Engineering

cryptographic software

Daniel J. Bernstein

University of Illinois at Chicago &
Technische Universiteit Eindhoven

This is easy, right?

1. Take general principles
 of software engineering.
2. Apply principles to crypto.

Let’s try some examples . . .

1972 Parnas “On the criteria
to be used in decomposing
systems into modules”:

“We propose instead that
one begins with a list of
difficult design decisions or
design decisions which are
likely to change. Each module
is then designed to hide such
a decision from the others.”

e.g. If number of cipher rounds
is properly modularized as
#define ROUNDS 20
then it is easy to change.
Engineering cryptographic software

Daniel J. Bernstein
University of Illinois at Chicago &
Technische Universiteit Eindhoven

This is easy, right?

1. Take general principles of software engineering.
2. Apply principles to crypto.

Let's try some examples:

1972 Parnas “On the criteria to be used in decomposing systems into modules”:

“We propose instead that one begins with a list of difficult design decisions or design decisions which are likely to change. Each module is then designed to hide such a decision from the others.”

e.g. If number of cipher rounds is properly modularized as
#define ROUNDS 20
then it is easy to change.

Another general principle of software engineering:
Make the right thing simple and the wrong thing complex.
1972 Parnas “On the criteria to be used in decomposing systems into modules”:

“We propose instead that one begins with a list of difficult design decisions or design decisions which are likely to change. Each module is then designed to hide such a decision from the others.”

e.g. If number of cipher rounds is properly modularized as
#define ROUNDS 20
then it is easy to change.

Another general principle of software engineering:
Make the right thing simple and the wrong thing complex.
This is easy, right?

1. Take general principles of software engineering.
2. Apply principles to crypto.

Let's try some examples:

1972 Parnas “On the criteria to be used in decomposing systems into modules”:

“We propose instead that one begins with a list of difficult design decisions or design decisions which are likely to change. Each module is then designed to hide such a decision from the others.”

e.g. If number of cipher rounds is properly modularized as
#define ROUNDS 20
then it is easy to change.

Another general principle of software engineering:
Make the right thing simple and the wrong thing complex.
1972 Parnas “On the criteria to be used in decomposing systems into modules”:

“We propose instead that one begins with a list of difficult design decisions or design decisions which are likely to change. Each module is then designed to hide such a decision from the others.”

e.g. If number of cipher rounds is properly modularized as
#define ROUNDS 20
then it is easy to change.

Another general principle of software engineering: Make the right thing simple and the wrong thing complex.
“1972 Parnas “On the criteria to be used in decomposing systems into modules”:

“We propose instead that one begins with a list of difficult design decisions or design decisions which are likely to change. Each module is then designed to hide such a decision from the others.”

e.g. If number of cipher rounds is properly modularized as
#define ROUNDS 20
then it is easy to change.

Another general principle of software engineering:
Make the right thing simple and the wrong thing complex.
e.g. Make it difficult to ignore invalid authenticators.
1972 Parnas “On the criteria to be used in decomposing systems into modules”:
“We propose instead that one begins with a list of difficult design decisions or design decisions which are likely to change. Each module is then designed to hide such a decision from the others.”

E.g. If number of cipher rounds is properly modularized as
#define ROUNDS 20
then it is easy to change.

Another general principle of software engineering: Make the right thing simple and the wrong thing complex.

E.g. Make it difficult to ignore invalid authenticators.

Do not design APIs like this: “The sample code used in this manual omits the checking of status values for clarity, but when using cryptlib you should check return values, particularly for critical functions . . .”
Parnas “On the criteria to be used in decomposing systems into modules”:

“...we propose instead that one begins with a list of design decisions which are likely to change. Each module is then designed to hide such a decision from the others.”

e.g. If number of cipher rounds is properly modularized as
#define ROUNDS 20
then it is easy to change.

Another general principle of software engineering: Make the right thing simple and the wrong thing complex.
e.g. Make it difficult to ignore invalid authenticators.

Do not design APIs like this: “The sample code used in this manual omits the checking of status values for clarity, but when using cryptlib you should check return values, particularly for critical functions ...”

Not so easy: Timing attacks
1970s: TENEX operating system compares user-supplied string against secret password one character at a time, stopping at first difference:
• AAAAAA vs. SECRET: stop at 1.
• SAAAAA vs. SECRET: stop at 2.
• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time, deduces position of difference.
A few hundred tries reveal secret password.
Parnas "On the criteria to be used in decomposing systems into modules": We propose instead that one begins with a list of difficult design decisions or design decisions which are likely to change. Each module is then designed to hide such a decision from the others.

e.g. If number of cipher rounds is properly modularized as
#define ROUNDS 20
then it is easy to change.

Another general principle of software engineering: Make the right thing simple and the wrong thing complex.
e.g. Make it difficult to ignore invalid authenticators.

Do not design APIs like this: “The sample code used in this manual omits the checking of status values for clarity, but when using cryptlib you should check return values, particularly for critical functions . . .”

Not so easy: Timing attacks 1970s: TENEX operating system compares user-supplied string against secret password one character at a time, stopping at first difference:

- AAAAAA vs. SECRET: stop at 1.
- SAAAAA vs. SECRET: stop at 2.
- SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time, deduces position of difference. A few hundred tries reveal secret password.
Another general principle of software engineering: Make the right thing simple and the wrong thing complex.

e.g. Make it difficult to ignore invalid authenticators.

Do not design APIs like this: “The sample code used in this manual omits the checking of status values for clarity, but when using cryptlib you should check return values, particularly for critical functions . . .”

Not so easy: Timing attacks

1970s: TENEX operating system compares user-supplied string against secret password one character at a time, stopping at first difference:

- AAAAAA vs. SECRET: stop at 1.
- SAAAAA vs. SECRET: stop at 2.
- SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time, deduces position of difference. A few hundred tries reveal secret password.
Another general principle of software engineering: Make the right thing simple and the wrong thing complex.

E.g. Make it difficult to ignore invalid authenticators.

Do not design APIs like this: “The sample code used in this manual omits the checking of status values for clarity, but when using cryptlib you should check return values, particularly for critical functions . . . ”

Not so easy: Timing attacks

1970s: TENEX operating system compares user-supplied string against secret password one character at a time, stopping at first difference:

- AAAAAA vs. SECRET: stop at 1.
- SAAAAA vs. SECRET: stop at 2.
- SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time, deduces position of difference. A few hundred tries reveal secret password.
Another general principle of software engineering: Make the right thing simple and the wrong thing complex. e.g. Make it difficult to ignore invalid authenticators.

Do not design APIs like this:

"The sample code used in this manual omits the checking of status values for clarity, but when using cryptlib you should check return values, particularly for critical functions . . ."
Another general principle of software engineering:
Make the right thing simple and the wrong thing complex.
e.g. Make it difficult to ignore invalid authenticators.

Not so easy: Timing attacks
1970s: TENEX operating system compares user-supplied string against secret password one character at a time, stopping at first difference:
• AAAAAA vs. SECRET: stop at 1.
• SAAAAAA vs. SECRET: stop at 2.
• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time, deduces position of difference. A few hundred tries reveal secret password.

How typical software checks 16-byte authenticator:
for (i = 0; i < 16; ++i)
if (x[i] != y[i]) return 0;
return 1;

Fix, eliminating information flow from secrets to timings:
diff = 0;
for (i = 0; i < 16; ++i)
diff |= x[i] ^ y[i];
return 1 & ((diff-1) >> 8);

Notice that the language makes the wrong thing simple and the right thing complex.
Another general principle of software engineering: Make the right thing simple and the wrong thing complex. e.g. Make it difficult to ignore invalid authenticators.

Not so easy: Timing attacks

1970s: TENEX operating system compares user-supplied string against secret password one character at a time, stopping at first difference:

- AAAAAA vs. SECRET: stop at 1.
- SAAAAA vs. SECRET: stop at 2.
- SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time, deduces position of difference. A few hundred tries reveal secret password.

How typical software checks a 16-byte authenticator:

```c
for (i = 0; i < 16; ++i)
    if (x[i] != y[i]) return 0;
return 1;
```

Fix, eliminating information flow from secrets to timings:

```c
diff = 0;
for (i = 0; i < 16; ++i)
    diff |= x[i] ^ y[i];
return 1 & ((diff-1) >> 8);
```

Notice that the language makes the wrong thing simple and the right thing complex.
Not so easy: Timing attacks

1970s: TENEX operating system compares user-supplied string against secret password one character at a time, stopping at first difference:

- AAAAAA vs. SECRET: stop at 1.
- SAAAAA vs. SECRET: stop at 2.
- SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time, deduces position of difference. A few hundred tries reveal secret password.

How typical software checks 16-byte authenticator:

```c
for (i = 0; i < 16; ++i)
    if (x[i] != y[i]) return 0;
return 1;
```

Fix, eliminating information flow from secrets to timings:

```c
diff = 0;
for (i = 0; i < 16; ++i)
    diff |= x[i] ^ y[i];
return 1 & ((diff-1) >> 8);
```

Notice that the language makes the wrong thing simple and the right thing complex.
Not so easy: Timing attacks

1970s: TENEX operating system compares user-supplied string against secret password character at a time, stopping at first difference:

• AAAA\text{A} vs. \text{SECRET}: stop at 1.
• SAAAAA vs. \text{SECRET}: stop at 2.
• SEAAAAA vs. \text{SECRET}: stop at 3.

Attacker sees comparison time, deduces position of difference. A few hundred tries reveal secret password.

How typical software checks 16-byte authenticator:

\begin{verbatim}
for (i = 0;i < 16;++i)
 if (x[i] != y[i]) return 0;
return 1;
\end{verbatim}

Fix, eliminating information flow from secrets to timings:

\begin{verbatim}
diff = 0;
for (i = 0;i < 16;++i)
 diff |= x[i] ^ y[i];
return 1 & ((diff-1) >> 8);
\end{verbatim}

Notice that the language makes the wrong thing simple and the right thing complex.

Language designer’s notion of “right” is too weak for security. So mistakes continue to happen.
Timing attacks

1970s: TENEX operating system compares user-supplied string against secret password one character at a time, stopping at first difference:

- AAAAAB vs. SECRET: stop at 1.
- SAAAAA vs. SECRET: stop at 2.
- SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time, deduces position of difference.
A few hundred tries reveal secret password.

How typical software checks 16-byte authenticator:

```c
for (i = 0; i < 16; ++i)
    if (x[i] != y[i]) return 0;
return 1;
```

Fix, eliminating information flow from secrets to timings:

```c
diff = 0;
for (i = 0; i < 16; ++i)
    diff |= x[i] ^ y[i];
return 1 & ((diff-1) >> 8);
```

Notice that the language makes the wrong thing simple and the right thing complex.

Language designer's notion of "right" is too weak for security.
So mistakes continue to happen.
Not so easy: Timing attacks

1970s: TENEX operating system compares user-supplied string against secret password one character at a time, stopping at first difference:

- AAAA vs. SECRET: stop at 1.
- SAAAA vs. SECRET: stop at 2.
- SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time, deduces position of difference.
A few hundred tries reveal secret password.

How typical software checks 16-byte authenticator:

```c
for (i = 0; i < 16; ++i)
    if (x[i] != y[i]) return 0;

return 1;
```

Fix, eliminating information flow from secrets to timings:

```c
diff = 0;
for (i = 0; i < 16; ++i)
    diff |= x[i] ^ y[i];

return 1 & ((diff - 1) >> 8);
```

Notice that the language makes the wrong thing simple and the right thing complex.

Language designer’s notion of “right” is too weak for security.
So mistakes continue to happen.
How typical software checks 16-byte authenticator:

```c
for (i = 0; i < 16; ++i)
    if (x[i] != y[i]) return 0;
return 1;
```

Fix, eliminating information flow from secrets to timings:

```c
diff = 0;
for (i = 0; i < 16; ++i)
    diff |= x[i] ^ y[i];
return 1 & ((diff - 1) >> 8);
```

Notice that the language makes the wrong thing simple and the right thing complex.

Language designer’s notion of “right” is too weak for security.

So mistakes continue to happen.
How typical software checks 16-byte authenticator:

```c
for (i = 0; i < 16; ++i)
    if (x[i] != y[i]) return 0;
return 1;
```

Fix, eliminating information flow from secrets to timings:

```c
diff = 0;
for (i = 0; i < 16; ++i)
    diff |= x[i] ^ y[i];
return 1 & ((diff - 1) >> 8);
```

Notice that the language makes the wrong thing simple and the right thing complex.

Language designer’s notion of “right” is too weak for security.

So mistakes continue to happen.

One of many examples, part of the reference software for CAESAR candidate CLOC:

```c
/* compare the tag */
int i;
for (i = 0; i < CRYPTO_ABYTES; i++)
    if (tag[i] != c[(*mlen) + i]){
        return RETURN_TAG_NO_MATCH;
    }
return RETURN_SUCCESS;
```
How typical software checks a 16-byte authenticator:

```c
for (i = 0; i < 16; ++i)
    if (x[i] != y[i]) return 0;
return 1;
```

Eliminating information flow from secrets to timings:

```c
diff = 0;
for (i = 0; i < 16; ++i)
    diff |= x[i] ^ y[i];
return 1 & ((diff - 1) >> 8);
```

Notice that the language makes the wrong thing simple and the right thing complex.

Language designer’s notion of “right” is too weak for security.

So mistakes continue to happen.

One of many examples, part of the reference software for CAESAR candidate CLOC:

```c
/* compare the tag */
int i;
for (i = 0; i < CRYPTO_ABYTES; i++)
    if (tag[i] != c[(*mlen) + i])
        return RETURN_TAG_NO_MATCH;
return RETURN_SUCCESS;
```

Do timing attacks really work?

Objection: "Timings are noisy!"
How typical software checks 16-byte authenticator:

```c
for (i = 0; i < 16; ++i)
    if (x[i] != y[i]) return 0;
return 1;
```

Fix, eliminating information flow from secrets to timings:

```c
diff = 0;
for (i = 0; i < 16; ++i)
    diff |= x[i] ^ y[i];
return 1 & ((diff - 1) >> 8);
```

Notice that the language makes the wrong thing simple and the right thing complex.

Language designer’s notion of “right” is too weak for security.

So mistakes continue to happen.

One of many examples, part of the reference software for CAESAR candidate CLOC:

```c
/* compare the tag */
int i;
for (i = 0; i < CRYPTO_ABYTES; i++)
    if (tag[i] != c[*mlen + i]){
        return RETURN_TAG_NO_MATCH;
    }
return RETURN_SUCCESS;
```

Do timing attacks really work?

Objection: “Timings are noisy!”
Language designer’s notion of “right” is too weak for security.

So mistakes continue to happen.

One of many examples, part of the reference software for CAESAR candidate CLOC:

```c
/* compare the tag */
int i;
for(i = 0; i < CRYPTO_ABYTES; i++)
    if(tag[i] != c[(*mlen) + i]){
        return RETURN_TAG_NO_MATCH;
    }
return RETURN_SUCCESS;
```

Do timing attacks really work?

Objection: “Timings are noisy!”
Language designer’s notion of “right” is too weak for security. So mistakes continue to happen.

One of many examples, part of the reference software for CAESAR candidate CLOC:

```c
/* compare the tag */
int i;
for(i = 0; i < CRYPTO_ABYTES; i++)
  if(tag[i] != c[(*mlen) + i]) {
    return RETURN_TAG_NO_MATCH;
  }
return RETURN_SUCCESS;
```

Do timing attacks really work?
Objection: “Timings are noisy!”
Language designer’s notion of “right” is too weak for security.
So mistakes continue to happen.
One of many examples, part of the reference software for CAESAR candidate CLOC:

```c
/* compare the tag */
int i;
for(i = 0;i < CRYPTO_ABYTES;i++)
  if(tag[i] != c[(*mlen) + i]){  
    return RETURN_TAG_NO_MATCH;
  }
return RETURN_SUCCESS;
```

Do timing attacks really work?
Objection: “Timings are noisy!”
Answer #1: Does noise stop all attacks?
To guarantee security, defender must block all information flow.
Language designer’s notion of “right” is too weak for security.
So mistakes continue to happen.

One of many examples, part of the reference software for CAESAR candidate CLOC:

```c
/* compare the tag */
int i;
for(i = 0; i < CRYPTO_ABYTES; i++)
    if(tag[i] != c[(*mlen) + i]){
        return RETURN_TAG_NO_MATCH;
    }
return RETURN_SUCCESS;
```

Do timing attacks really work?
Objection: “Timings are noisy!”

Answer #1:
Does noise stop all attacks?
To guarantee security, defender must block all information flow.

Answer #2: Attacker uses statistics to eliminate noise.
Language designer’s notion of “right” is too weak for security. So mistakes continue to happen.

One of many examples, part of the reference software for CAESAR candidate CLOC:

```c
/* compare the tag */
int i;
for(i = 0; i < CRYPTO_ABYTES; i++)
  if(tag[i] != c[(*mlen) + i]){
    return RETURN_TAG_NO_MATCH;
  }
return RETURN_SUCCESS;
```

Do timing attacks really work?
Objection: “Timings are noisy!”

Answer #1: Does noise stop all attacks? To guarantee security, defender must block all information flow.

Answer #2: Attacker uses statistics to eliminate noise.

Answer #3, what the 1970s attackers actually did: Cross page boundary, inducing page faults, to amplify timing signal.
The language designer’s notion of “right” is too weak for security. Mistakes continue to happen. One of many examples, part of the reference software for CAESAR candidate CLOC:

```c
/* compare the tag */

int i;
for(i = 0; i < CRYPTO_ABYTES; i++)
    if(tag[i] != c[(*mlen) + i])
        return RETURN_TAG_NO_MATCH;

return RETURN_SUCCESS;
```

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1: Does noise stop **all** attacks? To guarantee security, defender must block **all** information flow.

Answer #2: Attacker uses statistics to eliminate noise.

Answer #3, what the 1970s attackers actually did: Cross page boundary, inducing page faults, to amplify timing signal.

Defenders don’t learn

Some of the literature:

Language designer’s notion of “right” is too weak for security. So mistakes continue to happen.

One of many examples, part of the reference software for CAESAR candidate CLOC:

```c
/* compare the tag */
int i;
for (i = 0; i < CRYPTO_ABYTES; i++)
    if (tag[i] != c[(*mlen) + i])
        return RETURN_TAG_NO_MATCH;
return RETURN_SUCCESS;
```

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:
Does noise stop all attacks? To guarantee security, defender must block all information flow.

Answer #2: Attacker uses statistics to eliminate noise.

Answer #3, what the 1970s attackers actually did:
Cross page boundary, inducing page faults, to amplify timing signal.

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing attacks on cryptographic key bits.

Briefly mentioned by Kocher and by 1998 Kelsey–Schneier–Wagner–Hall:
Secret array indices can affect timing via cache misses.

Timing attacks on DES.
Language designer's notion of "right" is too weak for security.
So mistakes continue to happen.
One of many examples, part of the reference software for CAESAR candidate CLOC:

```c
/* compare the tag */
int i;
for(i = 0; i < CRYPTO_ABYTES; i++)
    if(tag[i] != c[(*mlen) + i])
        return RETURN_TAG_NO_MATCH;
return RETURN_SUCCESS;
```

Do timing attacks really work?
Objection: “Timings are noisy!”

Answer #1: Does noise stop all attacks?
To guarantee security, defender must block all information flow.

Answer #2: Attacker uses statistics to eliminate noise.

Answer #3, what the 1970s attackers actually did:
Cross page boundary, inducing page faults, to amplify timing signal.

