
1

The first 10 years of Curve25519

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

2005.05.19: Seminar talk;

design+software close to done.

2005.09.15: Software online.

2005.09.20: Invited talk at ECC.

2005.11.15: Paper online;

submitted to PKC 2006.

2

Abstract: “This paper explains

the design and implementation

of a high-security elliptic-curve-

Diffie-Hellman function

achieving record-setting speeds:

e.g., 832457 Pentium III cycles

(with several side benefits:

free key compression, free key

validation, and state-of-the-art

timing-attack protection),

more than twice as fast as other

authors’ results at the same

conjectured security level (with

or without the side benefits).”



1

The first 10 years of Curve25519

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

2005.05.19: Seminar talk;

design+software close to done.

2005.09.15: Software online.

2005.09.20: Invited talk at ECC.

2005.11.15: Paper online;

submitted to PKC 2006.

2

Abstract: “This paper explains

the design and implementation

of a high-security elliptic-curve-

Diffie-Hellman function

achieving record-setting speeds:

e.g., 832457 Pentium III cycles

(with several side benefits:

free key compression, free key

validation, and state-of-the-art

timing-attack protection),

more than twice as fast as other

authors’ results at the same

conjectured security level (with

or without the side benefits).”

3

Elliptic-curve computations



1

The first 10 years of Curve25519

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

2005.05.19: Seminar talk;

design+software close to done.

2005.09.15: Software online.

2005.09.20: Invited talk at ECC.

2005.11.15: Paper online;

submitted to PKC 2006.

2

Abstract: “This paper explains

the design and implementation

of a high-security elliptic-curve-

Diffie-Hellman function

achieving record-setting speeds:

e.g., 832457 Pentium III cycles

(with several side benefits:

free key compression, free key

validation, and state-of-the-art

timing-attack protection),

more than twice as fast as other

authors’ results at the same

conjectured security level (with

or without the side benefits).”

3

Elliptic-curve computations



1

The first 10 years of Curve25519

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

2005.05.19: Seminar talk;

design+software close to done.

2005.09.15: Software online.

2005.09.20: Invited talk at ECC.

2005.11.15: Paper online;

submitted to PKC 2006.

2

Abstract: “This paper explains

the design and implementation

of a high-security elliptic-curve-

Diffie-Hellman function

achieving record-setting speeds:

e.g., 832457 Pentium III cycles

(with several side benefits:

free key compression, free key

validation, and state-of-the-art

timing-attack protection),

more than twice as fast as other

authors’ results at the same

conjectured security level (with

or without the side benefits).”

3

Elliptic-curve computations



2

Abstract: “This paper explains

the design and implementation

of a high-security elliptic-curve-

Diffie-Hellman function

achieving record-setting speeds:

e.g., 832457 Pentium III cycles

(with several side benefits:

free key compression, free key

validation, and state-of-the-art

timing-attack protection),

more than twice as fast as other

authors’ results at the same

conjectured security level (with

or without the side benefits).”

3

Elliptic-curve computations



2

Abstract: “This paper explains

the design and implementation

of a high-security elliptic-curve-

Diffie-Hellman function

achieving record-setting speeds:

e.g., 832457 Pentium III cycles

(with several side benefits:

free key compression, free key

validation, and state-of-the-art

timing-attack protection),

more than twice as fast as other

authors’ results at the same

conjectured security level (with

or without the side benefits).”

3

Elliptic-curve computations
4

1987 (distributed 1984) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1985 Bosma, 1986 Goldwasser–

Kilian, 1986 Chudnovsky–

Chudnovsky, 1988 Atkin: ECPP,

elliptic-curve primality proving.

1985/6 (distributed 1984) Miller,

and independently

1987 (distributed 1984) Koblitz:

ECC—use elliptic curves in DH

to avoid index-calculus attacks.



2

Abstract: “This paper explains

the design and implementation

of a high-security elliptic-curve-

Diffie-Hellman function

achieving record-setting speeds:

e.g., 832457 Pentium III cycles

(with several side benefits:

free key compression, free key

validation, and state-of-the-art

timing-attack protection),

more than twice as fast as other

authors’ results at the same

conjectured security level (with

or without the side benefits).”

3

Elliptic-curve computations
4

1987 (distributed 1984) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1985 Bosma, 1986 Goldwasser–

Kilian, 1986 Chudnovsky–

Chudnovsky, 1988 Atkin: ECPP,

elliptic-curve primality proving.

1985/6 (distributed 1984) Miller,

and independently

1987 (distributed 1984) Koblitz:

ECC—use elliptic curves in DH

to avoid index-calculus attacks.



2

Abstract: “This paper explains

the design and implementation

of a high-security elliptic-curve-

Diffie-Hellman function

achieving record-setting speeds:

e.g., 832457 Pentium III cycles

(with several side benefits:

free key compression, free key

validation, and state-of-the-art

timing-attack protection),

more than twice as fast as other

authors’ results at the same

conjectured security level (with

or without the side benefits).”

3

Elliptic-curve computations
4

1987 (distributed 1984) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1985 Bosma, 1986 Goldwasser–

Kilian, 1986 Chudnovsky–

Chudnovsky, 1988 Atkin: ECPP,

elliptic-curve primality proving.

1985/6 (distributed 1984) Miller,

and independently

1987 (distributed 1984) Koblitz:

ECC—use elliptic curves in DH

to avoid index-calculus attacks.



3

Elliptic-curve computations
4

1987 (distributed 1984) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1985 Bosma, 1986 Goldwasser–

Kilian, 1986 Chudnovsky–

Chudnovsky, 1988 Atkin: ECPP,

elliptic-curve primality proving.

1985/6 (distributed 1984) Miller,

and independently

1987 (distributed 1984) Koblitz:

ECC—use elliptic curves in DH

to avoid index-calculus attacks.



3

Elliptic-curve computations
4

1987 (distributed 1984) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1985 Bosma, 1986 Goldwasser–

Kilian, 1986 Chudnovsky–

Chudnovsky, 1988 Atkin: ECPP,

elliptic-curve primality proving.

1985/6 (distributed 1984) Miller,

and independently

1987 (distributed 1984) Koblitz:

ECC—use elliptic curves in DH

to avoid index-calculus attacks.

5

1986 Chudnovsky–Chudnovsky,

for ECM+ECPP: analyze several

ways to represent elliptic curves;

optimize # field operations.



3

Elliptic-curve computations
4

1987 (distributed 1984) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1985 Bosma, 1986 Goldwasser–

Kilian, 1986 Chudnovsky–

Chudnovsky, 1988 Atkin: ECPP,

elliptic-curve primality proving.

1985/6 (distributed 1984) Miller,

and independently

1987 (distributed 1984) Koblitz:

ECC—use elliptic curves in DH

to avoid index-calculus attacks.

5

1986 Chudnovsky–Chudnovsky,

for ECM+ECPP: analyze several

ways to represent elliptic curves;

optimize # field operations.



3

Elliptic-curve computations
4

1987 (distributed 1984) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1985 Bosma, 1986 Goldwasser–

Kilian, 1986 Chudnovsky–

Chudnovsky, 1988 Atkin: ECPP,

elliptic-curve primality proving.

1985/6 (distributed 1984) Miller,

and independently

1987 (distributed 1984) Koblitz:

ECC—use elliptic curves in DH

to avoid index-calculus attacks.

5

1986 Chudnovsky–Chudnovsky,

for ECM+ECPP: analyze several

ways to represent elliptic curves;

optimize # field operations.



4

1987 (distributed 1984) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1985 Bosma, 1986 Goldwasser–

Kilian, 1986 Chudnovsky–

Chudnovsky, 1988 Atkin: ECPP,

elliptic-curve primality proving.

1985/6 (distributed 1984) Miller,

and independently

1987 (distributed 1984) Koblitz:

ECC—use elliptic curves in DH

to avoid index-calculus attacks.

5

1986 Chudnovsky–Chudnovsky,

for ECM+ECPP: analyze several

ways to represent elliptic curves;

optimize # field operations.



4

1987 (distributed 1984) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1985 Bosma, 1986 Goldwasser–

Kilian, 1986 Chudnovsky–

Chudnovsky, 1988 Atkin: ECPP,

elliptic-curve primality proving.

1985/6 (distributed 1984) Miller,

and independently

1987 (distributed 1984) Koblitz:

ECC—use elliptic curves in DH

to avoid index-calculus attacks.

5

1986 Chudnovsky–Chudnovsky,

for ECM+ECPP: analyze several

ways to represent elliptic curves;

optimize # field operations.

1987 Montgomery, for ECM:

best speed from y2 = x3+Ax2+x ,

preferably with (A− 2)=4 small.



4

1987 (distributed 1984) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1985 Bosma, 1986 Goldwasser–

Kilian, 1986 Chudnovsky–

Chudnovsky, 1988 Atkin: ECPP,

elliptic-curve primality proving.

1985/6 (distributed 1984) Miller,

and independently

1987 (distributed 1984) Koblitz:

ECC—use elliptic curves in DH

to avoid index-calculus attacks.

5

1986 Chudnovsky–Chudnovsky,

for ECM+ECPP: analyze several

ways to represent elliptic curves;

optimize # field operations.

1987 Montgomery, for ECM:

best speed from y2 = x3+Ax2+x ,

preferably with (A− 2)=4 small.

Late 1990s: ANSI/IEEE/NIST

standards specify y2 = x3−3x +b

in Jacobian coordinates,

citing Chudnovsky–Chudnovsky.

Alleged motivation: “the fastest

arithmetic on elliptic curves”.



4

1987 (distributed 1984) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1985 Bosma, 1986 Goldwasser–

Kilian, 1986 Chudnovsky–

Chudnovsky, 1988 Atkin: ECPP,

elliptic-curve primality proving.

1985/6 (distributed 1984) Miller,

and independently

1987 (distributed 1984) Koblitz:

ECC—use elliptic curves in DH

to avoid index-calculus attacks.

5

1986 Chudnovsky–Chudnovsky,

for ECM+ECPP: analyze several

ways to represent elliptic curves;

optimize # field operations.

1987 Montgomery, for ECM:

best speed from y2 = x3+Ax2+x ,

preferably with (A− 2)=4 small.

Late 1990s: ANSI/IEEE/NIST

standards specify y2 = x3−3x +b

in Jacobian coordinates,

citing Chudnovsky–Chudnovsky.

Alleged motivation: “the fastest

arithmetic on elliptic curves”.

6

Did Chudnovsky and Chudnovsky

actually recommend this?

What about Montgomery?

What about papers after 1987?



4

1987 (distributed 1984) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1985 Bosma, 1986 Goldwasser–

Kilian, 1986 Chudnovsky–

Chudnovsky, 1988 Atkin: ECPP,

elliptic-curve primality proving.

1985/6 (distributed 1984) Miller,

and independently

1987 (distributed 1984) Koblitz:

ECC—use elliptic curves in DH

to avoid index-calculus attacks.

5

1986 Chudnovsky–Chudnovsky,

for ECM+ECPP: analyze several

ways to represent elliptic curves;

optimize # field operations.

1987 Montgomery, for ECM:

best speed from y2 = x3+Ax2+x ,

preferably with (A− 2)=4 small.

Late 1990s: ANSI/IEEE/NIST

standards specify y2 = x3−3x +b

in Jacobian coordinates,

citing Chudnovsky–Chudnovsky.

Alleged motivation: “the fastest

arithmetic on elliptic curves”.

6

Did Chudnovsky and Chudnovsky

actually recommend this?

What about Montgomery?

What about papers after 1987?



4

1987 (distributed 1984) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1985 Bosma, 1986 Goldwasser–

Kilian, 1986 Chudnovsky–

Chudnovsky, 1988 Atkin: ECPP,

elliptic-curve primality proving.

1985/6 (distributed 1984) Miller,

and independently

1987 (distributed 1984) Koblitz:

ECC—use elliptic curves in DH

to avoid index-calculus attacks.

5

1986 Chudnovsky–Chudnovsky,

for ECM+ECPP: analyze several

ways to represent elliptic curves;

optimize # field operations.

1987 Montgomery, for ECM:

best speed from y2 = x3+Ax2+x ,

preferably with (A− 2)=4 small.

Late 1990s: ANSI/IEEE/NIST

standards specify y2 = x3−3x +b

in Jacobian coordinates,

citing Chudnovsky–Chudnovsky.

Alleged motivation: “the fastest

arithmetic on elliptic curves”.

6

Did Chudnovsky and Chudnovsky

actually recommend this?

What about Montgomery?

What about papers after 1987?



5

1986 Chudnovsky–Chudnovsky,

for ECM+ECPP: analyze several

ways to represent elliptic curves;

optimize # field operations.

1987 Montgomery, for ECM:

best speed from y2 = x3+Ax2+x ,

preferably with (A− 2)=4 small.

Late 1990s: ANSI/IEEE/NIST

standards specify y2 = x3−3x +b

in Jacobian coordinates,

citing Chudnovsky–Chudnovsky.

Alleged motivation: “the fastest

arithmetic on elliptic curves”.

6

Did Chudnovsky and Chudnovsky

actually recommend this?

What about Montgomery?

What about papers after 1987?



5

1986 Chudnovsky–Chudnovsky,

for ECM+ECPP: analyze several

ways to represent elliptic curves;

optimize # field operations.

1987 Montgomery, for ECM:

best speed from y2 = x3+Ax2+x ,

preferably with (A− 2)=4 small.

Late 1990s: ANSI/IEEE/NIST

standards specify y2 = x3−3x +b

in Jacobian coordinates,

citing Chudnovsky–Chudnovsky.

Alleged motivation: “the fastest

arithmetic on elliptic curves”.

6

Did Chudnovsky and Chudnovsky

actually recommend this?

What about Montgomery?

What about papers after 1987?

Analyze all known options

for computing n; P 7→ nP

on conservative elliptic curves.

Montgomery ladder is the fastest.



5

1986 Chudnovsky–Chudnovsky,

for ECM+ECPP: analyze several

ways to represent elliptic curves;

optimize # field operations.

1987 Montgomery, for ECM:

best speed from y2 = x3+Ax2+x ,

preferably with (A− 2)=4 small.

Late 1990s: ANSI/IEEE/NIST

standards specify y2 = x3−3x +b

in Jacobian coordinates,

citing Chudnovsky–Chudnovsky.

Alleged motivation: “the fastest

arithmetic on elliptic curves”.

6

Did Chudnovsky and Chudnovsky

actually recommend this?

What about Montgomery?

What about papers after 1987?

Analyze all known options

for computing n; P 7→ nP

on conservative elliptic curves.

Montgomery ladder is the fastest.

Problem: Elliptic-curve formulas

always have exceptional cases.

Montgomery derives formulas for

generic inputs; for crypto we need

algorithms that always work.



5

1986 Chudnovsky–Chudnovsky,

for ECM+ECPP: analyze several

ways to represent elliptic curves;

optimize # field operations.

1987 Montgomery, for ECM:

best speed from y2 = x3+Ax2+x ,

preferably with (A− 2)=4 small.

Late 1990s: ANSI/IEEE/NIST

standards specify y2 = x3−3x +b

in Jacobian coordinates,

citing Chudnovsky–Chudnovsky.

Alleged motivation: “the fastest

arithmetic on elliptic curves”.

6

Did Chudnovsky and Chudnovsky

actually recommend this?

What about Montgomery?

What about papers after 1987?

Analyze all known options

for computing n; P 7→ nP

on conservative elliptic curves.

Montgomery ladder is the fastest.

Problem: Elliptic-curve formulas

always have exceptional cases.

Montgomery derives formulas for

generic inputs; for crypto we need

algorithms that always work.

7



5

1986 Chudnovsky–Chudnovsky,

for ECM+ECPP: analyze several

ways to represent elliptic curves;

optimize # field operations.

