
1

Modern ECC signatures

2011 Bernstein–Duif–Lange–

Schwabe–Yang:

Ed25519 signature scheme =

EdDSA using conservative

Curve25519 elliptic curve.

https://ed25519.cr.yp.to

32-byte public keys,

64-byte signatures,

≈2125:8 security level.

Deployed in SSH, Signal,

many more applications:

https://ianix.com/pub

/ed25519-deployment.html

https://ed25519.cr.yp.to
https://ianix.com/pub/ed25519-deployment.html
https://ianix.com/pub/ed25519-deployment.html


2

Many papers have explored

Curve25519/Ed25519 speed.

e.g. 2015 Chou software:

on Intel Sandy Bridge (2011),

57164 cycles for keygen,

63526 cycles for signature,

205741 cycles for verification,

159128 cycles for ECDH.

Compare to, e.g., 2000 Brown–

Hankerson–López–Menezes:

on Intel Pentium II (1997),

1920000 cycles for ECDH

using NIST P-256 curve.



3

AC : cycles for alg A on CPU C.

Does AC < BD prove that

A is better than B?



3

AC : cycles for alg A on CPU C.

Does AC < BD prove that

A is better than B?

No! Beware change in CPU.

Maybe AC > BC ; AD > BD;

C does more work per cycle than

D, thanks to CPU manufacturer.

Sometimes people measure cost

in seconds instead of cycles.

Then they benefit

from more work per cycle and

from more cycles per second.



4

Better comparisons

(still raising many questions):

ECDH on Intel Pentium II/III

(still not exactly the same):

1920000 cycles for NIST P-256,

832457 cycles for Curve25519.

ECDH on Sandy Bridge:

374000 cycles for NIST P-256

(from 2013 Gueron–Krasnov),

159128 cycles for Curve25519.

Verification on Sandy Bridge:

529000 cycles for ECDSA-P-256,

205741 cycles for Ed25519.



5

For each of these operations,

on each of these curves,

on each of these CPUs:

Simplest implementations

are much, much, much slower.

Questions in algorithm design

and software engineering:

How to build the fastest software

on, e.g., an ARM Cortex-A8 for

Ed25519 signature verification?

Answers feed back into crypto

design: e.g., choosing fast curves.



6

Several levels to optimize:

ECC ops: e.g.,
verify SB = R + hA

windowing etc.
��

Point ops: e.g.,
P;Q 7→ P + Q

faster doubling etc.
��

Field ops: e.g.,
x1; x2 7→ x1x2 in Fp

delayed carries etc.
��

Machine insns: e.g.,
32-bit multiplication

��
pipelining etc.
��

Gates: e.g.,
AND, OR, XOR



7

Single-scalar multiplication

Fundamental ECC operation:

n; P 7→ nP .

Input n is integer in, e.g.,˘
0; 1; : : : ; 2256 − 1

¯
.

Input P is point on elliptic curve.

Will build n; P 7→ nP

using additions P;Q 7→ P + Q

and subtractions P;Q 7→ P − Q.

Later will also look at

double-scalar multiplication

m;P; n;Q 7→ mP + nQ.



8

Left-to-right binary method

def scalarmult(n,P):

if n == 0: return 0

if n == 1: return P

R = scalarmult(n//2,P)

R = R + R

if n % 2: R = R + P

return R

Two Python notes:

• n//2 in Python means bn=2c.

• Recursion depth is limited.

See sys.setrecursionlimit.



9

This recursion computes nP as

• 2
“n

2
P
”

if n ∈ 2Z.

e.g. 20P = 2 · 10P .

• 2

„
n − 1

2
P

«
+ P if n ∈ 1 + 2Z.

e.g. 21P = 2 · 10P + P .

Base cases in recursion:

0P = 0. For Edwards: 0 = (0; 1).

1P = P . Could omit this case.

Assuming n ≥ 0 for simplicity.

Otherwise use nP = −(−n)P .



10

If 0 ≤ n < 2b then

this algorithm uses

≤2b − 2 additions: specifically

≤b − 1 doublings and

≤b − 1 additions of P .

Example of worst case:

31P = 2(2(2(2P+P )+P )+P )+P .

31 = (11111)2; b = 5;

4 doublings; 4 more additions.

Average case is better: e.g.

35P = 2(2(2(2(2P ))) + P ) + P .

35 = (100011)2; b = 6;

5 doublings; 2 additions.



11

Non-adjacent form (NAF)

def scalarmult(n,P):

if n == 0: return 0

if n == 1: return P

if n % 4 == 1:

R = scalarmult((n-1)/4,P)

R = R + R

return (R + R) + P

if n % 4 == 3:

R = scalarmult((n+1)/4,P)

R = R + R

return (R + R) - P

R = scalarmult(n/2,P)

return R + R



12

Subtraction on the curve

is as cheap as addition.