Defenders don’t learn
Some of the literature:
1996 Kocher pointed out timing attacks on cryptographic key bits.
Briefly mentioned by Kocher and by 1998 Kelsey–Schneier–Wagner–Hall:
secret array indices can affect timing via cache misses.
timing attacks on DES.
Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1: Does noise stop all attacks? To guarantee security, defender must block all information flow.

Answer #2: Attacker uses statistics to eliminate noise.

Answer #3, what the 1970s attackers actually did: Cross page boundary, inducing page faults, to amplify timing signal.

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing attacks on cryptographic key bits.

Do timing attacks really work?
Objection: “Timings are noisy!"

Answer #1:

Noise stop all attacks?
To guarantee security, defender must block all information flow.

Answer #2: Attacker uses statistics to eliminate noise.

Answer #3, what the 1970s attackers actually did:
Cross page boundary, inducing page faults, amplify timing signal.

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing attacks on cryptographic key bits.

Briefly mentioned by Kocher and by 1998 Kelsey–Schneier–Wagner–Hall:
secret array indices can affect timing via cache misses.

timing attacks on DES.
Do timing attacks really work?

Objection: "Timings are noisy!"

Answer #1: Does noise stop all attacks?
To guarantee security, defender must block all information flow.

Answer #2: Attacker uses statistics to eliminate noise.

Answer #3, what the 1970s attackers actually did:
Cross page boundary, inducing page faults, to amplify timing signal.

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing attacks on cryptographic key bits.

Briefly mentioned by Kocher and by 1998 Kelsey–Schneier–Wagner–Hall:
secret array indices can affect timing via cache misses.

timing attacks on DES.

“Guaranteed” countermeasure:
load entire table into cache.
Do timing attacks really work?

Objection: "Timings are noisy!"

Answer #1: Does noise stop all attacks?
To guarantee security, defender must block all information flow.

Answer #2: Attacker uses statistics to eliminate noise.

Answer #3: What the 1970s attackers actually did:
Cross page boundary, inducing page faults, to amplify timing signal.

Defenders don’t learn
Some of the literature:

1996 Kocher pointed out timing attacks on cryptographic key bits.

Briefly mentioned by Kocher and by 1998 Kelsey–Schneier–Wagner–Hall:
secret array indices can affect timing via cache misses.

timing attacks on DES.

"Guaranteed" countermeasure:
load entire table into cache.
Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing attacks on cryptographic key bits.

Briefly mentioned by Kocher and by 1998 Kelsey–Schneier–Wagner–Hall:
secret array indices can affect timing via cache misses.

timing attacks on DES.

“Guaranteed” countermeasure: load entire table into cache.
Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing attacks on cryptographic key bits.

“Guaranteed” countermeasure: load entire table into cache.

2004.11/2005.04 Bernstein: Timing attacks on AES. Countermeasure isn’t safe; e.g., secret array indices can affect timing via cache-bank collisions. What is safe: kill all data flow from secrets to array indices.
Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing attacks on cryptographic key bits.

“Guaranteed” countermeasure:
load entire table into cache.

2004.11/2005.04 Bernstein: Timing attacks on AES. Countermeasure isn’t safe; e.g., secret array indices can affect timing via cache-bank collisions. What is safe: kill all data flow from secrets to array indices.

2005 Tromer–Osvik–Shamir: 65ms to steal Linux AES key used for hard-disk encryption.
Defenders don't learn of the literature:

Kocher pointed out timing attacks on cryptographic key bits.

“Guaranteed” countermeasure: load entire table into cache.

2004.11/2005.04 Bernstein: Timing attacks on AES. Countermeasure isn't safe; e.g., secret array indices can affect timing via cache-bank collisions. What is safe: kill all data flow from secrets to array indices.

2005 Tromer–Osvik–Shamir: 65ms to steal Linux AES key used for hard-disk encryption.

Intel recommends, and OpenSSL integrates, cheaper countermeasure: always loading from known lines of cache.
Defenders don't learn from some of the literature:

1996 Kocher pointed out timing attacks on cryptographic key bits. Briefly mentioned by Kocher and by Kelsey–Schneier–Wagner–Hall:
Secret array indices can affect timing via cache misses.

Timing attacks on DES.

“Guaranteed” countermeasure:
Load entire table into cache.

2004.11/2005.04 Bernstein:
Timing attacks on AES. Countermeasure isn't safe; e.g., secret array indices can affect timing via cache-bank collisions.

What is safe: kill all data flow from secrets to array indices.

2005 Tromer–Osvik–Shamir:
65ms to steal Linux AES key used for hard-disk encryption.

Intel recommends, and OpenSSL integrates, cheaper countermeasure: always loading from known lines of cache.
Defenders don't learn
Some of the literature:
1996 Kocher pointed out timing
attacks on cryptographic key bits.
1998 Briefly mentioned by
Kelsey–Schneier–Wagner–Hall:
secret array indices can
affect timing via cache misses.
Suzaki–Shigeri–Miyauchi:
timing attacks on DES.

“Guaranteed” countermeasure:
load entire table into cache.

2004.11/2005.04 Bernstein:
Timing attacks on AES.
Countermeasure isn’t safe;
e.g., secret array indices can affect
timing via cache-bank collisions.
What is safe: kill all data flow
from secrets to array indices.

2005 Tromer–Osvik–Shamir:
65ms to steal Linux AES key
used for hard-disk encryption.

Intel recommends, and
OpenSSL integrates, cheaper
countermeasure: always load
from known lines of cache.
“Guaranteed” countermeasure: load entire table into cache.

2004.11/2005.04 Bernstein: Timing attacks on AES. Countermeasure isn’t safe; e.g., secret array indices can affect timing via cache-bank collisions. What is safe: kill all data flow from secrets to array indices.

2005 Tromer–Osvik–Shamir: 65ms to steal Linux AES key used for hard-disk encryption.

Intel recommends, and OpenSSL integrates, cheaper countermeasure: always loading from known *lines* of cache.
“Guaranteed” countermeasure: load entire table into cache.

2004.11/2005.04 Bernstein: Timing attacks on AES. Countermeasure isn’t safe; e.g., secret array indices can affect timing via cache-bank collisions. What is safe: kill all data flow from secrets to array indices.

2005 Tromer–Osvik–Shamir: 65ms to steal Linux AES key used for hard-disk encryption.

Intel recommends, and OpenSSL integrates, cheaper countermeasure: always loading from known lines of cache.

2013 Bernstein–Schwabe
“A word of warning”: This countermeasure isn’t safe. Same issues described in 2004.
“Guaranteed” countermeasure: load entire table into cache.

2004.11/2005.04 Bernstein: Timing attacks on AES. Countermeasure isn’t safe; e.g., secret array indices can affect timing via cache-bank collisions. What is safe: kill all data flow from secrets to array indices.

2005 Tromer–Osvik–Shamir: 65ms to steal Linux AES key used for hard-disk encryption.

Intel recommends, and OpenSSL integrates, cheaper countermeasure: always loading from known lines of cache.

2013 Bernstein–Schwabe “A word of warning”: This countermeasure isn’t safe. Same issues described in 2004.

2016 Yarom–Genkin–Heninger “CacheBleed” steals RSA secret key via timings of OpenSSL.
Guaranteed countermeasure: load entire table into cache.

2004.11/2005.04 Bernstein: Timing attacks on AES. Countermeasure isn’t safe; e.g., secret array indices can affect via cache-bank collisions. What is safe: kill all data flow secrets to array indices.

2005 Tromer–Osvik–Shamir: 65ms to steal Linux AES key used for hard-disk encryption.

Intel recommends, and OpenSSL integrates, cheaper countermeasure: always loading from known lines of cache.

2013 Bernstein–Schwabe “A word of warning”: This countermeasure isn’t safe. Same issues described in 2004.

2016 Yarom–Genkin–Heninger “CacheBleed” steals RSA secret key via timings of OpenSSL.

2008 RFC 5246 “The Transport Layer Security (TLS) Protocol, Version 1.2”: “This leaves a small timing channel, since MAC performance depends to some extent on the size of the data fragment, but it is not believed to be large enough to be exploitable, due to the large block size of existing MACs and the small size of the timing signal.”
“Guaranteed” countermeasure: load entire table into cache.

Bernstein: AES.

Isn’t safe; indices can affect bank collisions. All data flow from secrets to array indices.

Countermeasure isn’t safe; e.g., secret array indices can affect timing via cache-bank collisions. What is safe: kill all data flow from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key used for hard-disk encryption.

2013 Bernstein–Schwabe

“A word of warning”: This countermeasure isn’t safe. Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret key via timings of OpenSSL.

Intel recommends, and OpenSSL integrates, cheaper countermeasure: always loading from known lines of cache.

2008 RFC 5246 “The Transport Layer Security (TLS) Protocol, Version 1.2”: “This leaves a small timing channel, since MAC performance depends to some extent on the size of the data fragment, but it is not believed to be large enough to be exploitable, due to the large block size of existing MACs and the small size of the timing signal.”
2004.11 / 2005.04 Bernstein: Timing attacks on AES. Countermeasure isn’t safe; e.g., secret array indices can affect timing via cache-bank collisions. What is safe: kill all data flow from secrets to array indices.

2005 Tromer–Osvik–Shamir: 65ms to steal Linux AES key used for hard-disk encryption.

Intel recommends, and OpenSSL integrates, cheaper countermeasure: always loading from known lines of cache.

2013 Bernstein–Schwabe “A word of warning”: This countermeasure isn’t safe. Same issues described in 2004.

2016 Yarom–Genkin–Heninger “CacheBleed” steals RSA secret key via timings of OpenSSL.

2008 RFC 5246 “The Transport Layer Security (TLS) Protocol, Version 1.2”: “This leaves a small timing channel, since MAC performance depends to some extent on the size of the data fragment, but it is not believed to be large enough to be exploitable, due to the large block size of existing MACs and the small size of the timing signal.”
Intel recommends, and OpenSSL integrates, cheaper countermeasure: always loading from known *lines* of cache.

2013 Bernstein–Schwabe
“A word of warning”: This countermeasure isn’t safe. Same issues described in 2004.

2016 Yarom–Genkin–Heninger
“CacheBleed” steals RSA secret key via timings of OpenSSL.

2008 RFC 5246 “The Transport Layer Security (TLS) Protocol, Version 1.2”: “This leaves a small timing channel, since MAC performance depends to some extent on the size of the data fragment, but it is not believed to be large enough to be exploitable, due to the large block size of existing MACs and the small size of the timing signal.”
Intel recommends, and OpenSSL integrates, cheaper countermeasure: always loading from known lines of cache.

2013 Bernstein–Schwabe
“A word of warning”: This countermeasure isn’t safe. Same issues described in 2004.

2016 Yarom–Genkin–Heninger
“CacheBleed” steals RSA secret key via timings of OpenSSL.

2008 RFC 5246 “The Transport Layer Security (TLS) Protocol, Version 1.2”: “This leaves a small timing channel, since MAC performance depends to some extent on the size of the data fragment, but it is not believed to be large enough to be exploitable, due to the large block size of existing MACs and the small size of the timing signal.”

2013 AlFardan–Paterson “Lucky Thirteen: breaking the TLS and DTLS record protocols”: exploit these timings; steal plaintext.
Intel recommends, and OpenSSL integrates, cheaper countermeasure: always loading from known lines of cache.

Bernstein–Schwabe “A word of warning”: This countermeasure isn’t safe. Same issues described in 2004.

Yarom–Genkin–Heninger “CacheBleed” steals RSA secret key via timings of OpenSSL.

2008 RFC 5246 “The Transport Layer Security (TLS) Protocol, Version 1.2”: “This leaves a small timing channel, since MAC performance depends to some extent on the size of the data fragment, but it is not believed to be large enough to be exploitable, due to the large block size of existing MACs and the small size of the timing signal.”

AlFardan–Paterson “Lucky Thirteen: breaking the TLS and DTLS record protocols”: exploit these timings; steal plaintext.

How to write constant-time code
If possible, write code in asm to control instruction selection.
Look for documentation identifying variability: e.g., “Division operations terminate when the divide operation completes, with the number of cycles required dependent on the values of the input operands.”
Measure cycles rather than trusting CPU documentation.
and the baseline, cheaper countermeasure: always loading from known lines of cache.

2013 Bernstein–Schwabe “A word of warning”: This countermeasure isn’t safe. Same issues described in 2004.

2016 Yarom–Genkin–Heninger “CacheBleed” steals RSA secret key via timings of OpenSSL.

2008 RFC 5246 “The Transport Layer Security (TLS) Protocol, Version 1.2”: “This leaves a small timing channel, since MAC performance depends to some extent on the size of the data fragment, but it is not believed to be large enough to be exploitable, due to the large block size of existing MACs and the small size of the timing signal.”

2013 AlFardan–Paterson “Lucky Thirteen: breaking the TLS and DTLS record protocols”: exploit these timings; steal plaintext.

How to write constant-time code

If possible, write code in asm to control instruction selection.

Look for documentation identifying variability: e.g., “Division operations terminate when the divide operation completes, with the number of cycles required dependent on the values of the input.

Measure cycles rather than trusting CPU documentation.
Intel recommends, and OpenSSL integrates, cheaper countermeasure: always loading from known lines of cache.

2013 Bernstein–Schwabe “A word of warning”: This countermeasure isn’t safe. Same issues described in 2004.

2016 Yarom–Genkin–Heninger “CacheBleed” steals RSA secret key via timings of OpenSSL.

2008 RFC 5246 “The Transport Layer Security (TLS) Protocol, Version 1.2”: “This leaves a small timing channel, since MAC performance depends to some extent on the size of the data fragment, but it is not believed to be large enough to be exploitable, due to the large block size of existing MACs and the small size of the timing signal.”

2013 AlFardan–Paterson “Lucky Thirteen: breaking the TLS and DTLS record protocols”: exploit these timings; steal plaintext.

How to write constant-time code
If possible, write code in asm to control instruction selection.

Look for documentation identifying variability: e.g., “Division operations terminate when the divide operation completes, with the number of cycles required dependent on the values of the input operands.”

Measure cycles rather than trusting CPU documentation.
2008 RFC 5246 “The Transport Layer Security (TLS) Protocol, Version 1.2”: “This leaves a small timing channel, since MAC performance depends to some extent on the size of the data fragment, but it is not believed to be large enough to be exploitable, due to the large block size of existing MACs and the small size of the timing signal.”

2013 AlFardan–Paterson “Lucky Thirteen: breaking the TLS and DTLS record protocols”: exploit these timings; steal plaintext.

How to write constant-time code

If possible, write code in asm to control instruction selection.

Look for documentation identifying variability: e.g., “Division operations terminate when the divide operation completes, with the number of cycles required dependent on the values of the input operands.”

Measure cycles rather than trusting CPU documentation.
RFC 5246 “The Transport Layer Security (TLS) Protocol, Version 1.2”: “This leaves a small timing channel, since MAC performance depends to some extent on the size of the data but, but it is not believed to be exploitable, due to the large block size of existing MACs and the small size of the timing signal.”

AlFardan–Paterson “Lucky Thirteen: breaking the TLS and DTLS record protocols”: exploit these timings; steal plaintext.

How to write constant-time code

If possible, write code in asm to control instruction selection.

Look for documentation identifying variability: e.g., “Division operations terminate when the divide operation completes, with the number of cycles required dependent on the values of the input operands.”

Measure cycles rather than trusting CPU documentation.

Cut off all data flow from secrets to branch conditions.

Cut off all data flow from secrets to array indices.

Cut off all data flow from secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with variable-time multipliers: e.g., Cortex-M3 and most PowerPCs.
The Transport Layer Security (TLS) Protocol, Version 1.2: “This leaves a small timing channel, since MAC performance depends to some extent on the size of the data and the small size of the timing signal.”

AlFardan–Paterson “Lucky Thirteen: breaking the TLS and DTLS record protocols”: exploit these timings; steal plaintext.

How to write constant-time code

If possible, write code in asm to control instruction selection.

Look for documentation identifying variability: e.g., “Division operations terminate when the divide operation completes, with the number of cycles required dependent on the values of the input operands.”

Measure cycles rather than trusting CPU documentation.

How to write constant-time code

Cut off all data flow from secrets to branch conditions.

Cut off all data flow from secrets to array indices.

Cut off all data flow from secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with variable-time multipliers: e.g., Cortex-M3 and most PowerPCs.
How to write constant-time code

If possible, write code in asm to control instruction selection.

Look for documentation identifying variability: e.g., “Division operations terminate when the divide operation completes, with the number of cycles required dependent on the values of the input operands.”

Measure cycles rather than trusting CPU documentation.

Cut off all data flow from secrets to branch conditions.

Cut off all data flow from secrets to array indices.

Cut off all data flow from secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with variable-time multipliers: e.g., Cortex-M3 and most PowerPCs.
How to write constant-time code

If possible, write code in asm to control instruction selection.

Look for documentation identifying variability: e.g., “Division operations terminate when the divide operation completes, with the number of cycles required dependent on the values of the input operands.”

Measure cycles rather than trusting CPU documentation.

Cut off all data flow from secrets to branch conditions.

Cut off all data flow from secrets to array indices.

Cut off all data flow from secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with variable-time multipliers: e.g., Cortex-M3 and most PowerPCs.
How to write constant-time code

If possible, write code in asm to control instruction selection.

Look for documentation identifying variability: e.g., "Division operations terminate when the divide operation completes, with the number of cycles required dependent on the values of the input operands."

Measure cycles rather than trusting CPU documentation.

Cut off all data flow from secrets to branch conditions.

Cut off all data flow from secrets to array indices.

Cut off all data flow from secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with variable-time multipliers: e.g., Cortex-M3 and most PowerPCs.

Software optimization

Almost all software is much slower than it could be.
How to write constant-time code

If possible, write code in asm to control instruction selection.

Look for documentation identifying variability: e.g., “Division operations terminate when the divide operation completes, with the number of cycles required dependent on the values of the input operands.”

Measure cycles rather than trusting CPU documentation.

Cut off all data flow from secrets to branch conditions.

Cut off all data flow from secrets to array indices.

Cut off all data flow from secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with variable-time multipliers: e.g., Cortex-M3 and most PowerPCs.

Software optimization

Almost all software is much slower than it could be.
How to write constant-time code
If possible, write code in asm to control instruction selection.
Look for documentation identifying variability: e.g., "Division operations terminate when the divide operation completes, with the number of cycles required dependent on the values of the input operands."
Measure cycles rather than trusting CPU documentation.

Cut off all data flow from secrets to branch conditions.
Cut off all data flow from secrets to array indices.
Cut off all data flow from secrets to shift/rotate distances.
Prefer logic instructions.
Prefer vector instructions.
Watch out for CPUs with variable-time multipliers: e.g., Cortex-M3 and most PowerPCs.

Software optimization
Almost all software is much slower than it could be.
Cut off all data flow from secrets to branch conditions.

Cut off all data flow from secrets to array indices.

Cut off all data flow from secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with variable-time multipliers: e.g., Cortex-M3 and most PowerPCs.

Software optimization

Almost all software is much slower than it could be.
Cut off all data flow from secrets to branch conditions.

Cut off all data flow from secrets to array indices.

Cut off all data flow from secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with variable-time multipliers: e.g., Cortex-M3 and most PowerPCs.

Software optimization

Almost all software is much slower than it could be.

Is software applied to much data? Usually not. Usually the wasted CPU time is negligible.
Cut off all data flow from secrets to branch conditions.

Cut off all data flow from secrets to array indices.

