High-speed cryptography Do we care about speed?

Daniel J. Bernstein Almost all software is
University of lllinois at Chicago & much slower than it could be.

Technische Universiteit Eindhoven s software applied to much data?

with some slides from: Usually not. Usually the
Tanja Lange wasted CPU time is negligible.

Technische Universiteit Eindhoven But crypto software should be

applied to all communication.

Crypto that's too slow =
fewer users = fewer cryptanalysts

= less attractive for everybody.

ced cryptography Do we care about speed? Impleme
. Bernstein Almost all software is e.g. Vari
ty of lllinois at Chicago & much slower than it could be. arithmet
he Universiteit Eindhoven . consume
|s software applied to much data?
| Includes
ne slides from: Usually not. Usually the o
. . .. optimize
Inge wasted CPU time is negligible. P

he Universiteit Eindhoven But crypto software should be

applied to all communication.

Crypto that's too slow =
fewer users = fewer cryptanalysts

= less attractive for everybody.

graphy Do we care about speed? Implementors purs
0 Almost all software is e.g. Variable-lengt
is at Chicago & much slower than it could be. arithmetic library |
siteit Eindhoven consumes 50000 i

|s software applied to much data?

Includes 38 asm ir
‘om: Usually not. Usually the I |
wasted CPU time is negligible. optimized Tor vari

siteit Eindhoven But crypto software should be

applied to all communication.

Crypto that's too slow =
fewer users = fewer cryptanalysts

= less attractive for everybody.

g0 &
hoven

hoven

Do we care about speed?

Almost all software is
much slower than it could be.

|s software applied to much data?
Usually not. Usually the
wasted CPU time is negligible.

But crypto software should be
applied to all communication.

Crypto that's too slow =
fewer users = fewer cryptanalysts

= less attractive for everybody.

Implementors pursue speed

e.g. Variable-length-big-inte;

arithmetic library inside Ope
consumes 50000 lines of coc
Includes 38 asm implementa
optimized for various CPUs.

Do we care about speed? Implementors pursue speed

Almost all software is e.g. Variable-length-big-integer
much slower than it could be. arithmetic library inside OpenSSL

consumes 50000 lines of code.
Includes 38 asm implementations

|s software applied to much data?
Usually not. Usually the

wasted CPU time is negligible. optimized for various CPUs.

But crypto software should be
applied to all communication.

Crypto that's too slow =
fewer users = fewer cryptanalysts
= less attractive for everybody.

Do we care about speed? Implementors pursue speed

Almost all software is e.g. Variable-length-big-integer
much slower than it could be. arithmetic library inside OpenSSL
consumes 50000 lines of code.

|s software applied to much data? | |
Includes 38 asm implementations

Usually not. Usually the o |
wasted CPU time is negligible. optimized for various (PUs.
e.g. ECDSA verification computes
(STTH(M))B + (S71R)A
OpenSSL has complicated code
Crypto that'’s too slow = for fast computation of S—1.
fewer users = fewer cryptanalysts Much simpler code would make

= less attractive for everybody. verification considerably slower.

But crypto software should be
applied to all communication.

are about speed?

11l software is
wer than 1t could be.

ire applied to much data?

not. Usually the
_PU time is negligible

yto software should be

o all communication.

hat's too slow =
ers = fewer cryptana

ttractive for everyboc

ysts

Implementors pursue speed

e.g. Variable-length-big-integer

arithmetic library inside OpenSSL
consumes 50000 lines of code.
Includes 38 asm implementations
optimized for various CPUs.

e.g. ECDSA verification computes
(STTH(M))B + (S71R)A
OpenSSL has complicated code
for fast computation of S—1.
Much simpler code would make
verification considerably slower.

Applicat

e.g. Late
practice:
(2012) s
a regula
It Is esti
can safe
at least
Signing
bit key t
1024-bit
(such as
four tim

speed?

e IS
it could be.

| to much data?
lly the
Is negligible.

re should be

munication.

slow =
er cryptanalysts

‘or everybody.

Implementors pursue speed

e.g. Variable-length-big-integer

arithmetic library inside OpenSSL
consumes 50000 lines of code.
Includes 38 asm implementations
optimized for various CPUs.

e.g. ECDSA verification computes
(STTH(M))B + (S71R)A
OpenSSL has complicated code
for fast computation of S—1.
Much simpler code would make
verification considerably slower.

Applications purst

e.g. Latest "DNSS
practices’ recomn
(2012) says “No c
a regular 1024-bit
it Is estimated tha
can safely use 102
at least the next t
Signing and verify
bit key takes longe
1024-bit key ... [
(such as verificatic
four times slower.’

1d

OC

ysts

Implementors pursue speed

e.g. Variab
arithmetic

e-length-big-integer
ibrary inside OpenSSL

consumes 50000 lines of code.

Includes 38 asm implementations

optimized for various CPUs.

e.g. ECDSA verification computes
(STH(M))B + (ST1R)A.
OpenSSL has complicated code

for fast computation of S—1.

Much simpler code would make

verification considerably slower.

Applications pursue speed

e.g. Latest “DNSSEC opera
practices’ recommendation

(2012) says “No one has bre
a regular 1024-bit [RSA] ke)
It Is estimated that most zo
can safely use 1024-bit keys
at least the next ten years .

Signing and verifying with a
bit key takes longer than wir
1024-bit key ... public oper
(such as verification) are ab
four times slower.”

Implementors pursue speed

e.g. Variable-length-big-integer

arithmetic library inside OpenSSL
consumes 50000 lines of code.
Includes 38 asm implementations
optimized for various CPUs.

e.g. ECDSA verification computes
(STTH(M))B + (S71R)A
OpenSSL has complicated code
for fast computation of S—1.
Much simpler code would make
verification considerably slower.

Applications pursue speed

e.g. Latest “DNSSEC operational
practices’ recommendation
(2012) says “No one has broken

a regular 1024-bit [RSA] key ...
It Is estimated that most zones
can safely use 1024-bit keys for
at least the next ten years ...
Signing and verifying with a 2048-
bit key takes longer than with a
1024-bit key ... public operations
(such as verification) are about
four times slower.”

ntors pursue speed

able-length-big-integer

ic library inside OpenSSL
s 50000 lines of code.

38 asm implementations
d for various CPUs.

)SA verification computes
M))B + (STLR)A.

L has complicated code
computation of S71.
mpler code would make
on considerably slower.

Applications pursue speed

e.g. Latest "DNSSEC operational
practices’ recommendation
(2012) says “No one has broken

a regular 1024-bit [RSA] key ...
It Is estimated that most zones
can safely use 1024-bit keys for
at least the next ten years ...
Signing and verifying with a 2048-
bit key takes longer than with a
1024-bit key ... public operations
(such as verification) are about
four times slower.”

DNSSEC(

2048-bi
C(

ue speed

h-big-integer
nside OpenSSL
nes of code.

nplementations
yus CPUs.

“ation computes
S—1R)A.
plicated code
on of S~1.

= would make
erably slower.

Applications pursue speed

e.g. Latest “DNSSEC operational
practices’ recommendation
(2012) says “No one has broken

a regular 1024-bit [RSA] key ...
It Is estimated that most zones
can safely use 1024-bit keys for
at least the next ten years ...
Signing and verifying with a 2048-
bit key takes longer than with a
1024-bit key ... public operations
(such as verification) are about
four times slower.”

DNSSEC key sizes

2048-bit DNSSEC(
controlled L

yer
nSSL
le.

tions

\putes

ode

ake

VEr.

Applications pursue speed

e.g. Latest "“DNSSEC operational
practices’ recommendation
(2012) says “No one has broken

a regular 1024-bit [RSA] key ...
It Is estimated that most zones
can safely use 1024-bit keys for
at least the next ten years ...
Signing and verifying with a 2048-
bit key takes longer than with a
1024-bit key ... public operations
(such as verification) are about
four times slower.”

DNSSEC key sizes, 2016.11.

2048-bit DNSSEC master k
controlled by U.S.

Applications pursue speed

e.g. Latest “DNSSEC operational
practices’ recommendation
(2012) says “No one has broken

a regular 1024-bit [RSA] key ...
It Is estimated that most zones
can safely use 1024-bit keys for
at least the next ten years ...
Signing and verifying with a 2048-
bit key takes longer than with a
1024-bit key ... public operations
(such as verification) are about
four times slower.”

DNSSEC key sizes, 2016.11.28:

2048-bit DNSSEC master key
controlled by U.S.

Applications pursue speed DNSSEC key sizes, 2016.11.28:

e.g. Latest “DNSSEC operational 2048-bit DNSSEC master key

practices’ recommendation controlled by U.S.
(2012) says “No one has broken signature

a regular 1024-bit [RSA] key ... v

it is estimated that most zones 2048-bit “zone-signing key"

can safely use 1024-bit keys for

at least the next ten years ...
Signing and verifying with a 2048-
bit key takes longer than with a
1024-bit key ... public operations
(such as verification) are about
four times slower.”

Applications pursue speed DNSSEC key sizes, 2016.11.28:

e.g. Latest “DNSSEC operational 2048-bit DNSSEC master key

practices’ recommendation controlled by U.S.
(2012) says “No one has broken signature

a regular 1024-bit [RSA] key ... v

it is estimated that most zones 2048-bit “zone-signing key"
can safely use 1024-bit keys for signature

at least the next ten years ... Y

2048-bit .org master key

Signing and verifying with a 2048-

bit key takes longer than with a
1024-bit key ... public operations
(such as verification) are about
four times slower.”

Applications pursue speed

e.g. Latest “DNSSEC operational
practices’ recommendation
(2012) says “No one has broken

a regular 1024-bit [RSA] key ...
It Is estimated that most zones
can safely use 1024-bit keys for
at least the next ten years ...
Signing and verifying with a 2048-
bit key takes longer than with a
1024-bit key ... public operations
(such as verification) are about
four times slower.”