NAF takes advantage of this.

31P = 2(2(2(2(2P ))))− P .

31 = (100001̄)2; 1̄ denotes −1.

35P = 2(2(2(2(2P )) + P ))− P .

35 = (100101̄)2.

“Non-adjacent”: ±P ops are

separated by ≥2 doublings.

Worst case: ≈b doublings

plus ≈b=2 additions of ±P .

On average ≈b=3 additions.



13

Width-2 signed sliding windows

def window2(n,P,P3):

if n == 0: return 0

if n == 1: return P

if n == 3: return P3

if n % 8 == 1:

R = window2((n-1)/8,P,P3)

R = R + R

R = R + R

return (R + R) + P

if n % 8 == 3:

R = window2((n-3)/8,P,P3)

R = R + R

R = R + R

return (R + R) + P3



14

if n % 8 == 5:

R = window2((n+3)/8,P,P3)

R = R + R

R = R + R

return (R + R) - P3

if n % 8 == 7:

R = window2((n+1)/8,P,P3)

R = R + R

R = R + R

return (R + R) - P

R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+P)



15

Worst case: ≈b doublings plus

≈b=3 additions of ±P or ±3P .

On average ≈b=4 additions.



15

Worst case: ≈b doublings plus

≈b=3 additions of ±P or ±3P .

On average ≈b=4 additions.

Width-3 signed sliding windows:

Precompute P; 3P; 5P; 7P .

On average ≈b=5 additions.



15

Worst case: ≈b doublings plus

≈b=3 additions of ±P or ±3P .

On average ≈b=4 additions.

Width-3 signed sliding windows:

Precompute P; 3P; 5P; 7P .

On average ≈b=5 additions.

Width 4: Precompute

P; 3P; 5P; 7P; 9P; 11P; 13P; 15P .

On average ≈b=6 additions.



15

Worst case: ≈b doublings plus

≈b=3 additions of ±P or ±3P .

On average ≈b=4 additions.

Width-3 signed sliding windows:

Precompute P; 3P; 5P; 7P .

On average ≈b=5 additions.

Width 4: Precompute

P; 3P; 5P; 7P; 9P; 11P; 13P; 15P .

On average ≈b=6 additions.

Cost of precomputation

eventually outweighs savings.

Optimal: ≈b doublings plus

roughly b=lg b additions.



16

Double-scalar multiplication

Want to quickly compute

m;P; n;Q 7→ mP + nQ.

e.g. verify signature (R; S)

by computing h = H(R;M),

computing SB − hA,

checking whether R = SB − hA.

Obvious approach:

Compute mP ; compute nQ; add.

e.g. b = 256:

≈256 doublings for mP ,

≈256 doublings for nQ,

≈50 additions for mP ,

≈50 additions for nQ.



17

Joint doublings

Do much better by merging

2X + 2Y into 2(X + Y ).

def scalarmult2(m,P,n,Q):

if m == 0:

return scalarmult(n,Q)

if n == 0:

return scalarmult(m,P)

R = scalarmult2(m//2,P,n//2,Q)

R = R + R

if m % 2: R = R + P

if n % 2: R = R + Q

return R



18

For example: merge

35P = 2(2(2(2(2P ))) + P ) + P ,

31Q = 2(2(2(2Q+Q)+Q)+Q)+Q

into 35P + 31Q =

2(2(2(2(2P+Q)+Q)+Q)+P+Q)

+P+Q.

≈b doublings (merged!),

≈b=2 additions of P ,

≈b=2 additions of Q.

Combine idea with windows: e.g.,

≈256 doublings for b = 256,

≈50 additions using P ,

≈50 additions using Q.



19

Batch verification

Verifying many signatures:

need to be confident that

S1B = R1 + h1A1,

S2B = R2 + h2A2,

S3B = R3 + h3A3,

etc.

Obvious approach:

Check each equation separately.



19

Batch verification

Verifying many signatures:

need to be confident that

S1B = R1 + h1A1,

S2B = R2 + h2A2,

S3B = R3 + h3A3,

etc.

Obvious approach:

Check each equation separately.

Much faster approach:

Check random linear combination

of the equations.



20

Pick independent uniform random

128-bit z1; z2; z3; : : :.

Check whether

(z1S1 + z2S2 + z3S3 + · · ·)B =

z1R1 + (z1h1)A1 +

z2R2 + (z2h2)A2 +

z3R3 + (z3h3)A3 + · · ·.

(If 6=: See 2012 Bernstein–

Doumen–Lange–Oosterwijk.)

Easy to prove:

forgeries have probability ≤2−128

of fooling this check.