Cut off all data flow from secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with variable-time multipliers: e.g., Cortex-M3 and most PowerPCs.

Software optimization

Almost all software is much slower than it could be.

Is software applied to much data?

Usually not. Usually the wasted CPU time is negligible.

But crypto software should be applied to all communication.

Crypto that’s too slow ⇒ fewer users ⇒ fewer cryptanalysts ⇒ less attractive for everybody.
Cut off all data flow from secrets to branch conditions.
Cut off all data flow from secrets to array indices.
Cut off all data flow from secrets to shift/rotate distances.

Prefer logic instructions.
Prefer vector instructions.

Watch out for CPUs with variable-time multipliers: e.g., Cortex-M3 and most PowerPCs.

Software optimization

Almost all software is much slower than it could be.

Is software applied to much data? Usually not. Usually the wasted CPU time is negligible.

But crypto software should be applied to all communication.

Crypto that’s too slow ⇒ fewer users ⇒ fewer cryptanalysts ⇒ less attractive for everybody.

Typical situation:

You want (constant-time) software that computes cipher X as efficiently as possible.

Starting point:

You have written a reference implementation of X.

You have chosen a target CPU. (Can repeat for other CPUs.)

You measure performance of the implementation. Now what?
Cut off all data flow from secrets to branch conditions.
Cut off all data flow from secrets to array indices.
Cut off all data flow from secrets to shift/rotate distances.

Prefer logic instructions.
Prefer vector instructions.

Watch out for CPUs with variable-time multipliers: e.g., Cortex-M3 and most PowerPCs.

Software optimization
Almost all software is much slower than it could be.
Is software applied to much data? Usually not. Usually the wasted CPU time is negligible.
But crypto software should be applied to all communication.
Crypto that’s too slow ⇒ fewer users ⇒ fewer cryptanalysts ⇒ less attractive for everybody.

Typical situation:
You want (constant-time) software that computes cipher X as efficiently as possible.
Starting point:
You have written a reference implementation.
You have chosen a target CPU.
(Can repeat for other CPUs.)
You measure performance of the implementation. Now what?
Cut off all data flow from secrets to branch conditions.
Cut off all data flow from secrets to array indices.
Cut off all data flow from secrets to shift/rotate distances.

Prefer logic instructions.
Prefer vector instructions.

Watch out for CPUs with variable-time multipliers: e.g., Cortex-M3 and most PowerPCs.

Software optimization
Almost all software is much slower than it could be.

Is software applied to much data? Usually not. Usually the wasted CPU time is negligible.

But crypto software should be applied to all communication.

Crypto that's too slow ⇒ fewer users ⇒ fewer cryptanalysts ⇒ less attractive for everybody.

Typical situation:
You want (constant-time) software that computes cipher X as efficiently as possible.

Starting point:
You have written a reference implementation of X.

You have chosen a target CPU. (Can repeat for other CPUs.)

You measure performance of the implementation. Now what?
Software optimization

Almost all software is much slower than it could be.

Is software applied to much data? Usually not. Usually the wasted CPU time is negligible.

But crypto software should be applied to all communication.

Crypto that’s too slow ⇒ fewer users ⇒ fewer cryptanalysts ⇒ less attractive for everybody.

Typical situation:
You want (constant-time) software that computes cipher X as efficiently as possible.

Starting point:
You have written a reference implementation of X.

You have chosen a target CPU. (Can repeat for other CPUs.)

You measure performance of the implementation. Now what?
Software optimization

Almost all software is much slower than it could be. Are applied to much data? Usually not. Usually the wasted CPU time is negligible. But crypto software should be applied to all communication. Crypto that’s too slow ⇒ fewer users ⇒ fewer cryptanalysts ⇒ less attractive for everybody.

Typical situation:

You want (constant-time) software that computes cipher \(X \) as efficiently as possible.

Starting point:
You have written a reference implementation of \(X \).

You have chosen a target CPU. (Can repeat for other CPUs.)

You measure performance of the implementation. Now what?

A simplified example

Target CPU: TI LM4F120H5QR microcontroller containing one ARM Cortex-M4F core.

Reference implementation:

```c
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0; i < 1000; ++i)
        result += x[i];
    return result;
}
```
Software optimization
Almost all software is much slower than it could be.

Is software applied to much data?
Usually not. Usually the wasted CPU time is negligible.

But crypto software should be applied to all communication.
Crypto that's too slow ⇒ fewer users ⇒ fewer cryptanalysts ⇒ less attractive for everybody.

Typical situation:
You want (constant-time) software that computes cipher X as efficiently as possible.

Starting point:
You have written a reference implementation of X.

You have chosen a target CPU.
(Can repeat for other CPUs.)

You measure performance of the implementation. Now what?

A simplified example
Target CPU: TI LM4F120H5QR microcontroller containing one ARM Cortex-M4F core.

Reference implementation:

```c
int sum(int *x) {
    int result = 0;
    int i;
    for (i = 0; i < 1000; ++i)
        result += x[i];
    return result;
}
```
Software optimization
Almost all software is much slower than it could be. Is software applied to much data?
Usually not. Usually the wasted CPU time is negligible.
But crypto software should be applied to all communication.
Crypto that's too slow ⇒ fewer users ⇒ fewer cryptanalysts ⇒ less attractive for everybody.

Typical situation:
You want (constant-time) software that computes cipher X as efficiently as possible.

Starting point:
You have written a reference implementation of X.
You have chosen a target CPU. (Can repeat for other CPUs.)
You measure performance of the implementation. Now what?

A simplified example
Target CPU: TI LM4F120H5QR microcontroller containing one ARM Cortex-M4F core.

Reference implementation:
int sum(int *x)
{
 int result = 0;
 int i;
 for (i = 0;i < 1000;++i)
 result += x[i];
 return result;
}
Typical situation:
You want (constant-time) software that computes cipher X as efficiently as possible.

Starting point:
You have written a reference implementation of X.

You have chosen a target CPU. (Can repeat for other CPUs.)

You measure performance of the implementation. Now what?

A simplified example
Target CPU: TI LM4F120H5QR microcontroller containing one ARM Cortex-M4F core.

Reference implementation:

```c
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0; i < 1000; ++i)
        result += x[i];
    return result;
}
```
Typical situation:
You want (constant-time) software that computes cipher X as efficiently as possible.

Starting point:
You have written a reference implementation of X.
You have chosen a target CPU. (Can repeat for other CPUs.)
You measure performance of the implementation. Now what?

A simplified example

Target CPU: TI LM4F120H5QR microcontroller containing one ARM Cortex-M4F core.

Reference implementation:

```c
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0; i < 1000; ++i)
        result += x[i];
    return result;
}
```

Counting cycles:

```c
static volatile unsigned int *const DWT_CYCCNT = (void *) 0xE0001004;
...
int beforesum = *DWT_CYCCNT;
int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf("sum %d %d
", result, aftersum - beforesum);
```

Output shows 8012 cycles.

Change 1000 to 500: 4012.
Typical situation:
You want (constant-time) software that computes cipher X as efficiently as possible.

Starting point:
You have written a reference implementation of X.
You have chosen a target CPU. (Can repeat for other CPUs.)
You measure performance of the implementation. Now what?

A simplified example
Target CPU: TI LM4F120H5QR microcontroller containing one ARM Cortex-M4F core.

Reference implementation:

```c
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0; i < 1000; ++i)
        result += x[i];
    return result;
}
```

Counting cycles:

```c
static volatile unsigned int *const DWT_CYCCNT = (void *) 0xE0001004;
...
int beforesum = *DWT_CYCCNT;
int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf("sum %d %d\n", result, aftersum - beforesum);
```

Output shows 8012 cycles.
Change 1000 to 500: 4012.
A simplified example

Target CPU: TI LM4F120H5QR microcontroller containing one ARM Cortex-M4F core.

Reference implementation:

```c
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0; i < 1000; ++i)
        result += x[i];
    return result;
}
```

Counting cycles:

```c
static volatile unsigned int *const DWT_CYCCNT = (void *) 0xE0001004;
...
int beforesum = *DWT_CYCCNT;
int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf("sum %d %d\n", result, aftersum-beforesum);
```

Output shows 8012 cycles.
Change 1000 to 500: 4012.
A simplified example

Target CPU: TI LM4F120H5QR microcontroller containing one ARM Cortex-M4F core.

Reference implementation:

```c
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0; i < 1000; ++i)
        result += x[i];
    return result;
}
```

Counting cycles:

```c
static volatile unsigned int *const DWT_CYCCNT = (void *) 0xE0001004;
...
int beforesum = *DWT_CYCCNT;
int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf("sum %d %d\n", result, aftersum - beforesum);
```

Output shows 8012 cycles.
Change 1000 to 500: 4012.
A simplified example

Target CPU: TI LM4F120H5QR microcontroller containing one ARM Cortex-M4F core.

Reference implementation:

```c
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0; i < 1000; ++i)
        result += x[i];
    return result;
}
```

Counting cycles:

```c
static volatile unsigned int *const DWT_CYCCNT = (void *) 0xE0001004;
...
int beforesum = *DWT_CYCCNT;
int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf("sum %d %d\n", result, aftersum-beforesum);
```

Output shows 8012 cycles.

Change 1000 to 500: 4012.

“Okay, 8 cycles per addition. Um, are microcontrollers really this slow at addition?”
A simplified example

Target CPU: TI LM4F120H5QR microcontroller containing one ARM Cortex-M4F core.

Reference implementation:

```c
int sum(int *x)
{
    int result = 0;
    int i;
    for (i = 0; i < 1000; ++i)
        result += x[i];
    return result;
}
```

Counting cycles:

```c
static volatile unsigned int *const DWT_CYCCNT = (void *) 0xE0001004;
...
int beforesum = *DWT_CYCCNT;
int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf("sum %d %d\n", result, aftersum-beforesum);
```

Output shows 8012 cycles.

Change 1000 to 500: 4012.

“Okay, 8 cycles per addition. Um, are microcontrollers really this slow at addition?”
Counting cycles:

```c
static volatile unsigned int *const DWT_CYCCNT = (void *) 0xE0001004;
...

int beforesum = *DWT_CYCCNT;
int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf("sum %d %d\n", result, aftersum-beforesum);
```

Output shows 8012 cycles.
Change 1000 to 500: 4012.
Counting cycles:

static volatile unsigned int *const DWT_CYCCNT = (void *) 0xE0001004;
...

int beforesum = *DWT_CYCCNT;
int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf("sum %d %d\n", result, aftersum - beforesum);

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, 8 cycles per addition. Um, are microcontrollers really this slow at addition?”
Counting cycles:

```c
static volatile unsigned int
  *const DWT_CYCCNT
  = (void *) 0xE0001004;
...
int beforesum = *DWT_CYCCNT;
int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf("sum %d %d\n",
             result,aftersum-beforesum);
```

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, 8 cycles per addition. Um, are microcontrollers really this slow at addition?”

Bad practice:
Apply random “optimizations” (and tweak compiler options) until you get bored.
Keep the fastest results.
Counting cycles:

```c
static volatile unsigned int
  *const DWT_CYCCNT
  = (void *) 0xE0001004;
...

int beforesum = *DWT_CYCCNT;
int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf("sum %d %d\n", 
    result,aftersum-beforesum);
```

Output shows 8012 cycles.
Change 1000 to 500: 4012.

“Okay, 8 cycles per addition. Um, are microcontrollers really this slow at addition?”

Bad practice:
Apply random “optimizations” (and tweak compiler options) until you get bored.
Keep the fastest results.

Good practice:
Figure out lower bound for cycles spent on arithmetic etc.
Understand gap between lower bound and observed time.
Counting cycles:

```c
static volatile unsigned int *const DWT_CYCCNT = (void *) 0xE0001004;
```

```c
int beforesum = *DWT_CYCCNT;
int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf("sum %d %d\n", result, aftersum-beforesum);
```

Output shows 8012 cycles.

Change 1000 to 500: 4012.

“Okay, 8 cycles per addition. Um, are microcontrollers really this slow at addition?”

Bad practice:
Apply random “optimizations” (and tweak compiler options) until you get bored.
Keep the fastest results.

Good practice:
Figure out lower bound for cycles spent on arithmetic etc.
Understand gap between lower bound and observed time.

Rely on Wikipedia comment that M4F = M4 + floating-point unit.
Manual says that Cortex-M4 “implements the ARMv7E-M architecture”.
Points to the “ARMv7-M Architecture Reference Manual”, which defines instructions:
e.g., “ADD” for 32-bit addition.
First manual says that ADD takes just 1 cycle.
Counting cycles:

static volatile unsigned int
*const DWT_CYCCNT
= (void *) 0xE0001004;
...
int beforesum = *DWT_CYCCNT;
int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf("sum %d %d
",
result,aftersum-beforesum);
Output shows 8012 cycles.
Change 1000 to 500: 4012.

"Okay, 8 cycles per addition. Um, are microcontrollers really this slow at addition?"

Bad practice:
Apply random "optimizations" (and tweak compiler options) until you get bored.
Keep the fastest results.

Good practice:
Figure out lower bound for cycles spent on arithmetic etc.
Understand gap between lower bound and observed time.

Manual says that Cortex-M4 "implements the ARMv7E-M architecture profile". Points to the "ARMv7-M Architecture Reference Manual", which defines instructions:
e.g., "ADD" for 32-bit addition.

First manual says that ADD takes just 1 cycle.
“Okay, 8 cycles per addition. Um, are microcontrollers really this slow at addition?”

Bad practice:
Apply random “optimizations” (and tweak compiler options) until you get bored.
Keep the fastest results.

Good practice:
Figure out lower bound for cycles spent on arithmetic etc.
Understand gap between lower bound and observed time.

Rely on Wikipedia comment that M4F = M4 + floating-point
Manual says that Cortex-M4 “implements the ARMv7E-M architecture profile”.
Points to the “ARMv7-M Architecture Reference Manual”, which defines instructions: e.g., “ADD” for 32-bit addition.
First manual says that ADD takes just 1 cycle.
“Okay, 8 cycles per addition. Um, are microcontrollers really this slow at addition?”

Bad practice:
Apply random “optimizations” (and tweak compiler options) until you get bored.
Keep the fastest results.

Good practice:
Figure out lower bound for cycles spent on arithmetic etc.
Understand gap between lower bound and observed time.

Manual says that Cortex-M4 “implements the ARMv7E-M architecture profile”.
Points to the “ARMv7-M Architecture Reference Manual”, which defines instructions: e.g., “ADD” for 32-bit addition.
First manual says that ADD takes just 1 cycle.
Okay, 8 cycles per addition.
Um, are microcontrollers really this slow at addition?

Bad practice:
Apply random “optimizations” (and tweak compiler options) until you get bored.
Keep the fastest results.

Good practice:
Figure out lower bound for cycles spent on arithmetic etc.
Understand gap between lower bound and observed time.

Rely on Wikipedia comment that M4F = M4 + floating-point unit.

Manual says that Cortex-M4 “implements the ARMv7E-M architecture profile”.

Points to the “ARMv7-M Architecture Reference Manual”, which defines instructions:
e.g., “ADD” for 32-bit addition.

First manual says that ADD takes just 1 cycle.

Inputs and output of ADD are “integer registers”. ARMv7-M has 16 integer registers, including special-purpose stack pointer and program counter.

Each element of x array needs to be “loaded” into a register.
Basic load instruction: LDR.
Manual says 2 cycles but adds a note about “pipelining”.
Then more explanation: if next instruction is also LDR (with address not based on first LDR) then it saves 1 cycle.
Okay, 8 cycles per addition. Um, are microcontrollers really this slow at addition?

Bad practice: Apply random “optimizations” (and tweak compiler options) until you get bored. Keep the fastest results.

Good practice: Figure out lower bound for cycles spent on arithmetic etc. Understand gap between lower bound and observed time.

Manual says that Cortex-M4 “implements the ARMv7E-M architecture profile”.

Points to the “ARMv7-M Architecture Reference Manual”, which defines instructions: e.g., “ADD” for 32-bit addition.

First manual says that ADD takes just 1 cycle.

Inputs and output of ADD are “integer registers”. ARMv7-M has 16 integer registers, including special-purpose “stack pointer” and “program counter”.

Each element of x needs to be “loaded” into a register.

Basic load instruction: LDR. Manual says 2 cycles but adds a note about “pipelining”. Then more explanation: if next instruction is also LDR (with address not based on first LDR) then it saves 1 cycle.

Manual says that Cortex-M4 “implements the ARMv7E-M architecture profile”.

Points to the “ARMv7-M Architecture Reference Manual”, which defines instructions: e.g., “ADD” for 32-bit addition.

First manual says that ADD takes just 1 cycle.

Inputs and output of ADD are “integer registers”. ARMv7-M has 16 integer registers, including special-purpose “stack pointer” and “program counter”.

Each element of \(x \) array needs to be “loaded” into a register.

Basic load instruction: LDR. Manual says 2 cycles but adds a note about “pipelining”.

Then more explanation: if next instruction is also LDR (with address not based on first LDR) then it saves 1 cycle.

Manual says that Cortex-M4 “implements the ARMv7E-M architecture profile”.

Points to the “ARMv7-M Architecture Reference Manual”, which defines instructions: e.g., “ADD” for 32-bit addition.

First manual says that ADD takes just 1 cycle.

Inputs and output of ADD are “integer registers”. ARMv7-M has 16 integer registers, including special-purpose “stack pointer” and “program counter”.

Each element of x array needs to be “loaded” into a register.

Basic load instruction: LDR. Manual says 2 cycles but adds a note about “pipelining”.

Then more explanation: if next instruction is also LDR (with address not based on first LDR) then it saves 1 cycle.

Manual says that Cortex-M4 implements the ARMv7E-M architecture profile.

Point to the “ARMv7-M Architecture Reference Manual”, which defines instructions: e.g., “ADD” for 32-bit addition.

First manual says that ADD takes just 1 cycle.

Inputs and output of ADD are “integer registers”. ARMv7-M has 16 integer registers, including special-purpose “stack pointer” and “program counter”.

Each element of x array needs to be “loaded” into a register.

Basic load instruction: LDR. Manual says 2 cycles but adds a note about “pipelining”.

Then more explanation: if next instruction is also LDR (with address not based on first LDR) then it saves 1 cycle.

Can achieve this speed in other ways (LDRD, LDM) but nothing seems faster.

Lower bound for \(n \) LDR + \(n \) ADD: \(2n + 1 \) cycles, including \(n \) cycles of arithmetic.

Why observed time is higher: non-consecutive LDRs; costs of manipulating \(i \).
Inputs and output of ADD are “integer registers”. ARMv7-M has 16 integer registers, including special-purpose “stack pointer” and “program counter”.

Each element of x array needs to be “loaded” into a register.

Basic load instruction: LDR. Manual says 2 cycles but adds a note about “pipelining”.

Then more explanation: if next instruction is also LDR (with address not based on first LDR) then it saves 1 cycle.

n consecutive LDRs takes only n + 1 cycles (“more multiple LDRs can be pipelined together”).

Can achieve this speed in other ways (LDRD, LDM) but nothing seems faster.

Lower bound for \(n \) LDRs + \(n \) ADD:

\[2n + 1 \text{ cycles, including } n \text{ cycles of arithmetic.} \]

Why observed time is higher: non-consecutive LDRs; costs of manipulating i.
Inputs and output of ADD are "integer registers". ARMv7-M has 16 integer registers, including special-purpose "stack pointer" and "program counter".

Each element of x array needs to be "loaded" into a register.

Basic load instruction: LDR. Manual says 2 cycles but adds a note about "pipelining".

