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e is not collision-resilient:
e requires inversion for signer;

e requires inversion for verifier
(or three exponents).
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e prime-order subgroups;
e A1l instead of A;

e two scalars.

Much worse than Schnorr: DSA
e does not hash R:

e does not merge hashes;
e is not collision-resilient:
e requires inversion for signer;

e requires inversion for verifier
(or three exponents).
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EAdDSA

EdDSA is Schnorr with
e complete twisted Edwards curve;

® no signature compression;
e double-size H output;

e A as extra H input;

e deterministic R.
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DSA and ECDSA EdDSA

DSA is ElGamal plus EdADSA is Schnorr with

e prime-order subgroups; e complete twisted Edwards curve;
o Al instead of A: ® No signature compression;

e two scalars. e double-size H output;

Much worse than Schnorr: DSA * A as extra H input;

e deterministic K.
e does not hash R:

e does not merge hashes; Extra H input: H(R, A, M).
e is not collision-resilient; Speed impact: negligible.

e requires inversion for signer; Alleviates concerns that

e requires inversion for verifier several public keys could be

(or three exponents). attacked simultaneously.
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EAdDSA

EdDSA is Schnorr with
e complete twisted Edwards curve;

® no signature compression;
e double-size H output;

e A as extra H input;

e deterministic R.

Extra H input: H(R, A, M).
Speed impact: negligible.
Alleviates concerns that
several public keys could be
attacked simultaneously.
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EdDSA

EdDSA is Schnorr with

e complete twisted Edwards curve;

® no signature compression;
e double-size H output;

e A as extra H input;

e deterministic R.

Extra H input: H(R, A, M).

Speed impact: negligible.
Alleviates concerns that
several public keys could be
attacked simultaneously.
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Why no signature compressi

1. ECC signatures are short
even without compression.
64 bytes for signature

using high-security curve.

2. Security of shorter H
needs thorough analysis.

3. Double-size H alleviates
concerns regarding H securr

4. Avoiding compression
allows another speedup:
batch signature verification.
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EdDSA Why no signature compression:
EADSA is Schnorr with 1. ECC signatures are short

e complete twisted Edwards curve; even without compression.

® No signature compression; 64 bytes for signature

e double-size H output; using high-security curve.

o A as extra H input; 2. Security of shorter H

e deterministic R. .
needs thorough analysis.

Extra H input: H(R, A, M).
Speed impact: negligible.

3. Double-size H alleviates

| concerns regarding H security.
Alleviates concerns that

several public keys could be 4. Avoiding compression

attacked simultaneously. allows another speedup:
batch signature verification.