DNSSEC key sizes, 2016.11.28:

2048-bit DNSSEC master key
controlled by U.S.

signature

Y
2048-bit “zone-signing key"

signature

Y
2048-bit .org master key

signature

Y
1024-bit “zone-signing key"

Applications pursue speed

e.g. Latest “DNSSEC operational
practices’ recommendation
(2012) says “No one has broken

a regular 1024-bit [RSA] key ...
It Is estimated that most zones
can safely use 1024-bit keys for
at least the next ten years ...
Signing and verifying with a 2048-
bit key takes longer than with a
1024-bit key ... public operations
(such as verification) are about
four times slower.”

DNSSEC key sizes, 2016.11.28:

2048-bit DNSSEC master key
controlled by U.S.

signature

Y
2048-bit “zone-signing key"

signature

Y
2048-bit .org master key

signature

Y
1024-bit “zone-signing key"

signatures
Y

a few *.org sites

lons pursue speed

st “DNSSEC operational

5 recommendation

ays No one has broken

r 1024-bit [RSA] key ...

mated that most zones

ly use 1024-bit keys for
the next ten years ...

and verifying with a 2048-

akes longer than with a
key ... public operations
verification) are about

es slower.”

DNSSEC key sizes, 2016.11.28:

2048-bit DNSSEC master key
controlled by U.S.

signature

Y
2048-bit “zone-signing key"”

signature

Y
2048-bit .org master key

signature
Y

1024-bit “zone-signing key"

signatures
¥

a few *.org sites

2011 We
security

V2V sa

broadcas
second,
1,000 or
second.
available
amount
message
an actuc
are proc
security
message

e speed

EC operational
iendation

ne has broken
[RSA] key ...

t most zones
4-bit keys for
en years . ..

ing with a 2048-
r than with a
ublic operations
n) are about

DNSSEC key sizes, 2016.11.28:

2048-bit DNSSEC master key
controlled by U.S.

signature

Y
2048-bit “zone-signing key"

signature

Y
2048-bit .org master key

signature
Y

1024-bit “zone-signing key"

signatures

Y
a few *.org sites

2011 Weimerskircl
security for car co

“V2V safety appli
broadcast 10 mess
second, and a veh
1,000 or more me:
second. There are
avalilable to proce:
amount of messag
messages that mig
an actual impact t
are processed, or (
security hardware
messages Is applie

tional

ken

2

nes
for

2048-
th a
ations
out

DNSSEC key sizes, 2016.11.28:

2048-bit DNSSEC master key
controlled by U.S.

signature

Y
2048-bit “zone-signing key”

signature

Y
2048-bit .org master key

signature
Y

1024-bit “zone-signing key"

signatures

Y
a few *.org sites

2011 Weimerskirch survey o

security for car communicat;

“V2V safety applications wil

broadcast 10 messages per

second, and a vehicle will re

1,000 or more messages
second. There are two a

DEr

o]olf

avalilable to process such a |

amount of messages: (1) or

messages that might impose

an actual impact to a vehicl

are processed, or (2) dedicaf

security hardware to process

messages Is applied.”

DNSSEC key sizes, 2016.11.28:

2048-bit DNSSEC master key
controlled by U.S.

signature

Y
2048-bit “zone-signing key"

signature
Y

2048-bit .org master key

signature
Y

1024-bit “zone-signing key"

signatures

Y
a few *.org sites

2011 Weimerskirch survey of
security for car communication:

“"V2V safety applications will
broadcast 10 messages per
second, and a vehicle will receive
1,000 or more messages per

second. There are two approaches
available to process such a high
amount of messages: (1) only
messages that might impose
an actual impact to a vehicle
are processed, or (2) dedicatec

security hardware to process all
messages Is applied.”

_ key sizes, 2016.11.28:

t DNSSEC master key

ontrolled by U.S.

signature

. Y
1t “zone-signing key"”

signature
¥

bit .org master key

signature
Y

it “zone-signing key"”

signatures

. Y
few *.org sites

2011 Weimerskirch survey of
security for car communication:

“V2V safety applications will
broadcast 10 messages per
second, and a vehicle will receive
1,000 or more messages per

second. There are two approaches
available to process such a high
amount of messages: (1) only
messages that might impose
an actual impact to a vehicle
are processed, or (2) dedicatec

security hardware to process all
messages Is applied.”

2014 Gh
Pullini—|
“A light
system f
biosenso
the rece
Keccak
Impleme
encrypti
the new!
scheme,
large amr
testing
standarc

, 2016.11.28:

= |

_ master key
y U.S.

Tnature

igning key"

Tnature

naster key

Tnature

igning key"

ynatures

o sites

2011 Weimerskirch survey of

security for car communication:

“V2V safety applications will
broadcast 10 messages per

second, and a vehicle will receive

1,000 or more messages per

second. There are two approaches

available to process such a high

amount of messages: (1) only
messages that might impose

an actual impact to a vehicle
are processed, or (2) dedicatec

security hardware to process a
messages Is applied.”

2014 Ghoreishizad
Pullini-Micheli—Bt
“A lightweight cry
system for implant
biosensors”: “This
the recently stand
Keccak secure has
implemented in ar
encryption mode .
the newly standarz
scheme, we benef
large amount of al
testing performed
standardization pr:

28:

ey

2011 Weimerskirch survey of
security for car communication:

"V2V safety applications will
broadcast 10 messages per
second, and a vehicle will receive
1,000 or more messages per

second. There are two approaches
available to process such a high
amount of messages: (1) only
messages that might impose
an actual impact to a vehicle
are processed, or (2) dedicatec

security hardware to process all
messages Is applied.”

2014 Ghoreishizadeh—Yalcin-
Pullini-Micheli—Burleson—Ca
“A lightweight cryptographi
system for implantable

biosensors”: “This design us
the recently standardized SF
Keccak secure hash functior
implemented in an authentic
encryption mode ... By sele
the newly standardized Kecc
scheme, we benefit from the
large amount of analysis anc
testing performed during the
standardization process. ...

2011 Weimerskirch survey of
security for car communication:

“V2V safety applications will
broadcast 10 messages per
second, and a vehicle will receive
1,000 or more messages per

second. There are two approaches
available to process such a high
amount of messages: (1) only
messages that might impose
an actual impact to a vehicle
are processed, or (2) dedicatec

security hardware to process all
messages Is applied.”

2014 Ghoreishizadeh—Yalcin—
Pullini-Micheli-Burleson—Carrara
“A lightweight cryptographic
system for implantable
biosensors”: “This design uses
the recently standardized SHA-3
Keccak secure hash function
Implemented In an authenticated
encryption mode ... By selecting
the newly standardized Keccak
scheme, we benefit from the
large amount of analysis and
testing performed during the
standardization process. ...

2imerskirch survey of
for car communication:

fety applications will

st 10 messages per

and a vehicle will receive
more messages per

There are two approaches
 to process such a high
of messages: (1) only
s that might impose

| Impact to a vehicle
essed, or (2) dedicatec

hardware to process all
s Is applied.”

2014 Ghoreishizadeh—Yalcin—
Pullini-Micheli-Burleson—Carrara
“A lightweight cryptographic
system for implantable
biosensors”: “This design uses
the recently standardized SHA-3
Keccak secure hash function
implemented In an authenticated
encryption mode ... By selecting
the newly standardized Keccak
scheme, we benefit from the
large amount of analysis and
testing performed during the
standardization process. ...

we have
of round
guarante
the Kec

1 survey of

mmunication:

~ations will
ages per

icle will receive
Sages per

two approaches
s such a high
es: (1) only
ht Impose
0 a vehicle
2) dedicatec

to process all
d.”

2014 Ghoreishizadeh—Yalcin—
Pullini-Micheli-Burleson—Carrara
“A lightweight cryptographic
system for implantable
biosensors”: “This design uses
the recently standardized SHA-3
Keccak secure hash function
Implemented In an authenticated
encryption mode ... By selecting
the newly standardized Keccak
scheme, we benefit from the
large amount of analysis and
testing performed during the
standardization process. ...

we have used the

of rounds for all ir
guarantee the secl
the Keccak propos

on:

celve

baches
1igh

|y
e
ed

2014 Ghoreishizadeh—Yalcin—
Pullini-Micheli-Burleson—Carrara
“A lightweight cryptographic
system for implantable
biosensors”: “This design uses
the recently standardized SHA-3
Keccak secure hash function
iImplemented In an authenticated
encryption mode ... By selecting
the newly standardized Keccak
scheme, we benefit from the
large amount of analysis and
testing performed during the
standardization process. ...

we have used the same num

of rounds for all in order to
guarantee the security claim
the Keccak proposal.

2014 Ghoreishizadeh—Yalcin—
Pullini-Micheli-Burleson—Carrara
“A lightweight cryptographic
system for implantable
biosensors”: “This design uses
the recently standardized SHA-3
Keccak secure hash function
Implemented In an authenticated
encryption mode ... By selecting
the newly standardized Keccak
scheme, we benefit from the
large amount of analysis and
testing performed during the
standardization process. ...

we have used the same number

of rounds for all in order to
guarantee the security claim of
the Keccak proposal.

