
Long-term security for cars

Daniel J. Bernstein1,2 Tanja Lange1

1Technische Universiteit Eindhoven

2University of Illinois at Chicago

16 November 2016

2 / 31

3 / 31

4 / 31

D-Wave quantum computer isn’t universal . . .

I Can’t store stable qubits.

I Can’t perform basic qubit operations.

I Can’t run Shor’s algorithm.

I Can’t run other quantum algorithms we care about.

I Hasn’t managed to find any computation justifying its price.

I Hasn’t managed to find any computation justifying 1% of its
price.

5 / 31

D-Wave quantum computer isn’t universal . . .

I Can’t store stable qubits.

I Can’t perform basic qubit operations.

I Can’t run Shor’s algorithm.

I Can’t run other quantum algorithms we care about.

I Hasn’t managed to find any computation justifying its price.

I Hasn’t managed to find any computation justifying 1% of its
price.

5 / 31

But universal quantum computers are coming & are scary
I Massive research effort. Tons of progress summarized in, e.g.,

https://en.wikipedia.org/wiki/Timeline_of_

quantum_computing.

I Mark Ketchen, IBM Research, 2012, on quantum computing:
“Were actually doing things that are making us think like,
‘hey this isn’t 50 years off, this is maybe just 10 years off, or
15 years off.’ It’s within reach.”

I Fast-forward to 2022, or 2027. Universal quantum computers
exist.

I Shor’s algorithm computes in polynomial time:
I Integer factorization. RSA is dead.
I Discrete-logarithms in finite fields. DSA is dead.
I Discrete-logarithms on elliptic curves. ECDSA is dead.

I This breaks all current public-key cryptography on the
Internet!

I Also, Grover’s algorithm speeds up brute-force searches.
I Example: Only 264 quantum operations to break AES-128;

2128 quantum operations to break AES-256.

6 / 31

https://en.wikipedia.org/wiki/Timeline_of_quantum_computing
https://en.wikipedia.org/wiki/Timeline_of_quantum_computing

But universal quantum computers are coming & are scary
I Massive research effort. Tons of progress summarized in, e.g.,

https://en.wikipedia.org/wiki/Timeline_of_

quantum_computing.
I Mark Ketchen, IBM Research, 2012, on quantum computing:

“Were actually doing things that are making us think like,
‘hey this isn’t 50 years off, this is maybe just 10 years off, or
15 years off.’ It’s within reach.”

I Fast-forward to 2022, or 2027. Universal quantum computers
exist.

I Shor’s algorithm computes in polynomial time:
I Integer factorization. RSA is dead.
I Discrete-logarithms in finite fields. DSA is dead.
I Discrete-logarithms on elliptic curves. ECDSA is dead.

I This breaks all current public-key cryptography on the
Internet!

I Also, Grover’s algorithm speeds up brute-force searches.
I Example: Only 264 quantum operations to break AES-128;

2128 quantum operations to break AES-256.

6 / 31

https://en.wikipedia.org/wiki/Timeline_of_quantum_computing
https://en.wikipedia.org/wiki/Timeline_of_quantum_computing

But universal quantum computers are coming & are scary
I Massive research effort. Tons of progress summarized in, e.g.,

https://en.wikipedia.org/wiki/Timeline_of_

quantum_computing.
I Mark Ketchen, IBM Research, 2012, on quantum computing:

“Were actually doing things that are making us think like,
‘hey this isn’t 50 years off, this is maybe just 10 years off, or
15 years off.’ It’s within reach.”

I Fast-forward to 2022, or 2027. Universal quantum computers
exist.

I Shor’s algorithm computes in polynomial time:
I Integer factorization. RSA is dead.
I Discrete-logarithms in finite fields. DSA is dead.
I Discrete-logarithms on elliptic curves. ECDSA is dead.

I This breaks all current public-key cryptography on the
Internet!

I Also, Grover’s algorithm speeds up brute-force searches.
I Example: Only 264 quantum operations to break AES-128;

2128 quantum operations to break AES-256.