21

Multi-scalar multiplication

Review of asymptotic speeds:

1939 Brauer (windows):

≈ (1 + 1=lg b)b

additions to compute

P 7→ nP if n < 2b.

1964 Straus (joint doublings):

≈ (1 + k=lg b)b

additions to compute

P1; : : : ; Pk 7→ n1P1 + · · ·+ nkPk
if n1; : : : ; nk < 2b.



22

1976 Yao:

≈ (1 + k=lg b)b

additions to compute

P 7→ n1P; : : : ; nkP

if n1; : : : ; nk < 2b.

1976 Pippenger:

Similar asymptotics,

but replace lg b with lg(kb).

Faster than Straus and Yao

if k is large.

(Knuth says “generalization”

as if speed were the same.)



23

More generally, Pippenger’s

algorithm computes

‘ sums of multiples of k inputs.

≈
„

min{k; ‘}+
k‘

lg(k‘b)

«
b adds

if all coefficients are below 2b.

Within 1 + › of optimal.



23

More generally, Pippenger’s

algorithm computes

‘ sums of multiples of k inputs.

≈
„

min{k; ‘}+
k‘

lg(k‘b)

«
b adds

if all coefficients are below 2b.

Within 1 + › of optimal.

Various special cases of

Pippenger’s algorithm were

reinvented and patented by

1993 Brickell–Gordon–McCurley–

Wilson, 1995 Lim–Lee, etc.

Is that the end of the story?



24

No! 1989 Bos–Coster:

If n1 ≥ n2 ≥ · · · then

n1P1 + n2P2 + n3P3 + · · · =

(n1 − qn2)P1 + n2(qP1 + P2) +

n3P3 + · · · where q = bn1=n2c.

Remarkably simple;

competitive with Pippenger

for random choices of ni ’s;

much better memory usage.



25

Example of Bos–Coster:

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32P , 16P ,

300P , 146P , 77P , 2P , 1P .



26

Reduce largest row:

000100000 = 32

000010000 = 16

010011010 = 154 ←
010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32P , 16P ,

154P , 146P , 77P , 2P , 1P .

Plus one extra addition:

add 146P into 154P ,

obtaining 300P .



26

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8 ←
010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

plus 2 additions.



26

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8

001000101 = 69 ←
001001101 = 77

000000010 = 2

000000001 = 1

plus 3 additions.



26

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8

001000101 = 69

000001000 = 8 ←
000000010 = 2

000000001 = 1

plus 4 additions.



26

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8

000100101 = 37 ←
000001000 = 8

000000010 = 2

000000001 = 1

plus 5 additions.



26

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8

000000101 = 5 ←
000001000 = 8

000000010 = 2

000000001 = 1

plus 6 additions.



26

Reduce largest row:

000010000 = 16 ←
000010000 = 16

000001000 = 8

000000101 = 5

000001000 = 8

000000010 = 2

000000001 = 1

plus 7 additions.



26

Reduce largest row:

000000000 = 0

000010000 = 16

000001000 = 8

000000101 = 5

000001000 = 8

000000010 = 2

000000001 = 1

plus 7 additions.



26

Reduce largest row:

000000000 = 0

000001000 = 8 ←
000001000 = 8

000000101 = 5

000001000 = 8

000000010 = 2

000000001 = 1

plus 8 additions.



26

Reduce largest row:

000000000 = 0

000000000 = 0 ←
000001000 = 8

000000101 = 5

000001000 = 8

000000010 = 2

000000001 = 1

plus 8 additions.



26

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0 ←
000000101 = 5

000001000 = 8

000000010 = 2

000000001 = 1

plus 8 additions.



26

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000101 = 5

000000011 = 3 ←
000000010 = 2

000000001 = 1

plus 9 additions.



26

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000010 = 2 ←
000000011 = 3

000000010 = 2

000000001 = 1

plus 10 additions.



26

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000010 = 2

000000001 = 1 ←
000000010 = 2

000000001 = 1

plus 11 additions.



26

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0 ←
000000001 = 1

000000010 = 2

000000001 = 1

plus 11 additions.



26

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000001 = 1

000000001 = 1 ←
000000001 = 1

plus 12 additions.



26

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0 ←
000000001 = 1

000000001 = 1

plus 12 additions.



26

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0 ←
000000001 = 1

plus 12 additions.



26

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0 ←

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,

16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,

low two-operand complexity.



27

Revised goal: Compute

32P1 + 16P2 + 300P3 + 146P4 +

77P5 + 2P6 + 1P7.

First compute P ′4 = P4 + P3

and then recursively compute

32P1 + 16P2 + 154P3 + 146P ′4 +

77P5 + 2P6 + 1P7.

Same scalars show up as before.

Ed25519 batch verification:

verify batch of 64 signatures

about twice as fast as

verifying each separately.