2014 Ghoreishizadeh—Yalcin—
Pullini-Micheli-Burleson—Carrara
“A lightweight cryptographic
system for implantable
biosensors”: “This design uses
the recently standardized SHA-3
Keccak secure hash function
Implemented In an authenticated
encryption mode ... By selecting
the newly standardized Keccak
scheme, we benefit from the
large amount of analysis and
testing performed during the
standardization process. ...

we have used the same number

of rounds for all in order to
guarantee the security claim of
the Keccak proposal. However,
instead of using the standard
sizes for bitrate and capacity,
we reduced the overall state size
In order to achieve a compact
iImplementation with a security
level that would not have been
possible at this cost with any
other authenticated encryption

scheme. The data block size and
state size are selected as 4 and
100 bits, respectively.”

oreishizadeh—Yalcin—
VIicheli-Burleson—Carrara
weight cryptographic

or implantable

rs': "“This design uses
ntly standardized SHA-3
secure hash function
nted In an authenticated
on mode ... By selecting
y standardized Keccak
we benefit from the
ount of analysis and
verformed during the
iIzation process. ...

we have used the same number

of rounds for all in order to
guarantee the security claim of
the Keccak proposal. However,
instead of using the standard
sizes for bitrate and capacity,
we reduced the overall state size
in order to achieve a compact
implementation with a security
level that would not have been
possible at this cost with any
other authenticated encryption

scheme. The data block size and
state size are selected as 4 and
100 bits, respectively.”

Standare

e.g. NIS

“Securit
factor in
Rijndael
adequat
Serpent
high sec

(Empha:

So why

eh—Yalcin—
irleson—Carrara
ptographic
able

5 design uses
ardized SHA-3
h function
 authenticated
.. By selecting
lized Keccak

t from the
nalysis and
during the
0Cess. ...

we have used t
of rounds for a

ne same number

| In order to

guarantee the security claim of

the Keccak proposal. However,

instead of using the standard

sizes for bitrate and capacity,

we reduced the overall state size

In order to achieve a compact

iImplementation with a security

level that would not have been

possible at this cost with any

other authenticated encryption

scheme. The data block size and

state size are selected as 4 and

100 bits, respectively.”

Standards pursue

e.g. NIST's final /

“Security was the
factor in the evalu
Rijndael appears t
adequate security
Serpent appears t«
high security marg

(Emphasis added.
So why didn't Ser

rrara

=
=

€S
1A-3

"ated
cting
ak

\v

we have used t

of

ne same number

rounds for all in order to

guarantee the security claim of

the Keccak proposal. However,

instead of using the standard

sizes for bitrate and capacity,

we reduced the overall state size

in order to achieve a compact

implementation with a security

level that would not have been

possible at this cost with any

ot
SC

ner authenticated

encryption

neme. [he data

hlock size and

state size are selected as 4 and

100 bits, respectively.”

Standards pursue speed

e.g. NIST's final AES report

“Security was the most imp
factor in the evaluation ...
Rijndael appears to offer an
adequate security margin. ..
Serpent appears to offer a
high security margin.”

(Emphasis added.)

So why didn't Serpent win?

we have used t

of

ne same number

rounds for all in order to

guarantee the security claim of

the Keccak proposal. However,

instead of using the standard

sizes for bitrate and capacity,

we reduced the overall state size

In order to achieve a compact

iImplementation with a security

level that would not have been

possible at this cost with any

ot
SC

ner authenticated

encryption

neme. [he data

hlock size and

state size are selected as 4 and

100 bits, respectively.”

Standards pursue speed

e.g. NIST's final AES report:

“Security was the most important
factor in the evaluation ...
Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a

high security margin.”

(Emphasis added.)

So why didn’'t Serpent win?

we have used t

of

ne same number

rounds for all in order to

guarantee the security claim of

the Keccak proposal. However,

instead of using the standard

sizes for bitrate and capacity,

we reduced the overall state size

In order to achieve a compact

iImplementation with a security

level that would not have been

possible at this cost with any

ot
SC

ner authenticated

encryption

neme. [he data

hlock size and

state size are selected as 4 and

100 bits, respectively.”

Standards pursue speed

e.g. NIST's final AES report:

“Security was the most important
factor in the evaluation ...
Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a

high security margin.”

(Emphasis added.)
So why didn’'t Serpent win?

Maybe side-channel security?

used the same number

s for all in order to

e the security claim of
“ak proposal. However,
of using the standard
bitrate and capacity,
“ed the overall state size
to achieve a compact
ntation with a security
t would not have been
at this cost with any
thenticated encryption

The data block size and
e are selected as 4 and
. respectively.”

Standards pursue speed

e.g. NIST's final AES report:

“Security was the most important
factor in the evaluation ...
Rijndael appears to offer an
adequate security margin. . ..
Serpent appears to offer a

high security margin.”

(Emphasis added.)
So why didn't Serpent win?

Maybe side-channel security?

“The op

are amo
against

same number
 order to
Irity claim of
al. However,
e standard

d capacity,
erall state size
> 2 compact
th a security
ot have been
st with any

d encryption

block size and
ted as 4 and

ely.”

Standards pursue speed

e.g. NIST's final AES report:

“Security was the most important
factor in the evaluation ...
Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a

high security margin.”

(Emphasis added.)
So why didn't Serpent win?

Maybe side-channel security?

“The operations u
are among the eas
against timing anc

ber

of

jer,

Standards pursue speed

e.g. NIST's final AES report:

“Security was the most important
factor in the evaluation ...
Rijndael appears to offer an
adequate security margin. . ..
Serpent appears to offer a

high security margin.”

(Emphasis added.)
So why didn't Serpent win?

Maybe side-channel security?

“The operations used by Se
are among the easiest to def
against timing and power at

Standards pursue speed

e.g. NIST's final AES report:

“Security was the most important
factor in the evaluation ...
Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a

high security margin.”

(Emphasis added.)
So why didn't Serpent win?

Maybe side-channel security?

“The operations used by Serpent
are among the easiest to defend
against timing and power attacks.”

10

Standards pursue speed

e.g. NIST's final AES report:

“Security was the most important
factor in the evaluation ...
Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a

high security margin.”

(Emphasis added.)
So why didn't Serpent win?

Maybe side-channel security?

10
“The operations used by Serpent

are among the easiest to defend
against timing and power attacks.”

Hardware speed: “Serpent is

well suited to restricted-space
environments ... Fully pipelined
implementations of Serpent offer
the highest throughput of any

of the finalists for non-feedback
modes. ... Efficiency is generally
very good, and Serpent’s speed is
independent of key size.”

Standards pursue speed

e.g. NIST's final AES report:

“Security was the most important
factor in the evaluation ...
Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a

high security margin.”

(Emphasis added.)
So why didn't Serpent win?

Maybe side-channel security?

10
“The operations used by Serpent

are among the easiest to defend
against timing and power attacks.”

Hardware speed: “Serpent is

well suited to restricted-space
environments ... Fully pipelined
implementations of Serpent offer
the highest throughput of any

of the finalists for non-feedback
modes. ... Efficiency is generally
very good, and Serpent’s speed is
independent of key size.”

Great! Why didn't Serpent win?

Is pursue speed

T's final AES report:

y was the most important
the evaluation ...
appears to offer an

e security margin. . ..
appears to offer a

urity margin.”
sis added.)
didn't Serpent win?

ide-channel security?

“The operations used by Serpent
are among the easiest to defend
against timing and power attacks.”

Hardware speed: “Serpent is
well suited to restricted-space
environments ... Fully pipelined
implementations of Serpent offer

the highest throughput of any

of the finalists for non-feedback
modes. ... Efficiency is generally
very good, and Serpent’s speed is
independent of key size.”

Great! Why didn't Serpent win?

10

Aha: So

speed

\ES report:

most important
ation ...

o offer an
margin. ...

> offer a

.

)

)
pent win?

e| security?

“The operations used by Serpent
are among the easiest to defend
against timing and power attacks.”

Hardware speed: “Serpent is
well suited to restricted-space
environments ... Fully pipelined
implementations of Serpent offer
the highest throughput of any
of the finalists for non-feedback
modes. ... Efficiency is generally
very good, and Serpent’s speed is

independent of key size.”

Great! Why didn't Serpent win?

10

Aha: Software spe

ortant

“The operations used by Serpent
are among the easiest to defend
against timing and power attacks.”

Hardware speed: “Serpent is
well suited to restricted-space
environments ... Fully pipelined
implementations of Serpent offer

the highest throughput of any

of the finalists for non-feedback
modes. ... Efficiency is generally
very good, and Serpent’s speed is
independent of key size.”

Great! Why didn't Serpent win?

10

Aha: Software speed!

“The operations used by Serpent
are among the easiest to defend
against timing and power attacks.”

Hardware speed: “Serpent is

well suited to restricted-space
environments ... Fully pipelined
implementations of Serpent offer
the highest throughput of any

of the finalists for non-feedback
modes. ... Efficiency is generally
very good, and Serpent’s speed is
independent of key size.”

Great! Why didn't Serpent win?

10

Aha: Software speed!

11

“The operations used by Serpent
are among the easiest to defend
against timing and power attacks.”

Hardware speed: “Serpent is

well suited to restricted-space
environments ... Fully pipelined
implementations of Serpent offer
the highest throughput of any

of the finalists for non-feedback
modes. ... Efficiency is generally
very good, and Serpent’s speed is
independent of key size.”

Great! Why didn't Serpent win?

10

Aha: Software speed! “Serpent

Is generally the slowest of the

finalists in software speed for

encryption and decryption. ...

Serpent
low-end

orovides consistently
berformance.”

11

“The operations used by Serpent
are among the easiest to defend

against timing and power attacks.”

Hardware speed: “Serpent is

well suited to restricted-space
environments ... Fully pipelined
implementations of Serpent offer
the highest throughput of any

of the finalists for non-feedback
modes. ... Efficiency is generally
very good, and Serpent’s speed is
independent of key size.”

Great! Why didn't Serpent win?

10

11
Aha: Software speed! “Serpent

Is generally the slowest of the
finalists in software speed for

encryption and decryption. ...
Serpent provides consistently

low-end performance.”