6 / 31

https://en.wikipedia.org/wiki/Timeline_of_quantum_computing
https://en.wikipedia.org/wiki/Timeline_of_quantum_computing

But universal quantum computers are coming & are scary
I Massive research effort. Tons of progress summarized in, e.g.,

https://en.wikipedia.org/wiki/Timeline_of_

quantum_computing.
I Mark Ketchen, IBM Research, 2012, on quantum computing:

“Were actually doing things that are making us think like,
‘hey this isn’t 50 years off, this is maybe just 10 years off, or
15 years off.’ It’s within reach.”

I Fast-forward to 2022, or 2027. Universal quantum computers
exist.

I Shor’s algorithm computes in polynomial time:
I Integer factorization. RSA is dead.
I Discrete-logarithms in finite fields. DSA is dead.
I Discrete-logarithms on elliptic curves. ECDSA is dead.

I This breaks all current public-key cryptography on the
Internet!

I Also, Grover’s algorithm speeds up brute-force searches.
I Example: Only 264 quantum operations to break AES-128;

2128 quantum operations to break AES-256.
6 / 31

https://en.wikipedia.org/wiki/Timeline_of_quantum_computing
https://en.wikipedia.org/wiki/Timeline_of_quantum_computing

Is there any hope? Yes!

Post-quantum crypto is crypto that resists attacks by quantum
computers.

I PQCrypto 2006: International Workshop on Post-Quantum
Cryptography.

I PQCrypto 2008.

I PQCrypto 2010.

I PQCrypto 2011.

I PQCrypto 2013.

I PQCrypto 2014.

I New EU project, 2015–2018:
PQCRYPTO, Post-Quantum Cryptography for Long-term
Security.

7 / 31

Is there any hope? Yes!

Post-quantum crypto is crypto that resists attacks by quantum
computers.

I PQCrypto 2006: International Workshop on Post-Quantum
Cryptography.

I PQCrypto 2008.

I PQCrypto 2010.

I PQCrypto 2011.

I PQCrypto 2013.

I PQCrypto 2014.

I New EU project, 2015–2018:
PQCRYPTO, Post-Quantum Cryptography for Long-term
Security.

7 / 31

Is there any hope? Yes!

Post-quantum crypto is crypto that resists attacks by quantum
computers.

I PQCrypto 2006: International Workshop on Post-Quantum
Cryptography.

I PQCrypto 2008.

I PQCrypto 2010.

I PQCrypto 2011.

I PQCrypto 2013.

I PQCrypto 2014.

I New EU project, 2015–2018:
PQCRYPTO, Post-Quantum Cryptography for Long-term
Security.

7 / 31

Is there any hope? Yes!

Post-quantum crypto is crypto that resists attacks by quantum
computers.

I PQCrypto 2006: International Workshop on Post-Quantum
Cryptography.

I PQCrypto 2008.

I PQCrypto 2010.

I PQCrypto 2011.

I PQCrypto 2013.

I PQCrypto 2014.

I New EU project, 2015–2018:
PQCRYPTO, Post-Quantum Cryptography for Long-term
Security.

7 / 31

Is there any hope? Yes!

Post-quantum crypto is crypto that resists attacks by quantum
computers.

I PQCrypto 2006: International Workshop on Post-Quantum
Cryptography.

I PQCrypto 2008.

I PQCrypto 2010.

I PQCrypto 2011.

I PQCrypto 2013.

I PQCrypto 2014.

I New EU project, 2015–2018:
PQCRYPTO, Post-Quantum Cryptography for Long-term
Security.

7 / 31

8 / 31

NSA announcements

August 11, 2015

IAD recognizes that there will be a move, in the not
distant future, to a quantum resistant algorithm suite.

August 19, 2015

IAD will initiate a transition to quantum resistant
algorithms in the not too distant future.

NSA comes late to the party and botches its grand entrance.

Worse, now we get people saying “Don’t use post-quantum crypto,
the NSA wants you to use it!”.