1987 Montgomery, for ECM:

best speed from y2 = x3+Ax2+x ,

preferably with (A− 2)=4 small.

Late 1990s: ANSI/IEEE/NIST

standards specify y2 = x3−3x +b

in Jacobian coordinates,

citing Chudnovsky–Chudnovsky.

Alleged motivation: “the fastest

arithmetic on elliptic curves”.

6

Did Chudnovsky and Chudnovsky

actually recommend this?

What about Montgomery?

What about papers after 1987?

Analyze all known options

for computing n; P 7→ nP

on conservative elliptic curves.

Montgomery ladder is the fastest.

Problem: Elliptic-curve formulas

always have exceptional cases.

Montgomery derives formulas for

generic inputs; for crypto we need

algorithms that always work.

7



5

1986 Chudnovsky–Chudnovsky,

for ECM+ECPP: analyze several

ways to represent elliptic curves;

optimize # field operations.

1987 Montgomery, for ECM:

best speed from y2 = x3+Ax2+x ,

preferably with (A− 2)=4 small.

Late 1990s: ANSI/IEEE/NIST

standards specify y2 = x3−3x +b

in Jacobian coordinates,

citing Chudnovsky–Chudnovsky.

Alleged motivation: “the fastest

arithmetic on elliptic curves”.

6

Did Chudnovsky and Chudnovsky

actually recommend this?

What about Montgomery?

What about papers after 1987?

Analyze all known options

for computing n; P 7→ nP

on conservative elliptic curves.

Montgomery ladder is the fastest.

Problem: Elliptic-curve formulas

always have exceptional cases.

Montgomery derives formulas for

generic inputs; for crypto we need

algorithms that always work.

7



6

Did Chudnovsky and Chudnovsky

actually recommend this?

What about Montgomery?

What about papers after 1987?

Analyze all known options

for computing n; P 7→ nP

on conservative elliptic curves.

Montgomery ladder is the fastest.

Problem: Elliptic-curve formulas

always have exceptional cases.

Montgomery derives formulas for

generic inputs; for crypto we need

algorithms that always work.

7



6

Did Chudnovsky and Chudnovsky

actually recommend this?

What about Montgomery?

What about papers after 1987?

Analyze all known options

for computing n; P 7→ nP

on conservative elliptic curves.

Montgomery ladder is the fastest.

Problem: Elliptic-curve formulas

always have exceptional cases.

Montgomery derives formulas for

generic inputs; for crypto we need

algorithms that always work.

7 8

But wait, it’s worse!

Crypto 1996 Kocher:

secret branches affect timing;

this leaks your secret key.



6

Did Chudnovsky and Chudnovsky

actually recommend this?

What about Montgomery?

What about papers after 1987?

Analyze all known options

for computing n; P 7→ nP

on conservative elliptic curves.

Montgomery ladder is the fastest.

Problem: Elliptic-curve formulas

always have exceptional cases.

Montgomery derives formulas for

generic inputs; for crypto we need

algorithms that always work.

7 8

But wait, it’s worse!

Crypto 1996 Kocher:

secret branches affect timing;

this leaks your secret key.



6

Did Chudnovsky and Chudnovsky

actually recommend this?

What about Montgomery?

What about papers after 1987?

Analyze all known options

for computing n; P 7→ nP

on conservative elliptic curves.

Montgomery ladder is the fastest.

Problem: Elliptic-curve formulas

always have exceptional cases.

Montgomery derives formulas for

generic inputs; for crypto we need

algorithms that always work.

7 8

But wait, it’s worse!

Crypto 1996 Kocher:

secret branches affect timing;

this leaks your secret key.



7 8

But wait, it’s worse!

Crypto 1996 Kocher:

secret branches affect timing;

this leaks your secret key.



7 8

But wait, it’s worse!

Crypto 1996 Kocher:

secret branches affect timing;

this leaks your secret key.

Briefly mentioned by Kocher

and by ESORICS 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can affect

timing via cache misses.

2002 Page, CHES 2003 Tsunoo–

Saito–Suzaki–Shigeri–Miyauchi:

timing attacks on DES.



7 8

But wait, it’s worse!

Crypto 1996 Kocher:

secret branches affect timing;

this leaks your secret key.

Briefly mentioned by Kocher

and by ESORICS 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can affect

timing via cache misses.

2002 Page, CHES 2003 Tsunoo–

Saito–Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.



7 8

But wait, it’s worse!

Crypto 1996 Kocher:

secret branches affect timing;

this leaks your secret key.

Briefly mentioned by Kocher

and by ESORICS 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can affect

timing via cache misses.

2002 Page, CHES 2003 Tsunoo–

Saito–Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.



7 8

But wait, it’s worse!

Crypto 1996 Kocher:

secret branches affect timing;

this leaks your secret key.

Briefly mentioned by Kocher

and by ESORICS 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can affect

timing via cache misses.

2002 Page, CHES 2003 Tsunoo–

Saito–Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.



8

But wait, it’s worse!

Crypto 1996 Kocher:

secret branches affect timing;

this leaks your secret key.

Briefly mentioned by Kocher

and by ESORICS 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can affect

timing via cache misses.

2002 Page, CHES 2003 Tsunoo–

Saito–Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.



8

But wait, it’s worse!

Crypto 1996 Kocher:

secret branches affect timing;

this leaks your secret key.

Briefly mentioned by Kocher

and by ESORICS 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can affect

timing via cache misses.

2002 Page, CHES 2003 Tsunoo–

Saito–Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.



8

But wait, it’s worse!

Crypto 1996 Kocher:

secret branches affect timing;

this leaks your secret key.

Briefly mentioned by Kocher

and by ESORICS 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can affect

timing via cache misses.

2002 Page, CHES 2003 Tsunoo–

Saito–Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2013 Bernstein–Schwabe

“A word of warning”:

Cheaper countermeasure

recommended by Intel isn’t safe.



8

But wait, it’s worse!

Crypto 1996 Kocher:

secret branches affect timing;

this leaks your secret key.

Briefly mentioned by Kocher

and by ESORICS 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can affect

timing via cache misses.

2002 Page, CHES 2003 Tsunoo–

Saito–Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2013 Bernstein–Schwabe

“A word of warning”:

Cheaper countermeasure

recommended by Intel isn’t safe.

10

2016: OpenSSL didn’t listen.



8

But wait, it’s worse!

Crypto 1996 Kocher:

secret branches affect timing;

this leaks your secret key.

Briefly mentioned by Kocher

and by ESORICS 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can affect

timing via cache misses.

2002 Page, CHES 2003 Tsunoo–

Saito–Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2013 Bernstein–Schwabe

“A word of warning”:

Cheaper countermeasure

recommended by Intel isn’t safe.

10

2016: OpenSSL didn’t listen.



8

But wait, it’s worse!

Crypto 1996 Kocher:

secret branches affect timing;

this leaks your secret key.

Briefly mentioned by Kocher

and by ESORICS 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can affect

timing via cache misses.

2002 Page, CHES 2003 Tsunoo–

Saito–Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2013 Bernstein–Schwabe

“A word of warning”:

Cheaper countermeasure

recommended by Intel isn’t safe.

10

2016: OpenSSL didn’t listen.



9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2013 Bernstein–Schwabe

“A word of warning”:

Cheaper countermeasure

recommended by Intel isn’t safe.

10

2016: OpenSSL didn’t listen.



9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2013 Bernstein–Schwabe

“A word of warning”:

Cheaper countermeasure

recommended by Intel isn’t safe.

10

2016: OpenSSL didn’t listen.
11

The Curve25519 paper

Avoid “all input-dependent

branches, all input-dependent array

indices, and other instructions

with input-dependent timings”.



9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2013 Bernstein–Schwabe

“A word of warning”:

Cheaper countermeasure

recommended by Intel isn’t safe.

10

2016: OpenSSL didn’t listen.
11

The Curve25519 paper

Avoid “all input-dependent

branches, all input-dependent array

indices, and other instructions

with input-dependent timings”.



9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2013 Bernstein–Schwabe

“A word of warning”:

Cheaper countermeasure

recommended by Intel isn’t safe.

10

2016: OpenSSL didn’t listen.
11

The Curve25519 paper

Avoid “all input-dependent

branches, all input-dependent array

indices, and other instructions

with input-dependent timings”.



10

2016: OpenSSL didn’t listen.
11

The Curve25519 paper

Avoid “all input-dependent

branches, all input-dependent array

indices, and other instructions

with input-dependent timings”.



10

2016: OpenSSL didn’t listen.
11

The Curve25519 paper

Avoid “all input-dependent

branches, all input-dependent array

indices, and other instructions

with input-dependent timings”.

Choose a curve y2 = x3 +Ax2 + x

where A2 − 4 is not a square.

≈25% of all elliptic curves.



10

2016: OpenSSL didn’t listen.
11

The Curve25519 paper

Avoid “all input-dependent

branches, all input-dependent array

indices, and other instructions

with input-dependent timings”.

Choose a curve y2 = x3 +Ax2 + x

where A2 − 4 is not a square.

≈25% of all elliptic curves.

Define X0(x; y) = x ; X0(∞) = 0.

Transmit each point P as X0(P ).



10

2016: OpenSSL didn’t listen.
11

The Curve25519 paper

Avoid “all input-dependent

branches, all input-dependent array

indices, and other instructions

with input-dependent timings”.

Choose a curve y2 = x3 +Ax2 + x

where A2 − 4 is not a square.

≈25% of all elliptic curves.

Define X0(x; y) = x ; X0(∞) = 0.

Transmit each point P as X0(P ).

Use the Montgomery ladder

without any extra tests.



10

2016: OpenSSL didn’t listen.
11

The Curve25519 paper

Avoid “all input-dependent

branches, all input-dependent array

indices, and other instructions

with input-dependent timings”.

Choose a curve y2 = x3 +Ax2 + x

where A2 − 4 is not a square.

≈25% of all elliptic curves.

Define X0(x; y) = x ; X0(∞) = 0.

Transmit each point P as X0(P ).

Use the Montgomery ladder

without any extra tests.

Theorem: Output is X0(nP ).



10

2016: OpenSSL didn’t listen.
11

The Curve25519 paper

Avoid “all input-dependent

branches, all input-dependent array

indices, and other instructions

with input-dependent timings”.

Choose a curve y2 = x3 +Ax2 + x

where A2 − 4 is not a square.

≈25% of all elliptic curves.

Define X0(x; y) = x ; X0(∞) = 0.

Transmit each point P as X0(P ).

Use the Montgomery ladder

without any extra tests.

Theorem: Output is X0(nP ).

12

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)



10

2016: OpenSSL didn’t listen.
11

The Curve25519 paper

Avoid “all input-dependent

branches, all input-dependent array

indices, and other instructions

with input-dependent timings”.

Choose a curve y2 = x3 +Ax2 + x

where A2 − 4 is not a square.

≈25% of all elliptic curves.

Define X0(x; y) = x ; X0(∞) = 0.

Transmit each point P as X0(P ).

Use the Montgomery ladder

without any extra tests.

Theorem: Output is X0(nP ).

12

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)



10

2016: OpenSSL didn’t listen.
11

The Curve25519 paper

Avoid “all input-dependent

branches, all input-dependent array

indices, and other instructions

with input-dependent timings”.

Choose a curve y2 = x3 +Ax2 + x

where A2 − 4 is not a square.

≈25% of all elliptic curves.

Define X0(x; y) = x ; X0(∞) = 0.

Transmit each point P as X0(P ).

Use the Montgomery ladder

without any extra tests.

Theorem: Output is X0(nP ).

12

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)



11

The Curve25519 paper

Avoid “all input-dependent

branches, all input-dependent array

indices, and other instructions

with input-dependent timings”.

Choose a curve y2 = x3 +Ax2 + x

where A2 − 4 is not a square.

≈25% of all elliptic curves.

Define X0(x; y) = x ; X0(∞) = 0.

Transmit each point P as X0(P ).

Use the Montgomery ladder

without any extra tests.

Theorem: Output is X0(nP ).

12

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)



11

The Curve25519 paper

Avoid “all input-dependent

branches, all input-dependent array

indices, and other instructions

with input-dependent timings”.

Choose a curve y2 = x3 +Ax2 + x

where A2 − 4 is not a square.

≈25% of all elliptic curves.

Define X0(x; y) = x ; X0(∞) = 0.

Transmit each point P as X0(P ).

Use the Montgomery ladder

without any extra tests.

Theorem: Output is X0(nP ).

12

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

13

Montgomery has variable #loops,

depending on top bit of n.



11

The Curve25519 paper

Avoid “all input-dependent

branches, all input-dependent array

indices, and other instructions

with input-dependent timings”.

Choose a curve y2 = x3 +Ax2 + x

where A2 − 4 is not a square.

≈25% of all elliptic curves.

Define X0(x; y) = x ; X0(∞) = 0.

Transmit each point P as X0(P ).

Use the Montgomery ladder

without any extra tests.

Theorem: Output is X0(nP ).

12

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

13

Montgomery has variable #loops,

depending on top bit of n.



11

The Curve25519 paper

Avoid “all input-dependent

branches, all input-dependent array

indices, and other instructions

with input-dependent timings”.

Choose a curve y2 = x3 +Ax2 + x

where A2 − 4 is not a square.

≈25% of all elliptic curves.

Define X0(x; y) = x ; X0(∞) = 0.

Transmit each point P as X0(P ).

Use the Montgomery ladder

without any extra tests.

Theorem: Output is X0(nP ).

12

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

13

Montgomery has variable #loops,

depending on top bit of n.



12

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

13

Montgomery has variable #loops,

depending on top bit of n.



12

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

13

Montgomery has variable #loops,

depending on top bit of n.

Curve25519: Change initialization

to allow leading 0 bits.

Use constant #loops.



12

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

13

Montgomery has variable #loops,

depending on top bit of n.

Curve25519: Change initialization

to allow leading 0 bits.

Use constant #loops.

Also define scalars n

to never have leading 0 bits,

so original Montgomery ladder

still takes constant time.



12

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

13

Montgomery has variable #loops,

depending on top bit of n.

Curve25519: Change initialization

to allow leading 0 bits.

Use constant #loops.

Also define scalars n

to never have leading 0 bits,

so original Montgomery ladder

still takes constant time.

Use arithmetic to compute

cswap in constant time.



12

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

13

Montgomery has variable #loops,

depending on top bit of n.

Curve25519: Change initialization

to allow leading 0 bits.

Use constant #loops.

Also define scalars n

to never have leading 0 bits,

so original Montgomery ladder

still takes constant time.

Use arithmetic to compute

cswap in constant time.

14

“Hey, you forgot to check that

the input is on the curve!”



12

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

13

Montgomery has variable #loops,

depending on top bit of n.

Curve25519: Change initialization

to allow leading 0 bits.

Use constant #loops.

Also define scalars n

to never have leading 0 bits,

so original Montgomery ladder

still takes constant time.

Use arithmetic to compute

cswap in constant time.

14

“Hey, you forgot to check that

the input is on the curve!”



12

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

13

Montgomery has variable #loops,

depending on top bit of n.

Curve25519: Change initialization

to allow leading 0 bits.

Use constant #loops.

Also define scalars n

to never have leading 0 bits,

so original Montgomery ladder

still takes constant time.

Use arithmetic to compute

cswap in constant time.

14

“Hey, you forgot to check that

the input is on the curve!”



13

Montgomery has variable #loops,

depending on top bit of n.

Curve25519: Change initialization

to allow leading 0 bits.

Use constant #loops.

Also define scalars n

to never have leading 0 bits,

so original Montgomery ladder

still takes constant time.

Use arithmetic to compute

cswap in constant time.

14

“Hey, you forgot to check that

the input is on the curve!”