Conclusion: “NIST judged
Rijndael to be the best overall
algorithm for the AES. Rijndael
appears to be consistently a very
good performer in both hardware
and software [and offers good
key agility, low memory, easy
defense, fast defense, flexibility,
parallelism].”

erations used by Serpent
ng the easiest to defend
timing and power attacks.”

e speed: “Serpent is
ed to restricted-space
nents ... Fully pipelined
ntations of Serpent offer

est throughput of any
nalists for non-feedback
.. Efficiency is generally
d, and Serpent’s speed is
lent of key size.”

Nhy didn't Serpent win?

10

Aha: Software speed! “Serpent
is generally the slowest of the
finalists In software speed for

encryption and decryption. . ..
Serpent provides consistently

low-end performance.”

Conclusion: “NIST judged
Rijndael to be the best overall
algorithm for the AES. Rijndael
appears to be consistently a very
good performer in both hardware
and software [and offers good
key agility, low memory, easy
defense, fast defense, flexibility,
parallelism].”

11

Want fa

Bad exa
The pur
damages
e.g. usin
e.g. usin
e.g. skip

sed by Serpent
iest to defend
| power attacks.”

‘Serpent is
'icted-space
Fully pipelined
f Serpent offer
hput of any
non-feedback
ncy Is generally
rpent’s speed Is
y size.”

= Serpent win?

10

Aha: Software speed! “Serpent
Is generally the slowest of the
finalists in software speed for

encryption and decryption. ...
Serpent provides consistently

low-end performance.”

Conclusion: “NIST judged
Rijndael to be the best overall
algorithm for the AES. Rijndael
appears to be consistently a very
good performer in both hardware
and software [and offers good
key agility, low memory, easy
defense, fast defense, flexibility,
parallelism].”

11

Want fast and sec

Bad examples:

The pursuit of spe
damages security.
e.g. using 1024-bi
e.g. using 100-bit
e.g. skipping verifi

rpent
‘end

tacks.”

10

Aha: Software speed! “Serpent

is generally the slowest of the

finalists in software s
encryption and decry

heed for

tion. . ..

Serpent provides consistently

low-end performance.

Conclusion: “NIST judged
Rijndael to be the best overall

algorithm for the AES. Rijndael

appears to be consistently a very
good performer in both hardware

and software [and offers good

key agility, low memory, easy

defense, fast defense,

parallelism].”

flexibility,

11

Want fast and secure

Bad examples:

The pursuit of speed
damages security.

e.g. using 1024-bit RSA.
e.g. using 100-bit “SHA-3".
e.g. skipping verification.

Aha: Software speed! “Serpent
Is generally the slowest of the
finalists in software speed for

encryption and decryption. ...
Serpent provides consistently

low-end performance.”

Conclusion: “NIST judged
Rijndael to be the best overall
algorithm for the AES. Rijndael
appears to be consistently a very
good performer in both hardware
and software [and offers good
key agility, low memory, easy
defense, fast defense, flexibility,
parallelism].”

11

Want fast and secure

Bad examples:
The pursuit of speed

damages security.
e.g. using 1024-bit RSA.

e.g. using 100-bit “SHA-3".

e.g. skipping verification.

12

Aha: Software speed! “Serpent
Is generally the slowest of the
finalists in software speed for

encryption and decryption. ...
Serpent provides consistently

low-end performance.”

Conclusion: “NIST judged
Rijndael to be the best overall
algorithm for the AES. Rijndael
appears to be consistently a very
good performer in both hardware
and software [and offers good
key agility, low memory, easy
defense, fast defense, flexibility,
parallelism].”

11

Want fast and secure

Bad examples:

The pursuit of speed
damages security.

e.g. using 1024-bit RSA.
e.g. using 100-bit “SHA-3".
e.g. skipping verification.

Good examples:
Obtain better speed
without damaging security.

If security level was too low,
scale up: better security
for the same performance.

12

ftware speed! “Serpent
lly the slowest of the
in software speed for

on and decryption. ...
orovides consistently

verformance.”

on: “NIST judged

to be the best overall

n for the AES. Rijndael
to be consistently a very
rformer in both hardware
ware [and offers good

ty, low memory, easy
fast defense, flexibility,

m|.

11

Want fast and secure

Bad examples:

The pursuit of speed
damages security.

e.g. using 1024-bit RSA.
e.g. using 100-bit “SHA-3".
e.g. skipping verification.

Good examples:
Obtain better speed
without damaging security.

If security level was too low,
scale up: better security
for the same performance.

12

Success

Extensiv
ECC at
— mode
for pract

Requires
and opti
Not just
not just

ed! “Serpent
west of the
e speed for

cryption. ...
onsistently

1CE.

[judged

best overall
AES. Rijndael
sistently a very
both hardware
offers good
mory, easy

se, flexibility,

11

Want fast and secure

Bad examples:

The pursuit of speed
damages security.

e.g. using 1024-bit RSA.
e.g. using 100-bit “"SHA-3".
e.g. skipping verification.

Good examples:
Obtain better speed
without damaging security.

If security level was too low,
scale up: better security
for the same performance.

12

Success story: EC

Extensive work on
ECC at a high sec
— modern ECC is
for practically all -

Requires serious a
and optimization ¢
Not just “polynon
not just “quadrati

ent
IS

all

lael
very

lware

11

Want fast and secure

Bad examples:

The pursuit of speed
damages security.

e.g. using 1024-bit RSA.
e.g. using 100-bit “SHA-3".
e.g. skipping verification.

Good examples:
Obtain better speed
without damaging security.

If security level was too low,
scale up: better security
for the same performance.

12

Success story: ECC.

Extensive work on speed of
ECC at a high security level
— modern ECC is fast enou
for practically all application

Requires serious analysis
and optimization of algorith
Not just “polynomial time”;
not just “quadratic time".

Want fast and secure

Bad examples:

The pursuit of speed
damages security.

e.g. using 1024-bit RSA.
e.g. using 100-bit “SHA-3".
e.g. skipping verification.

Good examples:
Obtain better speed
without damaging security.

If security level was too low,
scale up: better security
for the same performance.

12

13
Success story: ECC.

Extensive work on speed of
ECC at a high security level
= modern ECC is fast enough
for practically all applications.

Requires serious analysis

and optimization of algorithms.
Not just “polynomial time”;
not just “quadratic time".

Want fast and secure

Bad examples:

The pursuit of speed
damages security.

e.g. using 1024-bit RSA.
e.g. using 100-bit “SHA-3".
e.g. skipping verification.

Good examples:
Obtain better speed
without damaging security.

If security level was too low,
scale up: better security
for the same performance.

12

13
Success story: ECC.

Extensive work on speed of
ECC at a high security level
= modern ECC is fast enough
for practically all applications.

Requires serious analysis

and optimization of algorithms.
Not just “polynomial time”;
not just “quadratic time".

RSA and Rabin—Williams are even
faster for signature verification,
but slower for keygen, signing,
sending keys, sending sigs.

st and secure

mples:

suit of speed

> security.

g 1024-bit RSA.

g 100-bit “SHA-3".
ping verification.

amples:
etter speed
damaging security.

ty level was too low,
. better security
ame performance.

12

Success story: ECC.

Extensive work on speed of
ECC at a high security level
= modern ECC is fast enough
for practically all applications.

Requires serious analysis

and optimization of algorithms.
Not just “polynomial time”;
not just “quadratic time".

RSA and Rabin—Williams are even
faster for signature verification,
but slower for keygen, signing,
sending keys, sending sigs.

13

Some sig

1985 EI(

1990 Sc
plus vari

Patentec

1991 D€
later cre
with one

1999 EC
DSA wit

2011 Ed
Schnorr

- RSA.
“SHA-3" .

cation.

>d
security.

s too low,
curity

rMmance.

12

Success story: ECC.

Extensive work on speed of
ECC at a high security level
= modern ECC is fast enough
for practically all applications.

Requires serious analysis

and optimization of algorithms.
Not just “polynomial time”;
not just “quadratic time".

RSA and Rabin—Williams are even
faster for signature verification,
but slower for keygen, signing,
sending keys, sending sigs.

13

Some signature-sy

1985 ElGamal: F

1990 Schnorr: EIC

plus various impro
Patented until 20(

1991 DSA, annoul
later credited to N
with one Schnorr |

1999 ECDSA: repl
DSA with an ellip

2011 EdADSA (e.g.
Schnorr plus more

Success story: ECC.

Extensive work on speed of
ECC at a high security level
= modern ECC is fast enough
for practically all applications.

Requires serious analysis

and optimization of algorithms.
Not just “polynomial time”;
not just “quadratic time".

RSA and Rabin—Williams are even
faster for signature verification,
but slower for keygen, signing,
sending keys, sending sigs.

13

Some signature-system histc

1985 ElGamal: F} signature

1990 Schnorr: ElGamal
plus various improvements.
Patented until 2008.

1991 DSA, announced by N

later credited to NSA: ElGai
with one Schnorr improveme

1999 ECDSA: replacing F},
DSA with an elliptic-curve g

2011 EdDSA (e.g., Ed2551¢€
Schnorr plus more improven

Success story: ECC.

Extensive work on speed of
ECC at a high security level
= modern ECC is fast enough
for practically all applications.

Requires serious analysis

and optimization of algorithms.
Not just “polynomial time”;
not just “quadratic time".

RSA and Rabin—Williams are even
faster for signature verification,
but slower for keygen, signing,
sending keys, sending sigs.

13

Some signature-system history

1985 ElGamal: F}, signatures.

1990 Schnorr: ElIGamal
plus various improvements.
Patented until 2008.

1991 DSA, announced by NIST,
later credited to NSA: ElGamal
with one Schnorr improvement.

1999 ECDSA: replacing F; in
DSA with an elliptic-curve group.

2011 EdDSA (e.g., Ed25519):
Schnorr plus more improvements.

14

story: ECC.

e work on speed of
a high security level
rn ECC is fast enough
Ically all applications.