9 / 31

https://web.archive.org/web/20150815072948/https://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
https://www.nsa.gov/ia/programs/suiteb_cryptography/

NSA announcements

August 11, 2015

IAD recognizes that there will be a move, in the not
distant future, to a quantum resistant algorithm suite.

August 19, 2015

IAD will initiate a transition to quantum resistant
algorithms in the not too distant future.

NSA comes late to the party and botches its grand entrance.

Worse, now we get people saying “Don’t use post-quantum crypto,
the NSA wants you to use it!”.

9 / 31

https://web.archive.org/web/20150815072948/https://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
https://www.nsa.gov/ia/programs/suiteb_cryptography/

NSA announcements

August 11, 2015

IAD recognizes that there will be a move, in the not
distant future, to a quantum resistant algorithm suite.

August 19, 2015

IAD will initiate a transition to quantum resistant
algorithms in the not too distant future.

NSA comes late to the party and botches its grand entrance.

Worse, now we get people saying “Don’t use post-quantum crypto,
the NSA wants you to use it!”.

9 / 31

https://web.archive.org/web/20150815072948/https://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
https://www.nsa.gov/ia/programs/suiteb_cryptography/

NSA announcements

August 11, 2015

IAD recognizes that there will be a move, in the not
distant future, to a quantum resistant algorithm suite.

August 19, 2015

IAD will initiate a transition to quantum resistant
algorithms in the not too distant future.

NSA comes late to the party and botches its grand entrance.

Worse, now we get people saying “Don’t use post-quantum crypto,
the NSA wants you to use it!”.

9 / 31

https://web.archive.org/web/20150815072948/https://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
https://www.nsa.gov/ia/programs/suiteb_cryptography/

Post-quantum becoming mainstream
I PQCrypto 2016: 22–26 Feb in Fukuoka, Japan, with more

than 200 participants

I NIST is calling for post-quantum proposals; expect a small
competition.

I PQCrypto 2017, Netherlands:
I Jun 19 – 23 PQC school; Jun 22 & 23 Executive school
I Jun 26 – 28 PQCrypto

10 / 31

Confidence-inspiring crypto takes time to build

I Many stages of research from cryptographic design to
deployment:

I Explore space of cryptosystems.
I Study algorithms for the attackers.
I Focus on secure cryptosystems.

I Study algorithms for the users.
I Study implementations on real hardware.
I Study side-channel attacks, fault attacks, etc.
I Focus on secure, reliable implementations.
I Focus on implementations meeting performance requirements.
I Integrate securely into real-world applications.

I Example: ECC introduced 1985; big advantages over RSA.
Robust ECC is starting to take over the Internet in 2015.

I Post-quantum research can’t wait for quantum computers!

11 / 31

Confidence-inspiring crypto takes time to build

I Many stages of research from cryptographic design to
deployment:

I Explore space of cryptosystems.
I Study algorithms for the attackers.
I Focus on secure cryptosystems.
I Study algorithms for the users.
I Study implementations on real hardware.
I Study side-channel attacks, fault attacks, etc.
I Focus on secure, reliable implementations.
I Focus on implementations meeting performance requirements.
I Integrate securely into real-world applications.

I Example: ECC introduced 1985; big advantages over RSA.
Robust ECC is starting to take over the Internet in 2015.

I Post-quantum research can’t wait for quantum computers!

11 / 31

Confidence-inspiring crypto takes time to build

I Many stages of research from cryptographic design to
deployment:

I Explore space of cryptosystems.
I Study algorithms for the attackers.
I Focus on secure cryptosystems.
I Study algorithms for the users.
I Study implementations on real hardware.
I Study side-channel attacks, fault attacks, etc.
I Focus on secure, reliable implementations.
I Focus on implementations meeting performance requirements.
I Integrate securely into real-world applications.

I Example: ECC introduced 1985; big advantages over RSA.
Robust ECC is starting to take over the Internet in 2015.

I Post-quantum research can’t wait for quantum computers!

