1 + dx2y2:

further speedups related to

−x2 + y2 = (y − x)(y + x).

Inside modern ECC operations:

8M for addition,

3M + 4S for doubling.



24

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 − x2y2)=(x1y2 − x2y1)).

Low degree, no need for d .

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

Can test for failure cases.

Can produce constant-time code

by eliminating branches.

For some ECC ops, can prove

that failure cases never happen.

25

More coordinate systems: e.g.,

• inverted: x = Z=X, y = Z=Y .

• extended: x = X=Z, y = Y=T .

• completed: x = X=Z, y = Y=Z,

xy = T=Z.

“−1-twisted Edwards curves”

−x2 + y2 = 1 + dx2y2:

further speedups related to

−x2 + y2 = (y − x)(y + x).

Inside modern ECC operations:

8M for addition,

3M + 4S for doubling.

26

NIST curves (e.g., P-256)

were standardized before

Edwards curves were published.

Much slower additions.



24

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 − x2y2)=(x1y2 − x2y1)).

Low degree, no need for d .

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

Can test for failure cases.

Can produce constant-time code

by eliminating branches.

For some ECC ops, can prove

that failure cases never happen.

25

More coordinate systems: e.g.,

• inverted: x = Z=X, y = Z=Y .

• extended: x = X=Z, y = Y=T .

• completed: x = X=Z, y = Y=Z,

xy = T=Z.

“−1-twisted Edwards curves”

−x2 + y2 = 1 + dx2y2:

further speedups related to

−x2 + y2 = (y − x)(y + x).

Inside modern ECC operations:

8M for addition,

3M + 4S for doubling.

26

NIST curves (e.g., P-256)

were standardized before

Edwards curves were published.

Much slower additions.



24

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 − x2y2)=(x1y2 − x2y1)).

Low degree, no need for d .

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

Can test for failure cases.

Can produce constant-time code

by eliminating branches.

For some ECC ops, can prove

that failure cases never happen.

25

More coordinate systems: e.g.,

• inverted: x = Z=X, y = Z=Y .

• extended: x = X=Z, y = Y=T .

• completed: x = X=Z, y = Y=Z,

xy = T=Z.

“−1-twisted Edwards curves”

−x2 + y2 = 1 + dx2y2:

further speedups related to

−x2 + y2 = (y − x)(y + x).

Inside modern ECC operations:

8M for addition,

3M + 4S for doubling.

26

NIST curves (e.g., P-256)

were standardized before

Edwards curves were published.

Much slower additions.



25

More coordinate systems: e.g.,

• inverted: x = Z=X, y = Z=Y .

• extended: x = X=Z, y = Y=T .

• completed: x = X=Z, y = Y=Z,

xy = T=Z.

“−1-twisted Edwards curves”

−x2 + y2 = 1 + dx2y2:

further speedups related to

−x2 + y2 = (y − x)(y + x).

Inside modern ECC operations:

8M for addition,

3M + 4S for doubling.

26

NIST curves (e.g., P-256)

were standardized before

Edwards curves were published.

Much slower additions.



25

More coordinate systems: e.g.,

• inverted: x = Z=X, y = Z=Y .

• extended: x = X=Z, y = Y=T .

• completed: x = X=Z, y = Y=Z,

xy = T=Z.

“−1-twisted Edwards curves”

−x2 + y2 = 1 + dx2y2:

further speedups related to

−x2 + y2 = (y − x)(y + x).

Inside modern ECC operations:

8M for addition,

3M + 4S for doubling.

26

NIST curves (e.g., P-256)

were standardized before

Edwards curves were published.

Much slower additions.

Express as Edwards curves

using a field extension: slow.



25

More coordinate systems: e.g.,

• inverted: x = Z=X, y = Z=Y .

• extended: x = X=Z, y = Y=T .

• completed: x = X=Z, y = Y=Z,

xy = T=Z.

“−1-twisted Edwards curves”

−x2 + y2 = 1 + dx2y2:

further speedups related to

−x2 + y2 = (y − x)(y + x).

Inside modern ECC operations:

8M for addition,

3M + 4S for doubling.

26

NIST curves (e.g., P-256)

were standardized before

Edwards curves were published.

Much slower additions.

Express as Edwards curves

using a field extension: slow.

How did Curve25519 obtain

good speeds for ECDH?

“Montgomery curve with

the Montgomery ladder.”



25

More coordinate systems: e.g.,

• inverted: x = Z=X, y = Z=Y .

• extended: x = X=Z, y = Y=T .

• completed: x = X=Z, y = Y=Z,

xy = T=Z.

“−1-twisted Edwards curves”

−x2 + y2 = 1 + dx2y2:

further speedups related to

−x2 + y2 = (y − x)(y + x).

Inside modern ECC operations:

8M for addition,

3M + 4S for doubling.

26

NIST curves (e.g., P-256)

were standardized before

Edwards curves were published.

Much slower additions.

Express as Edwards curves

using a field extension: slow.

How did Curve25519 obtain

good speeds for ECDH?

“Montgomery curve with

the Montgomery ladder.”

Why did NIST not choose

Montgomery curves? Unclear.