, serious analysis

mization of algorithms.
“polynomial time"’;
“quadratic time".

1 Rabin—Williams are even
r signature verification,

er for keygen, signing,
keys, sending sigs.

13

14
Some signature-system history

1985 ElGamal: F} signatures.

1990 Schnorr: ElGamal
plus various improvements.
Patented until 2008.

1991 DSA, announced by NIST,
later credited to NSA: ElGamal
with one Schnorr improvement.

1999 ECDSA: replacing F; in
DSA with an elliptic-curve group.

2011 EdDSA (e.g., Ed25519):
Schnorr plus more improvements.

ElGamal
(R,S) is
if BH(M

and R, €

Here p |
B Is stal
A Is sigr
H(M) is

Secret k
Public k
To sign
compute

S =1

C.

speed of
urity level
- fast enough
\pplications.

nalysis

of algorithms.
al time'

c time” .

/illiams are even
> verification,
yen, signing,
ing sigs.

13

Some signature-system history

1985 ElGamal: F}, signatures.

1990 Schnorr: ElIGamal
plus various improvements.
Patented until 2008.

1991 DSA, announced by NIST,
later credited to NSA: ElGamal
with one Schnorr improvement.

1999 ECDSA: replacing F; in

DSA with an elliptic-curve group.

2011 EdDSA (e.g., Ed25519):

Schnorr plus more improvements.

14

ElGamal verificatic
(R,S) is signature
if BHIM) = ARRS

and R, S €{0,1,.

Here p Is standard
B Is standard base
A Is signer's public
H(M) is hash of n

Secret key: randol
Public key: A= E
To sign M: gener:
compute R = B" |
S=r"Y(H(M) -

MmSs.

c even

g,

13

Some signature-system history

1985 ElGamal: F} signatures.

1990 Schnorr: ElGamal
plus various improvements.
Patented until 2008.

1991 DSA, announced by NIST,
later credited to NSA: ElGamal
with one Schnorr improvement.

1999 ECDSA: replacing F; in

DSA with an elliptic-curve group.

2011 EdDSA (e.g., Ed25519):

Schnorr plus more improvements.

14

ElGamal verification:

(R, S) is signature of M

if BHIM) = ARRS (mod p
and R, 5€{0,1,..., p— 2}

Here p Is standard prime,
B s standard base,

A 1s signer’s public key,
H(M) is hash of message.

Secret key: random a.
Public key: A = B9 mod p.
To sign M: generate randor
compute R = B" mod p,
S=r"Y(H(M) - aR) mod

Some signature-system history

1985 ElGamal: F}, signatures.

1990 Schnorr: ElIGamal
plus various improvements.
Patented until 2008.

1991 DSA, announced by NIST,
later credited to NSA: ElGamal
with one Schnorr improvement.

1999 ECDSA: replacing F; in
DSA with an elliptic-curve group.

2011 EdDSA (e.g., Ed25519):
Schnorr plus more improvements.

14

ElGamal verification:

(R, S) is signature of M

if BHIM) = ARRS (mod p)
and R,5€{0,1,..., p—2}.

Here p Is standard prime,
B s standard base,

A 1s signer’s public key,
H(M) is hash of message.

Secret key: random a.

Public key: A = B mod p.

To sign M: generate random r,
compute R = B" mod p,

S=r"Y(H(M)—-aR) mod p—1.

15

ynature-system history

samal: F7 signatures.

hnorr: ElGamal
ous Improvements.

1 until 2008.

A, announced by NIST,

dited to NSA: ElGamal
> Schnorr improvement.

DSA: replacing F}, in
h an elliptic-curve group.

DSA (e.g., Ed25519):
plus more improvements.

14

ElGamal verification:

(R, S) is signature of M

if BHIM) = ARRS (mod p)
and R, 5 €{0,1,..., p—2}.

Here p Is standard prime,
B s standard base,

A 1s signer’s public key,
H(M) is hash of message.

Secret key: random a.

Public key: A = B9 mod p.

To sign M: generate random r,
compute R = B" mod p,
S=r"Y(H(M)—-aR)mod p—1.

15

Hash ths

Tweak:
if BH(M

and R, S

Signer:
r~L(H(I

Speed ir
Hashing

Security
Serious ¢
strategy
a partict

stem history

~signatures.

amal
vements.

)3.

1ced by NIST,
ISA: ElGamal

mprovement.

. . -
acing F in
IC-curve group.

, Ed25519):
Improvements.

14

ElGamal verification:

(R, S) is signature of M

if BHIM) = ARRS (mod p)
and R,5€{0,1,..., p—2}.

Here p Is standard prime,
B s standard base,

A 1s signer’s public key,
H(M) is hash of message.

Secret key: random a.

Public key: A = B mod p.

To sign M: generate random r,
compute R = B" mod p,
S=r"Y(H(M)—-aR)mod p—1.

15

Hash the exponen

Tweak: (R,S) is:
if BH(M) = AH(R)

and R, S € {0, 1,.

Signer: as before
r~L(H(M) — aH(I

Speed impact: nef
Hashing R is very

Security impact: s
serious obstacle tc
strategy that relie
a particular A exp:

IST,

mal

Nt.

14

ElGamal verification:

(R, S) is signature of M

if BHIM) = ARRS (mod p)
and R, 5€{0,1,..., p—2}.

Here p Is standard prime,
B s standard base,

A 1s signer’s public key,
H(M) is hash of message.

Secret key: random a.

Public key: A = B9 mod p.

To sign M: generate random r,
compute R = B" mod p,
S=r"Y(H(M)—-aR)mod p—1.

15

Hash the exponent

Tweak: (R, S) is signature «
if BHIM) = AH(RIRS (mo
and R,5€4{0,1,..., p— 2}

Signer: as before except S -
r~Y(H(M) — aH(R)) mod p

Speed impact: negligible.
Hashing R is very fast.

Security impact: seems to b
serious obstacle to any attac
strategy that relies on choos
a particular A exponent.

ElGamal verification:

(R, S) is signature of M

if BHIM) = ARRS (mod p)
and R,5€{0,1,..., p—2}.

Here p Is standard prime,
B s standard base,

A 1s signer’s public key,
H(M) is hash of message.

Secret key: random a.

Public key: A = B9 mod p.

To sign M: generate random r,
compute R = B" mod p,
S=r"1Y(H(M)—-aR)mod p—1.

15

16
Hash the exponent

Tweak: (R, S) is signature of M
if BHIM) = AH(R)RS (mod p)
and R,5€4{0,1,..., p—2}.

Signer: as before except S =
r~Y(H(M) — aH(R)) mod p — 1.

Speed impact: negligible.
Hashing R is very fast.

Security impact: seems to be
serious obstacle to any attack
strategy that relies on choosing
a particular A exponent.

verification:
, signature of M
) = ARR®> (mod p)
 €4{0,1,..., p—2}.

s standard prime,
1dard base,

er's public key,
“hash of message.

ey: random a.

ey: A= B? mod p.

M: generate random r,

' R = B" mod p,

(H(M) — aR) mod p — 1.

15

Hash the exponent

Tweak: (R, S) is signature of M
if BHIM) = AH(R)IRS (mod p)
and R, 5€4{0,1,..., p—2}.

Signer: as before except S =

r~Y(H(M) — aH(R)) mod p — 1.

Speed impact: negligible.
Hashing R is very fast.

Security impact: seems to be
serious obstacle to any attack
strategy that relies on choosing
a particular A exponent.

16

Prime-ol

Choose
standarc
e.g. take

Again ve
ECC: Hi

Signer:
S=r"1

Simpler

Speed a
(when g
Less tim

n:

of M
(mod p)

., p—2}

- prime,
3

- key,
nessage.

m a.
9 mod p.

1te random r,
mod p,

aR) mod p — 1.

15

Hash the exponent

Tweak: (R, S) is signature of M
if BHIM) = AH(R)RS (mod p)
and R,5€4{0,1,..., p—2}.

Signer: as before except S =

r~Y(H(M) — aH(R)) mod p — 1.

Speed impact: negligible.
Hashing R is very fast.

Security impact: seems to be
serious obstacle to any attack
strategy that relies on choosing
a particular A exponent.

16

Prime-order subgr

Choose B to have
standard prime di\

e.g. take 3000-bit

Again verify BH(N

ECC: H(M)B = ¢

Signer: same exce
S=r"1Y(H(M) -

Simpler security a

Speed advantage:
(when g is smaller
Less time to trans

e

15

Hash the exponent

Tweak: (R, S) is signature of M
if BHIM) = AH(R)RS (mod p)
and R,5€4{0,1,..., p—2}.

Signer: as before except S =

r~Y(H(M) — aH(R)) mod p — 1.

Speed impact: negligible.
Hashing R is very fast.

Security impact: seems to be
serious obstacle to any attack
strategy that relies on choosing
a particular A exponent.

16

Prime-order subgroup

Choose B to have order g f

standard prime divisor g of |
e.g. take 3000-bit p, 256-bit

Again verify BH(M) = AH(R

ECC: H(M)B = H(R)A +

Signer: same except now
S=r"Y(H(M)—aH(R)) m

Simpler security analysis.

Speed advantage: Smaller S
(when g is smaller than p —
Less time to transmit signat

Hash the exponent

Tweak: (R, S) is signature of M
if BHIM) = AH(R)RS (mod p)
and R, 5€4{0,1,..., p—2}.

Signer: as before except S =

r~Y(H(M) — aH(R)) mod p — 1.

Speed impact: negligible.
Hashing R is very fast.

Security impact: seems to be
serious obstacle to any attack
strategy that relies on choosing
a particular A exponent.

16

17
Prime-order subgroup

Choose B to have order g for
standard prime divisor g of p — 1.

e.g. take 3000-bit p, 256-bit q.