11 / 31

12 / 31

Even higher urgency for long-term confidentiality

I Today’s encrypted communication is being stored by attackers
and will be decrypted years later with quantum computers.
Danger for human-rights workers, medical records, journalists,
security research, legal proceedings, state secrets, . . .

I Signature schemes can be replaced once a quantum computer
is built – but there will not be a public announcement

. . . and
an important function of signatures is to protect operating
system upgrades.

I Protect your upgrades now with post-quantum signatures.

13 / 31

Even higher urgency for long-term confidentiality

I Today’s encrypted communication is being stored by attackers
and will be decrypted years later with quantum computers.
Danger for human-rights workers, medical records, journalists,
security research, legal proceedings, state secrets, . . .

I Signature schemes can be replaced once a quantum computer
is built – but there will not be a public announcement . . . and
an important function of signatures is to protect operating
system upgrades.

I Protect your upgrades now with post-quantum signatures.

13 / 31

Next slide:
Initial recommendations

of long-term secure post-quantum systems

Daniel Augot, Lejla Batina, Daniel J. Bernstein, Joppe Bos,
Johannes Buchmann, Wouter Castryck, Orr Dunkelman,

Tim Güneysu, Shay Gueron, Andreas Hülsing,
Tanja Lange, Mohamed Saied Emam Mohamed,

Christian Rechberger, Peter Schwabe, Nicolas Sendrier,
Frederik Vercauteren, Bo-Yin Yang

14 / 31

Initial recommendations

I Symmetric encryption Thoroughly analyzed, 256-bit keys:

I AES-256
I Salsa20 with a 256-bit key

Evaluating: Serpent-256, . . .

I Symmetric authentication Information-theoretic MACs:

I GCM using a 96-bit nonce and a 128-bit authenticator
I Poly1305

I Public-key encryption McEliece with binary Goppa codes:

I length n = 6960, dimension k = 5413, t = 119 errors

Evaluating: QC-MDPC, Stehlé-Steinfeld NTRU, . . .

I Public-key signatures Hash-based (minimal assumptions):

I XMSS with any of the parameters specified in CFRG draft
I SPHINCS-256

Evaluating: HFEv-, . . .

15 / 31

Post-quantum public-key signatures: hash-based

m // m, s // m, s // m

k

<<

// K

GG ;;

I Secret key k , public key K .
I Only one prerequisite: a good hash function, e.g. SHA3-512.

Hash functions map long strings to fixed-length strings.
Signature schemes use hash functions in handling m.

I Old idea: 1979 Lamport one-time signatures.
I 1979 Merkle extends to more signatures.
I Many further improvements.
I Security thoroughly analyzed.

16 / 31

A signature scheme for empty messages: key generation

from simplesha3 import sha3256

def keypair():

secret = sha3256(os.urandom(32))

public = sha3256(secret)

return public,secret

>>> import signempty

>>> pk,sk = signempty.keypair()

>>> binascii.hexlify(pk)

’a447bc8d7c661f85defcf1bbf8bad77bfc6191068a8b658c99c7...’

>>> binascii.hexlify(sk)

’a4a1334a6926d04c4aa7cd98231f4b644be90303e4090c358f29...’

17 / 31

A signature scheme for empty messages: key generation

from simplesha3 import sha3256

def keypair():

secret = sha3256(os.urandom(32))

public = sha3256(secret)

return public,secret

>>> import signempty

>>> pk,sk = signempty.keypair()

>>> binascii.hexlify(pk)

’a447bc8d7c661f85defcf1bbf8bad77bfc6191068a8b658c99c7...’

>>> binascii.hexlify(sk)

’a4a1334a6926d04c4aa7cd98231f4b644be90303e4090c358f29...’

17 / 31

A signature scheme for empty messages: key generation

from simplesha3 import sha3256

def keypair():

secret = sha3256(os.urandom(32))

public = sha3256(secret)

return public,secret

>>> import signempty

>>> pk,sk = signempty.keypair()

>>> binascii.hexlify(pk)

’a447bc8d7c661f85defcf1bbf8bad77bfc6191068a8b658c99c7...’