13

Montgomery has variable #loops,

depending on top bit of n.

Curve25519: Change initialization

to allow leading 0 bits.

Use constant #loops.

Also define scalars n

to never have leading 0 bits,

so original Montgomery ladder

still takes constant time.

Use arithmetic to compute

cswap in constant time.

14

“Hey, you forgot to check that

the input is on the curve!”

Conventional wisdom: Important

to check; otherwise broken by

Crypto 2000 Biehl–Meyer–Müller.



13

Montgomery has variable #loops,

depending on top bit of n.

Curve25519: Change initialization

to allow leading 0 bits.

Use constant #loops.

Also define scalars n

to never have leading 0 bits,

so original Montgomery ladder

still takes constant time.

Use arithmetic to compute

cswap in constant time.

14

“Hey, you forgot to check that

the input is on the curve!”

Conventional wisdom: Important

to check; otherwise broken by

Crypto 2000 Biehl–Meyer–Müller.

ESORICS 2015 Jager–Schwenk–

Somorovsky: Successful attacks!

Checking is easy to forget.



13

Montgomery has variable #loops,

depending on top bit of n.

Curve25519: Change initialization

to allow leading 0 bits.

Use constant #loops.

Also define scalars n

to never have leading 0 bits,

so original Montgomery ladder

still takes constant time.

Use arithmetic to compute

cswap in constant time.

14

“Hey, you forgot to check that

the input is on the curve!”

Conventional wisdom: Important

to check; otherwise broken by

Crypto 2000 Biehl–Meyer–Müller.

ESORICS 2015 Jager–Schwenk–

Somorovsky: Successful attacks!

Checking is easy to forget.

15

Curve25519 paper:

“free key validation”

eliminates these attacks.

No cost for checking input;

no code to forget.



13

Montgomery has variable #loops,

depending on top bit of n.

Curve25519: Change initialization

to allow leading 0 bits.

Use constant #loops.

Also define scalars n

to never have leading 0 bits,

so original Montgomery ladder

still takes constant time.

Use arithmetic to compute

cswap in constant time.

14

“Hey, you forgot to check that

the input is on the curve!”

Conventional wisdom: Important

to check; otherwise broken by

Crypto 2000 Biehl–Meyer–Müller.

ESORICS 2015 Jager–Schwenk–

Somorovsky: Successful attacks!

Checking is easy to forget.

15

Curve25519 paper:

“free key validation”

eliminates these attacks.

No cost for checking input;

no code to forget.



13

Montgomery has variable #loops,

depending on top bit of n.

Curve25519: Change initialization

to allow leading 0 bits.

Use constant #loops.

Also define scalars n

to never have leading 0 bits,

so original Montgomery ladder

still takes constant time.

Use arithmetic to compute

cswap in constant time.

14

“Hey, you forgot to check that

the input is on the curve!”

Conventional wisdom: Important

to check; otherwise broken by

Crypto 2000 Biehl–Meyer–Müller.

ESORICS 2015 Jager–Schwenk–

Somorovsky: Successful attacks!

Checking is easy to forget.

15

Curve25519 paper:

“free key validation”

eliminates these attacks.

No cost for checking input;

no code to forget.



14

“Hey, you forgot to check that

the input is on the curve!”

Conventional wisdom: Important

to check; otherwise broken by

Crypto 2000 Biehl–Meyer–Müller.

ESORICS 2015 Jager–Schwenk–

Somorovsky: Successful attacks!

Checking is easy to forget.

15

Curve25519 paper:

“free key validation”

eliminates these attacks.

No cost for checking input;

no code to forget.



14

“Hey, you forgot to check that

the input is on the curve!”

Conventional wisdom: Important

to check; otherwise broken by

Crypto 2000 Biehl–Meyer–Müller.

ESORICS 2015 Jager–Schwenk–

Somorovsky: Successful attacks!

Checking is easy to forget.

15

Curve25519 paper:

“free key validation”

eliminates these attacks.

No cost for checking input;

no code to forget.

1. Montgomery naturally

follows 1986 Miller compression:

send only x-coordinate, not (x; y).

Forces input onto “curve” or

“twist”. (Bonus: 32-byte keys!)



14

“Hey, you forgot to check that

the input is on the curve!”

Conventional wisdom: Important

to check; otherwise broken by

Crypto 2000 Biehl–Meyer–Müller.

ESORICS 2015 Jager–Schwenk–

Somorovsky: Successful attacks!

Checking is easy to forget.

15

Curve25519 paper:

“free key validation”

eliminates these attacks.

No cost for checking input;

no code to forget.

1. Montgomery naturally

follows 1986 Miller compression:

send only x-coordinate, not (x; y).

Forces input onto “curve” or

“twist”. (Bonus: 32-byte keys!)

2. Montgomery ladder works

correctly for inputs on twist.



14

“Hey, you forgot to check that

the input is on the curve!”

Conventional wisdom: Important

to check; otherwise broken by

Crypto 2000 Biehl–Meyer–Müller.

ESORICS 2015 Jager–Schwenk–

Somorovsky: Successful attacks!

Checking is easy to forget.

15

Curve25519 paper:

“free key validation”

eliminates these attacks.

No cost for checking input;

no code to forget.

1. Montgomery naturally

follows 1986 Miller compression:

send only x-coordinate, not (x; y).

Forces input onto “curve” or

“twist”. (Bonus: 32-byte keys!)

2. Montgomery ladder works

correctly for inputs on twist.

3. Choose twist-secure curve.



14

“Hey, you forgot to check that

the input is on the curve!”

Conventional wisdom: Important

to check; otherwise broken by

Crypto 2000 Biehl–Meyer–Müller.

ESORICS 2015 Jager–Schwenk–

Somorovsky: Successful attacks!

Checking is easy to forget.

15

Curve25519 paper:

“free key validation”

eliminates these attacks.

No cost for checking input;

no code to forget.

1. Montgomery naturally

follows 1986 Miller compression:

send only x-coordinate, not (x; y).

Forces input onto “curve” or

“twist”. (Bonus: 32-byte keys!)

2. Montgomery ladder works

correctly for inputs on twist.

3. Choose twist-secure curve.

16

Longest section in Curve25519

paper: fast finite-field arithmetic,

improving on algorithm designs

from 1999–2004 Bernstein.



14

“Hey, you forgot to check that

the input is on the curve!”

Conventional wisdom: Important

to check; otherwise broken by

Crypto 2000 Biehl–Meyer–Müller.

ESORICS 2015 Jager–Schwenk–

Somorovsky: Successful attacks!

Checking is easy to forget.

15

Curve25519 paper:

“free key validation”

eliminates these attacks.

No cost for checking input;

no code to forget.

1. Montgomery naturally

follows 1986 Miller compression:

send only x-coordinate, not (x; y).

Forces input onto “curve” or

“twist”. (Bonus: 32-byte keys!)

2. Montgomery ladder works

correctly for inputs on twist.

3. Choose twist-secure curve.

16

Longest section in Curve25519

paper: fast finite-field arithmetic,

improving on algorithm designs

from 1999–2004 Bernstein.



14

“Hey, you forgot to check that

the input is on the curve!”

Conventional wisdom: Important

to check; otherwise broken by

Crypto 2000 Biehl–Meyer–Müller.

ESORICS 2015 Jager–Schwenk–

Somorovsky: Successful attacks!

Checking is easy to forget.

15

Curve25519 paper:

“free key validation”

eliminates these attacks.

No cost for checking input;

no code to forget.

1. Montgomery naturally

follows 1986 Miller compression:

send only x-coordinate, not (x; y).

Forces input onto “curve” or

“twist”. (Bonus: 32-byte keys!)

2. Montgomery ladder works

correctly for inputs on twist.

3. Choose twist-secure curve.

16

Longest section in Curve25519

paper: fast finite-field arithmetic,

improving on algorithm designs

from 1999–2004 Bernstein.



15

Curve25519 paper:

“free key validation”

eliminates these attacks.

No cost for checking input;

no code to forget.

1. Montgomery naturally

follows 1986 Miller compression:

send only x-coordinate, not (x; y).

Forces input onto “curve” or

“twist”. (Bonus: 32-byte keys!)

2. Montgomery ladder works

correctly for inputs on twist.

3. Choose twist-secure curve.

16

Longest section in Curve25519

paper: fast finite-field arithmetic,

improving on algorithm designs

from 1999–2004 Bernstein.



15

Curve25519 paper:

“free key validation”

eliminates these attacks.

No cost for checking input;

no code to forget.

1. Montgomery naturally

follows 1986 Miller compression:

send only x-coordinate, not (x; y).

Forces input onto “curve” or

“twist”. (Bonus: 32-byte keys!)

2. Montgomery ladder works

correctly for inputs on twist.

3. Choose twist-secure curve.

16

Longest section in Curve25519

paper: fast finite-field arithmetic,

improving on algorithm designs

from 1999–2004 Bernstein.

Barely mentioned in paper:

new programming language.



15

Curve25519 paper:

“free key validation”

eliminates these attacks.

No cost for checking input;

no code to forget.

1. Montgomery naturally

follows 1986 Miller compression:

send only x-coordinate, not (x; y).

Forces input onto “curve” or

“twist”. (Bonus: 32-byte keys!)

2. Montgomery ladder works

correctly for inputs on twist.

3. Choose twist-secure curve.

16

Longest section in Curve25519

paper: fast finite-field arithmetic,

improving on algorithm designs

from 1999–2004 Bernstein.

Barely mentioned in paper:

new programming language.

New prime 2255 − 19.

Faster than NIST P-256 prime

2256 − 2224 + 2192 + 296 − 1.

“Prime fields also have

the virtue of minimizing the

number of security concerns for

elliptic-curve cryptography.”



15

Curve25519 paper:

“free key validation”

eliminates these attacks.

No cost for checking input;

no code to forget.

1. Montgomery naturally

follows 1986 Miller compression:

send only x-coordinate, not (x; y).

Forces input onto “curve” or

“twist”. (Bonus: 32-byte keys!)

2. Montgomery ladder works

correctly for inputs on twist.

3. Choose twist-secure curve.

16

Longest section in Curve25519

paper: fast finite-field arithmetic,

improving on algorithm designs

from 1999–2004 Bernstein.

Barely mentioned in paper:

new programming language.

New prime 2255 − 19.

Faster than NIST P-256 prime

2256 − 2224 + 2192 + 296 − 1.

“Prime fields also have

the virtue of minimizing the

number of security concerns for

elliptic-curve cryptography.”

17

Curve25519 paper specified a

multi-user DH system. See

1976 Diffie–Hellman; also, e.g.,

1999 Rescorla “static-static

mode”; 2006 NIST “C(0,2)”.



15

Curve25519 paper:

“free key validation”

eliminates these attacks.

No cost for checking input;

no code to forget.

1. Montgomery naturally

follows 1986 Miller compression:

send only x-coordinate, not (x; y).

Forces input onto “curve” or

“twist”. (Bonus: 32-byte keys!)

2. Montgomery ladder works

correctly for inputs on twist.

3. Choose twist-secure curve.

16

Longest section in Curve25519

paper: fast finite-field arithmetic,

improving on algorithm designs

from 1999–2004 Bernstein.

Barely mentioned in paper:

new programming language.

New prime 2255 − 19.

Faster than NIST P-256 prime

2256 − 2224 + 2192 + 296 − 1.

“Prime fields also have

the virtue of minimizing the

number of security concerns for

elliptic-curve cryptography.”

17

Curve25519 paper specified a

multi-user DH system. See

1976 Diffie–Hellman; also, e.g.,

1999 Rescorla “static-static

mode”; 2006 NIST “C(0,2)”.



15

Curve25519 paper:

“free key validation”

eliminates these attacks.

No cost for checking input;

no code to forget.

1. Montgomery naturally

follows 1986 Miller compression:

send only x-coordinate, not (x; y).

Forces input onto “curve” or

“twist”. (Bonus: 32-byte keys!)

2. Montgomery ladder works

correctly for inputs on twist.

3. Choose twist-secure curve.

16

Longest section in Curve25519

paper: fast finite-field arithmetic,

improving on algorithm designs

from 1999–2004 Bernstein.

Barely mentioned in paper:

new programming language.

New prime 2255 − 19.

Faster than NIST P-256 prime

2256 − 2224 + 2192 + 296 − 1.

“Prime fields also have

the virtue of minimizing the

number of security concerns for

elliptic-curve cryptography.”

17

Curve25519 paper specified a

multi-user DH system. See

1976 Diffie–Hellman; also, e.g.,

1999 Rescorla “static-static

mode”; 2006 NIST “C(0,2)”.



16

Longest section in Curve25519

paper: fast finite-field arithmetic,

improving on algorithm designs

from 1999–2004 Bernstein.

Barely mentioned in paper:

new programming language.

New prime 2255 − 19.

Faster than NIST P-256 prime

2256 − 2224 + 2192 + 296 − 1.

“Prime fields also have

the virtue of minimizing the

number of security concerns for

elliptic-curve cryptography.”

17

Curve25519 paper specified a

multi-user DH system. See

1976 Diffie–Hellman; also, e.g.,

1999 Rescorla “static-static

mode”; 2006 NIST “C(0,2)”.



16

Longest section in Curve25519

paper: fast finite-field arithmetic,

improving on algorithm designs

from 1999–2004 Bernstein.

Barely mentioned in paper:

new programming language.

New prime 2255 − 19.

Faster than NIST P-256 prime

2256 − 2224 + 2192 + 296 − 1.

“Prime fields also have

the virtue of minimizing the

number of security concerns for

elliptic-curve cryptography.”

17

Curve25519 paper specified a

multi-user DH system. See

1976 Diffie–Hellman; also, e.g.,

1999 Rescorla “static-static

mode”; 2006 NIST “C(0,2)”.

Included security survey:

• Reductions: intolerably loose.

• Known attack ideas: rho etc.

• Multi-user batch attacks.

• Special-purpose hardware:

160-bit ECC is breakable.

• Small-subgroup attacks,

invalid-curve attacks, etc.



16

Longest section in Curve25519

paper: fast finite-field arithmetic,

improving on algorithm designs

from 1999–2004 Bernstein.

Barely mentioned in paper:

new programming language.

New prime 2255 − 19.

Faster than NIST P-256 prime

2256 − 2224 + 2192 + 296 − 1.

“Prime fields also have

the virtue of minimizing the

number of security concerns for

elliptic-curve cryptography.”

17

Curve25519 paper specified a

multi-user DH system. See

1976 Diffie–Hellman; also, e.g.,

1999 Rescorla “static-static

mode”; 2006 NIST “C(0,2)”.

Included security survey:

• Reductions: intolerably loose.

• Known attack ideas: rho etc.

• Multi-user batch attacks.

• Special-purpose hardware:

160-bit ECC is breakable.

• Small-subgroup attacks,

invalid-curve attacks, etc.

18

2015: Beware batch attacks.



16

Longest section in Curve25519

paper: fast finite-field arithmetic,

improving on algorithm designs

from 1999–2004 Bernstein.

Barely mentioned in paper:

new programming language.

New prime 2255 − 19.

Faster than NIST P-256 prime

2256 − 2224 + 2192 + 296 − 1.

“Prime fields also have

the virtue of minimizing the

number of security concerns for

elliptic-curve cryptography.”

17

Curve25519 paper specified a

multi-user DH system. See

1976 Diffie–Hellman; also, e.g.,

1999 Rescorla “static-static

mode”; 2006 NIST “C(0,2)”.

Included security survey:

• Reductions: intolerably loose.

• Known attack ideas: rho etc.

• Multi-user batch attacks.

• Special-purpose hardware:

160-bit ECC is breakable.

• Small-subgroup attacks,

invalid-curve attacks, etc.

18

2015: Beware batch attacks.