Again verify Bf(M) = AH(R)RS
ECC: H(M)B = H(R)A + SR.

Signer: same except now
S =r"Y(H(M) - aH(R)) mod q.

Simpler security analysis.

Speed advantage: Smaller S
(when g is smaller than p — 1).
Less time to transmit signature.

2 exponent

(R,S) is signature of M
) = AH(RIRS (mod p)
 €4{0,1,..., p—2}.

as before except S =

) —aH(R)) mod p — 1.

npact: negligible.
R is very fast.

impact: seems to be
bstacle to any attack
that relies on choosing
ilar A exponent.

16

Prime-order subgroup

Choose B to have order g for

standard prime divisor g of p — 1.

e.g. take 3000-bit p, 256-bit g.

Again verify BHM) = AH(R)RS
ECC: HHM)B = H(R)A+ SR.

Signer: same except now

S =rY(H(M) — aH(R)) mod q.

Simpler security analysis.

Speed advantage: Smaller S
(when g is smaller than p — 1).
Less time to transmit signature.

17

Two sca

Verity B
A
ECC: (F
A

Safe to .
ever finc

No secu
if BH(K)

then BF

Speed a
outwelgt

L

signature of M
R> (mod p)
., p— 2}

except S =

%)) mod p — 1.

yligible.
fast.

eems to be
 any attack

5 on choosing
onent.

16

Prime-order subgroup

Choose B to have order g for

standard prime divisor g of p — 1.

e.g. take 3000-bit p, 256-bit q.

Again verify Bf(M) = AH(R)RS
ECC: H(M)B = H(R)A + SR.

Signer: same except now

S =rY(H(M) — aH(R)) mod g.

Simpler security analysis.

Speed advantage: Smaller S
(when g is smaller than p — 1).
Less time to transmit signature.

17

Two scalars

Verify BH(R)THH(!
ARH(R)_ls

ECC: (H(R)"*H(
A+ (H(R)™

Safe to assume th
ever find H(R) diy

No security loss:
£ gH(R)TH(M) _

then BAWM) — AF

Speed advantage:
outweighing cost «

f M

INg

16

Prime-order subgroup

Choose B to have order g for

standard prime divisor g of p — 1.

e.g. take 3000-bit p, 256-bit g.

Again verify BHM) = AH(R)RS
ECC: HHM)B = H(R)A+ SR.

Signer: same except now

S =rY(H(M) — aH(R)) mod q.

Simpler security analysis.

Speed advantage: Smaller S
(when g is smaller than p — 1).
Less time to transmit signature.

17

Two scalars

Verify BH(R) " H(M)
ARH(R)_ls_

ECC: (H(R)"*H(M))B =
A+ (H(R)"1S)R.

Safe to assume that nobody
ever find H(R) divisible by «

No security loss: |
£ H(R)TH(M) _ ApH(R)™
then BH(M) = AH(R)RS.

Speed advantage: fewer sca
outweighing cost of H(R)™*

Prime-order subgroup

Choose B to have order g for

standard prime divisor g of p — 1.
e.g. take 3000-bit p, 256-bit q.

Again verify Bf(M) = AH(R)RS
ECC: H(M)B = H(R)A + SR.

Signer: same except now
S =r"Y(H(M) - aH(R)) mod q.

Simpler security analysis.

Speed advantage: Smaller S
(when g is smaller than p — 1).
Less time to transmit signature.

17

18
Two scalars

Verify BH(R) " H(M)
ARH(R)_ls_

ECC: (H(R)"*H(M))B =
A+ (H(R)"1S)R.

Safe to assume that nobody will
ever find H(R) divisible by q.

No security loss:
£ BH(R)"TH(M) _ ARpH(R)!S
then BH(M) — AH(R) RS,

Speed advantage: fewer scalars,
outweighing cost of H(R)™ 1.

der subgroup

B to have order g for

| prime divisor g of p — 1.
» 3000-bit p, 256-bit q.
rify BM(M) = AH(R)RS
‘M)B = H(R)A+ SR.

same except now
(H(M) — aH(R)) mod q.

security analysis.

dvantage: Smaller S
is smaller than p — 1).
e to transmit signature.

17

Two scalars

Verify BH(R) T H(M) —
ARH(R)_ls_

ECC: (H(R)"*H(M))B =
A+ (H(R)"1S)R.

Safe to assume that nobody will
ever find H(R) divisible by q.

No security loss:
.« BH(R)"tH(M) _ ARpH(R)!S
then BHM) — AH(R) RS,

Speed advantage: fewer scalars,

outweighing cost of H(R)™ 1.

18

Precom;

Notatior

Send (R
signatur
signer In

Verity B
ECC: (K

Signer ¢
r~L(H(!

oup

order g for
iisor g of p — 1.
p, 256-bit g.

) = AH(R)RS
1(R)A+ SR.

pt now
aH(R)) mod q.

nalysis.

Smaller S
“than p — 1).
mit signature.

17

Two scalars

Verify BH(R) T H(M) —
ARH(R)_ls_

ECC: (H(R) tH(M))B =
A+ (H(R)"1S)R.

Safe to assume that nobody will
ever find H(R) divisible by q.

No security loss:
£ BH(R)"TH(M) _ ARpH(R)!S

then BAWM) — AH(R) RS

Speed advantage: fewer scalars,
outweighing cost of H(R)™!.

18

Precomputing quc

Notation: S = H(

Send (R, S) instez
signature: i.e., S «
signer instead of v

Verify BH(R)T*H(/
ECC: (H(R)"1H(

Signer computes
rY(H(R)"*H(M

N
4

ure.

17

Two scalars

Verify BH(R) " H(M)
ARH(R)_ls_

ECC: (H(R)"*H(M))B =
A+ (H(R)"1S)R.

Safe to assume that nobody will
ever find H(R) divisible by q.

No security loss:
.« BH(R)"tH(M) _ ARpH(R)1S

then BAWM) — AH(R) RS

Speed advantage: fewer scalars,

outweighing cost of H(R)™ 1.

18

Precomputing quotient

Notation: S = H(R)!S.

Send (R, S) instead of (R, £
signature: i.e., S computed
signer instead of verifier.

Verify BH(R)TTH(M) — ARS
ECC: (H(R)"*H(M))B = /

Signer computes S =
r~Y(H(R)"1H(M) — a) moc

Two scalars

Verify BH(R) " H(M)
ARH(R)_ls_

ECC: (H(R)"*H(M))B =
A+ (H(R)"1S)R.

Safe to assume that nobody will
ever find H(R) divisible by q.

No security loss:
£ BH(R)"TH(M) _ ARpH(R)!S

then BAWM) — AH(R) RS

Speed advantage: fewer scalars,
outweighing cost of H(R)™!.

18

19
Precomputing quotient

Notation: S = H(R)™!S.

Send (R, S) instead of (R, S) as
signature: i.e., S computed by
signer instead of verifier.

Verify BH(R)TTH(M) — ARS.
ECC: (H(R)"'H(M))B = A+SR.

Signer computes S =
r~Y(H(R)"1H(M) — a) mod q.

Two scalars

Verify BH(R) " H(M)
ARH(R)_ls_

ECC: (H(R)"*H(M))B =
A+ (H(R)"1S)R.

Safe to assume that nobody will
ever find H(R) divisible by q.

No security loss:
£ BH(R)"TH(M) _ ARpH(R)!S

then BAWM) — AH(R) RS

Speed advantage: fewer scalars,
outweighing cost of H(R)™!.

18

19
Precomputing quotient

Notation: S = H(R)™!S.

Send (R, S) instead of (R, S) as
signature: i.e., S computed by
signer instead of verifier.

Verify BH(R)TTH(M) — ARS.

ECC: (H(R)"'H(M))B = A+SR.

Signer computes S =
r~Y(H(R)"1H(M) — a) mod q.

From now on: Rename S as S.

lars
HR) L H(M) _
RH(R)_ls_

I(R)"TH(M))B =
+(H(R)"1SR.

assume that nobody will

| H(R) divisible by g.

rity loss:
“LH(M) — ApH(R)LS

(M) _ AH(R) RS.

dvantage: fewer scalars,
ing cost of H(R)™ 1.

18

19
Precomputing quotient

Notation: S = H(R)!S.

Send (R, S) instead of (R, S) as
signature: i.e., S computed by
signer instead of verifier.

Verify BH(R)TTH(M) — ARS.
ECC: (H(R)"'H(M))B = A+SR.

Signer computes S =
r~Y(H(R)"'H(M) — a) mod q.

From now on: Rename S as S.

Merge h

gH(R.M
ECC: H

Speed a
Is faster

Security
attacker
Innocent
with H(
Using H
signs M
same Sig
Using H

at nobody will
isible by q.

ARH(R)_ls
(R)RS

fewer scalars,
f H(R)™ 1.

18

19
Precomputing quotient

Notation: S = H(R)!S.

Send (R, S) instead of (R, S) as
signature: i.e., S computed by
signer instead of verifier.

Verify BH(R) T H(M) — ARS.
ECC: (H(R)"'H(M))B = A+SR.

Signer computes S =
r~Y(H(R)"1H(M) — a) mod q.

From now on: Rename S as S.

Merge hashes: col

BH(R,M) _ ARS
ECC: H(R, M)B -

Speed advantage:
is faster than H(F

Security advantag;
attacker somehow
innocent M and d
with H(M) = H(/
Using H(R) Y H(!
signs M then atta

same signature for
Using H(R, M): n

will

lars,

18

19
Precomputing quotient

Notation: S = H(R)!S.

Send (R, S) instead of (R, S) as
signature: i.e., S computed by
signer instead of verifier.

Verify BH(R)TTH(M) — ARS.
ECC: (H(R)"'H(M))B = A+SR.