Then more explanation: if next instruction is also LDR (with address not based on first LDR) then it saves 1 cycle.

n consecutive LDRs takes only $n + 1$ cycles ("more multiple LDRs can be pipelined together"). Can achieve this speed in other ways (LDRD, LDM) but nothing seems faster.

Lower bound for $n \ LDR + n \ ADD$: $2n + 1$ cycles, including n cycles of arithmetic.

Why observed time is higher: non-consecutive LDRs; costs of manipulating i.
Inputs and output of ADD are “integer registers”. ARMv7-M has 16 integer registers, including special-purpose “stack pointer” and “program counter”.

Each element of \(x \) array needs to be “loaded” into a register.

Basic load instruction: LDR. Manual says 2 cycles but adds a note about “pipelining”.

Then more explanation: if next instruction is also LDR (with address not based on first LDR) then it saves 1 cycle.

\(n \) consecutive LDRs takes only \(n + 1 \) cycles (“more multiple LDRs can be pipelined together”). Can achieve this speed in other ways (LDRD, LDM) but nothing seems faster.

Lower bound for \(n \text{LDR} + n \text{ADD} \):
\[2n + 1 \text{ cycles}, \]
including \(n \) cycles of arithmetic.

Why observed time is higher: non-consecutive LDRs; costs of manipulating \(i \).
Inputs and output of ADD are "integer registers". ARMv7-M has 16 integer registers, including special-purpose "stack pointer" and "program counter".

Each element of \(x \) array needs to be "loaded" into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds a note about "pipelining".

More explanation: if next instruction is also LDR (with address not based on first LDR) then it saves 1 cycle.

\(n \) consecutive LDRs takes only \(n + 1 \) cycles ("more multiple LDRs can be pipelined together").

Can achieve this speed in other ways (LDRD, LDM) but nothing seems faster.

Lower bound for \(n \) LDR + \(n \) ADD: 2\(n \) + 1 cycles, including \(n \) cycles of arithmetic.

Why observed time is higher: non-consecutive LDRs; costs of manipulating i.

```c
int sum(int *x)
{
    int result = 0;
    int *y = x + 1000;
    int x0,x1,x2,x3,x4,
        x5,x6,x7,x8,x9;
    while (x != y) {
        x0 = 0[(volatile int *)x];
        x1 = 1[(volatile int *)x];
        x2 = 2[(volatile int *)x];
        x3 = 3[(volatile int *)x];
        x4 = 4[(volatile int *)x];
        x5 = 5[(volatile int *)x];
        x6 = 6[(volatile int *)x];
    }
    return result;
}
```
20

Inputs and output of ADD are "integer registers". ARMv7-M has 16 integer registers, including special-purpose "stack pointer" and "program counter".

Each element of x array needs to be "loaded" into a register.

Operation: LDR.

Note: 2 cycles but adds "pipelining".

Operation: if next instruction is also LDR (with address not based on first LDR) then it saves 1 cycle.

n consecutive LDRs takes only $n + 1$ cycles ("more multiple LDRs can be pipelined together").

Can achieve this speed in other ways (LDRD, LDM) but nothing seems faster.

Lower bound for n LDR + n ADD:

$2n + 1$ cycles, including n cycles of arithmetic.

Why observed time is higher:

- non-consecutive LDRs;
- costs of manipulating i.

21

```
int sum(int *x)
{
    int result = 0;
    int *y = x + 1000;

    int x0, x1, x2, x3, x4,
        x5, x6, x7, x8, x9;

    while (x != y) {
        x0 = 0[(volatile int *)x];
        x1 = 1[(volatile int *)x];
        x2 = 2[(volatile int *)x];
        x3 = 3[(volatile int *)x];
        x4 = 4[(volatile int *)x];
        x5 = 5[(volatile int *)x];
        x6 = 6[(volatile int *)x];
    }
}
```
Inputs and output of ADD are "integer registers". ARMv7-M has 16 integer registers, including special-purpose "stack pointer" and "program counter".

Each element of \(x \) array needs to be "loaded" into a register.

Basic load instruction: LDR. Manual says 2 cycles but adds a note about "pipelining". Then more explanation: if next instruction is also LDR (with address not based on first LDR) then it saves 1 cycle.

\(n \) consecutive LDRs takes only \(n + 1 \) cycles ("more multiple LDRs can be pipelined together").

Can achieve this speed in other ways (LDRD, LDM) but nothing seems faster.

Lower bound for \(n \) LDR + \(n \) ADD: 2\(n \) + 1 cycles, including \(n \) cycles of arithmetic.

Why observed time is higher: non-consecutive LDRs; costs of manipulating \(i \).

```c
int sum(int *x)
{
    int result = 0;
    int *y = x + 1000;
    int x0,x1,x2,x3,x4,
        x5,x6,x7,x8,x9;
    while (x != y) {
        x0 = 0[(volatile int *)x];
        x1 = 1[(volatile int *)x];
        x2 = 2[(volatile int *)x];
        x3 = 3[(volatile int *)x];
        x4 = 4[(volatile int *)x];
        x5 = 5[(volatile int *)x];
        x6 = 6[(volatile int *)x];
        x7 = 7[(volatile int *)x];
        x8 = 8[(volatile int *)x];
        x9 = 9[(volatile int *)x];
        ...
    }
    return result;
}
```
n consecutive LDRs takes only $n + 1$ cycles ("more multiple LDRs can be pipelined together").

Can achieve this speed in other ways (LDRD, LDM) but nothing seems faster.

Lower bound for n LDR + n ADD: $2n + 1$ cycles, including n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

```c
int sum(int *x)
{
    int result = 0;
    int *y = x + 1000;
    int x0,x1,x2,x3,x4,
        x5,x6,x7,x8,x9;
    while (x != y) {
        x0 = 0[(volatile int *)x];
        x1 = 1[(volatile int *)x];
        x2 = 2[(volatile int *)x];
        x3 = 3[(volatile int *)x];
        x4 = 4[(volatile int *)x];
        x5 = 5[(volatile int *)x];
        x6 = 6[(volatile int *)x];
    }
    return result;
}
```
consecutive LDRs takes only $n + 1$ cycles ("more multiple LDRs can be pipelined together").

Achieve this speed in other ways (LDRD, LDM) but nothing seems faster.

Lower bound for n LDR + n ADD: $2n + 1$ cycles, including n cycles of arithmetic.

Why observed time is higher: non-consecutive LDRs; costs of manipulating i.

```c
int sum(int *x)
{
    int result = 0;
    int *y = x + 1000;
    int x0,x1,x2,x3,x4,
        x5,x6,x7,x8,x9;

    while (x != y) {
        x0 = 0[(volatile int *)x];
        x1 = 1[(volatile int *)x];
        x2 = 2[(volatile int *)x];
        x3 = 3[(volatile int *)x];
        x4 = 4[(volatile int *)x];
        x5 = 5[(volatile int *)x];
        x6 = 6[(volatile int *)x];
        x7 = 7[(volatile int *)x];
        x8 = 8[(volatile int *)x];
        x9 = 9[(volatile int *)x];
        result += x0;
        result += x1;
        result += x2;
        result += x3;
        result += x4;
        result += x5;
        result += x6;
        result += x7;
        result += x8;
        result += x9;
        x0 = 10[(volatile int *)x];
        x1 = 11[(volatile int *)x];
    }
}
```
n consecutive LDRs takes only \(n + 1 \) cycles ("more multiple LDRs can be pipelined together"). Can achieve this speed in other ways (LDRD, LDM) but nothing seems faster.

Lower bound for \(n \) LDR + \(n \) ADD:
\[
2n + 1 \text{ cycles, including } n \text{ cycles of arithmetic.}
\]

Why observed time is higher:
- non-consecutive LDRs;
- costs of manipulating \(i \).

```c
int sum(int *x)
{
    int result = 0;
    int *y = x + 1000;
    int x0,x1,x2,x3,x4,
        x5,x6,x7,x8,x9;

    while (x != y) {
        x0 = 0[(volatile int *)x];
        x1 = 1[(volatile int *)x];
        x2 = 2[(volatile int *)x];
        x3 = 3[(volatile int *)x];
        x4 = 4[(volatile int *)x];
        x5 = 5[(volatile int *)x];
        x6 = 6[(volatile int *)x];
        x7 = 7[(volatile int *)x];
        x8 = 8[(volatile int *)x];
        x9 = 9[(volatile int *)x];
        result += x0;
        result += x1;
        result += x2;
        result += x3;
        result += x4;
        result += x5;
        result += x6;
        result += x7;
        result += x8;
        result += x9;
        x0 = 10[(volatile int *)x];
        x1 = 11[(volatile int *)x];
    }

    return result;
}
```
n consecutive LDRs takes only n + 1 cycles ("more multiple LDRs can be pipelined together"). Can achieve this speed in other ways (LDRD, LDM) but nothing seems faster.

Lower bound for \(n \) LDR + \(n \) ADD:
\[2n + 1 \] cycles, including \(n \) cycles of arithmetic.

Why observed time is higher:
- non-consecutive LDRs;
- costs of manipulating i.

```c
int sum(int *x) {
    int result = 0;
    int *y = x + 1000;
    int x0, x1, x2, x3, x4, x5, x6, x7, x8, x9;

    while (x != y) {
        x0 = 0[(volatile int *)x];
        x1 = 1[(volatile int *)x];
        x2 = 2[(volatile int *)x];
        x3 = 3[(volatile int *)x];
        x4 = 4[(volatile int *)x];
        x5 = 5[(volatile int *)x];
        x6 = 6[(volatile int *)x];
        x7 = 7[(volatile int *)x];
        x8 = 8[(volatile int *)x];
        x9 = 9[(volatile int *)x];
        result += x0;
        result += x1;
        result += x2;
        result += x3;
        result += x4;
        result += x5;
        result += x6;
        result += x7;
        result += x8;
        result += x9;
        x0 = 10[(volatile int *)x];
        x1 = 11[(volatile int *)x];
    }
}
```
int sum(int *x) {
 int result = 0;
 int *y = x + 1000;
 int x0, x1, x2, x3, x4,
 x5, x6, x7, x8, x9;
 while (x != y) {
 x0 = 0[(volatile int *)x];
 x1 = 1[(volatile int *)x];
 x2 = 2[(volatile int *)x];
 x3 = 3[(volatile int *)x];
 x4 = 4[(volatile int *)x];
 x5 = 5[(volatile int *)x];
 x6 = 6[(volatile int *)x];
 x7 = 7[(volatile int *)x];
 x8 = 8[(volatile int *)x];
 x9 = 9[(volatile int *)x];
 result += x0;
 result += x1;
 result += x2;
 result += x3;
 result += x4;
 result += x5;
 result += x6;
 result += x7;
 result += x8;
 result += x9;
 x0 = 10[(volatile int *)x];
 x1 = 11[(volatile int *)x];
 }
}
int sum(int *x)
{
 int result = 0;
 int *y = x + 1000;
 int x0, x1, x2, x3, x4,
 x5, x6, x7, x8, x9;

 while (x != y) {
 x0 = 0[(volatile int *)x];
 x1 = 1[(volatile int *)x];
 x2 = 2[(volatile int *)x];
 x3 = 3[(volatile int *)x];
 x4 = 4[(volatile int *)x];
 x5 = 5[(volatile int *)x];
 x6 = 6[(volatile int *)x];
 x7 = 7[(volatile int *)x];
 x8 = 8[(volatile int *)x];
 x9 = 9[(volatile int *)x];
 result += x0;
 result += x1;
 result += x2;
 result += x3;
 result += x4;
 result += x5;
 result += x6;
 result += x7;
 result += x8;
 result += x9;
 x0 = 10[(volatile int *)x];
 x1 = 11[(volatile int *)x];
 x2 = 12[(volatile int *)x];
 x3 = 13[(volatile int *)x];
 x4 = 14[(volatile int *)x];
 x5 = 15[(volatile int *)x];
 x6 = 16[(volatile int *)x];
 x7 = 17[(volatile int *)x];
 x8 = 18[(volatile int *)x];
 x9 = 19[(volatile int *)x];
 result += x0;
 result += x1;
 result += x2;
 result += x3;
 result += x4;
 result += x5;
 result += x6;
 result += x7;
 result += x8;
 result += x9;
 x0 = 20;
 x1 = 21;
 }
 return result;
}
int sum(int *x) {
 int result = 0;
 int *y = x + 1000;
 int x0, x1, x2, x3, x4,
 x5, x6, x7, x8, x9;
 while (x != y) {
 x0 = 0[(volatile int *)x];
 x1 = 1[(volatile int *)x];
 x2 = 2[(volatile int *)x];
 x3 = 3[(volatile int *)x];
 x4 = 4[(volatile int *)x];
 x5 = 5[(volatile int *)x];
 x6 = 6[(volatile int *)x];
 x7 = 7[(volatile int *)x];
 x8 = 8[(volatile int *)x];
 x9 = 9[(volatile int *)x];
 result += x0;
 result += x1;
 result += x2;
 result += x3;
 result += x4;
 result += x5;
 result += x6;
 result += x7;
 result += x8;
 result += x9;
 x0 = 10[(volatile int *)x];
 x1 = 11[(volatile int *)x];
 x2 = 12[(volatile int *)x];
 x3 = 13[(volatile int *)x];
 x4 = 14[(volatile int *)x];
 x5 = 15[(volatile int *)x];
 x6 = 16[(volatile int *)x];
 x7 = 17[(volatile int *)x];
 x8 = 18[(volatile int *)x];
 x9 = 19[(volatile int *)x];
 x += 20;
 result += x0;
 result += x1;
 result += x2;
 result += x3;
 result += x4;
 result += x5;
 x += 20;
 result += x0;
 result += x1;
 result += x2;
 result += x3;
 result += x4;
 result += x5;
 }
}

int sum(int *x) {
 int result = 0;
 int *y = x + 1000;
 int x0, x1, x2, x3, x4,
 x5, x6, x7, x8, x9;
 while (x != y) {
 x0 = 0[(volatile int *)x];
 x1 = 1[(volatile int *)x];
 x2 = 2[(volatile int *)x];
 x3 = 3[(volatile int *)x];
 x4 = 4[(volatile int *)x];
 x5 = 5[(volatile int *)x];
 x6 = 6[(volatile int *)x];
 x7 = 7[(volatile int *)x];
 x8 = 8[(volatile int *)x];
 x9 = 9[(volatile int *)x];
 result += x0;
 result += x1;
 result += x2;
 result += x3;
 result += x4;
 result += x5;
 result += x6;
 result += x7;
 result += x8;
 result += x9;
 x0 = 10[(volatile int *)x];
 x1 = 11[(volatile int *)x];
int sum(int *x)
{
 int result = 0;
 int *y = x + 1000;
 int x0, x1, x2, x3, x4,
 x5, x6, x7, x8, x9;
 while (x != y) {
 x0 = (volatile int *)x;
 x1 = (volatile int *)x;
 x2 = (volatile int *)x;
 x3 = (volatile int *)x;
 x4 = (volatile int *)x;
 x5 = (volatile int *)x;
 x6 = (volatile int *)x;
 x7 = (volatile int *)x;
 x8 = (volatile int *)x;
 x9 = (volatile int *)x;
 result += x0;
 result += x1;
 result += x2;
 result += x3;
 result += x4;
 result += x5;
 result += x6;
 result += x7;
 result += x8;
 result += x9;
 x += 20;
 }
 x0 = 10[(volatile int *)x];
 x1 = 11[(volatile int *)x];
 x2 = 12[(volatile int *)x];
 x3 = 13[(volatile int *)x];
 x4 = 14[(volatile int *)x];
 x5 = 15[(volatile int *)x];
 x6 = 16[(volatile int *)x];
 x7 = 17[(volatile int *)x];
 x8 = 18[(volatile int *)x];
 x9 = 19[(volatile int *)x];
 result += x0;
 result += x1;
 result += x2;
 result += x3;
 result += x4;
 result += x5;
x7 = 7[(volatile int *)x];
x8 = 8[(volatile int *)x];
x9 = 9[(volatile int *)x];
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
result += x6;
result += x7;
result += x8;
result += x9;
x0 = 10[(volatile int *)x];
x1 = 11[(volatile int *)x];
x2 = 12[(volatile int *)x];
x3 = 13[(volatile int *)x];
x4 = 14[(volatile int *)x];
x5 = 15[(volatile int *)x];
x6 = 16[(volatile int *)x];
x7 = 17[(volatile int *)x];
x8 = 18[(volatile int *)x];
x9 = 19[(volatile int *)x];
x += 20;
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
x7 = 7[(volatile int *)x];
x8 = 8[(volatile int *)x];
x9 = 9[(volatile int *)x];
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
result += x6;
result += x7;
result += x8;
result += x9;
x0 = 10[(volatile int *)x];
x1 = 11[(volatile int *)x];
x2 = 12[(volatile int *)x];
x3 = 13[(volatile int *)x];
x4 = 14[(volatile int *)x];
x5 = 15[(volatile int *)x];
x6 = 16[(volatile int *)x];
x7 = 17[(volatile int *)x];
x8 = 18[(volatile int *)x];
x9 = 19[(volatile int *)x];
x += 20;
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
result += x6;
result += x7;
result += x8;
result += x9;
}
return result;
}
void example()
{
 volatile int *x = &x;
 int result = 0;

 // Initializing variables
 (volatile int *)x = 0;
 x = 1;
 x += 2;
 x += 3;
 x += 4;
 x += 5;
 x += 6;
 x += 7;
 x += 8;
 x += 9;
 x += 10;
 x += 11;
 x += 12;
 x += 13;
 x += 14;
 x += 15;
 x += 16;
 x += 17;
 x += 18;
 x += 19;
 x += 20;

 // Adding values to result
 result += x0;
 result += x1;
 result += x2;
 result += x3;
 result += x4;
 result += x5;
 result += x6;
 result += x7;
 result += x8;
 result += x9;

 // Returning result
 return result;
}

x2 = 12[(volatile int *)x];
x3 = 13[(volatile int *)x];
x4 = 14[(volatile int *)x];
x5 = 15[(volatile int *)x];
x6 = 16[(volatile int *)x];
x7 = 17[(volatile int *)x];
x8 = 18[(volatile int *)x];
x9 = 19[(volatile int *)x];
x += 20;
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
result += x6;
result += x7;
result += x8;
result += x9;
x7 = 7[(volatile int *)x];
x8 = 8[(volatile int *)x];
x9 = 9[(volatile int *)x];
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
result += x6;
result += x7;
result += x8;
result += x9;
x0 = 10[(volatile int *)x];
x1 = 11[(volatile int *)x];
x2 = 12[(volatile int *)x];
x3 = 13[(volatile int *)x];
x4 = 14[(volatile int *)x];
x5 = 15[(volatile int *)x];
x6 = 16[(volatile int *)x];
x7 = 17[(volatile int *)x];
x8 = 18[(volatile int *)x];
x9 = 19[(volatile int *)x];
x += 20;
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
result += x6;
result += x7;
result += x8;
result += x9;
}
return result;
}
x2 = 12[(volatile int *)x];
x3 = 13[(volatile int *)x];
x4 = 14[(volatile int *)x];
x5 = 15[(volatile int *)x];
x6 = 16[(volatile int *)x];
x7 = 17[(volatile int *)x];
x8 = 18[(volatile int *)x];
x9 = 19[(volatile int *)x];
x += 20;
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
result += x6;
result += x7;
result += x8;
result += x9;
}
return result;
x2 = 12[(volatile int *)x];
x3 = 13[(volatile int *)x];
x4 = 14[(volatile int *)x];
x5 = 15[(volatile int *)x];
x6 = 16[(volatile int *)x];
x7 = 17[(volatile int *)x];
x8 = 18[(volatile int *)x];
x9 = 19[(volatile int *)x];
x += 20;
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
result += x6;
result += x7;
result += x8;
result += x9;
}
return result;

2526 cycles. Even better in asm.
x2 = 12[(volatile int *)x];
x3 = 13[(volatile int *)x];
x4 = 14[(volatile int *)x];
x5 = 15[(volatile int *)x];
x6 = 16[(volatile int *)x];
x7 = 17[(volatile int *)x];
x8 = 18[(volatile int *)x];
x9 = 19[(volatile int *)x];
x += 20;
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
result += x6;
result += x7;
result += x8;
result += x9;
}
return result;

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for even performance sensitive code, optimizing compilers exceeded the performance of human experts.”
x2 = 12[(volatile int *)x];
x3 = 13[(volatile int *)x];
x4 = 14[(volatile int *)x];
x5 = 15[(volatile int *)x];
x6 = 16[(volatile int *)x];
x7 = 17[(volatile int *)x];
x8 = 18[(volatile int *)x];
x9 = 19[(volatile int *)x];
x += 20;
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
result += x6;
result += x7;
result += x8;
result += x9;
}

return result;

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for even performance sensitive code, optimizing compilers exceeded the performance of human experts.” — [citation needed]
result += x6;
result += x7;
result += x8;
result += x9;
}
return result;

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for even performance sensitive code, optimizing compilers exceeded the performance of human experts.”
— [citation needed]
result += x0;
result += x1;
result += x2;
result += x3;
result += x4;
result += x5;
result += x6;
result += x7;
result += x8;
result += x9;
}
return result;

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for even performance sensitive code, optimizing compilers exceeded the performance of human experts.”
— [citation needed]
2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for even performance sensitive code, optimizing compilers exceeded the performance of human experts.”