16

Longest section in Curve25519

paper: fast finite-field arithmetic,

improving on algorithm designs

from 1999–2004 Bernstein.

Barely mentioned in paper:

new programming language.

New prime 2255 − 19.

Faster than NIST P-256 prime

2256 − 2224 + 2192 + 296 − 1.

“Prime fields also have

the virtue of minimizing the

number of security concerns for

elliptic-curve cryptography.”

17

Curve25519 paper specified a

multi-user DH system. See

1976 Diffie–Hellman; also, e.g.,

1999 Rescorla “static-static

mode”; 2006 NIST “C(0,2)”.

Included security survey:

• Reductions: intolerably loose.

• Known attack ideas: rho etc.

• Multi-user batch attacks.

• Special-purpose hardware:

160-bit ECC is breakable.

• Small-subgroup attacks,

invalid-curve attacks, etc.

18

2015: Beware batch attacks.



17

Curve25519 paper specified a

multi-user DH system. See

1976 Diffie–Hellman; also, e.g.,

1999 Rescorla “static-static

mode”; 2006 NIST “C(0,2)”.

Included security survey:

• Reductions: intolerably loose.

• Known attack ideas: rho etc.

• Multi-user batch attacks.

• Special-purpose hardware:

160-bit ECC is breakable.

• Small-subgroup attacks,

invalid-curve attacks, etc.

18

2015: Beware batch attacks.



17

Curve25519 paper specified a

multi-user DH system. See

1976 Diffie–Hellman; also, e.g.,

1999 Rescorla “static-static

mode”; 2006 NIST “C(0,2)”.

Included security survey:

• Reductions: intolerably loose.

• Known attack ideas: rho etc.

• Multi-user batch attacks.

• Special-purpose hardware:

160-bit ECC is breakable.

• Small-subgroup attacks,

invalid-curve attacks, etc.

18

2015: Beware batch attacks.
19

Paper sketched common-sense

attack model, including

composition with subsequent

multi-user secret-key system

(as in, e.g., 2001 Bernstein

“public-key authenticators”);

attacks on secret-key system

(the motivation given for

“Reveal” queries in PKC 2013

Freire–Hofheinz–Kiltz–Paterson);

dishonest key registrations

(as in, e.g., Eurocrypt 2008

Cash–Kiltz–Shoup);

keys as strings (allows modeling,

e.g., 2000 Biehl–Meyer–Müller).



17

Curve25519 paper specified a

multi-user DH system. See

1976 Diffie–Hellman; also, e.g.,

1999 Rescorla “static-static

mode”; 2006 NIST “C(0,2)”.

Included security survey:

• Reductions: intolerably loose.

• Known attack ideas: rho etc.

• Multi-user batch attacks.

• Special-purpose hardware:

160-bit ECC is breakable.

• Small-subgroup attacks,

invalid-curve attacks, etc.

18

2015: Beware batch attacks.
19

Paper sketched common-sense

attack model, including

composition with subsequent

multi-user secret-key system

(as in, e.g., 2001 Bernstein

“public-key authenticators”);

attacks on secret-key system

(the motivation given for

“Reveal” queries in PKC 2013

Freire–Hofheinz–Kiltz–Paterson);

dishonest key registrations

(as in, e.g., Eurocrypt 2008

Cash–Kiltz–Shoup);

keys as strings (allows modeling,

e.g., 2000 Biehl–Meyer–Müller).



17

Curve25519 paper specified a

multi-user DH system. See

1976 Diffie–Hellman; also, e.g.,

1999 Rescorla “static-static

mode”; 2006 NIST “C(0,2)”.

Included security survey:

• Reductions: intolerably loose.

• Known attack ideas: rho etc.

• Multi-user batch attacks.

• Special-purpose hardware:

160-bit ECC is breakable.

• Small-subgroup attacks,

invalid-curve attacks, etc.

18

2015: Beware batch attacks.
19

Paper sketched common-sense

attack model, including

composition with subsequent

multi-user secret-key system

(as in, e.g., 2001 Bernstein

“public-key authenticators”);

attacks on secret-key system

(the motivation given for

“Reveal” queries in PKC 2013

Freire–Hofheinz–Kiltz–Paterson);

dishonest key registrations

(as in, e.g., Eurocrypt 2008

Cash–Kiltz–Shoup);

keys as strings (allows modeling,

e.g., 2000 Biehl–Meyer–Müller).



18

2015: Beware batch attacks.
19

Paper sketched common-sense

attack model, including

composition with subsequent

multi-user secret-key system

(as in, e.g., 2001 Bernstein

“public-key authenticators”);

attacks on secret-key system

(the motivation given for

“Reveal” queries in PKC 2013

Freire–Hofheinz–Kiltz–Paterson);

dishonest key registrations

(as in, e.g., Eurocrypt 2008

Cash–Kiltz–Shoup);

keys as strings (allows modeling,

e.g., 2000 Biehl–Meyer–Müller).



18

2015: Beware batch attacks.
19

Paper sketched common-sense

attack model, including

composition with subsequent

multi-user secret-key system

(as in, e.g., 2001 Bernstein

“public-key authenticators”);

attacks on secret-key system

(the motivation given for

“Reveal” queries in PKC 2013

Freire–Hofheinz–Kiltz–Paterson);

dishonest key registrations

(as in, e.g., Eurocrypt 2008

Cash–Kiltz–Shoup);

keys as strings (allows modeling,

e.g., 2000 Biehl–Meyer–Müller).

20



18

2015: Beware batch attacks.
19

Paper sketched common-sense

attack model, including

composition with subsequent

multi-user secret-key system

(as in, e.g., 2001 Bernstein

“public-key authenticators”);

attacks on secret-key system

(the motivation given for

“Reveal” queries in PKC 2013

Freire–Hofheinz–Kiltz–Paterson);

dishonest key registrations

(as in, e.g., Eurocrypt 2008

Cash–Kiltz–Shoup);

keys as strings (allows modeling,

e.g., 2000 Biehl–Meyer–Müller).

20



18

2015: Beware batch attacks.
19

Paper sketched common-sense

attack model, including

composition with subsequent

multi-user secret-key system

(as in, e.g., 2001 Bernstein

“public-key authenticators”);

attacks on secret-key system

(the motivation given for

“Reveal” queries in PKC 2013

Freire–Hofheinz–Kiltz–Paterson);

dishonest key registrations

(as in, e.g., Eurocrypt 2008

Cash–Kiltz–Shoup);

keys as strings (allows modeling,

e.g., 2000 Biehl–Meyer–Müller).

20



19

Paper sketched common-sense

attack model, including

composition with subsequent

multi-user secret-key system

(as in, e.g., 2001 Bernstein

“public-key authenticators”);

attacks on secret-key system

(the motivation given for

“Reveal” queries in PKC 2013

Freire–Hofheinz–Kiltz–Paterson);

dishonest key registrations

(as in, e.g., Eurocrypt 2008

Cash–Kiltz–Shoup);

keys as strings (allows modeling,

e.g., 2000 Biehl–Meyer–Müller).

20



19

Paper sketched common-sense

attack model, including

composition with subsequent

multi-user secret-key system

(as in, e.g., 2001 Bernstein

“public-key authenticators”);

attacks on secret-key system

(the motivation given for

“Reveal” queries in PKC 2013

Freire–Hofheinz–Kiltz–Paterson);

dishonest key registrations

(as in, e.g., Eurocrypt 2008

Cash–Kiltz–Shoup);

keys as strings (allows modeling,

e.g., 2000 Biehl–Meyer–Müller).

20 21

Email from program chairs:

It is my pleasure to inform you

that your paper "Curve25519:

new Diffie-Hellman speed

records" was accepted to

PKC’06. Congratulations!



19

Paper sketched common-sense

attack model, including

composition with subsequent

multi-user secret-key system

(as in, e.g., 2001 Bernstein

“public-key authenticators”);

attacks on secret-key system

(the motivation given for

“Reveal” queries in PKC 2013

Freire–Hofheinz–Kiltz–Paterson);

dishonest key registrations

(as in, e.g., Eurocrypt 2008

Cash–Kiltz–Shoup);

keys as strings (allows modeling,

e.g., 2000 Biehl–Meyer–Müller).

20 21

Email from program chairs:

It is my pleasure to inform you

that your paper "Curve25519:

new Diffie-Hellman speed

records" was accepted to

PKC’06. Congratulations!



19

Paper sketched common-sense

attack model, including

composition with subsequent

multi-user secret-key system

(as in, e.g., 2001 Bernstein

“public-key authenticators”);

attacks on secret-key system

(the motivation given for

“Reveal” queries in PKC 2013

Freire–Hofheinz–Kiltz–Paterson);

dishonest key registrations

(as in, e.g., Eurocrypt 2008

Cash–Kiltz–Shoup);

keys as strings (allows modeling,

e.g., 2000 Biehl–Meyer–Müller).

20 21

Email from program chairs:

It is my pleasure to inform you

that your paper "Curve25519:

new Diffie-Hellman speed

records" was accepted to

PKC’06. Congratulations!



20 21

Email from program chairs:

It is my pleasure to inform you

that your paper "Curve25519:

new Diffie-Hellman speed

records" was accepted to

PKC’06. Congratulations!



20 21

Email from program chairs:

It is my pleasure to inform you

that your paper "Curve25519:

new Diffie-Hellman speed

records" was accepted to

PKC’06. Congratulations!

Below please find the reviewers’

comments on your paper

"Curve25519: new Diffie-

Hellman speed records"

that was submitted to PKC 2006.



20 21

Email from program chairs:

It is my pleasure to inform you

that your paper "Curve25519:

new Diffie-Hellman speed

records" was accepted to

PKC’06. Congratulations!

Below please find the reviewers’

comments on your paper

"Curve25519: new Diffie-

Hellman speed records"

that was submitted to PKC 2006.

22

Reviewer #1:

While I think (frankly) that

this is a nice engineering work,

I think that this is not a

"real" research paper.

I don’t question the

correctness but I question

the appropriateness of the

paper to the conference.

So engineering isn’t research?



20 21

Email from program chairs:

It is my pleasure to inform you

that your paper "Curve25519:

new Diffie-Hellman speed

records" was accepted to

PKC’06. Congratulations!

Below please find the reviewers’

comments on your paper

"Curve25519: new Diffie-

Hellman speed records"

that was submitted to PKC 2006.

22

Reviewer #1:

While I think (frankly) that

this is a nice engineering work,

I think that this is not a

"real" research paper.

I don’t question the

correctness but I question

the appropriateness of the

paper to the conference.

So engineering isn’t research?



20 21

Email from program chairs:

It is my pleasure to inform you

that your paper "Curve25519:

new Diffie-Hellman speed

records" was accepted to

PKC’06. Congratulations!

Below please find the reviewers’

comments on your paper

"Curve25519: new Diffie-

Hellman speed records"

that was submitted to PKC 2006.

22

Reviewer #1:

While I think (frankly) that

this is a nice engineering work,

I think that this is not a

"real" research paper.

I don’t question the

correctness but I question

the appropriateness of the

paper to the conference.

So engineering isn’t research?



21

Email from program chairs:

It is my pleasure to inform you

that your paper "Curve25519:

new Diffie-Hellman speed

records" was accepted to

PKC’06. Congratulations!

Below please find the reviewers’

comments on your paper

"Curve25519: new Diffie-

Hellman speed records"

that was submitted to PKC 2006.

22

Reviewer #1:

While I think (frankly) that

this is a nice engineering work,

I think that this is not a

"real" research paper.

I don’t question the

correctness but I question

the appropriateness of the

paper to the conference.

So engineering isn’t research?



21

Email from program chairs:

It is my pleasure to inform you

that your paper "Curve25519:

new Diffie-Hellman speed

records" was accepted to

PKC’06. Congratulations!

Below please find the reviewers’

comments on your paper

"Curve25519: new Diffie-

Hellman speed records"

that was submitted to PKC 2006.

22

Reviewer #1:

While I think (frankly) that

this is a nice engineering work,

I think that this is not a

"real" research paper.

I don’t question the

correctness but I question

the appropriateness of the

paper to the conference.

So engineering isn’t research?

23

Reviewer #2:

... benefits including protection

against timing attacks, no

apparrent patent infringements,

and very good speed. ...

On the negative side, the paper

does not introduce novel ideas,

nor does it attempt to prove

things rigorously (the word

"conjecture" is used repeatedly

throughout). It is principally

a considerable engineering

achievement.



21

Email from program chairs:

It is my pleasure to inform you

that your paper "Curve25519:

new Diffie-Hellman speed

records" was accepted to

PKC’06. Congratulations!

Below please find the reviewers’

comments on your paper

"Curve25519: new Diffie-

Hellman speed records"

that was submitted to PKC 2006.

22

Reviewer #1:

While I think (frankly) that

this is a nice engineering work,

I think that this is not a

"real" research paper.

I don’t question the

correctness but I question

the appropriateness of the

paper to the conference.

So engineering isn’t research?

23

Reviewer #2:

... benefits including protection

against timing attacks, no

apparrent patent infringements,

and very good speed. ...

On the negative side, the paper

does not introduce novel ideas,

nor does it attempt to prove

things rigorously (the word

"conjecture" is used repeatedly

throughout). It is principally

a considerable engineering

achievement.



21

Email from program chairs:

It is my pleasure to inform you

that your paper "Curve25519:

new Diffie-Hellman speed

records" was accepted to

PKC’06. Congratulations!

Below please find the reviewers’

comments on your paper

"Curve25519: new Diffie-

Hellman speed records"

that was submitted to PKC 2006.

22

Reviewer #1:

While I think (frankly) that

this is a nice engineering work,

I think that this is not a

"real" research paper.

I don’t question the

correctness but I question

the appropriateness of the

paper to the conference.

So engineering isn’t research?

23

Reviewer #2:

... benefits including protection

against timing attacks, no

apparrent patent infringements,

and very good speed. ...

On the negative side, the paper

does not introduce novel ideas,

nor does it attempt to prove

things rigorously (the word

"conjecture" is used repeatedly

throughout). It is principally

a considerable engineering

achievement.



22

Reviewer #1:

While I think (frankly) that

this is a nice engineering work,

I think that this is not a

"real" research paper.

I don’t question the

correctness but I question

the appropriateness of the

paper to the conference.

So engineering isn’t research?

23

Reviewer #2:

... benefits including protection

against timing attacks, no

apparrent patent infringements,

and very good speed. ...

On the negative side, the paper

does not introduce novel ideas,

nor does it attempt to prove

things rigorously (the word

"conjecture" is used repeatedly

throughout). It is principally

a considerable engineering

achievement.



22

Reviewer #1:

While I think (frankly) that

this is a nice engineering work,

I think that this is not a

"real" research paper.

I don’t question the

correctness but I question

the appropriateness of the

paper to the conference.

So engineering isn’t research?

23

Reviewer #2:

... benefits including protection

against timing attacks, no

apparrent patent infringements,

and very good speed. ...

On the negative side, the paper

does not introduce novel ideas,

nor does it attempt to prove

things rigorously (the word

"conjecture" is used repeatedly

throughout). It is principally

a considerable engineering

achievement.

24

e.g. “Breaking the Curve25519

function—for example, computing

the shared secret from the two

public keys—is conjectured to be

extremely difficult. Every known

attack is more expensive than

performing a brute-force search

on a typical 128-bit secret-key

cipher. : : : Curves of this shape

have order divisible by 4, requiring

a marginally larger prime for the

same conjectured security level,

but this is outweighed by the

extra speed of curve operations.”



22

Reviewer #1:

While I think (frankly) that

this is a nice engineering work,

I think that this is not a

"real" research paper.

I don’t question the

correctness but I question

the appropriateness of the

paper to the conference.

So engineering isn’t research?