>>> binascii.hexlify(sk)

’a4a1334a6926d04c4aa7cd98231f4b644be90303e4090c358f29...’

17 / 31

A signature scheme for empty messages:
signing, verification

def sign(message,secret):

if message != ’’: raise Exception(’nonempty message’)

signedmessage = secret

return signedmessage

def open(signedmessage,public):

if sha3256(signedmessage) != public:

raise Exception(’bad signature’)

message = ’’

return message

>>> sm = signempty.sign(’’,sk)

>>> signempty.open(sm,pk)

’’

18 / 31

A signature scheme for empty messages:
signing, verification

def sign(message,secret):

if message != ’’: raise Exception(’nonempty message’)

signedmessage = secret

return signedmessage

def open(signedmessage,public):

if sha3256(signedmessage) != public:

raise Exception(’bad signature’)

message = ’’

return message

>>> sm = signempty.sign(’’,sk)

>>> signempty.open(sm,pk)

’’

18 / 31

A signature scheme for 1-bit messages:
key generation, signing

import signempty

def keypair():

p0,s0 = signempty.keypair()

p1,s1 = signempty.keypair()

return p0+p1,s0+s1

def sign(message,secret):

if message == 0:

return ’0’ + signempty.sign(’’,secret[0:32])

if message == 1:

return ’1’ + signempty.sign(’’,secret[32:64])

raise Exception(’message must be 0 or 1’)

19 / 31

A signature scheme for 1-bit messages:
key generation, signing

import signempty

def keypair():

p0,s0 = signempty.keypair()

p1,s1 = signempty.keypair()

return p0+p1,s0+s1

def sign(message,secret):

if message == 0:

return ’0’ + signempty.sign(’’,secret[0:32])

if message == 1:

return ’1’ + signempty.sign(’’,secret[32:64])

raise Exception(’message must be 0 or 1’)

19 / 31

A signature scheme for 1-bit messages: verification

def open(signedmessage,public):

if signedmessage[0] == ’0’:

signempty.open(signedmessage[1:],public[0:32])

return 0

if signedmessage[0] == ’1’:

signempty.open(signedmessage[1:],public[32:64])

return 1

raise Exception(’message must be 0 or 1’)

>>> import signbit

>>> pk,sk = signbit.keypair()

>>> sm = signbit.sign(1,sk)

>>> signbit.open(sm,pk)

1

20 / 31

A signature scheme for 1-bit messages: verification

def open(signedmessage,public):

if signedmessage[0] == ’0’:

signempty.open(signedmessage[1:],public[0:32])

return 0

if signedmessage[0] == ’1’:

signempty.open(signedmessage[1:],public[32:64])

return 1

raise Exception(’message must be 0 or 1’)

>>> import signbit

>>> pk,sk = signbit.keypair()

>>> sm = signbit.sign(1,sk)

>>> signbit.open(sm,pk)

1

20 / 31

A signature scheme for 4-bit messages: key generation

import signbit

def keypair():

p0,s0 = signbit.keypair()

p1,s1 = signbit.keypair()

p2,s2 = signbit.keypair()

p3,s3 = signbit.keypair()

return p0+p1+p2+p3,s0+s1+s2+s3

21 / 31

A signature scheme for 4-bit messages: signing

def sign(m,secret):

if type(m) != int: raise Exception(’m must be int’)

if m < 0 or m > 15:

raise Exception(’m must be between 0 and 15’)

sm0 = signbit.sign(1 & (m >> 0),secret[0:64])

sm1 = signbit.sign(1 & (m >> 1),secret[64:128])

sm2 = signbit.sign(1 & (m >> 2),secret[128:192])

sm3 = signbit.sign(1 & (m >> 3),secret[192:256])

return sm0+sm1+sm2+sm3

22 / 31

A signature scheme for 4-bit messages: verification

def open(sm,public):

m0 = signbit.open(sm[0:33],public[0:64])

m1 = signbit.open(sm[33:66],public[64:128])

m2 = signbit.open(sm[66:99],public[128:192])

m3 = signbit.open(sm[99:132],public[192:256])

return m0 + 2*m1 + 4*m2 + 8*m3

23 / 31

Achtung: Do not use one secret key to sign two messages!