— [citation needed]
result += x6;
result += x7;
result += x8;
result += x9;
}
return result;
}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for even performance sensitive code, optimizing compilers exceeded the performance of human experts.” — [citation needed]

A real example
Salsa20 reference software: 30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require
21 \cdot 16 1-cycle ADDs,
20 \cdot 16 1-cycle XORs,
so at least 10.25 cycles/byte.

ARMv7-M instruction set includes free rotation as part of XOR instruction.
(Compiler knows this.)
A real example

Salsa20 reference software:
30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require
21 \cdot 16 1-cycle ADDs,
20 \cdot 16 1-cycle XORs,
so at least 10.25 cycles/byte.

ARMv7-M instruction set includes free rotation
as part of XOR instruction.
(Compiler knows this.)

Detailed benchmarks show several cycles/byte spent on load_littleendian and store_littleendian.
Can replace with LDR and STR.
(Compiler doesn't see this.)
Then observe 23 cycles/byte:
18 cycles/byte for rounds,
plus 5 cycles/byte overhead.
Still far above 10.25 cycles/byte.

Wikipedia: “By the late 1990s for even performance sensitive code, optimizing compilers exceeded the performance of human experts.”
[Citation needed]
result += x6;
result += x7;
result += x8;
result += x9;
}
return result;

25

A real example
Salsa20 reference software:
30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require
21 · 16 1-cycle ADDs,
20 · 16 1-cycle XORs,
so at least 10.25 cycles/byte.

ARMv7-M instruction set
includes free rotation
as part of XOR instruction.
(Compiler knows this.)

Detailed benchmarks show
several cycles/byte spent on
load_littleendian and
store_littleendian.
Can replace with LDR and STR.
(Compiler doesn't see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds,
plus 5 cycles/byte overhead.
Still far above 10.25 cycles/byte.
A real example
Salsa20 reference software:
30.25 cycles/byte on this CPU.
Lower bound for arithmetic:
64 bytes require
21 \cdot 16 1-cycle ADDs,
20 \cdot 16 1-cycle XORs,
so at least 10.25 cycles/byte.
ARMv7-M instruction set
includes free rotation
as part of XOR instruction.
(Compiler knows this.)

Detailed benchmarks show
several cycles/byte spent on
load_littleendian and
store_littleendian.
Can replace with LDR and STR.
(Compiler doesn't see this.)
Then observe 23 cycles/byte:
18 cycles/byte for rounds,
plus 5 cycles/byte overhead.
Still far above 10.25 cycles/byte.
A real example

Salsa20 reference software:
30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require
21 \cdot 16 1-cycle ADDs,
20 \cdot 16 1-cycle XORs,
so at least 10.25 cycles/byte.

ARMv7-M instruction set
includes free rotation
as part of XOR instruction.
(Compiler knows this.)

Detailed benchmarks show
several cycles/byte spent on
load_littleendian and
store_littleendian.

Can replace with LDR and STR.
(Compiler doesn't see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds,
plus 5 cycles/byte overhead.
Still far above 10.25 cycles/byte.
A real example
Salsa20 reference software:
30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require
21 · 16 1-cycle ADDs,
20 · 16 1-cycle XORs,
so at least 10.25 cycles/byte.

ARMv7-M instruction set
includes free rotation
as part of XOR instruction.
(Compiler knows this.)

Detailed benchmarks show several cycles/byte spent on
load_littleendian and store_littleendian.

Can replace with LDR and STR.
(Compiler doesn’t see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds,
plus 5 cycles/byte overhead.
Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by choosing “spills” carefully.
A real example

Salsa20 reference software:
30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require
21 · 16 1-cycle ADDs,
20 · 16 1-cycle XORs,
so at least 10 : 25 cycles/byte.

ARMv7-M instruction set
includes free rotation
as part of XOR instruction.
(Compiler knows this.)

Detailed benchmarks show
several cycles/byte spent on
load_littleendian and
store_littleendian.

Can replace with LDR and STR.
(Compiler doesn’t see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds,
plus 5 cycles/byte overhead.
Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by
choosing “spills” carefully.

Which of the 16 Salsa20 words
should be in registers?
Don’t trust compiler to
optimize register allocation.

Make loads consecutive?
Don’t trust compiler to
optimize instruction scheduling.

Spill to FPU instead of stack?
Don’t trust compiler to
optimize instruction selection.

On bigger CPUs,
selecting vector instructions
is critical for performance.
Salsa20 reference software: 30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require 21×16 1-cycle ADDs, 20×16 1-cycle XORs, so at least 10.25 cycles/byte.

ARMv7-M instruction set includes free rotation as part of XOR instruction. (Compiler knows this.)

Detailed benchmarks show several cycles/byte spent on load_littleendian and store_littleendian. Can replace with LDR and STR. (Compiler doesn’t see this.)

Gap is mostly loads, stores. Minimize load/store cost by choosing “spills” carefully.

Which of the 16 Salsa20 words should be in registers? Don’t trust compiler to optimize register allocation.
Make loads consecutive? Don’t trust compiler to optimize instruction scheduling.
Spill to FPU instead? Don’t trust compiler to optimize instruction selection.
On bigger CPUs, selecting vector instructions is critical for performance.
A real example
Salsa20 reference software:
30.25 cycles/byte on this CPU.
Lower bound for arithmetic:
64 bytes require
21 \cdot 16 1-cycle ADDs,
20 \cdot 16 1-cycle XORs,
so at least 10
: 25 cycles/byte.
ARMv7-M instruction set
includes free rotation
as part of XOR instruction.
(Compiler knows this.)

Detailed benchmarks show
several cycles/byte spent on
load_littleendian and
store_littleendian.
Can replace with LDR and STR.
(Compiler doesn’t see this.)
Then observe 23 cycles/byte:
18 cycles/byte for rounds,
plus 5 cycles/byte overhead.
Still far above 10.25 cycles/byte.
Gap is mostly loads, stores.
Minimize load/store cost by
choosing “spills” carefully.

Which of the 16 Salsa20 words
should be in registers?
Don’t trust compiler to
optimize register allocation.
Make loads consecutive?
Don’t trust compiler to
optimize instruction scheduling.
Spill to FPU instead of stack?
Don’t trust compiler to
optimize instruction selection.
On bigger CPUs,
selecting vector instructions
is critical for performance.
Detailed benchmarks show several cycles/byte spent on load_littleendian and store_littleendian.

Can replace with LDR and STR. (Compiler doesn’t see this.)

Gap is mostly loads, stores. Minimize load/store cost by choosing “spills” carefully.

Which of the 16 Salsa20 words should be in registers? Don’t trust compiler to optimize register allocation.

Make loads consecutive? Don’t trust compiler to optimize instruction scheduling.

Spill to FPU instead of stack? Don’t trust compiler to optimize instruction selection.

On bigger CPUs, selecting vector instructions is critical for performance.
Detailed benchmarks show several cycles/byte spent on load_littleendian and store_littleendian. Can replace with LDR and STR. (Compiler doesn’t see this.)

Which of the 16 Salsa20 words should be in registers? Don’t trust compiler to optimize register allocation.

Make loads consecutive? Don’t trust compiler to optimize instruction scheduling.

Spill to FPU instead of stack? Don’t trust compiler to optimize instruction selection.

On bigger CPUs, selecting vector instructions is critical for performance.

The big picture CPUs are evolving farther and farther away from naive models of CPUs.
Detailed benchmarks show several cycles/byte spent on load_littleendian and store_littleendian. Can replace with LDR and STR. (Compiler doesn't see this.)

Which of the 16 Salsa20 words should be in registers? Don’t trust compiler to optimize register allocation.

Make loads consecutive? Don’t trust compiler to optimize instruction scheduling.

Spill to FPU instead of stack? Don’t trust compiler to optimize instruction selection.

On bigger CPUs, selecting vector instructions is critical for performance.

The big picture

CPUs are evolving farther and farther away from naive models.
Detailed benchmarks show several cycles/byte spent on load_littleendian and store_littleendian. Can replace with LDR and STR.

The big picture
CPUs are evolving farther and farther away from naive models of CPUs.

Which of the 16 Salsa20 words should be in registers? Don’t trust compiler to optimize register allocation.

Make loads consecutive? Don’t trust compiler to optimize instruction scheduling.

Spill to FPU instead of stack? Don’t trust compiler to optimize instruction selection.

On bigger CPUs, selecting vector instructions is critical for performance.
Which of the 16 Salsa20 words should be in registers? Don’t trust compiler to optimize register allocation.

Make loads consecutive? Don’t trust compiler to optimize instruction scheduling.

Spill to FPU instead of stack? Don’t trust compiler to optimize instruction selection.

On bigger CPUs, selecting vector instructions is critical for performance.

The big picture
CPUs are evolving farther and farther away from naive models of CPUs.
Which of the 16 Salsa20 words should be in registers? Don’t trust compiler to optimize register allocation.

Make loads consecutive? Don’t trust compiler to optimize instruction scheduling.

Spill to FPU instead of stack? Don’t trust compiler to optimize instruction selection.

On bigger CPUs, selecting vector instructions is critical for performance.

The big picture

CPUs are evolving farther and farther away from naive models of CPUs.

Minor optimization challenges:
- Pipelining.
- Superscalar processing.

Major optimization challenges:
- Vectorization.
- Many threads; many cores.
- The memory hierarchy; the ring; the mesh.
- Larger-scale parallelism.
- Larger-scale networking.
Which of the 16 Salsa20 words should be in registers? Don't trust compiler to optimize register allocation.

Make loads consecutive? Don't trust compiler to optimize instruction scheduling.

Spill to FPU instead of stack? Don't trust compiler to optimize instruction selection.

On bigger CPUs, selecting vector instructions is critical for performance.

The big picture

CPUs are evolving farther and farther away from naive models of CPUs.

Minor optimization challenges:
• Pipelining.
• Superscalar processing.

Major optimization challenges:
• Vectorization.
• Many threads; many cores.
• The memory hierarchy; the ring; the mesh.
• Larger-scale parallelism.
• Larger-scale networking.

CPU design in a nutshell

Gates \land: $a; b \rightarrow 1 - ab$ computing product $h_0 + 2h_1 + 4h_2 + 8h_3$ of integers $f_0 + 2f_1; g_0 + 2g_1$.
Which of the 16 Salsa20 words should be in registers?

Don't trust compiler to optimize register allocation.

Make loads consecutive?

Don't trust compiler to optimize instruction scheduling.

Spill to FPU instead of stack?

Don't trust compiler to optimize instruction selection.

On bigger CPUs, selecting vector instructions is critical for performance.

The big picture

CPUs are evolving farther and farther away from naive models of CPUs.

Minor optimization challenges:

- Pipelining.
- Superscalar processing.

Major optimization challenges:

- Vectorization.
- Many threads; many cores.
- The memory hierarchy; the ring; the mesh.
- Larger-scale parallelism.
- Larger-scale networking.

CPU design in a nutshell

Gates \(\land : a, b \mapsto 1 - ab \) computing product \(h_0 + 2h_1 + 4h_2 + 8h_3 \) of integers \(f_0 + 2f_1 + g_0 + 2g_1 \).
Which of the 16 Salsa20 words should be in registers? Don't trust compiler to optimize register allocation. Make loads consecutive? Don't trust compiler to optimize instruction scheduling. Spill to FPU instead of stack? Don't trust compiler to optimize instruction selection. On bigger CPUs, selecting vector instructions is critical for performance.

The big picture

CPUs are evolving farther and farther away from naive models of CPUs.

Minor optimization challenges:
 • Pipelining.
 • Superscalar processing.

Major optimization challenges:
 • Vectorization.
 • Many threads; many cores.
 • The memory hierarchy; the ring; the mesh.
 • Larger-scale parallelism.
 • Larger-scale networking.

CPU design in a nutshell

Gates $\land : a, b \mapsto 1 - ab$ computing product $h_0 + 2h_1 + 4h_2 + 8h_3$ of integers $f_0 + 2f_1, g_0 + 2g_1$.
The big picture

CPUs are evolving farther and farther away from naive models of CPUs.

Minor optimization challenges:
• Pipelining.
• Superscalar processing.

Major optimization challenges:
• Vectorization.
• Many threads; many cores.
• The memory hierarchy; the ring; the mesh.
• Larger-scale parallelism.
• Larger-scale networking.

CPU design in a nutshell

Gates $\land: a, b \mapsto 1 - ab$ computing product $h_0 + 2h_1 + 4h_2 + 8h_3$ of integers $f_0 + 2f_1, g_0 + 2g_1$.
The big picture
CPUs are evolving farther and farther away from naive models of CPUs.

Minor optimization challenges:
• Pipelining.
• Superscalar processing.

Major optimization challenges:
• Vectorization.
• Many threads; many cores.
• The memory hierarchy; the ring; the mesh.
• Larger-scale parallelism.
• Larger-scale networking.

Electricity takes time to percolate through wires and gates.
If \(f_0, f_1, g_0, g_1 \) are stable then \(h_0, h_1, h_2, h_3 \) are stable a few moments later.

Gates \(\land : a, b \mapsto 1 - ab \) computing product \(h_0 + 2h_1 + 4h_2 + 8h_3 \) of integers \(f_0 + 2f_1, g_0 + 2g_1 \).
The big picture
CPUs are evolving farther and farther away from naive models of CPUs.

Minor optimization challenges:
• Pipelining.
• Superscalar processing.

Major optimization challenges:
• Vectorization.
• Many threads; many cores.
• The memory hierarchy; the ring; the mesh.
• Larger-scale parallelism.
• Larger-scale networking.

Electricity takes time to percolate through wires and gates.
If f_0, f_1, g_0, g_1 are stable then h_0, h_1, h_2, h_3 are stable a few moments later.

CPU design in a nutshell

Gates $\overline{a, b} \mapsto 1 - ab$ computing product $h_0 + 2h_1 + 4h_2 + 8h_3$ of integers $f_0 + 2f_1, g_0 + 2g_1$.
The big picture
CPUs are evolving farther and farther away from naive models of CPUs.

Minor optimization challenges:
• Pipelining.
• Superscalar processing.

Major optimization challenges:
• Vectorization.
• Many threads; many cores.
• The memory hierarchy; the ring; the mesh.
• Larger-scale parallelism.
• Larger-scale networking.

Electricity takes time to percolate through wires and gates:
If \(f_0, f_1, g_0, g_1 \) are stable then \(h_0, h_1, h_2, h_3 \) are stable a few moments later.

Gates \(\wedge \): \(a, b \mapsto 1 - ab \) computing product \(h_0 + 2h_1 + 4h_2 + 8h_3 \) of integers \(f_0 + 2f_1, g_0 + 2g_1 \).
Electricity takes time to percolate through wires and gates. If f_0, f_1, g_0, g_1 are stable then h_0, h_1, h_2, h_3 are stable a few moments later.

Gates $\pi : a, b \mapsto 1 - ab$ computing product $h_0 + 2h_1 + 4h_2 + 8h_3$ of integers $f_0 + 2f_1, g_0 + 2g_1$.
CPU design in a nutshell

Gates \land : $a, b \mapsto 1 - ab$ computing product $h_0 + 2h_1 + 4h_2 + 8h_3$ of integers $f_0 + 2f_1, g_0 + 2g_1$.

Electricity takes time to percolate through wires and gates. If f_0, f_1, g_0, g_1 are stable then h_0, h_1, h_2, h_3 are stable a few moments later.

Build circuit with more gates to multiply (e.g.) 32-bit integers:

(Details omitted.)
CPU design in a nutshell

Electricity takes time to percolate through wires and gates. If \(f_0, f_1, g_0, g_1 \) are stable then \(h_0, h_1, h_2, h_3 \) are stable a few moments later.

Build circuit with more gates to multiply (e.g.) 32-bit integers:

\[
\begin{array}{c}
\text{Details omitted.}
\end{array}
\]
Electricity takes time to percolate through wires and gates. If f_0, f_1, g_0, g_1 are stable then h_0, h_1, h_2, h_3 are stable a few moments later.

Build circuit with more gates to multiply (e.g.) 32-bit integers:

$$f_0 + 2f_1; g_0 + 2g_1.$$

(Details omitted.)
Electricity takes time to percolate through wires and gates. If f_0, f_1, g_0, g_1 are stable then h_0, h_1, h_2, h_3 are stable a few moments later.

Build circuit with more gates to multiply (e.g.) 32-bit integers:

(Building block diagram)

(Details omitted.)
Electricity takes time to percolate through wires and gates.
If \(f_0, f_1, g_0, g_1 \) are stable then \(h_0, h_1, h_2, h_3 \) are stable a few moments later.

Build circuit with more gates to multiply (e.g.) 32-bit integers:

(Details omitted.)

Build circuit to compute 32-bit integer \(r_i \) given 4-bit integer \(i \) and 32-bit integers \(r_0, r_1, \ldots, r_{15} \):

\[
\text{register read}
\]
Electricity takes time to percolate through wires and gates. If \(f_0, f_1, g_0, g_1 \) are stable then \(h_0, h_1, h_2, h_3 \) are stable a few moments later.

Build circuit with more gates to multiply (e.g.) 32-bit integers:

\[
\begin{array}{cccc}
\text{read} & \text{register} & \text{write} & \text{read}
\end{array}
\]

Build circuit to compute 32-bit integer \(r_i \) given 4-bit integer \(i \) and 32-bit integers \(r_0, r_1, \ldots, r_{15} \):

\[
\text{register write}: \quad r_0, \ldots, r_{15}, s, i \mapsto r'_0, \ldots, r'_{15}
\]

where \(r'_j = r_j \) except \(r'_i = s \).
Electricity takes time to percolate through wires and gates. If f_0, f_1, g_0, g_1 are stable then h_0, h_1, h_2, h_3 are stable a few moments later.