Signer computes S =
r~Y(H(R)"'H(M) — a) mod q.

From now on: Rename S as S.

Merge hashes: collision resil

BHIRM) — ARS.
ECC: H(R,M)B = A+ SR.

Speed advantage: H(R, M)
is faster than H(R) " 1H(M)

Security advantage: Imagine
attacker somehow finding
innocent M and dangerous .
with H(M) = H(M").

Using H(R) 1 H(M): if sigr
signs M then attacker reuse

same signature for M'.
Using H(R, M): no problem

Precomputing quotient

Notation: S = H(R)™!S.

Send (R, S) instead of (R, S) as
signature: i.e., S computed by
signer instead of verifier.

Verify BH(R) T H(M) — ARS.

ECC: (H(R) " 'H(M))B = A+SR.

Signer computes S =
r~Y(H(R)"1H(M) — a) mod q.

From now on: Rename S as S.

19

Merge hashes: collision resilience

BH(R,M) _ ARS
ECC: H(R, M)B = A+ SR.

Speed advantage: H(R, M)
is faster than H(R) " 1H(M).

Security advantage: Imagine
attacker somehow finding
innocent M and dangerous M’
with H(M) = H(M").

Using H(R) 1 H(M): if signer
signs M then attacker reuses

same signature for M'.
Using H(R, M): no problem.

20

uting quotient

. S = H(R)!S.

,S) instead of (R, S) as

e: I.e., S computed by
stead of verifier.

H(R)"TH(M) _ ARS.

(R)"1H(M))B = A+SR.

omputes S =
)" LH(M) — a) mod q.

w on: Rename S as S.

19

Merge hashes: collision resilience

BHRM) — AR>S
ECC: H(R,M)B = A+ SR.

Speed advantage: H(R, M)
is faster than H(R) " 1H(M).

Security advantage: Imagine
attacker somehow finding
innocent M and dangerous M’
with H(M) = H(M").

Using H(R) 1 H(M): if signer
signs M then attacker reuses

same signature for M'.
Using H(R, M): no problem.

20

Eliminat

B> =R
ECC: S|

Signer i
S=r1

Signer ir
S=r+

Speed a
Skip all

Security
slightly ¢
2000 Po

d of (R, S) as
omputed by
erifier.

1) — AR2.

M))B = A+SR.

Z:

) —a) mod q.

1ame S as S.

19

Merge hashes: collision resilience

BH(R,M) _ ARS
ECC: H(R, M)B = A+ SR.

Speed advantage: H(R, M)
is faster than H(R) " 1H(M).

Security advantage: Imagine
attacker somehow finding
innocent M and dangerous M’
with H(M) = H(M").

Using H(R) 1 H(M): if signer
signs M then attacker reuses

same signature for M'.
Using H(R, M): no problem.

20

Eliminate divisions

B> = RAHR.M)
ECC: SB=R + |

Signer in previous
S =r"Y(H(R, M)

Signer in this syst:
S=r+ H(R, M):

Speed advantage:
Skip all inversions

Security analysis i

slightly simpler. S
2000 Pointcheval-

19

Merge hashes: collision resilience

BH(R,M) _ ARS
ECC: H(R, M)B = A+ SR.

Speed advantage: H(R, M)
is faster than H(R) " 1H(M).

Security advantage: Imagine
attacker somehow finding
innocent M and dangerous M’
with H(M) = H(M").

Using H(R) 1 H(M): if signer
signs M then attacker reuses

same signature for M'.
Using H(R, M): no problem.

20

Eliminate divisions

BS _ RAH(R’M).
ECC: SB = R+ H(R, M)A

Signer in previous system:
S = r_l(H(R, M) — a) mod

Signer in this system:
S=r+ H(R,M)amod gq.

Speed advantage:

Skip all inversions.

Security ana
slightly simp

ysis Is similar,
er. See, e.g.,

2000 Pointcheval—Stern.

Merge hashes: collision resilience

BH(R,M) _ ARS
ECC: H(R, M)B = A+ SR.

Speed advantage: H(R, M)
is faster than H(R) " 1H(M).

Security advantage: Imagine
attacker somehow finding
innocent M and dangerous M’
with H(M) = H(M").

Using H(R) 1 H(M): if signer
signs M then attacker reuses

same signature for M'.
Using H(R, M): no problem.

20

21

Eliminate divisions

BS _ RAH(R’M).
ECC: SB = R+ H(R, M)A

Signer in previous system:
S=r"1(H(R, M) - a) mod q.

Signer in this system:
S=r+ H(R,M)amod gq.

Speed advantage:

Skip all inversions.

Security ana
slightly simp

ysis Is similar,
er. See, e.g.,

2000 Pointcheval-Stern.

ashes: collision resilience

= AR>.
(R,M)B = A+ SR.

dvantage: H(R, M)
than H(R)1H(M).

advantage: Imagine
somehow finding

- M and dangerous M’
M) = H(M").
(R)~LH(M): if signer
then attacker reuses
nature for M’

(R, M): no problem.

20

21

Eliminate divisions

BS _ RAH(R’M).
ECC: SB = R+ H(R, M)A.

Signer in previous system:
S=r"1(H(R, M) - a) mod g.

Signer in this system:
S=r+ H(R,M)amod gq.

Speed advantage:

Skip all inversions.

Security ana
slightly simp

ysis Is similar,
er. See, e.g.,

2000 Pointcheval—Stern.

Signatur

Schnorr
(H(R, v

Given (F
recovers
checks

ECC: R

Speed a
when H

No secu

anyone (

lision resilience

- A+ SR.

H(R, M)
YV LH(M).

e Imagine
finding
angerous M’
aN.

1): if signer
cker reuses

- M.

o problem.

20

21
Eliminate divisions

BS _ RAH(R’M).
ECC: SB = R+ H(R, M)A

Signer in previous system:
S=r"1Y(H(R, M) - a) mod q.

Signer in this system:
S=r+ H(R,M)amod gq.

Speed advantage:
Skip all inversions.

Security analysis is similar,

slightly simpler. See, e.g.,
2000 Pointcheval-Stern.

Signature compres

Schnorr signature
(H(R, M), S) inst

Given (h, S): verif
recovers R = B>/
checks h = H(R, |

ECC: R=SB — +

Speed advantage :
when H(R, M) is :

No security impac
anyone can compr

lence

er

20

21
Eliminate divisions

BS _ RAH(R’M).
ECC: SB = R+ H(R, M)A.

Signer in previous system:
S=r"Y(H(R, M) - a) mod q.

Signer in this system:
S=r+ H(R,M)amod gq.

Speed advantage:
Skip all inversions.

Security analysis is similar,

slightly simpler. See, e.g.,
2000 Pointcheval-Stern.

Signature compression

Schnorr signature is
(H(R, M), S) instead of (R,

Given (h, S): verifier
recovers R = B> /A"
checks h = H(R, M).

ECC: R=5B — hA.

Speed advantage sending sig
when H(R, M) is shorter th:

No security impact:
anyone can compress sigs.

Eliminate divisions

BS _ RAH(R’M).
ECC: SB = R+ H(R, M)A

Signer in previous system:

S=r"1(H(R, M) - a) mod q.

Signer in this system:
S=r+ H(R,M)amod gq.

Speed advantage:

Skip all inversions.

Security ana
slightly simp

ysis Is similar,
er. See, e.g.,

2000 Pointcheval-Stern.

21

Signature compression

Schnorr signature is
(H(R, M), S) instead of (R, S).

Given (h, S): verifier
recovers R = B> /A"
checks h = H(R, M).

ECC: R=5B — hA

Speed advantage sending sigs

when H(R, M) is shorter than R.

No security impact:
anyone can compress sigs.

22

e divisions

AH(R.M)
3 = R+ H(R, M)A.

1 previous system:

(H(R, M) — a) mod gq.

1 this system:
H(R, M)a mod gq.

dvantage:

INVersions.

dNd

SImp

ysis Is similar,
er. See, e.g.,

intcheval—Stern.

21

Signature compression

Schnorr signature is
(H(R, M), S) instead of (R, S).

Given (h, S): verifier
recovers R = B> /A"
checks h = H(R, M).

ECC: R=5B — hA

Speed advantage sending sigs

when H(R, M) is shorter than R.

No security impact:
anyone can compress sigs.

22

Half-size

Schnorr
e.g., 12¢

Advanta

1(R, M)A

system:
— a) mod q.

2 mod q.

5 similar,

ee, e.g.,
Stern.

21

Signature compression

Schnorr signature is
(H(R, M), S) instead of (R, S).

Given (h, S): verifier
recovers R = B> /A"
checks h = H(R, M).

ECC: R=5B — hA

Speed advantage sending sigs

when H(R, M) is shorter than R.

No security impact:
anyone can compress sigs.

22

Half-size H outpus

Schnorr chooses h

e.g., 123 bits inste

Advantage: smalle

21

Signature compression

Schnorr signature is
(H(R, M), S) instead of (R, S).

Given (h, S): verifier
recovers R = B> /A"
checks h = H(R, M).

ECC: R=5B — hA

Speed advantage sending sigs

when H(R, M) is shorter than R.

No security impact:
anyone can compress sigs.

22

Half-size H output

Schnorr chooses half-size H.
e.g., 128 bits instead of 256

Advantage: smaller (H(R, A

Signature compression

Schnorr signature is
(H(R, M), S) instead of (R, S).

Given (h, S): verifier
recovers R = B> /A"
checks h = H(R, M).

ECC: R=5B — hA

Speed advantage sending sigs

when H(R, M) is shorter than R.

No security impact:
anyone can compress sigs.

22

23
Half-size H output

Schnorr chooses half-size H:
e.g., 128 bits instead of 256 bits.

Advantage: smaller (H(R, M), S).