>>> import sign4bits

>>> pk,sk = sign4bits.keypair()

>>> sm11 = sign4bits.sign(11,sk)

>>> sign4bits.open(sm11,pk)

11

>>> sm7 = sign4bits.sign(7,sk)

>>> sign4bits.open(sm7,pk)

7

>>> forgery = sm7[:99] + sm11[99:]

>>> sign4bits.open(forgery,pk)

15

24 / 31

Lamport’s 1-time signature system

I Scale up to 256-bit messages.

I Sign arbitrary-length message by signing its 256-bit hash:

def sign(message,secret):

h = sha3256(message)

hbits = [1 & (ord(h[i/8])>>(i%8)) for i in range(256)]

sigs = [signbit.sign(hbits[i],secret[64*i:64*i+64])

for i in range(256)]

return ’’.join(sigs) + message

I Space improvement: “Winternitz signatures”.

25 / 31

Merkle’s (e.g.) 8-time signature system

Hash 8 Lamport one-time public keys into a single Merkle public
key P15.

S1

��

S2

��

S3

��

S4

��

S5

��

S6

��

S7

��

S8

��
P1

��

P2

��

P3

��

P4

��

P5

��

P6

��

P7

��

P8

��
P9 = H(P1,P2)

$$

P10 = H(P3,P4)

zz

P11 = H(P5,P6)

$$

P12 = H(P7,P8)

zz
P13 = H(P9,P10)

**

P14 = H(P11,P12)

tt
P15 = H(P13,P14)

26 / 31

Signature in 8-time Merkle hash tree

Signature of first message: (sign(m, S1),P1,P2,P10,P14).

S1
��

S2
��

S3

��

S4

��

S5

��

S6

��

S7

��

S8

��
P1

��

P2

��

P3

��

P4

��

P5

��

P6

��

P7

��

P8

��
P9 = H(P1,P2)

$$

P10 = H(P3,P4)

zz

P11 = H(P5,P6)

$$

P12 = H(P7,P8)

zz

P13 = H(P9,P10)

**

P14 = H(P11,P12)

tt

P15 = H(P13,P14)

27 / 31

Pros and cons
Pros:

I Post quantum

I Only need secure hash
function

I Small public key

I Security well understood

I Fast

I Proposed for standards: https://tools.ietf.org/html/

draft-irtf-cfrg-xmss-hash-based-signatures-01

Cons:

I Biggish signature.

I Stateful. Adam Langley “for most environments it’s a huge
foot-cannon.”

Useful for firmware upgrades (big server keeps state) or smart
cards (HW counter).

28 / 31

https://tools.ietf.org/html/draft-irtf-cfrg-xmss-hash-based-signatures-01
https://tools.ietf.org/html/draft-irtf-cfrg-xmss-hash-based-signatures-01
https://www.imperialviolet.org/2013/07/18/hashsig.html
https://www.imperialviolet.org/2013/07/18/hashsig.html

Pros and cons
Pros:

I Post quantum

I Only need secure hash
function

I Small public key

I Security well understood

I Fast

I Proposed for standards: https://tools.ietf.org/html/

draft-irtf-cfrg-xmss-hash-based-signatures-01

Cons:

I Biggish signature.

I Stateful. Adam Langley “for most environments it’s a huge
foot-cannon.”

Useful for firmware upgrades (big server keeps state) or smart
cards (HW counter).

28 / 31

https://tools.ietf.org/html/draft-irtf-cfrg-xmss-hash-based-signatures-01
https://tools.ietf.org/html/draft-irtf-cfrg-xmss-hash-based-signatures-01
https://www.imperialviolet.org/2013/07/18/hashsig.html
https://www.imperialviolet.org/2013/07/18/hashsig.html

Stateless hash-based signatures

I Idea from 1987 Goldreich:
I Signer builds huge tree of certificate authorities.
I Signature includes certificate chain.
I Each CA is a hash of master secret and tree position.