Build circuit with more gates to multiply (e.g.) 32-bit integers:

Build circuit for “register write”: $r_0, \ldots, r_{15}, s, i \mapsto r_0', \ldots, r_{15}'$ where $r_j' = r_j$ except $r_i' = s$.

Build circuit for addition. Etc.
Electricity takes time to percolate through wires and gates.

If f_0, f_1, g_0, g_1 are stable then h_0, h_1, h_2, h_3 are stable moments later.

Build circuit with more gates to multiply (e.g.) 32-bit integers:

Build circuit to compute 32-bit integer r_i given 4-bit integer i and 32-bit integers r_0, r_1, \ldots, r_{15}:

$$
\text{register read} \quad \text{register read} \\
\text{register write}
$$

Build circuit for “register write”:

$r_0, \ldots, r_{15}, s, i \mapsto r'_0, \ldots, r'_{15}$

where $r'_i = r_j$ except $r'_i = s$.

Build circuit for addition. Etc.
Electricity takes time to percolate through wires and gates.

If \(f_0, f_1, g_0, g_1 \) are stable then \(h_0, h_1, \ldots, h_3 \) are stable a few moments later.

Build circuit with more gates to multiply (e.g.) 32-bit integers:

```
\[ \text{register read} \]
```

Build circuit to compute 32-bit integer \(r_i \) given 4-bit integer \(i \) and 32-bit integers \(r_0, r_1, \ldots, r_{15} \):

```
\[ \text{register read} \]
```

Build circuit for “register write”:

\[r_0, \ldots, r_{15}, i, j, k \mapsto r'_0, \ldots, r'_{15} \]

where \(r'_j = r_j \) except \(r'_i = s \).

Build circuit for addition. Etc.
Electricity takes time to percolate through wires and gates. If f_0, f_1, g_0, g_1 are stable then h_0, h_1, \ldots are stable a few moments later.

Build circuit with more gates to multiply (e.g.) 32-bit integers:

Build circuit to compute 32-bit integer r_i given 4-bit integer i and 32-bit integers r_0, r_1, \ldots, r_{15}:

Build circuit for “register write”:

$r_0, \ldots, r_{15}, s, i \mapsto r'_0, \ldots, r'_{15}$ where $r'_{\ell} = r_{\ell}$ except $r'_i = s$.

Build circuit for addition. Etc.
Build circuit to compute
32-bit integer r_i
given 4-bit integer i
and 32-bit integers r_0, r_1, \ldots, r_{15}:

register read

Build circuit for "register write":
$r_0, \ldots, r_{15}, i, j, k \mapsto r_0', \ldots, r_{15}'$
where $r'_\ell = r_\ell$ except $r'_i = r_j r_k$:

register read
register read

r_0', \ldots, r_{15}'

Build circuit for addition. Etc.

register write
Build circuit to compute 32-bit integer r_i given 4-bit integer i and 32-bit integers r_0, r_1, \ldots, r_{15}:

\[
\text{register read} \quad \text{register read} \quad \text{register write}
\]

Circuit for “register write”:

\[
(0, \ldots, 15, s, i) \mapsto (0, \ldots, 15)
\]

\[
\text{register write}
\]

Circuit for addition. Etc.

Add more flexibility.

More arithmetic: replace (i, j, k) with

\[
(\times, i, j, k)
\]

and

\[
(+, i, j, k)
\]

and more options.

\[
(0, \ldots, 15, i, j, k) \mapsto (0, \ldots, 15)
\]

where $r'_{\ell} = r_\ell$ except $r'_i = r_j r_k$.
Build circuit to compute 32-bit integer \(r_i \) given 4-bit integer \(i \) and 32-bit integers \(r_0, r_1, \ldots, r_{15} \):

\[
\begin{array}{c}
\text{register read} \\
\hline
\text{register read} \\
\times \\
\text{register write}
\end{array}
\]

where \(r'_\ell = r_\ell \) except \(r'_i = r_j r_k \):

\[
\begin{array}{c}
r_0, \ldots, r_{15}, i, j, k \mapsto r'_0, \ldots, r'_{15}
\end{array}
\]

Add more flexibility.

More arithmetic:

replace \((i, j, k)\) with \((\times, i, j, k)\) and \((+, i, j, k)\) and more options.
Build circuit to compute 32-bit integer r_i given 4-bit integer i and 32-bit integers r_0, r_1, \ldots, r_{15}:

$$r_0, \ldots, r_{15}, i, j, k \mapsto r'_0, \ldots, r'_{15}$$

where $r'_\ell = r_\ell$ except $r'_i = r_j r_k$:

- register read
- register read
- \times
- register write

Add more flexibility.

More arithmetic:
replace (i, j, k) with
(“×”, i, j, k) and
(“+”, i, j, k) and more options.
$r_0, \ldots, r_{15}, i, j, k \mapsto r'_0, \ldots, r'_{15}$

where $r'_\ell = r_\ell$ except $r'_i = r_j r_k$:

Add more flexibility.

More arithmetic:
replace (i, j, k) with
("×", i, j, k) and
("+", i, j, k) and more options.
$r_0, \ldots, r_{15}, i, j, k \mapsto r'_0, \ldots, r'_{15}$
where $r'_\ell = r_\ell$ except $r'_i = r_j r_k$:

```
<table>
<thead>
<tr>
<th>Register Read</th>
<th>Register Read</th>
</tr>
</thead>
<tbody>
<tr>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Register Write</td>
<td></td>
</tr>
</tbody>
</table>
```

Add more flexibility.
More arithmetic:
replace (i, j, k) with
(“\times”, i, j, k) and
(“$+$”, i, j, k) and more options.

“Instruction fetch”:
$p \mapsto o_p, i_p, j_p, k_p, p'$.
Add more flexibility.

More arithmetic:
replace \((i, j, k)\) with
\((\times, i, j, k)\) and
\((+ , i, j, k)\) and more options.

“Instruction fetch”:
\(p \mapsto o_p, i_p, j_p, k_p, p'\).

“Instruction decode”:
decompression of compressed format for \(o_p, i_p, j_p, k_p, p'\).
Add more flexibility.

More arithmetic:
replace \((i, j, k)\) with
\((\times, i, j, k)\) and
\((+, i, j, k)\) and more options.

“Instruction fetch”:
\(p \mapsto o_p, i_p, j_p, k_p, p'\).

“Instruction decode”:
decompression of compressed format for \(o_p, i_p, j_p, k_p, p'\).

More (but slower) storage:
“load” from and “store” to larger “RAM” arrays.
Add more flexibility.

More arithmetic:
replace \((i, j, k)\) with
\((\times, i, j, k)\) and
\((+, i, j, k)\) and more options.

“Instruction fetch”:
\(p \mapsto o_p, i_p, j_p, k_p, p'\).

“Instruction decode”:
decompression of compressed format for \(o_p, i_p, j_p, k_p, p'\).

More (but slower) storage:
“load” from and “store” to larger “RAM” arrays.

Build “flip-flops” storing \((p; r_0, \ldots, r_{15})\).

Hook \((p; r_0, \ldots, r_{15})\) flip-flops into circuit inputs.

Hook outputs \((p', r'_0, \ldots, r'_{15})\) into the same flip-flops.

At each “clock tick”, flip-flops are overwritten with the outputs.

Clock needs to be slow enough for electricity to percolate all the way through the circuit, from flip-flops to flip-flops.
Add more flexibility.

More arithmetic:
replace \((i, j, k)\) with
\((\times, i, j, k)\) and
\((+, i, j, k)\) and more options.

“Instruction fetch”:
\[p \mapsto o_p, i_p, j_p, k_p, p' \]

“Instruction decode”:
decompression of compressed format for \(o_p, i_p, j_p, k_p, p'\).

More (but slower) storage:
“load” from and “store” to larger “RAM” arrays.

Build “flip-flops” storing \((p, r_0, \ldots, r_{15})\).

Hook \((p, r_0, \ldots, r_{15})\) flip-flops into circuit inputs.

Hook outputs \((p', r'_0, \ldots, r'_{15})\) into the same flip-flops.

At each “clock tick”, flip-flops are overwritten with the outputs.

Clock needs to be slow enough for electricity to percolate all the way through the circuit, from flip-flops to flip-flops.
Add more flexibility.

More arithmetic:
replace \((i, j, k)\) with
\((\times, i, j, k)\) and
\((+, i, j, k)\) and more options.

“Instruction fetch”:
\(p \mapsto o_p, i_p, j_p, k_p, p'\).

“Instruction decode”:
decompression of compressed format for \(o_p, i_p, j_p, k_p, p'\).

More (but slower) storage:
“load” from and “store” to larger “RAM” arrays.

Build “flip-flops”
storing \((p, r_0, \ldots, r_{15})\).

Hook \((p, r_0, \ldots, r_{15})\)
flip-flops into circuit inputs.

Hook outputs \((p', r'_0, \ldots, r'_{15})\)
into the same flip-flops.

At each “clock tick”,
flip-flops are overwritten
with the outputs.

Clock needs to be slow enough
for electricity to percolate
all the way through the circuit,
from flip-flops to flip-flops.
Add more flexibility.

More arithmetic:
replace \((i, j, k)\) with
\((\times, i, j, k)\) and
\((+, i, j, k)\) and more options.

“Instruction fetch”:
\[p \mapsto o_p, i_p, j_p, k_p, p'. \]

“Instruction decode”:
decompression of compressed format for \(o_p, i_p, j_p, k_p, p'\).

More (but slower) storage:
“load” from and “store” to larger “RAM” arrays.

Build “flip-flops”
storing \((p, r_0, \ldots, r_{15})\).

Hook \((p, r_0, \ldots, r_{15})\)
flip-flops into circuit inputs.

Hook outputs \((p', r'_0, \ldots, r'_{15})\)
into the same flip-flops.

At each “clock tick”,
flip-flops are overwritten with the outputs.

Clock needs to be slow enough
for electricity to percolate all the way through the circuit,
from flip-flops to flip-flops.
More flexibility.

More arithmetic:
replace \((i, j, k)\) with
\((\times; i, j, k)\) and
\((+; i, j, k)\) and more options.

"Instruction fetch":

"Instruction decode":

Decompression of compressed format for
\(o, i, j, k\).

More (but slower) storage:
"load" from and "store" to
larger "RAM" arrays.

Build “flip-flops”
storing \((p, r_0, \ldots, r_{15})\).

Hook \((p, r_0, \ldots, r_{15})\)
flip-flops into circuit inputs.

Hook outputs \((p', r'_0, \ldots, r'_{15})\)
into the same flip-flops.

At each “clock tick”,
flip-flops are overwritten
with the outputs.

Clock needs to be slow enough
for electricity to percolate
all the way through the circuit,
from flip-flops to flip-flops.

Further flexibility is useful:
e.g., rotation instructions.
Add more flexibility.

More arithmetic:
replace \((i; j; k)\) with
\((\times; i; j; k)\) and
\((+; i; j; k)\) and more options.

"Instruction fetch":

\[p \mapsto o p; i p; j p; k p; p' \]

"Instruction decode":

decompression of compressed
format for
\(o p; i p; j p; k p; p'\).

More (but slower) storage:

"load" from and "store" to
larger "RAM" arrays.

Build “flip-flops”
storing \((p, r_0, \ldots, r_{15})\).

Hook \((p, r_0, \ldots, r_{15})\)
flip-flops into circuit inputs.

Hook outputs \((p', r'_0, \ldots, r'_{15})\)
into the same flip-flops.

At each “clock tick”,
flip-flops are overwritten
with the outputs.

Clock needs to be slow enough
for electricity to percolate
all the way through the circuit,
from flip-flops to flip-flops.

Further flexibility is useful:
e.g., rotation instructions.
Build “flip-flops” storing \((p, r_0, \ldots, r_{15})\).

Hook \((p, r_0, \ldots, r_{15})\) flip-flops into circuit inputs.

Hook outputs \((p', r'_0, \ldots, r'_{15})\) into the same flip-flops.

At each “clock tick”, flip-flops are overwritten with the outputs.

Clock needs to be slow enough for electricity to percolate all the way through the circuit, from flip-flops to flip-flops.

Now have semi-flexible CPU:

Further flexibility is useful: e.g., rotation instructions.
Build “flip-flops” storing \((p, r_0, \ldots, r_{15})\).

Hook \((p, r_0, \ldots, r_{15})\) flip-flops into circuit inputs.

Hook outputs \((p', r'_0, \ldots, r'_{15})\) into the same flip-flops.

At each “clock tick”, flip-flops are overwritten with the outputs.

Clock needs to be slow enough for electricity to percolate all the way through the circuit, from flip-flops to flip-flops.

Now have semi-flexible CPU:

Further flexibility is useful: e.g., rotation instructions.
Build "flip-flops"
(p, r_0, \ldots, r_{15}).

Hook (p, r_0, \ldots, r_{15})
into circuit inputs.

Outputs $(p', r'_0, \ldots, r'_{15})$
same flip-flops.

"clock tick",
inputs are overwritten
by outputs.

Clock needs to be slow enough
for electricity to percolate
alway through the circuit,
from flip-flops to flip-flops.

Now have semi-flexible CPU:

"Pipelining" allows faster clock:

Further flexibility is useful:
e.g., rotation instructions.
Now have semi-flexible CPU:

```
<table>
<thead>
<tr>
<th>flip-flops</th>
</tr>
</thead>
<tbody>
<tr>
<td>insn fetch</td>
</tr>
<tr>
<td>insn decode</td>
</tr>
<tr>
<td>register read</td>
</tr>
<tr>
<td>register write</td>
</tr>
</tbody>
</table>
```

“Pipelining” allows faster clock:

```
<table>
<thead>
<tr>
<th>flip-flops</th>
</tr>
</thead>
<tbody>
<tr>
<td>insn fetch</td>
</tr>
<tr>
<td>insn decode</td>
</tr>
<tr>
<td>register read</td>
</tr>
<tr>
<td>register write</td>
</tr>
</tbody>
</table>
```

Further flexibility is useful: e.g., rotation instructions.
Build "flip-flops" storing \((p; r_0; : : : ; r_{15})\).

Hook \((p; r_0; : : : ; r_{15})\) flip-flops into circuit inputs.

Hook outputs \((p'; r'_0; : : : ; r'_{15})\) into the same flip-flops.

At each "clock tick", flip-flops are overwritten with the outputs.

Clock needs to be slow enough for electricity to percolate all the way through the circuit, from flip-flops to flip-flops.

Now have semi-flexible CPU:

Further flexibility is useful: e.g., rotation instructions.

“Pipelining” allows faster clock:
Now have semi-flexible CPU:

Further flexibility is useful: e.g., rotation instructions.

“Pipelining” allows faster clock:
Now have semi-flexible CPU:

- flip-flops
- insn fetch
- insn decode
- register read
- register read
- register read
- ...?
- ...?
- ...?
- ...?
- ...?
- ...?
- ...?
- ...?
- register write

Further flexibility is useful:
e.g., rotation instructions.

“Pipelining” allows faster clock:

- flip-flops
- insn fetch
- insn decode
- ...?
- ...?
- ...?
- ...?
- ...?
- ...?
- ...?
- stage 4
- stage 5

Goal: Stage \(n \) handles instruction one tick after stage \(n - 1 \).

Instruction fetch reads next instruction, feeds \(p' \) to instruction decode.

After next clock tick, instruction decode uncompresses instruction while instruction fetch reads another instruction.

Some extra flip-flop area.

Also extra area to preserve instruction semantics:
e.g., stall on read-after-write.
Now have semi-flexible CPU:

- flip-flops
- insn fetch
- insn decode
- register read
- register read

Further flexibility is useful:
e.g., rotation instructions.

“Pipelining” allows faster clock:

- flip-flops
- insn fetch
- insn decode
- register read
- register read
- register read

- stage 1
- stage 2
- stage 3
- stage 4
- stage 5

Goal: Stage n handles instruction one tick after stage $n-1$.

Instruction fetch reads next instruction, feeds p' back, sends instruction.

After next clock tick, instruction decode uncompresses this instruction while instruction fetch reads another instruction.

Some extra flip-flop area.

Also extra area to preserve instruction semantics:
e.g., stall on read-after-write.
“Pipelining” allows faster clock:

Goal: Stage n handles instruction one tick after stage $n-1$.

Instruction fetch reads next instruction, feeds p' back, sends instruction.

After next clock tick, instruction decode uncompresses this instruction, while instruction fetch reads another instruction.

Some extra flip-flop area.
Also extra area to preserve instruction semantics:
 e.g., stall on read-after-write.
“Pipelining” allows faster clock:

```
flip-flops
insn fetch
flip-flops
insn decode
flip-flops
register read
register read
flip-flops
flip-flops
register write
```

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Instruction fetch reads next instruction, feeds p' back, sends instruction.</td>
</tr>
<tr>
<td>2</td>
<td>After next clock tick, instruction decode uncompresses this instruction, while instruction fetch reads another instruction.</td>
</tr>
<tr>
<td>3</td>
<td>Some extra flip-flop area.</td>
</tr>
<tr>
<td>4</td>
<td>Also extra area to preserve instruction semantics: e.g., stall on read-after-write.</td>
</tr>
</tbody>
</table>

Goal: Stage n handles instruction one tick after stage $n-1$.
“Pipelining” allows faster clock:

- **Stage 1**: Instruction fetch
- **Stage 2**: Instruction decode
- **Stage 3**: Register read
- **Stage 4**: Register read
- **Stage 5**: Register write

Goal: Stage \(n \) handles instruction one tick after stage \(n - 1 \).

Instruction fetch reads next instruction, feeds \(p' \) back, sends instruction.

After next clock tick, instruction decode uncompresses this instruction, while instruction fetch reads another instruction.

Some extra flip-flop area.

Also extra area to preserve instruction semantics: e.g., stall on read-after-write.

“Superscalar” processing:
Goal: Stage n handles instruction one tick after stage $n-1$.

Instruction fetch reads next instruction, feeds p' back, sends instruction.

After next clock tick, instruction decode uncompresses this instruction, while instruction fetch reads another instruction.

Some extra flip-flop area. Also extra area to preserve instruction semantics: e.g., stall on read-after-write.
Goal: Stage n handles instruction one tick after stage $n - 1$.

Instruction fetch reads next instruction, feeds p' back, sends instruction.

After next clock tick, instruction decode uncompresses this instruction, while instruction fetch reads another instruction.

Some extra flip-flop area. Also extra area to preserve instruction semantics: e.g., stall on read-after-write.
Goal: Stage n handles instruction one tick after stage $n - 1$.

Instruction fetch reads next instruction, feeds p' back, sends instruction.

After next clock tick, instruction decode uncompresses this instruction, while instruction fetch reads another instruction.

Some extra flip-flop area. Also extra area to preserve instruction semantics: e.g., stall on read-after-write.

“Superscalar” processing:
Stage n handles instruction one tick after stage $n-1$.

Instruction fetch reads next instruction, feeds p back, sends instruction.

Next clock tick, instruction decode uncompresses this instruction, while instruction fetch reads another instruction.

Some extra flip-flop area.

Also extra area to preserve instruction semantics: e.g., stall on read-after-write.