Signature compression

Schnorr signature is
(H(R, M), S) instead of (R, S).

Given (h, S): verifier
recovers R = B> /A"
checks h = H(R, M).

ECC: R=5B — hA

Speed advantage sending sigs

when H(R, M) is shorter than R.

No security impact:
anyone can compress sigs.

22

Half-size H output

Schnorr chooses half-size H:
e.g., 128 bits instead of 256 bits.

Advantage: smaller (H(R, M), S).

Objection: “128-bit hash
functions allow collisions!”

23

Signature compression

Schnorr signature is
(H(R, M), S) instead of (R, S).

Given (h, S): verifier
recovers R = B> /A"
checks h = H(R, M).

ECC: R=5B — hA

Speed advantage sending sigs

when H(R, M) is shorter than R.

No security impact:
anyone can compress sigs.

22

23
Half-size H output

Schnorr chooses half-size H:
e.g., 128 bits instead of 256 bits.

Advantage: smaller (H(R, M), S).

Objection: “128-bit hash
functions allow collisions!”

Not an obvious problem:
Recall that Schnorr’s system
Is collision-resilient.

Signature compression

Schnorr signature is
(H(R, M), S) instead of (R, S).

Given (h, S): verifier
recovers R = B> /A"
checks h = H(R, M).

ECC: R=5B — hA

Speed advantage sending sigs

when H(R, M) is shorter than R.

No security impact:
anyone can compress sigs.

22

23

Half-size H output

Schnorr ¢
e.g., 123

nooses half-size H:

hits instead of 256 bits.

Advantage: smaller (H(R, M), S).

Objection
functions

- "128-bit hash
allow collisions!”

Not an obvious problem:

Recall that Schnorr’s system

Is collision-resilient.

More serious objection:

multi-target preimage attacks.

e compression

signature Is
1), S) instead of (R, S).

, S): verifier
R = B> /A"
= H(R, M).

= SB — hA.

dvantage sending sigs
(R, M) is shorter than R.

rity Impact:
“an compress SIgs.

22

Half-size H output

Schnorr chooses half-size H:
e.g., 128 bits instead of 256 bits.

Advantage: smaller (H(R, M), S).

Objection: “128-bit hash
functions allow collisions!”

Not an obvious problem:
Recall that Schnorr's system
is collision-resilient.

More serious objection:
multi-target preimage attacks.

23

DSA an

DSA is |
® prime-
e A1 ir
® tWwO SC

Much w
e does r

e does n
® IS not

® require

® require
(or thi

IS

ad of (R, S).
ler

Ah

).

A.

sending sigs
shorter than R.

t:
ess sigs.

22

Half-size H output

Schnorr chooses half-size H:
e.g., 128 bits instead of 256 bits.

Advantage: smaller (H(R, M), S).

Objection: “128-bit hash
functions allow collisions!”

Not an obvious problem:
Recall that Schnorr’s system
Is collision-resilient.

More serious objection:
multi-target preimage attacks.

23

DSA and ECDSA

DSA is ElGamal p

e prime-order subg
o A1 instead of ,
e two scalars.

Much worse than
e does not hash Kk

e does not merge
e IS not collision-r:
® requires Inversio

® requires Inversio
(or three expone

'S

ain R.

22

Half-size H output

Schnorr chooses half-size H:
e.g., 128 bits instead of 256 bits.

Advantage: smaller (H(R, M), S).

Objection: “128-bit hash
functions allow collisions!”

Not an obvious problem:
Recall that Schnorr’s system
is collision-resilient.

More serious objection:
multi-target preimage attacks.

23

DSA and ECDSA

DSA is ElGamal plus

e prime-order subgroups;
e A1l instead of A;

e two scalars.

Much worse than Schnorr: |
e does not hash R:

e does not merge hashes;
e Is not collision-resilient:
e requires inversion for signe

® requires inversion for verifi
(or three exponents).

Half-size H output

Schnorr chooses half-size H:
e.g., 128 bits instead of 256 bits.

Advantage: smaller (H(R, M), S).

Objection: “128-bit hash
functions allow collisions!”

Not an obvious problem:
Recall that Schnorr’s system
Is collision-resilient.

More serious objection:
multi-target preimage attacks.

23

DSA and ECDSA

DSA is ElGamal plus

e prime-order subgroups;
e A1l instead of A;

e two scalars.

Much worse than Schnorr: DSA
e does not hash R:

e does not merge hashes;
e is not collision-resilient:
e requires inversion for signer;

e requires inversion for verifier
(or three exponents).

24

 H output

chooses half-size H:
) bits instead of 256 bits.

ge: smaller (H(R, M), S).

n: "128-bit hash

s allow collisions!”

bbvious problem:
1at Schnorr’s system
on-resilient.

rlous objection:
rget preimage attacks.

23

DSA and ECDSA

DSA is ElGamal plus

e prime-order subgroups;
e A1l instead of A;

e two scalars.

Much worse than Schnorr: DSA
e does not hash R:

e does not merge hashes;
e Is not collision-resilient:
e requires inversion for signer;

e requires inversion for verifier
(or three exponents).

24

EdDSA

EdDSA

e compl:
® NO Sig|
e double
e Aase
e detern

L

alf-size H:
ad of 256 bits.

r (H(R, M), S).

1t hash
llisions!”

oblem:
r's system
.

“tion:
age attacks.

23

DSA and ECDSA

DSA is ElGamal plus

e prime-order subgroups;
e A1l instead of A;

e two scalars.

Much worse than Schnorr: DSA
e does not hash R:

e does not merge hashes;
e is not collision-resilient:
e requires inversion for signer;

e requires inversion for verifier
(or three exponents).

24

EAdDSA

EdDSA is Schnorr
e complete twistec
® no signature cor
e double-size H ol
e A as extra H Ing
e deterministic R.

bits.

1,5)

(S.

23

DSA and ECDSA

DSA is ElGamal plus

e prime-order subgroups;
e A1l instead of A;

e two scalars.

Much worse than Schnorr: DSA
e does not hash R:

e does not merge hashes;
e Is not collision-resilient:
e requires inversion for signer;

e requires inversion for verifier
(or three exponents).

24

EdDSA

EdDSA is Schnorr with
e complete twisted Edwards

® no signature compression;
e double-size H output;

e A as extra H input;

e deterministic R.

DSA and ECDSA

DSA is ElGamal plus

e prime-order subgroups;
e A1l instead of A;

e two scalars.

Much worse than Schnorr: DSA
e does not hash R:

e does not merge hashes;
e is not collision-resilient:
e requires inversion for signer;

e requires inversion for verifier
(or three exponents).

24

EAdDSA

EdDSA is Schnorr with
e complete twisted Edwards curve;

® no signature compression;
e double-size H output;

e A as extra H input;

e deterministic R.

25

24

DSA and ECDSA EdDSA

DSA is ElGamal plus EdADSA is Schnorr with

e prime-order subgroups; e complete twisted Edwards curve;
o Al instead of A: ® No signature compression;

e two scalars. e double-size H output;

Much worse than Schnorr: DSA * A as extra H input;

e deterministic K.
e does not hash R:

e does not merge hashes; Extra H input: H(R, A, M).
e is not collision-resilient; Speed impact: negligible.

e requires inversion for signer; Alleviates concerns that

e requires inversion for verifier several public keys could be

(or three exponents). attacked simultaneously.

24 25

1 ECDSA EdDSA Why no
—IGamal plus EADSA is Schnorr with 1. ECC
order subgroups; e complete twisted Edwards curve; even wit
1stead of A; ® No signature compression; 64 bytes
alars. e double-size H output; using hi;

e A as extra H input;

orse than Schnorr: DSA ’ e 2. Secul
e deterministic Fx.

ot hash R: needs th
ot merge hashes; Extra H input: H(R, A, M). 3 Dout
collision-resilient; Speed impact: negligible. |

| | | | concerns
s Inversion for signer; Alleviates concerns that
s inversion for verifier several public keys could be 4. Avoic
ee exponents). attacked simultaneously. allows a

batch si;

lus
TrOups;

Schnorr: DSA

) .
1

hashes;
asilient;

n for signer;
n for verifier
nts).

24

EAdDSA

EdDSA is Schnorr with
e complete twisted Edwards curve;

® no signature compression;
e double-size H output;

e A as extra H input;

e deterministic R.

Extra H input: H(R, A, M).
Speed impact: negligible.
Alleviates concerns that
several public keys could be
attacked simultaneously.

25

Why no signature

1. ECC signatures
even without com
64 bytes for signat
using high-security

2. Security of shol
needs thorough an

3. Double-size H
concerns regarding

4. Avoiding comp
allows another spe
batch signature ve

JSA

T

er

24

EdDSA

EdDSA is Schnorr with

e complete twisted Edwards curve;

® no signature compression;
e double-size H output;

e A as extra H input;

e deterministic R.

Extra H input: H(R, A, M).

Speed impact: negligible.
Alleviates concerns that
several public keys could be
attacked simultaneously.

25

Why no signature compressi

1. ECC signatures are short
even without compression.
64 bytes for signature

using high-security curve.

2. Security of shorter H
needs thorough analysis.

3. Double-size H alleviates
concerns regarding H securr

4. Avoiding compression
allows another speedup:
batch signature verification.

25

EdDSA Why no signature compression:
EADSA is Schnorr with 1. ECC signatures are short

e complete twisted Edwards curve; even without compression.

® No signature compression; 64 bytes for signature

e double-size H output; using high-security curve.

o A as extra H input; 2. Security of shorter H

e deterministic R. .
needs thorough analysis.

Extra H input: H(R, A, M).
Speed impact: negligible.

3. Double-size H alleviates

| concerns regarding H security.
Alleviates concerns that

several public keys could be 4. Avoiding compression

attacked simultaneously. allows another speedup:
batch signature verification.