23

Reviewer #2:

... benefits including protection

against timing attacks, no

apparrent patent infringements,

and very good speed. ...

On the negative side, the paper

does not introduce novel ideas,

nor does it attempt to prove

things rigorously (the word

"conjecture" is used repeatedly

throughout). It is principally

a considerable engineering

achievement.

24

e.g. “Breaking the Curve25519

function—for example, computing

the shared secret from the two

public keys—is conjectured to be

extremely difficult. Every known

attack is more expensive than

performing a brute-force search

on a typical 128-bit secret-key

cipher. : : : Curves of this shape

have order divisible by 4, requiring

a marginally larger prime for the

same conjectured security level,

but this is outweighed by the

extra speed of curve operations.”



22

Reviewer #1:

While I think (frankly) that

this is a nice engineering work,

I think that this is not a

"real" research paper.

I don’t question the

correctness but I question

the appropriateness of the

paper to the conference.

So engineering isn’t research?

23

Reviewer #2:

... benefits including protection

against timing attacks, no

apparrent patent infringements,

and very good speed. ...

On the negative side, the paper

does not introduce novel ideas,

nor does it attempt to prove

things rigorously (the word

"conjecture" is used repeatedly

throughout). It is principally

a considerable engineering

achievement.

24

e.g. “Breaking the Curve25519

function—for example, computing

the shared secret from the two

public keys—is conjectured to be

extremely difficult. Every known

attack is more expensive than

performing a brute-force search

on a typical 128-bit secret-key

cipher. : : : Curves of this shape

have order divisible by 4, requiring

a marginally larger prime for the

same conjectured security level,

but this is outweighed by the

extra speed of curve operations.”



23

Reviewer #2:

... benefits including protection

against timing attacks, no

apparrent patent infringements,

and very good speed. ...

On the negative side, the paper

does not introduce novel ideas,

nor does it attempt to prove

things rigorously (the word

"conjecture" is used repeatedly

throughout). It is principally

a considerable engineering

achievement.

24

e.g. “Breaking the Curve25519

function—for example, computing

the shared secret from the two

public keys—is conjectured to be

extremely difficult. Every known

attack is more expensive than

performing a brute-force search

on a typical 128-bit secret-key

cipher. : : : Curves of this shape

have order divisible by 4, requiring

a marginally larger prime for the

same conjectured security level,

but this is outweighed by the

extra speed of curve operations.”



23

Reviewer #2:

... benefits including protection

against timing attacks, no

apparrent patent infringements,

and very good speed. ...

On the negative side, the paper

does not introduce novel ideas,

nor does it attempt to prove

things rigorously (the word

"conjecture" is used repeatedly

throughout). It is principally

a considerable engineering

achievement.

24

e.g. “Breaking the Curve25519

function—for example, computing

the shared secret from the two

public keys—is conjectured to be

extremely difficult. Every known

attack is more expensive than

performing a brute-force search

on a typical 128-bit secret-key

cipher. : : : Curves of this shape

have order divisible by 4, requiring

a marginally larger prime for the

same conjectured security level,

but this is outweighed by the

extra speed of curve operations.”

25

Reviewer #3:

... The curve and the field are

hardwired into the program,

which leaves little flexibility

if changes are someday needed.

... My main concerns about the

paper are that it comes across

as low on useful content (it’s

mostly about one curve), and is

very strangely written, and

therefore unpleasant to read ...

The paper is written in what



23

Reviewer #2:

... benefits including protection

against timing attacks, no

apparrent patent infringements,

and very good speed. ...

On the negative side, the paper

does not introduce novel ideas,

nor does it attempt to prove

things rigorously (the word

"conjecture" is used repeatedly

throughout). It is principally

a considerable engineering

achievement.

24

e.g. “Breaking the Curve25519

function—for example, computing

the shared secret from the two

public keys—is conjectured to be

extremely difficult. Every known

attack is more expensive than

performing a brute-force search

on a typical 128-bit secret-key

cipher. : : : Curves of this shape

have order divisible by 4, requiring

a marginally larger prime for the

same conjectured security level,

but this is outweighed by the

extra speed of curve operations.”

25

Reviewer #3:

... The curve and the field are

hardwired into the program,

which leaves little flexibility

if changes are someday needed.

... My main concerns about the

paper are that it comes across

as low on useful content (it’s

mostly about one curve), and is

very strangely written, and

therefore unpleasant to read ...

The paper is written in what



23

Reviewer #2:

... benefits including protection

against timing attacks, no

apparrent patent infringements,

and very good speed. ...

On the negative side, the paper

does not introduce novel ideas,

nor does it attempt to prove

things rigorously (the word

"conjecture" is used repeatedly

throughout). It is principally

a considerable engineering

achievement.

24

e.g. “Breaking the Curve25519

function—for example, computing

the shared secret from the two

public keys—is conjectured to be

extremely difficult. Every known

attack is more expensive than

performing a brute-force search

on a typical 128-bit secret-key

cipher. : : : Curves of this shape

have order divisible by 4, requiring

a marginally larger prime for the

same conjectured security level,

but this is outweighed by the

extra speed of curve operations.”

25

Reviewer #3:

... The curve and the field are

hardwired into the program,

which leaves little flexibility

if changes are someday needed.

... My main concerns about the

paper are that it comes across

as low on useful content (it’s

mostly about one curve), and is

very strangely written, and

therefore unpleasant to read ...

The paper is written in what



24

e.g. “Breaking the Curve25519

function—for example, computing

the shared secret from the two

public keys—is conjectured to be

extremely difficult. Every known

attack is more expensive than

performing a brute-force search

on a typical 128-bit secret-key

cipher. : : : Curves of this shape

have order divisible by 4, requiring

a marginally larger prime for the

same conjectured security level,

but this is outweighed by the

extra speed of curve operations.”

25

Reviewer #3:

... The curve and the field are

hardwired into the program,

which leaves little flexibility

if changes are someday needed.

... My main concerns about the

paper are that it comes across

as low on useful content (it’s

mostly about one curve), and is

very strangely written, and

therefore unpleasant to read ...

The paper is written in what



24

e.g. “Breaking the Curve25519

function—for example, computing

the shared secret from the two

public keys—is conjectured to be

extremely difficult. Every known

attack is more expensive than

performing a brute-force search

on a typical 128-bit secret-key

cipher. : : : Curves of this shape

have order divisible by 4, requiring

a marginally larger prime for the

same conjectured security level,

but this is outweighed by the

extra speed of curve operations.”

25

Reviewer #3:

... The curve and the field are

hardwired into the program,

which leaves little flexibility

if changes are someday needed.

... My main concerns about the

paper are that it comes across

as low on useful content (it’s

mostly about one curve), and is

very strangely written, and

therefore unpleasant to read ...

The paper is written in what

26

comes across as a rambling

incoherent style. ... The

rewriting that would be required

to make this paper readable is

significant (though easy for

someone willing to do it), and

I’m not optimistic that it would

be done by the deadline, or that

the content (I can’t say

"results" since there aren’t any

stated results, other than a

trivial mathematical result) is

significant enough to justify



24

e.g. “Breaking the Curve25519

function—for example, computing

the shared secret from the two

public keys—is conjectured to be

extremely difficult. Every known

attack is more expensive than

performing a brute-force search

on a typical 128-bit secret-key

cipher. : : : Curves of this shape

have order divisible by 4, requiring

a marginally larger prime for the

same conjectured security level,

but this is outweighed by the

extra speed of curve operations.”

25

Reviewer #3:

... The curve and the field are

hardwired into the program,

which leaves little flexibility

if changes are someday needed.

... My main concerns about the

paper are that it comes across

as low on useful content (it’s

mostly about one curve), and is

very strangely written, and

therefore unpleasant to read ...

The paper is written in what

26

comes across as a rambling

incoherent style. ... The

rewriting that would be required

to make this paper readable is

significant (though easy for

someone willing to do it), and

I’m not optimistic that it would

be done by the deadline, or that

the content (I can’t say

"results" since there aren’t any

stated results, other than a

trivial mathematical result) is

significant enough to justify



24

e.g. “Breaking the Curve25519

function—for example, computing

the shared secret from the two

public keys—is conjectured to be

extremely difficult. Every known

attack is more expensive than

performing a brute-force search

on a typical 128-bit secret-key

cipher. : : : Curves of this shape

have order divisible by 4, requiring

a marginally larger prime for the

same conjectured security level,

but this is outweighed by the

extra speed of curve operations.”

25

Reviewer #3:

... The curve and the field are

hardwired into the program,

which leaves little flexibility

if changes are someday needed.

... My main concerns about the

paper are that it comes across

as low on useful content (it’s

mostly about one curve), and is

very strangely written, and

therefore unpleasant to read ...

The paper is written in what

26

comes across as a rambling

incoherent style. ... The

rewriting that would be required

to make this paper readable is

significant (though easy for

someone willing to do it), and

I’m not optimistic that it would

be done by the deadline, or that

the content (I can’t say

"results" since there aren’t any

stated results, other than a

trivial mathematical result) is

significant enough to justify



25

Reviewer #3:

... The curve and the field are

hardwired into the program,

which leaves little flexibility

if changes are someday needed.

... My main concerns about the

paper are that it comes across

as low on useful content (it’s

mostly about one curve), and is

very strangely written, and

therefore unpleasant to read ...

The paper is written in what

26

comes across as a rambling

incoherent style. ... The

rewriting that would be required

to make this paper readable is

significant (though easy for

someone willing to do it), and

I’m not optimistic that it would

be done by the deadline, or that

the content (I can’t say

"results" since there aren’t any

stated results, other than a

trivial mathematical result) is

significant enough to justify



25

Reviewer #3:

... The curve and the field are

hardwired into the program,

which leaves little flexibility

if changes are someday needed.

... My main concerns about the

paper are that it comes across

as low on useful content (it’s

mostly about one curve), and is

very strangely written, and

therefore unpleasant to read ...

The paper is written in what

26

comes across as a rambling

incoherent style. ... The

rewriting that would be required

to make this paper readable is

significant (though easy for

someone willing to do it), and

I’m not optimistic that it would

be done by the deadline, or that

the content (I can’t say

"results" since there aren’t any

stated results, other than a

trivial mathematical result) is

significant enough to justify

27

acceptance. ... The "Conjectured

Curve25519 security level"

section should be omitted; or if

there’s useful and new content

in it, that should be made

clear. ... Most of the

appendices should be removed.

For example, the irrelevant

discussion of patents should

either be removed, or rephrased

to be a purely scientific

discussion and not a patent

discussion, and the appendix



25

Reviewer #3:

... The curve and the field are

hardwired into the program,

which leaves little flexibility

if changes are someday needed.

... My main concerns about the

paper are that it comes across

as low on useful content (it’s

mostly about one curve), and is

very strangely written, and

therefore unpleasant to read ...

The paper is written in what

26

comes across as a rambling

incoherent style. ... The

rewriting that would be required

to make this paper readable is

significant (though easy for

someone willing to do it), and

I’m not optimistic that it would

be done by the deadline, or that

the content (I can’t say

"results" since there aren’t any

stated results, other than a

trivial mathematical result) is

significant enough to justify

27

acceptance. ... The "Conjectured

Curve25519 security level"

section should be omitted; or if

there’s useful and new content

in it, that should be made

clear. ... Most of the

appendices should be removed.

For example, the irrelevant

discussion of patents should

either be removed, or rephrased

to be a purely scientific

discussion and not a patent

discussion, and the appendix



25

Reviewer #3:

... The curve and the field are

hardwired into the program,

which leaves little flexibility

if changes are someday needed.

... My main concerns about the

paper are that it comes across

as low on useful content (it’s

mostly about one curve), and is

very strangely written, and

therefore unpleasant to read ...

The paper is written in what

26

comes across as a rambling

incoherent style. ... The

rewriting that would be required

to make this paper readable is

significant (though easy for

someone willing to do it), and

I’m not optimistic that it would

be done by the deadline, or that

the content (I can’t say

"results" since there aren’t any

stated results, other than a

trivial mathematical result) is

significant enough to justify

27

acceptance. ... The "Conjectured

Curve25519 security level"

section should be omitted; or if

there’s useful and new content

in it, that should be made

clear. ... Most of the

appendices should be removed.

For example, the irrelevant

discussion of patents should

either be removed, or rephrased

to be a purely scientific

discussion and not a patent

discussion, and the appendix



26

comes across as a rambling

incoherent style. ... The

rewriting that would be required

to make this paper readable is

significant (though easy for

someone willing to do it), and

I’m not optimistic that it would

be done by the deadline, or that

the content (I can’t say

"results" since there aren’t any

stated results, other than a

trivial mathematical result) is

significant enough to justify

27

acceptance. ... The "Conjectured

Curve25519 security level"

section should be omitted; or if

there’s useful and new content

in it, that should be made

clear. ... Most of the

appendices should be removed.

For example, the irrelevant

discussion of patents should

either be removed, or rephrased

to be a purely scientific

discussion and not a patent

discussion, and the appendix



26

comes across as a rambling

incoherent style. ... The

rewriting that would be required

to make this paper readable is

significant (though easy for

someone willing to do it), and

I’m not optimistic that it would

be done by the deadline, or that

the content (I can’t say

"results" since there aren’t any

stated results, other than a

trivial mathematical result) is

significant enough to justify

27

acceptance. ... The "Conjectured

Curve25519 security level"

section should be omitted; or if

there’s useful and new content

in it, that should be made

clear. ... Most of the

appendices should be removed.

For example, the irrelevant

discussion of patents should

either be removed, or rephrased

to be a purely scientific

discussion and not a patent

discussion, and the appendix

28

that shows that 3 numbers are

prime should be removed. ...

The paper will be of greatest

interest to those implementing

Diffie-Hellman with elliptic

curves. But the limitations on

the exponent (and the lack of a

y-coordinate) prevent it from

being used by El Gamal and other

ECC protocols. ...



26

comes across as a rambling

incoherent style. ... The

rewriting that would be required

to make this paper readable is

significant (though easy for

someone willing to do it), and

I’m not optimistic that it would

be done by the deadline, or that

the content (I can’t say

"results" since there aren’t any

stated results, other than a

trivial mathematical result) is

significant enough to justify

27

acceptance. ... The "Conjectured

Curve25519 security level"

section should be omitted; or if

there’s useful and new content

in it, that should be made

clear. ... Most of the

appendices should be removed.

For example, the irrelevant

discussion of patents should

either be removed, or rephrased

to be a purely scientific

discussion and not a patent

discussion, and the appendix

28

that shows that 3 numbers are

prime should be removed. ...

The paper will be of greatest

interest to those implementing

Diffie-Hellman with elliptic

curves. But the limitations on

the exponent (and the lack of a

y-coordinate) prevent it from

being used by El Gamal and other

ECC protocols. ...



26

comes across as a rambling

incoherent style. ... The

rewriting that would be required

to make this paper readable is

significant (though easy for

someone willing to do it), and

I’m not optimistic that it would

be done by the deadline, or that

the content (I can’t say

"results" since there aren’t any

stated results, other than a

trivial mathematical result) is

significant enough to justify

27

acceptance. ... The "Conjectured

Curve25519 security level"

section should be omitted; or if

there’s useful and new content

in it, that should be made

clear. ... Most of the

appendices should be removed.

For example, the irrelevant

discussion of patents should

either be removed, or rephrased

to be a purely scientific

discussion and not a patent

discussion, and the appendix

28

that shows that 3 numbers are

prime should be removed. ...

The paper will be of greatest

interest to those implementing

Diffie-Hellman with elliptic

curves. But the limitations on

the exponent (and the lack of a

y-coordinate) prevent it from

being used by El Gamal and other

ECC protocols. ...