This is deterministic, so don’t need to store results.
I Random bottom-level CA signs message.

Many bottom-level CAs, so one-time signature is safe.

I 0.6 MB: Goldreich’s signature with
good 1-time signature scheme.

I 1.2 MB: average Debian package size.
I 1.8 MB: average web page in Alexa Top 1000000.
I 0.041 MB: SPHINCS signature, new optimization of

Goldreich.
Modular, guaranteed as strong as its components (hash,
PRNG).
Well-known components chosen for 2128 post-quantum
security. sphincs.cr.yp.to

29 / 31

https://sphincs.cr.yp.to

Stateless hash-based signatures

I Idea from 1987 Goldreich:
I Signer builds huge tree of certificate authorities.
I Signature includes certificate chain.
I Each CA is a hash of master secret and tree position.

This is deterministic, so don’t need to store results.
I Random bottom-level CA signs message.

Many bottom-level CAs, so one-time signature is safe.
I 0.6 MB: Goldreich’s signature with

good 1-time signature scheme.
I 1.2 MB: average Debian package size.
I 1.8 MB: average web page in Alexa Top 1000000.

I 0.041 MB: SPHINCS signature, new optimization of
Goldreich.
Modular, guaranteed as strong as its components (hash,
PRNG).
Well-known components chosen for 2128 post-quantum
security. sphincs.cr.yp.to

29 / 31

https://sphincs.cr.yp.to

Stateless hash-based signatures

I Idea from 1987 Goldreich:
I Signer builds huge tree of certificate authorities.
I Signature includes certificate chain.
I Each CA is a hash of master secret and tree position.

This is deterministic, so don’t need to store results.
I Random bottom-level CA signs message.

Many bottom-level CAs, so one-time signature is safe.
I 0.6 MB: Goldreich’s signature with

good 1-time signature scheme.
I 1.2 MB: average Debian package size.
I 1.8 MB: average web page in Alexa Top 1000000.
I 0.041 MB: SPHINCS signature, new optimization of

Goldreich.
Modular, guaranteed as strong as its components (hash,
PRNG).
Well-known components chosen for 2128 post-quantum
security. sphincs.cr.yp.to

29 / 31

https://sphincs.cr.yp.to

Examples of other post-quantum systems

I For symmetric crypto: use 256-bit keys

I Code-based encryption is well studied but has big keys;
research into more compact systems.

I NTRU: lattice-based encryption system from late 1990’s.
Fast; relatively small ciphertext. Patent will expire 2017.

I BLISS signature scheme. Very recent lattice-based signature
scheme. More modern system (has security proof) but hard to
implement securely.
CHES 2016 (Groot Bruinderink, Hülsing, Lange, Yarom)
showed vulnerability under side-channel attacks.

I Many multivariate-quadratic systems. Some broken, some not.
Highlight: very small signatures.

I More exotic possibility that needs analysis: isogeny-based
crypto. Highlight: supports DH.

30 / 31

Further resources

I https://pqcrypto.org: Our survey site.
I Many pointers: e.g., PQCrypto conference series.
I Bibliography for 4 major PQC systemss.

I PQCrypto 2016 with slides and videos from lectures
(incl. winter school)

I https://pqcrypto.eu.org: PQCRYPTO EU project.

I Expert recommendations.
I Free software libraries. (Coming soon)
I More benchmarking to compare cryptosystems. (Coming soon)
I 2017: workshop and spring/summer school.

I https://twitter.com/pqc_eu: PQCRYPTO Twitter feed.
I Get used to post-quantum cryptosystems.
I Improve; implement; integrate into real-world systems.

31 / 31

https://pqcrypto.org
https://pqcrypto2016.jp/
https://pqcrypto.eu.org
https://twitter.com/pqc_eu