“Superscalar” processing:

<table>
<thead>
<tr>
<th>flip-flops</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>insn fetch</td>
<td>insn fetch</td>
</tr>
<tr>
<td>flip-flops</td>
<td></td>
</tr>
<tr>
<td>insn decode</td>
<td>insn decode</td>
</tr>
<tr>
<td>flip-flops</td>
<td></td>
</tr>
<tr>
<td>register read</td>
<td>register read</td>
</tr>
<tr>
<td>register read</td>
<td>register read</td>
</tr>
<tr>
<td>flip-flops</td>
<td></td>
</tr>
<tr>
<td>register write</td>
<td>register write</td>
</tr>
</tbody>
</table>

“Vector” processing:

Expand each 32-bit integer into n-vector of 32-bit integers.

ARM “NEON” has $n = 4$;
Intel “AVX2” has $n = 8$;
Intel “AVX-512” has $n = 16$;
GPUs have larger n.
Goal: Stage \(n \) handles instruction one tick after stage \(n - 1 \).

Instruction fetch reads next instruction, feeds \(p' \) back, sends instruction. After next clock tick, instruction decode uncompresses this instruction, while instruction fetch reads another instruction.

Some extra flip-flop area.

Also extra area to preserve instruction semantics: e.g., stall on read-after-write.

“Superscalar” processing:

<table>
<thead>
<tr>
<th>flip-flops</th>
<th>insn fetch</th>
<th>insn fetch</th>
</tr>
</thead>
<tbody>
<tr>
<td>flip-flops</td>
<td>insn decode</td>
<td>insn decode</td>
</tr>
<tr>
<td>flip-flops</td>
<td>register read</td>
<td>register read</td>
</tr>
<tr>
<td>flip-flops</td>
<td></td>
<td></td>
</tr>
<tr>
<td>flip-flops</td>
<td>register write</td>
<td>register write</td>
</tr>
</tbody>
</table>

“Vector” processing:

Expand each 32-bit integer into \(n \)-vector of 32-bit integers.

ARM “NEON” has \(n = 4 \);
Intel “AVX2” has \(n = 8 \);
Intel “AVX-512” has \(n = 16 \);
GPUs have larger \(n \).
Goal: Stage n handles instruction one tick after stage $n - 1$.

Instruction fetch reads next instruction, feeds p' back, sends instruction. After next clock tick, instruction decode uncompresses this instruction, while instruction fetch reads another instruction.

Some extra flip-flop area.

Also extra area to preserve instruction semantics: e.g., stall on read-after-write.

"Superscalar" processing:

<table>
<thead>
<tr>
<th>flip-flops</th>
<th>insn fetch</th>
<th>insn fetch</th>
<th>flip-flops</th>
<th>insn decode</th>
<th>insn decode</th>
<th>flip-flops</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>register read</td>
<td>register read</td>
<td>register read</td>
<td>register read</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"Vector" processing:

Expand each 32-bit integer into n-vector of 32-bit integers.
- ARM “NEON” has $n = 4$;
- Intel “AVX2” has $n = 8$;
- Intel “AVX-512” has $n = 16$;
- GPUs have larger n.
“Superscalar” processing:

```
flip-flops
insn fetch   insn fetch
flip-flops
insn decode  insn decode
flip-flops
register read register read
flip-flops
register read
flip-flops
```

“Vector” processing:

Expand each 32-bit integer into \(n \)-vector of 32-bit integers. ARM “NEON” has \(n = 4 \); Intel “AVX2” has \(n = 8 \); Intel “AVX-512” has \(n = 16 \); GPUs have larger \(n \).
“Superscalar” processing:

<table>
<thead>
<tr>
<th>flip-flops</th>
<th>insn fetch</th>
<th>insn fetch</th>
<th>flip-flops</th>
<th>insn decode</th>
<th>insn decode</th>
<th>flip-flops</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>register read</td>
<td>register read</td>
<td>register read</td>
<td>register read</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“Vector” processing:

Expand each 32-bit integer into \(n \)-vector of 32-bit integers.

- ARM “NEON” has \(n = 4 \);
- Intel “AVX2” has \(n = 8 \);
- Intel “AVX-512” has \(n = 16 \);
- GPUs have larger \(n \).

\(n \times \) speedup if

- \(n \times \) arithmetic circuits,
- \(n \times \) read/write circuits.

Benefit: Amortizes insn circuits.
“Superscalar” processing:

<table>
<thead>
<tr>
<th>flip-flops</th>
<th>insn fetch</th>
<th>insn fetch</th>
<th>flip-flops</th>
<th>insn decode</th>
<th>insn decode</th>
<th>flip-flops</th>
</tr>
</thead>
<tbody>
<tr>
<td>register read</td>
<td>register read</td>
<td>register read</td>
<td>register read</td>
<td>register write</td>
<td>register write</td>
<td>flip-flops</td>
</tr>
</tbody>
</table>

“Vector” processing:

Expand each 32-bit integer into n-vector of 32-bit integers. ARM “NEON” has $n = 4$; Intel “AVX2” has $n = 8$; Intel “AVX-512” has $n = 16$; GPUs have larger n.

$n \times$ speedup if $n \times$ arithmetic circuits, $n \times$ read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level algorithms and data structures.
“Superscalar” processing:

- flip-flops
 - insn fetch
 - insn fetch
 - flip-flops
 - insn decode
 - insn decode
 - flip-flops
 - register read
 - register read
 - register read
 - flip-flops

“Vector” processing:

Expand each 32-bit integer into n-vector of 32-bit integers.
ARM “NEON” has $n = 4$;
Intel “AVX2” has $n = 8$;
Intel “AVX-512” has $n = 16$;
GPUs have larger n.

$n \times$ speedup if
$n \times$ arithmetic circuits,
$n \times$ read/write circuits.
Benefit: Amortizes insn circuits.

Huge effect on higher-level algorithms and data structures.

Network on chip: the mesh

How expensive is sorting?
Input: array of n numbers.
Each number in $\mathbb{1, 2, \ldots, n}$ in binary.
Output: array of n numbers, in increasing order, represented in binary; same multiset as input.
“Vector” processing:

Expand each 32-bit integer into an n-vector of 32-bit integers. ARM “NEON” has $n = 4$; Intel “AVX2” has $n = 8$; Intel “AVX-512” has $n = 16$; GPUs have larger n.

$n \times$ speedup if

$n \times$ arithmetic circuits,
$n \times$ read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level algorithms and data structures.

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in $\bar{1}, 2, \ldots, n$, represented in binary.

Output: array of n numbers, in increasing order, represented in binary; same multiset as input.
“Vector” processing:
Expand each 32-bit integer into \(n \)-vector of 32-bit integers.
ARM “NEON” has \(n = 4 \);
Intel “AVX2” has \(n = 8 \);
Intel “AVX-512” has \(n = 16 \);
GPUs have larger \(n \).

\(n \times \) speedup if
\(n \times \) arithmetic circuits,
\(n \times \) read/write circuits.
Benefit: Amortizes insn circuits.

Huge effect on higher-level algorithms and data structures.

Network on chip: the mesh
How expensive is sorting?
Input: array of \(n \) numbers. Each number in \(\{1, 2, \ldots, n\} \), represented in binary.
Output: array of \(n \) numbers in increasing order, represented in binary; same multiset as input.
“Vector” processing:
Expand each 32-bit integer into \(n\)-vector of 32-bit integers.
ARM “NEON” has \(n = 4\);
Intel “AVX2” has \(n = 8\);
Intel “AVX-512” has \(n = 16\);
GPUs have larger \(n\).

\(n\times\) speedup if
\(n\times\) arithmetic circuits,
\(n\times\) read/write circuits.
Benefit: Amortizes insn circuits.

Huge effect on higher-level algorithms and data structures.

Network on chip: the mesh
How expensive is sorting?
Input: array of \(n\) numbers.
Each number in \(1, 2, \ldots, n^2\), represented in binary.
Output: array of \(n\) numbers, in increasing order, represented in binary; same multiset as input.
“Vector” processing:
Expand each 32-bit integer into \(n \)-vector of 32-bit integers.
ARM “NEON” has \(n = 4 \); Intel “AVX2” has \(n = 8 \); Intel “AVX-512” has \(n = 16 \); GPUs have larger \(n \).

\(n \times \) speedup if
\(n \times \) arithmetic circuits,
\(n \times \) read/write circuits.
Benefit: Amortizes insn circuits.
Huge effect on higher-level algorithms and data structures.

Network on chip: the mesh
How expensive is sorting?
Input: array of \(n \) numbers.
Each number in \(\{1, 2, \ldots, n^2\} \), represented in binary.
Output: array of \(n \) numbers, in increasing order, represented in binary; same multiset as input.
Metric: seconds used by circuit of area \(n^{1+o(1)} \).
For simplicity assume \(n = 4^k \).
"Vector" processing:

Expand each 32-bit integer into n-vector of 32-bit integers.

ARM "NEON" has $n = 4$;

Intel "AVX2" has $n = 8$;

Intel "AVX-512" has $n = 16$;

GPUs have larger n.

Benefit: Amortizes insn circuits.
Huge effect on higher-level algorithms and data structures.

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number in $\{1, 2, \ldots, n^2\}$, represented in binary.

Output: array of n numbers, in increasing order, represented in binary; same multiset as input.

Metric: seconds used by circuit of area $n^{1+o(1)}$.

For simplicity assume $n = 4^k$.

Spread array across square mesh of n small cells, each of area $n^{o(1)}$, with near-neighbor wiring:
Network on chip: the mesh

How expensive is sorting?

Input: array of \(n \) numbers. Each number in \(\{1, 2, \ldots, n^2\} \), represented in binary.

Output: array of \(n \) numbers, in increasing order, represented in binary; same multiset as input.

Metric: seconds used by circuit of area \(n^{1+o(1)} \).

For simplicity assume \(n = 4^k \).
Network on chip: the mesh

How expensive is sorting?

Input: array of \(n \) numbers.
Each number in \(\{1, 2, \ldots, n^2\} \), represented in binary.

Output: array of \(n \) numbers, in increasing order, represented in binary; same multiset as input.

Metric: seconds used by circuit of area \(n^{1+o(1)} \).

For simplicity assume \(n = 4^k \).

Spread array across square mesh of \(n \) small cells, each of area \(n^{o(1)} \), with near-neighbor wiring:
Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers. Each number in $\{1, 2, \ldots, n^2\}$, represented in binary.

Output: array of n numbers, in increasing order, represented in binary; same multiset as input.

Metric: seconds used by circuit of area $n^{1+o(1)}$.

For simplicity assume $n = 4^k$.

Spread array across square mesh of n small cells, each of area $n^{o(1)}$, with near-neighbor wiring:
on chip: the mesh
How expensive is sorting?
Input: array of n numbers.
Each number in $\{1, 2, \ldots, n^2\}$, represented in binary.
Output: array of n numbers, in increasing order, represented in binary; multiset as input.
Metric: seconds used by circuit of area $n^{1+o(1)}$.
For simplicity assume $n = 4^k$.

Spread array across square mesh of n small cells, each of area $n^{o(1)}$, with near-neighbor wiring:

Sort row of n_0 : 5 cells in $n_0 : 5 + o(1)$ seconds:
- Sort each pair in parallel.
 $3 \ 1 \ 4 \ 1 \ 5 \ 9 \ 2 \ 6 \mapsto 1 \ 3 \ 1 \ 4 \ 5 \ 9 \ 2 \ 6$
- Sort alternate pairs in parallel.
 $1 \ 3 \ 1 \ 4 \ 5 \ 9 \ 2 \ 6 \mapsto 1 \ 1 \ 3 \ 4 \ 5 \ 2 \ 9 \ 6$
- Repeat until number of steps equals row length.
How expensive is sorting?

Input: array of \(n \) numbers.

Each number in \(1, 2, \ldots, n^2 \), represented in binary.

Output: array of \(n \) numbers, in increasing order, represented in binary; same multiset as input.

Metric: seconds used by circuit of area \(n^{1+o(1)} \).

For simplicity assume \(n = 4^k \).

Spread array across square mesh of \(n \) small cells, each of area \(n^{o(1)} \), with near-neighbor wiring:

Sort row of \(n^{0.5} \) cells in \(n^{0.5+o(1)} \) seconds:

- Sort each pair in parallel.
 \(3\ 1\ 4\ 1\ 5\ 9\ 2\ 6 \mapsto 1\ 3\ 1\ 4\ 5\ 9\ 2\ 6 \)
- Sort alternate pairs in parallel.
 \(1\ 3\ 1\ 4\ 5\ 9\ 2\ 6 \mapsto 1\ 1\ 3\ 4\ 5\ 2\ 9\ 6 \)
- Repeat until number of steps equals row length.
Spread array across square mesh of n small cells, each of area $n^{o(1)}$, with near-neighbor wiring:

Sort row of $n^{0.5}$ cells in $n^{0.5+o(1)}$ seconds:

- Sort each pair in parallel.
 \[3 1 4 1 5 9 2 6 \rightarrow 1 3 1 4 5 9 2 6 \]

- Sort alternate pairs in parallel.
 \[1 3 1 4 5 9 2 6 \rightarrow 1 1 3 4 5 2 9 6 \]

- Repeat until number of steps equals row length.
Spread array across square mesh of \(n \) small cells, each of area \(n^{o(1)} \), with near-neighbor wiring:

\[
\times \times \times \times \times \times \times \times \\
\times \times \times \times \times \times \times \times \\
\times \times \times \times \times \times \times \times \\
\times \times \times \times \times \times \times \times \\
\times \times \times \times \times \times \times \times \\
\times \times \times \times \times \times \times \times \\
\times \times \times \times \times \times \times \times \\
\times \times \times \times \times \times \times \times \\
\times \times \times \times \times \times \times \times
\]

Sort row of \(n^{0.5} \) cells in \(n^{0.5+o(1)} \) seconds:

- Sort each pair in parallel.
 \[3 \ 1 \ 4 \ 1 \ 5 \ 9 \ 2 \ 6 \mapsto 1 \ 3 \ 1 \ 4 \ 5 \ 9 \ 2 \ 6\]

- Sort alternate pairs in parallel.
 \[1 \ 3 \ 1 \ 4 \ 5 \ 9 \ 2 \ 6 \mapsto 1 \ 1 \ 3 \ 4 \ 5 \ 2 \ 9 \ 6\]

- Repeat until number of steps equals row length.
Spread array across square mesh of n small cells, each of area $n^{o(1)}$, with near-neighbor wiring:

```
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
```

Sort row of $n^{0.5}$ cells in $n^{0.5+o(1)}$ seconds:

- Sort each pair in parallel.

 \[3 1 4 1 5 9 2 6 \rightarrow 1 3 1 4 5 9 2 6\]

- Sort alternate pairs in parallel.

 \[1 3 1 4 5 9 2 6 \rightarrow 1 1 3 4 5 2 9 6\]

- Repeat until number of steps equals row length.

Sort each row, in parallel, in a total of $n^{0.5+o(1)}$ seconds.
Array across square mesh of \(n\) small cells, each of area \(n^{o(1)}\), with near-neighbor wiring:

Sort row of \(n^{0.5}\) cells in \(n^{0.5+o(1)}\) seconds:
- Sort each pair in parallel.
 \[3 1 4 1 5 9 2 6 \mapsto 1 3 1 4 5 9 2 6\]
- Sort alternate pairs in parallel.
 \[1 3 1 4 5 9 2 6 \mapsto 1 1 3 4 5 2 9 6\]
- Repeat until number of steps equals row length.

Sort each row, in parallel, in a total of \(n^{0.5+o(1)}\) seconds.

Sort all \(n\) cells in \(n^{0.5+o(1)}\) seconds:
- Recursively sort quadrants in parallel, if \(n > 1\).
- Sort each column in parallel.
- Sort each row in parallel.
- Sort each column in parallel.
- Sort each row in parallel.

With proper choice of left-to-right/right-to-left for each row, can prove that this sorts whole array.
Spread array across square mesh of \(n \) small cells, each of area \(n^{o(1)} \), with near-neighbor wiring:

\[
\begin{array}{cccccccccccc}
\times & \times \\
\times & \times \\
\times & \times \\
\times & \times \\
\times & \times \\
\times & \times \\
\times & \times \\
\times & \times \\
\times & \times \\
\times & \times \\
\times & \times \\
\times & \times \\
\end{array}
\]

Sort row of \(n^{0.5} \) cells in \(n^{0.5+o(1)} \) seconds:

- Sort each pair in parallel.
 \[3 1 4 1 5 9 2 6 \rightarrow 1 3 1 4 5 9 2 6\]
- Sort alternate pairs in parallel.
 \[1 3 1 4 5 9 2 6 \rightarrow 1 1 3 4 5 2 9 6\]
- Repeat until number of steps equals row length.

Sort each row, in parallel, in a total of \(n^{0.5+o(1)} \) seconds.

Sort all \(n \) cells in \(n^{0.5+o(1)} \) seconds:

- Recursively sort quadrants in parallel, if \(n > 1 \).
- Sort each column in parallel.
- Sort each row in parallel.
- Sort each column in parallel.
- Sort each row in parallel.

With proper choice of left-to-right/right-to-left for each row, can prove that this sorts whole array.
Sort row of $n^{0.5}$ cells in $n^{0.5+o(1)}$ seconds:

- Sort each pair in parallel.
 \[
 \begin{array}{ccccccc}
 3 & 1 & 4 & 1 & 5 & 9 & 2 & 6
 \end{array}
 \rightarrow
 \begin{array}{ccccccc}
 1 & 3 & 1 & 4 & 5 & 9 & 2 & 6
 \end{array}
 \]

- Sort alternate pairs in parallel.
 \[
 \begin{array}{ccccccc}
 1 & 3 & 1 & 4 & 5 & 9 & 2 & 6
 \end{array}
 \rightarrow
 \begin{array}{ccccccc}
 1 & 1 & 3 & 4 & 5 & 2 & 9 & 6
 \end{array}
 \]

- Repeat until number of steps equals row length.

Sort each row, in parallel, in a total of $n^{0.5+o(1)}$ seconds.

Sort all n cells in $n^{0.5+o(1)}$ seconds:

- Recursively sort quadrants in parallel, if $n > 1$.
- Sort each column in parallel.
- Sort each row in parallel.
- Sort each column in parallel.
- Sort each row in parallel.

With proper choice of left-to-right/right-to-left for each row, can prove that this sorts whole array.
Sort row of \(n^{0.5} \) cells in \(n^{0.5+o(1)} \) seconds:

- Sort each pair in parallel.
 \[
 3 1 4 1 5 9 2 6 \rightarrow 1 3 1 4 5 9 2 6
 \]
- Sort alternate pairs in parallel.
 \[
 1 3 1 4 5 9 2 6 \rightarrow 1 1 3 4 5 2 9 6
 \]
- Repeat until number of steps equals row length.

Sort each row, in parallel, in a total of \(n^{0.5+o(1)} \) seconds.

Sort all \(n \) cells in \(n^{0.5+o(1)} \) seconds:

- Recursively sort quadrants in parallel, if \(n > 1 \).
- Sort each column in parallel.
- Sort each row in parallel.
- Sort each column in parallel.
- Sort each row in parallel.

With proper choice of left-to-right/right-to-left for each row, can prove that this sorts whole array.
Let n be of $n^{0.5}$ cells in $n^{0.5 + o(1)}$ seconds:

1. Sort each pair in parallel.
 - $3 1 4 1 5 9 2 6 \mapsto 1 3 1 4 5 9 2 6$
2. Alternate pairs in parallel.
 - $4 5 9 2 6 \mapsto 4 5 9 2 6$
 - $4 5 2 9 6 \mapsto 4 5 2 9 6$
3. Repeat until number of steps equals row length.
4. Sort each row, in parallel, in a total of $n^{0.5 + o(1)}$ seconds.