27

acceptance. ... The "Conjectured

Curve25519 security level"

section should be omitted; or if

there’s useful and new content

in it, that should be made

clear. ... Most of the

appendices should be removed.

For example, the irrelevant

discussion of patents should

either be removed, or rephrased

to be a purely scientific

discussion and not a patent

discussion, and the appendix

28

that shows that 3 numbers are

prime should be removed. ...

The paper will be of greatest

interest to those implementing

Diffie-Hellman with elliptic

curves. But the limitations on

the exponent (and the lack of a

y-coordinate) prevent it from

being used by El Gamal and other

ECC protocols. ...



27

acceptance. ... The "Conjectured

Curve25519 security level"

section should be omitted; or if

there’s useful and new content

in it, that should be made

clear. ... Most of the

appendices should be removed.

For example, the irrelevant

discussion of patents should

either be removed, or rephrased

to be a purely scientific

discussion and not a patent

discussion, and the appendix

28

that shows that 3 numbers are

prime should be removed. ...

The paper will be of greatest

interest to those implementing

Diffie-Hellman with elliptic

curves. But the limitations on

the exponent (and the lack of a

y-coordinate) prevent it from

being used by El Gamal and other

ECC protocols. ... The paper is

remarkably free of grammatical

errors.



27

acceptance. ... The "Conjectured

Curve25519 security level"

section should be omitted; or if

there’s useful and new content

in it, that should be made

clear. ... Most of the

appendices should be removed.

For example, the irrelevant

discussion of patents should

either be removed, or rephrased

to be a purely scientific

discussion and not a patent

discussion, and the appendix

28

that shows that 3 numbers are

prime should be removed. ...

The paper will be of greatest

interest to those implementing

Diffie-Hellman with elliptic

curves. But the limitations on

the exponent (and the lack of a

y-coordinate) prevent it from

being used by El Gamal and other

ECC protocols. ... The paper is

remarkably free of grammatical

errors.

29

2016: Counterfeit “primes”.



27

acceptance. ... The "Conjectured

Curve25519 security level"

section should be omitted; or if

there’s useful and new content

in it, that should be made

clear. ... Most of the

appendices should be removed.

For example, the irrelevant

discussion of patents should

either be removed, or rephrased

to be a purely scientific

discussion and not a patent

discussion, and the appendix

28

that shows that 3 numbers are

prime should be removed. ...

The paper will be of greatest

interest to those implementing

Diffie-Hellman with elliptic

curves. But the limitations on

the exponent (and the lack of a

y-coordinate) prevent it from

being used by El Gamal and other

ECC protocols. ... The paper is

remarkably free of grammatical

errors.

29

2016: Counterfeit “primes”.



27

acceptance. ... The "Conjectured

Curve25519 security level"

section should be omitted; or if

there’s useful and new content

in it, that should be made

clear. ... Most of the

appendices should be removed.

For example, the irrelevant

discussion of patents should

either be removed, or rephrased

to be a purely scientific

discussion and not a patent

discussion, and the appendix

28

that shows that 3 numbers are

prime should be removed. ...

The paper will be of greatest

interest to those implementing

Diffie-Hellman with elliptic

curves. But the limitations on

the exponent (and the lack of a

y-coordinate) prevent it from

being used by El Gamal and other

ECC protocols. ... The paper is

remarkably free of grammatical

errors.

29

2016: Counterfeit “primes”.



28

that shows that 3 numbers are

prime should be removed. ...

The paper will be of greatest

interest to those implementing

Diffie-Hellman with elliptic

curves. But the limitations on

the exponent (and the lack of a

y-coordinate) prevent it from

being used by El Gamal and other

ECC protocols. ... The paper is

remarkably free of grammatical

errors.

29

2016: Counterfeit “primes”.



28

that shows that 3 numbers are

prime should be removed. ...

The paper will be of greatest

interest to those implementing

Diffie-Hellman with elliptic

curves. But the limitations on

the exponent (and the lack of a

y-coordinate) prevent it from

being used by El Gamal and other

ECC protocols. ... The paper is

remarkably free of grammatical

errors.

29

2016: Counterfeit “primes”.
30

With reviews like these,

how did PKC accept Curve25519?



28

that shows that 3 numbers are

prime should be removed. ...

The paper will be of greatest

interest to those implementing

Diffie-Hellman with elliptic

curves. But the limitations on

the exponent (and the lack of a

y-coordinate) prevent it from

being used by El Gamal and other

ECC protocols. ... The paper is

remarkably free of grammatical

errors.

29

2016: Counterfeit “primes”.
30

With reviews like these,

how did PKC accept Curve25519?



28

that shows that 3 numbers are

prime should be removed. ...

The paper will be of greatest

interest to those implementing

Diffie-Hellman with elliptic

curves. But the limitations on

the exponent (and the lack of a

y-coordinate) prevent it from

being used by El Gamal and other

ECC protocols. ... The paper is

remarkably free of grammatical

errors.

29

2016: Counterfeit “primes”.
30

With reviews like these,

how did PKC accept Curve25519?



29

2016: Counterfeit “primes”.
30

With reviews like these,

how did PKC accept Curve25519?



29

2016: Counterfeit “primes”.
30

With reviews like these,

how did PKC accept Curve25519?

Reviewer #4 was positive.

Maybe reviewer #4 convinced

other people as part of discussion.

Or program chairs liked paper.



29

2016: Counterfeit “primes”.
30

With reviews like these,

how did PKC accept Curve25519?

Reviewer #4 was positive.

Maybe reviewer #4 convinced

other people as part of discussion.

Or program chairs liked paper.

Maybe someone thought the title

“9th International Conference on

Theory and Practice in Public-

Key Cryptography” justified

an occasional paper like this.



29

2016: Counterfeit “primes”.
30

With reviews like these,

how did PKC accept Curve25519?

Reviewer #4 was positive.

Maybe reviewer #4 convinced

other people as part of discussion.

Or program chairs liked paper.

Maybe someone thought the title

“9th International Conference on

Theory and Practice in Public-

Key Cryptography” justified

an occasional paper like this.

Note to young cryptographers:

Don’t let referees discourage you.



29

2016: Counterfeit “primes”.
30

With reviews like these,

how did PKC accept Curve25519?

Reviewer #4 was positive.

Maybe reviewer #4 convinced

other people as part of discussion.

Or program chairs liked paper.

Maybe someone thought the title

“9th International Conference on

Theory and Practice in Public-

Key Cryptography” justified

an occasional paper like this.

Note to young cryptographers:

Don’t let referees discourage you.

31

Edwards curves

2007 Edwards “A

normal form for elliptic curves”:

x3 =
x1y2 + x2y1

c(1 + x1x2y1y2)
,

y3 =
y1y2 − x1x2

c(1− x1x2y1y2)

generically defines addition law

(x1; y1) + (x2; y2) = (x3; y3)

on any elliptic curve of the form

x2 + y2 = c2(1 + x2y2).

Euler+Gauss defined this law

for one curve: c4 = −1.



29

2016: Counterfeit “primes”.
30

With reviews like these,

how did PKC accept Curve25519?

Reviewer #4 was positive.

Maybe reviewer #4 convinced

other people as part of discussion.

Or program chairs liked paper.

Maybe someone thought the title

“9th International Conference on

Theory and Practice in Public-

Key Cryptography” justified

an occasional paper like this.

Note to young cryptographers:

Don’t let referees discourage you.

31

Edwards curves

2007 Edwards “A

normal form for elliptic curves”:

x3 =
x1y2 + x2y1

c(1 + x1x2y1y2)
,

y3 =
y1y2 − x1x2

c(1− x1x2y1y2)

generically defines addition law

(x1; y1) + (x2; y2) = (x3; y3)

on any elliptic curve of the form

x2 + y2 = c2(1 + x2y2).

Euler+Gauss defined this law

for one curve: c4 = −1.



29

2016: Counterfeit “primes”.
30

With reviews like these,

how did PKC accept Curve25519?

Reviewer #4 was positive.

Maybe reviewer #4 convinced

other people as part of discussion.

Or program chairs liked paper.

Maybe someone thought the title

“9th International Conference on

Theory and Practice in Public-

Key Cryptography” justified

an occasional paper like this.

Note to young cryptographers:

Don’t let referees discourage you.

31

Edwards curves

2007 Edwards “A

normal form for elliptic curves”:

x3 =
x1y2 + x2y1

c(1 + x1x2y1y2)
,

y3 =
y1y2 − x1x2

c(1− x1x2y1y2)

generically defines addition law

(x1; y1) + (x2; y2) = (x3; y3)

on any elliptic curve of the form

x2 + y2 = c2(1 + x2y2).

Euler+Gauss defined this law

for one curve: c4 = −1.



30

With reviews like these,

how did PKC accept Curve25519?

Reviewer #4 was positive.

Maybe reviewer #4 convinced

other people as part of discussion.

Or program chairs liked paper.

Maybe someone thought the title

“9th International Conference on

Theory and Practice in Public-

Key Cryptography” justified

an occasional paper like this.

Note to young cryptographers:

Don’t let referees discourage you.

31

Edwards curves

2007 Edwards “A

normal form for elliptic curves”:

x3 =
x1y2 + x2y1

c(1 + x1x2y1y2)
,

y3 =
y1y2 − x1x2

c(1− x1x2y1y2)

generically defines addition law

(x1; y1) + (x2; y2) = (x3; y3)

on any elliptic curve of the form

x2 + y2 = c2(1 + x2y2).

Euler+Gauss defined this law

for one curve: c4 = −1.



30

With reviews like these,

how did PKC accept Curve25519?

Reviewer #4 was positive.

Maybe reviewer #4 convinced

other people as part of discussion.

Or program chairs liked paper.

Maybe someone thought the title

“9th International Conference on

Theory and Practice in Public-

Key Cryptography” justified

an occasional paper like this.

Note to young cryptographers:

Don’t let referees discourage you.

31

Edwards curves

2007 Edwards “A

normal form for elliptic curves”:

x3 =
x1y2 + x2y1

c(1 + x1x2y1y2)
,

y3 =
y1y2 − x1x2

c(1− x1x2y1y2)

generically defines addition law

(x1; y1) + (x2; y2) = (x3; y3)

on any elliptic curve of the form

x2 + y2 = c2(1 + x2y2).

Euler+Gauss defined this law

for one curve: c4 = −1.

32

2007 Bernstein–Lange “Faster

addition and doubling on elliptic

curves”: Edwards addition law

easily generalizes to

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
,

y3 =
y1y2 − x1x2

1− dx1x2y1y2
.

on any elliptic curve of the form

x2 + y2 = 1 + dx2y2.

d = c4 is original Edwards.

d = 0 is circle, non-elliptic.



30

With reviews like these,

how did PKC accept Curve25519?

Reviewer #4 was positive.

Maybe reviewer #4 convinced

other people as part of discussion.

Or program chairs liked paper.

Maybe someone thought the title

“9th International Conference on

Theory and Practice in Public-

Key Cryptography” justified

an occasional paper like this.

Note to young cryptographers:

Don’t let referees discourage you.

31

Edwards curves

2007 Edwards “A

normal form for elliptic curves”:

x3 =
x1y2 + x2y1

c(1 + x1x2y1y2)
,

y3 =
y1y2 − x1x2

c(1− x1x2y1y2)

generically defines addition law

(x1; y1) + (x2; y2) = (x3; y3)

on any elliptic curve of the form

x2 + y2 = c2(1 + x2y2).

Euler+Gauss defined this law

for one curve: c4 = −1.

32

2007 Bernstein–Lange “Faster

addition and doubling on elliptic

curves”: Edwards addition law

easily generalizes to

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
,

y3 =
y1y2 − x1x2

1− dx1x2y1y2
.

on any elliptic curve of the form

x2 + y2 = 1 + dx2y2.

d = c4 is original Edwards.

d = 0 is circle, non-elliptic.



30

With reviews like these,

how did PKC accept Curve25519?

Reviewer #4 was positive.

Maybe reviewer #4 convinced

other people as part of discussion.

Or program chairs liked paper.

Maybe someone thought the title

“9th International Conference on

Theory and Practice in Public-

Key Cryptography” justified

an occasional paper like this.

Note to young cryptographers:

Don’t let referees discourage you.

31

Edwards curves

2007 Edwards “A

normal form for elliptic curves”:

x3 =
x1y2 + x2y1

c(1 + x1x2y1y2)
,

y3 =
y1y2 − x1x2

c(1− x1x2y1y2)

generically defines addition law

(x1; y1) + (x2; y2) = (x3; y3)

on any elliptic curve of the form

x2 + y2 = c2(1 + x2y2).

Euler+Gauss defined this law

for one curve: c4 = −1.

32

2007 Bernstein–Lange “Faster

addition and doubling on elliptic

curves”: Edwards addition law

easily generalizes to

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
,

y3 =
y1y2 − x1x2

1− dx1x2y1y2
.

on any elliptic curve of the form

x2 + y2 = 1 + dx2y2.

d = c4 is original Edwards.

d = 0 is circle, non-elliptic.



31

Edwards curves

2007 Edwards “A

normal form for elliptic curves”:

x3 =
x1y2 + x2y1

c(1 + x1x2y1y2)
,

y3 =
y1y2 − x1x2

c(1− x1x2y1y2)

generically defines addition law

(x1; y1) + (x2; y2) = (x3; y3)

on any elliptic curve of the form

x2 + y2 = c2(1 + x2y2).

Euler+Gauss defined this law

for one curve: c4 = −1.

32

2007 Bernstein–Lange “Faster

addition and doubling on elliptic

curves”: Edwards addition law

easily generalizes to

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
,

y3 =
y1y2 − x1x2

1− dx1x2y1y2
.

on any elliptic curve of the form

x2 + y2 = 1 + dx2y2.

d = c4 is original Edwards.

d = 0 is circle, non-elliptic.



31

Edwards curves

2007 Edwards “A

normal form for elliptic curves”:

x3 =
x1y2 + x2y1

c(1 + x1x2y1y2)
,

y3 =
y1y2 − x1x2

c(1− x1x2y1y2)

generically defines addition law

(x1; y1) + (x2; y2) = (x3; y3)

on any elliptic curve of the form

x2 + y2 = c2(1 + x2y2).

Euler+Gauss defined this law

for one curve: c4 = −1.

32

2007 Bernstein–Lange “Faster

addition and doubling on elliptic

curves”: Edwards addition law

easily generalizes to

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
,

y3 =
y1y2 − x1x2

1− dx1x2y1y2
.

on any elliptic curve of the form

x2 + y2 = 1 + dx2y2.

d = c4 is original Edwards.

d = 0 is circle, non-elliptic.

Surprise for non-square d :

this addition law is complete!



31

Edwards curves

2007 Edwards “A

normal form for elliptic curves”:

x3 =
x1y2 + x2y1

c(1 + x1x2y1y2)
,

y3 =
y1y2 − x1x2

c(1− x1x2y1y2)

generically defines addition law

(x1; y1) + (x2; y2) = (x3; y3)

on any elliptic curve of the form

x2 + y2 = c2(1 + x2y2).

Euler+Gauss defined this law

for one curve: c4 = −1.

32

2007 Bernstein–Lange “Faster

addition and doubling on elliptic

curves”: Edwards addition law

easily generalizes to

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
,

y3 =
y1y2 − x1x2

1− dx1x2y1y2
.

on any elliptic curve of the form

x2 + y2 = 1 + dx2y2.

d = c4 is original Edwards.

d = 0 is circle, non-elliptic.

Surprise for non-square d :

this addition law is complete!

33

By easy change of coordinates

can write y2 = x3 + Ax2 + x

with non-square A2 − 4

as a complete Edwards curve.

In particular: Curve25519.



31

Edwards curves

2007 Edwards “A

normal form for elliptic curves”:

x3 =
x1y2 + x2y1

c(1 + x1x2y1y2)
,

y3 =
y1y2 − x1x2

c(1− x1x2y1y2)

generically defines addition law

(x1; y1) + (x2; y2) = (x3; y3)

on any elliptic curve of the form

x2 + y2 = c2(1 + x2y2).

Euler+Gauss defined this law

for one curve: c4 = −1.

32

2007 Bernstein–Lange “Faster

addition and doubling on elliptic

curves”: Edwards addition law

easily generalizes to

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
,

y3 =
y1y2 − x1x2

1− dx1x2y1y2
.

on any elliptic curve of the form

x2 + y2 = 1 + dx2y2.

d = c4 is original Edwards.

d = 0 is circle, non-elliptic.

Surprise for non-square d :

this addition law is complete!

33

By easy change of coordinates

can write y2 = x3 + Ax2 + x

with non-square A2 − 4

as a complete Edwards curve.

In particular: Curve25519.



31

Edwards curves

2007 Edwards “A

normal form for elliptic curves”:

x3 =
x1y2 + x2y1

c(1 + x1x2y1y2)
,

y3 =
y1y2 − x1x2

c(1− x1x2y1y2)

generically defines addition law

(x1; y1) + (x2; y2) = (x3; y3)

on any elliptic curve of the form

x2 + y2 = c2(1 + x2y2).

Euler+Gauss defined this law

for one curve: c4 = −1.

32

2007 Bernstein–Lange “Faster

addition and doubling on elliptic

curves”: Edwards addition law

easily generalizes to

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
,

y3 =
y1y2 − x1x2

1− dx1x2y1y2
.

on any elliptic curve of the form

x2 + y2 = 1 + dx2y2.

d = c4 is original Edwards.

d = 0 is circle, non-elliptic.

Surprise for non-square d :

this addition law is complete!

33

By easy change of coordinates

can write y2 = x3 + Ax2 + x

with non-square A2 − 4

as a complete Edwards curve.

In particular: Curve25519.



32

2007 Bernstein–Lange “Faster

addition and doubling on elliptic

curves”: Edwards addition law

easily generalizes to

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
,

y3 =
y1y2 − x1x2

1− dx1x2y1y2
.

on any elliptic curve of the form

x2 + y2 = 1 + dx2y2.

d = c4 is original Edwards.

d = 0 is circle, non-elliptic.

Surprise for non-square d :

this addition law is complete!

33

By easy change of coordinates

can write y2 = x3 + Ax2 + x

with non-square A2 − 4

as a complete Edwards curve.

In particular: Curve25519.



32

2007 Bernstein–Lange “Faster

addition and doubling on elliptic

curves”: Edwards addition law

easily generalizes to

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
,

y3 =
y1y2 − x1x2

1− dx1x2y1y2
.

on any elliptic curve of the form

x2 + y2 = 1 + dx2y2.

d = c4 is original Edwards.

d = 0 is circle, non-elliptic.

Surprise for non-square d :

this addition law is complete!

33

By easy change of coordinates

can write y2 = x3 + Ax2 + x

with non-square A2 − 4

as a complete Edwards curve.

In particular: Curve25519.

Curve arithmetic is very fast.

(After various followup papers:

even faster!)

Almost as fast as Montgomery

for n; P 7→ nP in DH.

New speed records for

m; n; P;Q 7→ mP + nQ

and other signature operations.



32

2007 Bernstein–Lange “Faster

addition and doubling on elliptic

curves”: Edwards addition law

easily generalizes to

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
,

y3 =
y1y2 − x1x2

1− dx1x2y1y2
.

on any elliptic curve of the form

x2 + y2 = 1 + dx2y2.

d = c4 is original Edwards.

d = 0 is circle, non-elliptic.

Surprise for non-square d :

this addition law is complete!

33

By easy change of coordinates

can write y2 = x3 + Ax2 + x

with non-square A2 − 4

as a complete Edwards curve.

In particular: Curve25519.

Curve arithmetic is very fast.

(After various followup papers:

even faster!)

Almost as fast as Montgomery

for n; P 7→ nP in DH.

New speed records for

m; n; P;Q 7→ mP + nQ

and other signature operations.

34

The Ed25519 signature system

CHES 2011 Bernstein–Duif–

Lange–Schwabe–Yang:

Start from Schnorr signatures.

Skip signature compression.

Support batch verification.

Use double-size H output, and

include public key A as input:

SB = R + H(R;A;M)A.

Generate R deterministically

as a secret hash of M.

⇒ Avoid PlayStation disaster.

Use Curve25519 in complete

“−1-twisted” Edwards form.



32

2007 Bernstein–Lange “Faster

addition and doubling on elliptic

curves”: Edwards addition law

easily generalizes to

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
,

y3 =
y1y2 − x1x2

1− dx1x2y1y2
.

on any elliptic curve of the form

x2 + y2 = 1 + dx2y2.

d = c4 is original Edwards.

d = 0 is circle, non-elliptic.

Surprise for non-square d :

this addition law is complete!

33

By easy change of coordinates

can write y2 = x3 + Ax2 + x

with non-square A2 − 4

as a complete Edwards curve.

In particular: Curve25519.

Curve arithmetic is very fast.

(After various followup papers:

even faster!)

Almost as fast as Montgomery

for n; P 7→ nP in DH.

New speed records for

m; n; P;Q 7→ mP + nQ

and other signature operations.

34

The Ed25519 signature system

CHES 2011 Bernstein–Duif–

Lange–Schwabe–Yang:

Start from Schnorr signatures.

Skip signature compression.

Support batch verification.

Use double-size H output, and

include public key A as input:

SB = R + H(R;A;M)A.

Generate R deterministically

as a secret hash of M.

⇒ Avoid PlayStation disaster.

Use Curve25519 in complete

“−1-twisted” Edwards form.



32

2007 Bernstein–Lange “Faster

addition and doubling on elliptic

curves”: Edwards addition law

easily generalizes to

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
,

y3 =
y1y2 − x1x2

1− dx1x2y1y2
.

on any elliptic curve of the form

x2 + y2 = 1 + dx2y2.

d = c4 is original Edwards.

d = 0 is circle, non-elliptic.

Surprise for non-square d :

this addition law is complete!

33

By easy change of coordinates

can write y2 = x3 + Ax2 + x

with non-square A2 − 4

as a complete Edwards curve.

In particular: Curve25519.

Curve arithmetic is very fast.

(After various followup papers:

even faster!)

Almost as fast as Montgomery

for n; P 7→ nP in DH.

New speed records for

m; n; P;Q 7→ mP + nQ

and other signature operations.

34

The Ed25519 signature system

CHES 2011 Bernstein–Duif–

Lange–Schwabe–Yang:

Start from Schnorr signatures.

Skip signature compression.

Support batch verification.

Use double-size H output, and

include public key A as input:

SB = R + H(R;A;M)A.

Generate R deterministically

as a secret hash of M.

⇒ Avoid PlayStation disaster.

Use Curve25519 in complete

“−1-twisted” Edwards form.



33

By easy change of coordinates

can write y2 = x3 + Ax2 + x

with non-square A2 − 4

as a complete Edwards curve.

In particular: Curve25519.

Curve arithmetic is very fast.

(After various followup papers:

even faster!)

Almost as fast as Montgomery

for n; P 7→ nP in DH.

New speed records for

m; n; P;Q 7→ mP + nQ

and other signature operations.

34

The Ed25519 signature system

CHES 2011 Bernstein–Duif–

Lange–Schwabe–Yang:

Start from Schnorr signatures.

Skip signature compression.

Support batch verification.

Use double-size H output, and

include public key A as input:

SB = R + H(R;A;M)A.

Generate R deterministically

as a secret hash of M.

⇒ Avoid PlayStation disaster.

Use Curve25519 in complete

“−1-twisted” Edwards form.



33

By easy change of coordinates

can write y2 = x3 + Ax2 + x

with non-square A2 − 4

as a complete Edwards curve.

In particular: Curve25519.

Curve arithmetic is very fast.

(After various followup papers:

even faster!)

Almost as fast as Montgomery

for n; P 7→ nP in DH.

New speed records for

m; n; P;Q 7→ mP + nQ

and other signature operations.

34

The Ed25519 signature system

CHES 2011 Bernstein–Duif–

Lange–Schwabe–Yang:

Start from Schnorr signatures.

Skip signature compression.

Support batch verification.

Use double-size H output, and

include public key A as input:

SB = R + H(R;A;M)A.

Generate R deterministically

as a secret hash of M.

⇒ Avoid PlayStation disaster.

Use Curve25519 in complete

“−1-twisted” Edwards form.

35

Optimizations for more platforms

2007 Gaudry–Thomé: Core 2.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: newer Intel.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

2015 Chou: newer Intel.

2015 Düll–Haase–Hinterwälder–

Hutter–Paar–Sánchez–Schwabe:

microcontrollers.

2015 Hutter-Schilling–Schwabe–

Wieser: ASICs.



33

By easy change of coordinates

can write y2 = x3 + Ax2 + x

with non-square A2 − 4

as a complete Edwards curve.

In particular: Curve25519.

Curve arithmetic is very fast.

(After various followup papers:

even faster!)

Almost as fast as Montgomery

for n; P 7→ nP in DH.

New speed records for

m; n; P;Q 7→ mP + nQ

and other signature operations.

34

The Ed25519 signature system

CHES 2011 Bernstein–Duif–

Lange–Schwabe–Yang:

Start from Schnorr signatures.

Skip signature compression.

Support batch verification.

Use double-size H output, and

include public key A as input:

SB = R + H(R;A;M)A.

Generate R deterministically

as a secret hash of M.

⇒ Avoid PlayStation disaster.

Use Curve25519 in complete

“−1-twisted” Edwards form.

35

Optimizations for more platforms

2007 Gaudry–Thomé: Core 2.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: newer Intel.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

2015 Chou: newer Intel.

2015 Düll–Haase–Hinterwälder–

Hutter–Paar–Sánchez–Schwabe:

microcontrollers.

2015 Hutter-Schilling–Schwabe–

Wieser: ASICs.



33

By easy change of coordinates

can write y2 = x3 + Ax2 + x

with non-square A2 − 4

as a complete Edwards curve.

In particular: Curve25519.

Curve arithmetic is very fast.

(After various followup papers:

even faster!)

Almost as fast as Montgomery

for n; P 7→ nP in DH.

New speed records for

m; n; P;Q 7→ mP + nQ

and other signature operations.

34

The Ed25519 signature system

CHES 2011 Bernstein–Duif–

Lange–Schwabe–Yang:

Start from Schnorr signatures.

Skip signature compression.

Support batch verification.

Use double-size H output, and

include public key A as input:

SB = R + H(R;A;M)A.

Generate R deterministically

as a secret hash of M.

⇒ Avoid PlayStation disaster.

Use Curve25519 in complete

“−1-twisted” Edwards form.

35

Optimizations for more platforms

2007 Gaudry–Thomé: Core 2.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: newer Intel.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

2015 Chou: newer Intel.

2015 Düll–Haase–Hinterwälder–

Hutter–Paar–Sánchez–Schwabe:

microcontrollers.

2015 Hutter-Schilling–Schwabe–

Wieser: ASICs.



34

The Ed25519 signature system

CHES 2011 Bernstein–Duif–

Lange–Schwabe–Yang:

Start from Schnorr signatures.

Skip signature compression.

Support batch verification.

Use double-size H output, and

include public key A as input:

SB = R + H(R;A;M)A.

Generate R deterministically

as a secret hash of M.

⇒ Avoid PlayStation disaster.

Use Curve25519 in complete

“−1-twisted” Edwards form.

35

Optimizations for more platforms

2007 Gaudry–Thomé: Core 2.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: newer Intel.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

2015 Chou: newer Intel.

2015 Düll–Haase–Hinterwälder–

Hutter–Paar–Sánchez–Schwabe:

microcontrollers.

2015 Hutter-Schilling–Schwabe–

Wieser: ASICs.



34

The Ed25519 signature system

CHES 2011 Bernstein–Duif–

Lange–Schwabe–Yang:

Start from Schnorr signatures.

Skip signature compression.

Support batch verification.

Use double-size H output, and

include public key A as input:

SB = R + H(R;A;M)A.

Generate R deterministically

as a secret hash of M.

⇒ Avoid PlayStation disaster.

Use Curve25519 in complete

“−1-twisted” Edwards form.

35

Optimizations for more platforms

2007 Gaudry–Thomé: Core 2.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: newer Intel.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

2015 Chou: newer Intel.

2015 Düll–Haase–Hinterwälder–

Hutter–Paar–Sánchez–Schwabe:

microcontrollers.

2015 Hutter-Schilling–Schwabe–

Wieser: ASICs.

36

Next-generation crypto library

NaCl: Networking and

Cryptography library provides

very simple new API for public-

key authenticated encryption.

All-in-one crypto_box function

uses Curve25519 for DH,

Salsa20 for encryption,

Poly1305 for authentication.

More on NaCl design: see

2011 Bernstein–Lange–Schwabe

“The security impact of a

new cryptographic library”.



34

The Ed25519 signature system

CHES 2011 Bernstein–Duif–

Lange–Schwabe–Yang:

Start from Schnorr signatures.

Skip signature compression.

Support batch verification.

Use double-size H output, and

include public key A as input:

SB = R + H(R;A;M)A.

Generate R deterministically

as a secret hash of M.

⇒ Avoid PlayStation disaster.

Use Curve25519 in complete

“−1-twisted” Edwards form.

35

Optimizations for more platforms

2007 Gaudry–Thomé: Core 2.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: newer Intel.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

2015 Chou: newer Intel.

2015 Düll–Haase–Hinterwälder–

Hutter–Paar–Sánchez–Schwabe:

microcontrollers.

2015 Hutter-Schilling–Schwabe–

Wieser: ASICs.

36

Next-generation crypto library

NaCl: Networking and

Cryptography library provides

very simple new API for public-

key authenticated encryption.

All-in-one crypto_box function

uses Curve25519 for DH,

Salsa20 for encryption,

Poly1305 for authentication.

More on NaCl design: see

2011 Bernstein–Lange–Schwabe

“The security impact of a

new cryptographic library”.



34

The Ed25519 signature system

CHES 2011 Bernstein–Duif–

Lange–Schwabe–Yang:

Start from Schnorr signatures.

Skip signature compression.

Support batch verification.

Use double-size H output, and

include public key A as input:

SB = R + H(R;A;M)A.

Generate R deterministically

as a secret hash of M.

⇒ Avoid PlayStation disaster.

Use Curve25519 in complete

“−1-twisted” Edwards form.

35

Optimizations for more platforms

2007 Gaudry–Thomé: Core 2.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: newer Intel.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

2015 Chou: newer Intel.

2015 Düll–Haase–Hinterwälder–

Hutter–Paar–Sánchez–Schwabe:

microcontrollers.

2015 Hutter-Schilling–Schwabe–

Wieser: ASICs.

36

Next-generation crypto library

NaCl: Networking and

Cryptography library provides

very simple new API for public-

key authenticated encryption.

All-in-one crypto_box function

uses Curve25519 for DH,

Salsa20 for encryption,

Poly1305 for authentication.

More on NaCl design: see

2011 Bernstein–Lange–Schwabe

“The security impact of a

new cryptographic library”.



35

Optimizations for more platforms

2007 Gaudry–Thomé: Core 2.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: newer Intel.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

2015 Chou: newer Intel.

2015 Düll–Haase–Hinterwälder–

Hutter–Paar–Sánchez–Schwabe:

microcontrollers.

2015 Hutter-Schilling–Schwabe–

Wieser: ASICs.

36

Next-generation crypto library

NaCl: Networking and

Cryptography library provides

very simple new API for public-

key authenticated encryption.