Sort all n cells in $n^{0.5 + o(1)}$ seconds:

- Recursively sort quadrants in parallel, if $n > 1$.
- Sort each column in parallel.
- Sort each row in parallel.
- Sort each column in parallel.
- Sort each row in parallel.

With proper choice of left-to-right/right-to-left for each row, can prove that this sorts whole array.

For example, assume that this 8×8 array is in cells:

<table>
<thead>
<tr>
<th>3</th>
<th>1</th>
<th>4</th>
<th>1</th>
<th>5</th>
<th>9</th>
<th>2</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>
Sort all n cells in $n^{0.5 + o(1)}$ seconds:

- Recursively sort quadrants in parallel, if $n > 1$.
- Sort each column in parallel.
- Sort each row in parallel.
- Sort each column in parallel.
- Sort each row in parallel.

With proper choice of left-to-right/right-to-left for each row, can prove that this sorts whole array.

For example, assume that this 8×8 array is:

$$
\begin{bmatrix}
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 \\
5 & 3 & 5 & 8 & 9 & 7 & 9 & 3 \\
2 & 3 & 8 & 4 & 6 & 2 & 6 & 4 \\
3 & 3 & 8 & 3 & 2 & 7 & 9 & 5 \\
0 & 2 & 8 & 8 & 4 & 1 & 9 & 7 \\
1 & 6 & 9 & 3 & 9 & 9 & 3 & 7 \\
5 & 1 & 0 & 5 & 8 & 2 & 0 & 9 \\
7 & 4 & 9 & 4 & 4 & 5 & 9 & 2
\end{bmatrix}
$$
Sort all \(n \) cells in \(n^{0.5+o(1)} \) seconds:

- Recursively sort quadrants in parallel, if \(n > 1 \).
- Sort each column in parallel.
- Sort each row in parallel.
- Sort each column in parallel.
- Sort each row in parallel.

With proper choice of left-to-right/right-to-left for each row, can prove that this sorts whole array.

For example, assume that this \(8 \times 8 \) array is in cells:

\[
\begin{array}{cccccccc}
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 \\
5 & 3 & 5 & 8 & 9 & 7 & 9 & 3 \\
2 & 3 & 8 & 4 & 6 & 2 & 6 & 4 \\
3 & 3 & 8 & 3 & 2 & 7 & 9 & 5 \\
0 & 2 & 8 & 8 & 4 & 1 & 9 & 7 \\
1 & 6 & 9 & 3 & 9 & 9 & 3 & 7 \\
5 & 1 & 0 & 5 & 8 & 2 & 0 & 9 \\
7 & 4 & 9 & 4 & 4 & 5 & 9 & 2 \\
\end{array}
\]
Sort all n cells in $n^{0.5+o(1)}$ seconds:

- Recursively sort quadrants in parallel, if $n > 1$.
- Sort each column in parallel.
- Sort each row in parallel.
- Sort each column in parallel.
- Sort each row in parallel.

With proper choice of left-to-right/right-to-left for each row, can prove that this sorts whole array.

For example, assume that this 8×8 array is in cells:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>
Sort all \(n \) cells in \(n^{O(1)} \) seconds:

- Recursively sort quadrants in parallel, if \(n > 1 \).
- Sort each column in parallel.
- Sort each row in parallel.
- Sort each column in parallel.
- Sort each row in parallel.

With proper choice of left-to-right/right-to-left for each row, can prove that this sorts whole array.

For example, assume that this \(8 \times 8 \) array is in cells:

\[
\begin{array}{cccccccc}
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 \\
5 & 3 & 5 & 8 & 9 & 7 & 9 & 3 \\
2 & 3 & 8 & 4 & 6 & 2 & 6 & 4 \\
3 & 3 & 8 & 3 & 2 & 7 & 9 & 5 \\
0 & 2 & 8 & 8 & 4 & 1 & 9 & 7 \\
1 & 6 & 9 & 3 & 9 & 9 & 3 & 7 \\
5 & 1 & 0 & 5 & 8 & 2 & 0 & 9 \\
7 & 4 & 9 & 4 & 4 & 5 & 9 & 2 \\
\end{array}
\]

Recursively sort quadrants, top \(\rightarrow \), bottom \(\leftarrow \):

\[
\begin{array}{cccccccc}
1 & 1 & 2 & 3 \\
2 & 2 & 2 & 3 \\
3 & 3 & 3 & 3 \\
4 & 5 & 5 & 6 \\
3 & 4 & 4 & 5 \\
6 & 6 & 7 & 7 \\
5 & 8 & 8 & 8 \\
1 & 1 & 0 & 0 \\
2 & 2 & 1 & 0 \\
4 & 4 & 3 & 2 \\
5 & 4 & 4 & 3 \\
7 & 6 & 5 & 5 \\
9 & 9 & 8 & 8 \\
9 & 9 & 9 & 9 \\
\end{array}
\]
Sort all \(n \) cells in \(n^0 \) seconds:

- Recursively sort quadrants in parallel, if \(n > 1 \).
- Sort each column in parallel.
- Sort each row in parallel.
- Sort each column in parallel.
- Sort each row in parallel.

With proper choice of left-to-right/right-to-left for each row, can prove that this sorts whole array.

For example, assume that this \(8 \times 8 \) array is in cells:

```
3 1 4 1 5 9 2 6
5 3 5 8 9 7 9 3
2 3 8 4 6 2 6 4
3 3 8 3 2 7 9 5
0 2 8 8 4 1 9 7
1 6 9 3 9 9 3 7
5 1 0 5 8 2 0 9
7 4 9 4 4 5 9 2
```

Recursively sort quadrants, top →, bottom ←:

```
1 1 2 3 2 2 2 3
3 3 3 3 4 5 5 6
3 4 4 5 6 6 7 7
5 8 8 8 9 9 9 9
1 1 0 0 2 2 1 0
4 4 3 2 5 4 4 3
7 6 5 5 9 8 7 7
9 9 8 8 9 9 9 9
```
For example, assume that this 8×8 array is in cells:

<table>
<thead>
<tr>
<th>3</th>
<th>1</th>
<th>4</th>
<th>1</th>
<th>5</th>
<th>9</th>
<th>2</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

Recursively sort quadrants, top \rightarrow, bottom \leftarrow:

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
For example, assume that this 8×8 array is in cells:

\[
\begin{array}{cccccccc}
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 \\
5 & 3 & 5 & 8 & 9 & 7 & 9 & 3 \\
2 & 3 & 8 & 4 & 6 & 2 & 6 & 4 \\
3 & 3 & 8 & 3 & 2 & 7 & 9 & 5 \\
0 & 2 & 8 & 8 & 4 & 1 & 9 & 7 \\
1 & 6 & 9 & 3 & 9 & 9 & 3 & 7 \\
5 & 1 & 0 & 5 & 8 & 2 & 0 & 9 \\
7 & 4 & 9 & 4 & 4 & 5 & 9 & 2 \\
\end{array}
\]

Recursively sort quadrants, top →, bottom ←:

\[
\begin{array}{cccc}
1 & 1 & 2 & 3 \\
3 & 3 & 3 & 3 \\
3 & 4 & 4 & 5 \\
5 & 8 & 8 & 8 \\
1 & 1 & 0 & 0 \\
4 & 4 & 3 & 2 \\
7 & 6 & 5 & 5 \\
9 & 9 & 8 & 8 \\
\end{array}
\begin{array}{cccc}
2 & 2 & 2 & 3 \\
4 & 5 & 5 & 6 \\
6 & 6 & 7 & 7 \\
9 & 9 & 9 & 9 \\
2 & 2 & 1 & 0 \\
5 & 4 & 4 & 3 \\
9 & 8 & 7 & 7 \\
9 & 9 & 9 & 9 \\
\end{array}
\]
For example, assume that this 8 × 8 array is in cells:

```
 4 1 5 9 2 6
 5 8 9 7 9 3
 3 4 6 2 6 4
 3 3 2 7 9 5
 8 4 1 9 7
 9 3 9 9 3 7
 0 5 8 2 0 9
 9 4 4 5 9 2
```

Recursively sort quadrants, top → , bottom ← :

```
 1 1 2 3
 3 3 3 3
 3 4 4 5
 5 8 8 8
 1 1 0 0
 3 3 3 3
 3 4 4 5
 5 8 8 8
```

```
 2 2 2 3
 4 5 5 6
 6 6 7 7
 9 9 9 9
 2 2 1 0
 4 4 4 3
 6 6 7 7
 9 9 9 9
```

Sort each column in parallel:

```
1 1 0 0
1 1 2 2
3 3 3 3
3 4 4 5
4 4 4 5
5 6 5 5
7 8 8 8
9 9 8 8
```

```
2 2 2 3
4 5 5 6
6 6 7 7
9 9 9 9
2 2 1 0
4 4 4 3
6 6 7 7
9 9 9 9
```

```
3 3 3 3
3 4 3 3
5 5 5 6
7 8 8 8
9 9 8 8
```
For example, assume that this 8×8 array is in cells:

<table>
<thead>
<tr>
<th>3</th>
<th>1</th>
<th>4</th>
<th>1</th>
<th>5</th>
<th>9</th>
<th>2</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

Recursively sort quadrants, top →, bottom ←:

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Sort each column in parallel:

<table>
<thead>
<tr>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
For example, assume that this 8×8 array is in cells:

\begin{align*}
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 \\
5 & 3 & 5 & 8 & 9 & 7 & 9 & 3 \\
2 & 3 & 8 & 4 & 6 & 2 & 6 & 4 \\
3 & 3 & 8 & 3 & 2 & 7 & 9 & 5 \\
0 & 2 & 8 & 8 & 4 & 1 & 9 & 7 \\
1 & 6 & 9 & 3 & 9 & 9 & 3 & 7 \\
5 & 1 & 0 & 5 & 8 & 2 & 0 & 9 \\
7 & 4 & 9 & 4 & 4 & 5 & 9 & 2 \\
\end{align*}

Recursively sort quadrants, top \rightarrow, bottom \leftarrow:

\begin{align*}
1 & 1 & 2 & 3 & 2 & 2 & 2 & 3 \\
3 & 3 & 3 & 3 & 4 & 5 & 5 & 6 \\
3 & 4 & 4 & 5 & 6 & 6 & 7 & 7 \\
5 & 8 & 8 & 8 & 9 & 9 & 9 & 9 \\
1 & 1 & 0 & 0 & 2 & 2 & 1 & 0 \\
4 & 4 & 3 & 2 & 5 & 4 & 4 & 3 \\
7 & 6 & 5 & 5 & 9 & 8 & 7 & 7 \\
9 & 9 & 8 & 8 & 9 & 9 & 9 & 9 \\
\end{align*}

Sort each column in parallel:

\begin{align*}
1 & 1 & 0 & 0 & 2 & 2 & 2 & 1 & 0 \\
1 & 1 & 2 & 2 & 2 & 2 & 2 & 3 \\
3 & 3 & 3 & 3 & 4 & 4 & 4 & 3 \\
3 & 4 & 3 & 3 & 5 & 5 & 5 & 6 \\
4 & 4 & 4 & 5 & 6 & 6 & 7 & 7 \\
5 & 6 & 5 & 5 & 9 & 8 & 7 & 7 \\
7 & 8 & 8 & 8 & 9 & 9 & 9 & 9 \\
9 & 9 & 8 & 8 & 9 & 9 & 9 & 9 \\
\end{align*}
Recursively sort quadrants, top →, bottom ←:

<table>
<thead>
<tr>
<th>1 1 2 3</th>
<th>2 2 2 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 3 3 3</td>
<td>4 5 5 6</td>
</tr>
<tr>
<td>3 4 4 5</td>
<td>6 6 7 7</td>
</tr>
<tr>
<td>5 8 8 8</td>
<td>9 9 9 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 1 0 0</th>
<th>2 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 4 3 2</td>
<td>5 4 4 3</td>
</tr>
<tr>
<td>7 6 5 5</td>
<td>9 8 7 7</td>
</tr>
<tr>
<td>9 9 8 8</td>
<td>9 9 9 9</td>
</tr>
</tbody>
</table>

Sort each column in parallel:

<table>
<thead>
<tr>
<th>1 1 0 0</th>
<th>0 2 2 2</th>
<th>1 1 2 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 2 2</td>
<td>2 2 2 2</td>
<td>2 2 2 3</td>
</tr>
<tr>
<td>3 3 3 3</td>
<td>3 4 4 4</td>
<td>3 4 3 3</td>
</tr>
<tr>
<td>3 4 3 3</td>
<td>3 5 5 5</td>
<td>5 6 5 5</td>
</tr>
<tr>
<td>4 4 4 5</td>
<td>5 6 6 7</td>
<td>7 7 7 7</td>
</tr>
<tr>
<td>5 6 5 5</td>
<td>5 9 8 7</td>
<td>7 7 9 9</td>
</tr>
<tr>
<td>7 8 8 8</td>
<td>8 9 9 9</td>
<td>9 9 9 9</td>
</tr>
<tr>
<td>9 9 8 8</td>
<td>8 9 9 9</td>
<td>9 9 9 9</td>
</tr>
</tbody>
</table>
Recursively sort quadrants, bottom \leftarrow:

2 3	2 2 2 3
3 3	4 5 5 6
4 5	6 6 7 7
8 8	9 9 9 9

0 0	2 2 2 1 0
8 2	5 4 4 3
5 5	9 8 7 7
8 8	9 9 9 9

Sort each column in parallel:

1 1	0 0	2 2	1 0
1 1	2 2	2 2	2 3
3 3	3 3	4 4	4 3
3 4	3 3	5 5	5 6
4 4	4 5	6 6	7 7
5 6	5 5	9 8	7 7
7 8	8 8	9 9	9 9
9 9	8 8	9 9	9 9

Sort each row in parallel, alternately \leftarrow, \rightarrow:

| 0 0 0 0 |
| 3 2 2 2 |
| 3 3 3 3 |
| 6 5 5 5 |
| 4 4 4 4 |
| 9 8 7 7 |
| 7 8 8 8 |
| 9 9 9 9 |
Recursively sort quadrants, top →, bottom ←:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Sort each column in parallel:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Sort each row in parallel, alternately ←, →:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
Sort each column in parallel:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sort each row in parallel, alternately ←, →:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sort each column in parallel:

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>2</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Sort each row in parallel, alternately ←, →:

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Sort each column in parallel:

<table>
<thead>
<tr>
<th>0</th>
<th>2</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Sort each row in parallel, alternately ←, →:

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Sort each column in parallel:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Sort each row in parallel, alternately ←, →:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Sort each row in parallel, alternately ←, →:

<table>
<thead>
<tr>
<th>0 0 0 1 1 1 2 2</th>
<th>0 0 0 1 1 1 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 2 2 2 2 2 1 1</td>
<td>3 2 2 2 2 2 2 2</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>3 3 3 3 3 4 4 4</td>
<td>3 3 3 3 3 3 3 3</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>6 5 5 5 4 3 3 3</td>
<td>4 4 4 5 4 4 4 4</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>4 4 4 5 6 6 7 7</td>
<td>6 5 5 5 6 5 5 5</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>9 8 7 7 6 5 5 5</td>
<td>7 8 7 7 6 6 7 7</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>7 8 8 8 9 9 9 9</td>
<td>9 8 8 8 9 9 9 9</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>9 9 9 9 9 8 8 8</td>
<td>9 9 9 9 9 9 9 9</td>
</tr>
</tbody>
</table>
Sort each row in parallel, alternately ←, →:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Sort each column in parallel:

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
Sort each row in parallel, alternately ← , →:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sort each column in parallel:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Sort each row in parallel, ← or → as desired:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sort each column ← or →:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sort each row in parallel, alternately \leftarrow, \rightarrow:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Sort each column in parallel:

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

Sort each row in parallel, \leftarrow or \rightarrow as desired:

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>
Sort each row in parallel, alternately ←, →:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Sort each column in parallel:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Sort each row in parallel, ← or → as desired:
Sort each column in parallel:

```
<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
```

Sort each row in parallel, ← or → as desired:

```
<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
```
Sort each column in parallel:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Sort each row in parallel, ← or → as desired:

| 0 0 0 1 1 1 1 1 |
| 2 2 2 2 2 2 2 3 |
| 3 3 3 3 3 3 3 3 |
| 4 4 4 4 4 4 4 5 |
| 5 5 5 5 5 5 6 6 |
| 6 6 7 7 7 7 7 8 |
| 8 8 8 8 8 9 9 9 |
| 9 9 9 9 9 9 9 9 |

Chips are in fact evolving towards having this much parallelism and communication.

GPUs: parallel + global RAM.
Old Xeon Phi: parallel + ring.
New Xeon Phi: parallel + mesh.
Sort each row in parallel, ← or → as desired:

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
Sort each row in parallel, ← or → as desired:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Chips are in fact evolving towards having this much parallelism and communication.

GPUs: parallel + global RAM.
Old Xeon Phi: parallel + ring.
New Xeon Phi: parallel + mesh.
Sort each row in parallel, ← or → as desired:

<table>
<thead>
<tr>
<th>0 0 0 1 1 1 1 1</th>
<th>0 0 0 1 1 1 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 2 2 2 2 2 2 3</td>
<td>2 2 2 2 2 2 2 3</td>
</tr>
<tr>
<td>3 3 3 3 3 3 3 3</td>
<td>3 3 3 3 3 3 3 3</td>
</tr>
<tr>
<td>4 4 4 4 4 4 4 5</td>
<td>4 4 4 4 4 4 4 5</td>
</tr>
<tr>
<td>5 5 5 5 5 5 6 6</td>
<td>5 5 5 5 5 5 6 6</td>
</tr>
<tr>
<td>6 6 7 7 7 7 7 8</td>
<td>6 6 7 7 7 7 7 8</td>
</tr>
<tr>
<td>8 8 8 8 8 9 9 9</td>
<td>8 8 8 8 8 9 9 9</td>
</tr>
<tr>
<td>9 9 9 9 9 9 9 9</td>
<td>9 9 9 9 9 9 9 9</td>
</tr>
</tbody>
</table>

Chips are in fact evolving towards having this much parallelism and communication.

GPUs: parallel + global RAM.
Old Xeon Phi: parallel + ring.
New Xeon Phi: parallel + mesh.
Sort each row in parallel, ← or → as desired:

<table>
<thead>
<tr>
<th>0 0 0 1 1 1 1 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 2 2 2 2 2 2 2 3</td>
</tr>
<tr>
<td>3 3 3 3 3 3 3 3 3</td>
</tr>
<tr>
<td>4 4 4 4 4 4 4 4 5</td>
</tr>
<tr>
<td>5 5 5 5 5 5 6 6 6</td>
</tr>
<tr>
<td>6 6 7 7 7 7 7 8 8</td>
</tr>
<tr>
<td>8 8 8 8 8 9 9 9 9</td>
</tr>
<tr>
<td>9 9 9 9 9 9 9 9 9</td>
</tr>
</tbody>
</table>

Chips are in fact evolving towards having this much parallelism and communication.

GPUs: parallel + global RAM.
Old Xeon Phi: parallel + ring.
New Xeon Phi: parallel + mesh.

Algorithm designers don’t even get the right exponent without taking this into account.
Sort each row in parallel, ← or → as desired:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Chips are in fact evolving towards having this much parallelism and communication.

GPUs: parallel + global RAM.
Old Xeon Phi: parallel + ring.
New Xeon Phi: parallel + mesh.

Algorithm designers don’t even get the right exponent without taking this into account.

Shock waves from subroutines into high-level algorithm design.