All-in-one crypto_box function

uses Curve25519 for DH,

Salsa20 for encryption,

Poly1305 for authentication.

More on NaCl design: see

2011 Bernstein–Lange–Schwabe

“The security impact of a

new cryptographic library”.



35

Optimizations for more platforms

2007 Gaudry–Thomé: Core 2.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: newer Intel.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

2015 Chou: newer Intel.

2015 Düll–Haase–Hinterwälder–

Hutter–Paar–Sánchez–Schwabe:

microcontrollers.

2015 Hutter-Schilling–Schwabe–

Wieser: ASICs.

36

Next-generation crypto library

NaCl: Networking and

Cryptography library provides

very simple new API for public-

key authenticated encryption.

All-in-one crypto_box function

uses Curve25519 for DH,

Salsa20 for encryption,

Poly1305 for authentication.

More on NaCl design: see

2011 Bernstein–Lange–Schwabe

“The security impact of a

new cryptographic library”.

37

Simplicity

Curve25519 paper

advertised “short code.”

2013 Bernstein–Janssen–

Lange–Schwabe: TweetNaCl,

reimplementing NaCl in 100

tweets. Does speed matter?



35

Optimizations for more platforms

2007 Gaudry–Thomé: Core 2.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: newer Intel.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

2015 Chou: newer Intel.

2015 Düll–Haase–Hinterwälder–

Hutter–Paar–Sánchez–Schwabe:

microcontrollers.

2015 Hutter-Schilling–Schwabe–

Wieser: ASICs.

36

Next-generation crypto library

NaCl: Networking and

Cryptography library provides

very simple new API for public-

key authenticated encryption.

All-in-one crypto_box function

uses Curve25519 for DH,

Salsa20 for encryption,

Poly1305 for authentication.

More on NaCl design: see

2011 Bernstein–Lange–Schwabe

“The security impact of a

new cryptographic library”.

37

Simplicity

Curve25519 paper

advertised “short code.”

2013 Bernstein–Janssen–

Lange–Schwabe: TweetNaCl,

reimplementing NaCl in 100

tweets. Does speed matter?



35

Optimizations for more platforms

2007 Gaudry–Thomé: Core 2.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: newer Intel.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

2015 Chou: newer Intel.

2015 Düll–Haase–Hinterwälder–

Hutter–Paar–Sánchez–Schwabe:

microcontrollers.

2015 Hutter-Schilling–Schwabe–

Wieser: ASICs.

36

Next-generation crypto library

NaCl: Networking and

Cryptography library provides

very simple new API for public-

key authenticated encryption.

All-in-one crypto_box function

uses Curve25519 for DH,

Salsa20 for encryption,

Poly1305 for authentication.

More on NaCl design: see

2011 Bernstein–Lange–Schwabe

“The security impact of a

new cryptographic library”.

37

Simplicity

Curve25519 paper

advertised “short code.”

2013 Bernstein–Janssen–

Lange–Schwabe: TweetNaCl,

reimplementing NaCl in 100

tweets. Does speed matter?



36

Next-generation crypto library

NaCl: Networking and

Cryptography library provides

very simple new API for public-

key authenticated encryption.

All-in-one crypto_box function

uses Curve25519 for DH,

Salsa20 for encryption,

Poly1305 for authentication.

More on NaCl design: see

2011 Bernstein–Lange–Schwabe

“The security impact of a

new cryptographic library”.

37

Simplicity

Curve25519 paper

advertised “short code.”

2013 Bernstein–Janssen–

Lange–Schwabe: TweetNaCl,

reimplementing NaCl in 100

tweets. Does speed matter?



36

Next-generation crypto library

NaCl: Networking and

Cryptography library provides

very simple new API for public-

key authenticated encryption.

All-in-one crypto_box function

uses Curve25519 for DH,

Salsa20 for encryption,

Poly1305 for authentication.

More on NaCl design: see

2011 Bernstein–Lange–Schwabe

“The security impact of a

new cryptographic library”.

37

Simplicity

Curve25519 paper

advertised “short code.”

2013 Bernstein–Janssen–

Lange–Schwabe: TweetNaCl,

reimplementing NaCl in 100

tweets. Does speed matter?

Largest chunk of code: The hash

function used inside signatures!



36

Next-generation crypto library

NaCl: Networking and

Cryptography library provides

very simple new API for public-

key authenticated encryption.

All-in-one crypto_box function

uses Curve25519 for DH,

Salsa20 for encryption,

Poly1305 for authentication.

More on NaCl design: see

2011 Bernstein–Lange–Schwabe

“The security impact of a

new cryptographic library”.

37

Simplicity

Curve25519 paper

advertised “short code.”

2013 Bernstein–Janssen–

Lange–Schwabe: TweetNaCl,

reimplementing NaCl in 100

tweets. Does speed matter?

Largest chunk of code: The hash

function used inside signatures!

2014 Bernstein–van Gastel–

Janssen–Lange–Schwabe–

Smetsers: formal verification of

some TweetNaCl properties.



36

Next-generation crypto library

NaCl: Networking and

Cryptography library provides

very simple new API for public-

key authenticated encryption.

All-in-one crypto_box function

uses Curve25519 for DH,

Salsa20 for encryption,

Poly1305 for authentication.

More on NaCl design: see

2011 Bernstein–Lange–Schwabe

“The security impact of a

new cryptographic library”.

37

Simplicity

Curve25519 paper

advertised “short code.”

2013 Bernstein–Janssen–

Lange–Schwabe: TweetNaCl,

reimplementing NaCl in 100

tweets. Does speed matter?

Largest chunk of code: The hash

function used inside signatures!

2014 Bernstein–van Gastel–

Janssen–Lange–Schwabe–

Smetsers: formal verification of

some TweetNaCl properties.

38

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang “Verifying

Curve25519 software”: formal

verification of correctness of

two high-speed asm main loops.

Newer work ongoing: e.g., 2015

Russinoff “A computationally

surveyable proof of the

Curve25519 group axioms”; 2015

Bernstein–Schwabe gfverif.

Single-curve code helps speed

and is the most promising avenue

towards bug-free ECC software.



36

Next-generation crypto library

NaCl: Networking and

Cryptography library provides

very simple new API for public-

key authenticated encryption.

All-in-one crypto_box function

uses Curve25519 for DH,

Salsa20 for encryption,

Poly1305 for authentication.

More on NaCl design: see

2011 Bernstein–Lange–Schwabe

“The security impact of a

new cryptographic library”.

37

Simplicity

Curve25519 paper

advertised “short code.”

2013 Bernstein–Janssen–

Lange–Schwabe: TweetNaCl,

reimplementing NaCl in 100

tweets. Does speed matter?

Largest chunk of code: The hash

function used inside signatures!

2014 Bernstein–van Gastel–

Janssen–Lange–Schwabe–

Smetsers: formal verification of

some TweetNaCl properties.

38

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang “Verifying

Curve25519 software”: formal

verification of correctness of

two high-speed asm main loops.

Newer work ongoing: e.g., 2015

Russinoff “A computationally

surveyable proof of the

Curve25519 group axioms”; 2015

Bernstein–Schwabe gfverif.

Single-curve code helps speed

and is the most promising avenue

towards bug-free ECC software.



36

Next-generation crypto library

NaCl: Networking and

Cryptography library provides

very simple new API for public-

key authenticated encryption.

All-in-one crypto_box function

uses Curve25519 for DH,

Salsa20 for encryption,

Poly1305 for authentication.

More on NaCl design: see

2011 Bernstein–Lange–Schwabe

“The security impact of a

new cryptographic library”.

37

Simplicity

Curve25519 paper

advertised “short code.”

2013 Bernstein–Janssen–

Lange–Schwabe: TweetNaCl,

reimplementing NaCl in 100

tweets. Does speed matter?

Largest chunk of code: The hash

function used inside signatures!

2014 Bernstein–van Gastel–

Janssen–Lange–Schwabe–

Smetsers: formal verification of

some TweetNaCl properties.

38

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang “Verifying

Curve25519 software”: formal

verification of correctness of

two high-speed asm main loops.

Newer work ongoing: e.g., 2015

Russinoff “A computationally

surveyable proof of the

Curve25519 group axioms”; 2015

Bernstein–Schwabe gfverif.

Single-curve code helps speed

and is the most promising avenue

towards bug-free ECC software.



37

Simplicity

Curve25519 paper

advertised “short code.”

2013 Bernstein–Janssen–

Lange–Schwabe: TweetNaCl,

reimplementing NaCl in 100

tweets. Does speed matter?

Largest chunk of code: The hash

function used inside signatures!

2014 Bernstein–van Gastel–

Janssen–Lange–Schwabe–

Smetsers: formal verification of

some TweetNaCl properties.

38

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang “Verifying

Curve25519 software”: formal

verification of correctness of

two high-speed asm main loops.

Newer work ongoing: e.g., 2015

Russinoff “A computationally

surveyable proof of the

Curve25519 group axioms”; 2015

Bernstein–Schwabe gfverif.

Single-curve code helps speed

and is the most promising avenue

towards bug-free ECC software.



37

Simplicity

Curve25519 paper

advertised “short code.”

2013 Bernstein–Janssen–

Lange–Schwabe: TweetNaCl,

reimplementing NaCl in 100

tweets. Does speed matter?

Largest chunk of code: The hash

function used inside signatures!

2014 Bernstein–van Gastel–

Janssen–Lange–Schwabe–

Smetsers: formal verification of

some TweetNaCl properties.

38

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang “Verifying

Curve25519 software”: formal

verification of correctness of

two high-speed asm main loops.

Newer work ongoing: e.g., 2015

Russinoff “A computationally

surveyable proof of the

Curve25519 group axioms”; 2015

Bernstein–Schwabe gfverif.

Single-curve code helps speed

and is the most promising avenue

towards bug-free ECC software.

39

2012: Apple deploys Curve25519



37

Simplicity

Curve25519 paper

advertised “short code.”

2013 Bernstein–Janssen–

Lange–Schwabe: TweetNaCl,

reimplementing NaCl in 100

tweets. Does speed matter?

Largest chunk of code: The hash

function used inside signatures!

2014 Bernstein–van Gastel–

Janssen–Lange–Schwabe–

Smetsers: formal verification of

some TweetNaCl properties.

38

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang “Verifying

Curve25519 software”: formal

verification of correctness of

two high-speed asm main loops.

Newer work ongoing: e.g., 2015

Russinoff “A computationally

surveyable proof of the

Curve25519 group axioms”; 2015

Bernstein–Schwabe gfverif.

Single-curve code helps speed

and is the most promising avenue

towards bug-free ECC software.

39

2012: Apple deploys Curve25519



37

Simplicity

Curve25519 paper

advertised “short code.”

2013 Bernstein–Janssen–

Lange–Schwabe: TweetNaCl,

reimplementing NaCl in 100

tweets. Does speed matter?

Largest chunk of code: The hash

function used inside signatures!

2014 Bernstein–van Gastel–

Janssen–Lange–Schwabe–

Smetsers: formal verification of

some TweetNaCl properties.

38

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang “Verifying

Curve25519 software”: formal

verification of correctness of

two high-speed asm main loops.

Newer work ongoing: e.g., 2015

Russinoff “A computationally

surveyable proof of the

Curve25519 group axioms”; 2015

Bernstein–Schwabe gfverif.

Single-curve code helps speed

and is the most promising avenue

towards bug-free ECC software.

39

2012: Apple deploys Curve25519



38

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang “Verifying

Curve25519 software”: formal

verification of correctness of

two high-speed asm main loops.

Newer work ongoing: e.g., 2015

Russinoff “A computationally

surveyable proof of the

Curve25519 group axioms”; 2015

Bernstein–Schwabe gfverif.

Single-curve code helps speed

and is the most promising avenue

towards bug-free ECC software.

39

2012: Apple deploys Curve25519



38

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang “Verifying

Curve25519 software”: formal

verification of correctness of

two high-speed asm main loops.

Newer work ongoing: e.g., 2015

Russinoff “A computationally

surveyable proof of the

Curve25519 group axioms”; 2015

Bernstein–Schwabe gfverif.

Single-curve code helps speed

and is the most promising avenue

towards bug-free ECC software.

39

2012: Apple deploys Curve25519
40

2013: Signal deploys Curve25519



38

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang “Verifying

Curve25519 software”: formal

verification of correctness of

two high-speed asm main loops.

Newer work ongoing: e.g., 2015

Russinoff “A computationally

surveyable proof of the

Curve25519 group axioms”; 2015

Bernstein–Schwabe gfverif.

Single-curve code helps speed

and is the most promising avenue

towards bug-free ECC software.

39

2012: Apple deploys Curve25519
40

2013: Signal deploys Curve25519



38

2014 Chen–Hsu–Lin–Schwabe–

Tsai–Wang–Yang–Yang “Verifying

Curve25519 software”: formal

verification of correctness of

two high-speed asm main loops.

Newer work ongoing: e.g., 2015

Russinoff “A computationally

surveyable proof of the

Curve25519 group axioms”; 2015

Bernstein–Schwabe gfverif.

Single-curve code helps speed

and is the most promising avenue

towards bug-free ECC software.

39

2012: Apple deploys Curve25519
40

2013: Signal deploys Curve25519



39

2012: Apple deploys Curve25519
40

2013: Signal deploys Curve25519



39

2012: Apple deploys Curve25519
40

2013: Signal deploys Curve25519
41

2014: OpenSSH deploys Curve25519



39

2012: Apple deploys Curve25519
40

2013: Signal deploys Curve25519
41

2014: OpenSSH deploys Curve25519



39

2012: Apple deploys Curve25519
40

2013: Signal deploys Curve25519
41

2014: OpenSSH deploys Curve25519



40

2013: Signal deploys Curve25519
41

2014: OpenSSH deploys Curve25519



40

2013: Signal deploys Curve25519
41

2014: OpenSSH deploys Curve25519
42

2015.10: IRTF CFRG settles on

EdDSA—Ed25519 and Ed448—

for signatures. Already selected

X25519 and X448 for DH.

2015.10: NIST reopens its

ECC standards for comment,

paving way for new curves.

2015.11: BoringSSL adds

X25519 and Ed25519.

These are just some highlights.

Many more: ianix.com/pub

/curve25519-deployment.html

and /ed25519-deployment.html.



40

2013: Signal deploys Curve25519
41

2014: OpenSSH deploys Curve25519
42

2015.10: IRTF CFRG settles on

EdDSA—Ed25519 and Ed448—

for signatures. Already selected

X25519 and X448 for DH.

2015.10: NIST reopens its

ECC standards for comment,

paving way for new curves.

2015.11: BoringSSL adds

X25519 and Ed25519.

These are just some highlights.

Many more: ianix.com/pub

/curve25519-deployment.html

and /ed25519-deployment.html.



40

2013: Signal deploys Curve25519
41

2014: OpenSSH deploys Curve25519
42

2015.10: IRTF CFRG settles on

EdDSA—Ed25519 and Ed448—

for signatures. Already selected

X25519 and X448 for DH.

2015.10: NIST reopens its

ECC standards for comment,

paving way for new curves.

2015.11: BoringSSL adds

X25519 and Ed25519.

These are just some highlights.

Many more: ianix.com/pub

/curve25519-deployment.html

and /ed25519-deployment.html.



41

2014: OpenSSH deploys Curve25519
42

2015.10: IRTF CFRG settles on

EdDSA—Ed25519 and Ed448—

for signatures. Already selected

X25519 and X448 for DH.

2015.10: NIST reopens its

ECC standards for comment,

paving way for new curves.

2015.11: BoringSSL adds

X25519 and Ed25519.

These are just some highlights.

Many more: ianix.com/pub

/curve25519-deployment.html

and /ed25519-deployment.html.


