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Abstract

This paper is devoted to the description and analysis of a new algorithm to
factor positive integers. It depends on the use of elliptic curves. The new method
is obtained from Pollard’s (p — 1)-method (Proc. Cambridge Philos. Soc. 76
(1974), 521-528) by replacing the multiplicative group by the group of points on
a random elliptic curve. It is conjectured that the algorithm determines a
non-trivial divisor of a composite number n in expected time at most
K(p)(log n)?, where p is the least prime dividing n and K is a function for
which log K(x) = {(2 + o(1))log x loglog x for x = . In the worst case,
when n is the product of two primes of the same order of magnitude, this is
exp((1 + o(1))ylog nloglog n) (for n — o0). There are several other factoring
algorithms of which the conjectural expected running time is given by the latter
formula. However, these algorithms have a running time that is basically
independent of the size of the prime factors of n, whereas the new elliptic curve
method is substantially faster for small p.
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2048-bit and 4096-bit RSA secret keys from OpenSSL 1.0.2f running on Intel Sandy
Bridge processors after observing only 16,000 secret-key operations (decryption,
signatures). This is despite the fact that OpenSSL's RSA implementation was
carefully designed to be constant time in order to protect against cache-based
(and other) side-channel attacks.

While the possibility of an attack based on cache-bank conflicts has long been
speculated, this is the first practical demonstration of such an attack. Intel's
technical documentation describes cache-bank conflicts as early as 2004.
However, these were not widely thought to be exploitable, and as a consequence
common cryptographic software developers have not implemented
countermeasures to this attack.

Paper

Latest version can be downloaded here.
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The Curve25519 paper

Avoid “all input-dependent
branches, all input-dependent array
indices, and other instructions

with input-dependent timings’ .

Choose a curve y? = x3 + Ax? + x

where A2 — 4 is not a square.
~25% of all elliptic curves.

Define Xg(x,y) = x; Xg(oc0) = 0.
Transmit each point P as Xg(P).

Use the Montgomery ladder
without any extra tests.
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2048-bit and 4096-bit RSA secret keys from OpenSSL 1.0.2f running on Intel Sandy
Bridge processors after observing only 16,000 secret-key operations (decryption,
signatures). This is despite the fact that OpenSSL's RSA implementation was
carefully designed to be constant time in order to protect against cache-based
(and other) side-channel attacks.

While the possibility of an attack based on cache-bank conflicts has long been
speculated, this is the first practical demonstration of such an attack. Intel's
technical documentation describes cache-bank conflicts as early as 2004.
However, these were not widely thought to be exploitable, and as a consequence
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countermeasures to this attack.
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Latest version can be downloaded here.
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The Curve25519 paper

Avoid “all input-dependent
branches, all input-dependent array
indices, and other instructions

with input-dependent timings’ .

Choose a curve y? = x3 + Ax? + x

where A2 — 4 is not a square.
~25% of all elliptic curves.

Define Xg(x, y) = x; Xp(o0) =

0.
Transmit each point P as Xg(P).

Use the Montgomery ladder
without any extra tests.

Theorem: Output is Xg(nP).
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Avoid “all input-dependent
branches, all input-dependent array
indices, and other instructions

with input-dependent timings’ .

Choose a curve y? = x3 + Ax? + x

where A2 — 4 is not a square.
~25% of all elliptic curves.

Define Xg(x, y) = x; Xp(o00) = 0.
Transmit each point P as Xg(P).

Use the Montgomery ladder
without any extra tests.

Theorem: Output is Xg(nP).

X2,22,X.
for 1 1
bit =

x2,x%x3
z2,Z3
x3,z3

X2 ,22

4*xx:
X2 ,X3
z2,Z23

return
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Avoid “all input-dependent
branches, all input-dependent array
indices, and other instructions

with input-dependent timings’ .

Choose a curve y? = x3 + Ax? + x

where A%2 — 4 is not a square.
~25% of all elliptic curves.

Define Xg(x,y) = x; Xg(o0) = 0.
Transmit each point P as Xg(P).

Use the Montgomery ladder
without any extra tests.

Theorem: Output is Xq(nP).

xX2,22,x3,z3 = 1,

for 1 in reverse

bit =1 & (n >
x2,x3 = cswap(
z2,z3 = cswap(
x3,z3 = ((x2*x
x1* (x2%z

x2,z2 = ((x2°2
Axx2*xz2* (x27

x2,x3 = cswap(
z2,z3 = cswap(

return x2*z2~ (p-
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Avoid “all input-dependent
branches, all input-dependent array
indices, and other instructions
with input-dependent timings’ .

Choose a curve y? = x3 + Ax? + x

where A2 — 4 is not a square.
~25% of all elliptic curves.

Define Xg(x,y) = x; Xp(oc0) = 0.
Transmit each point P as Xg(P).

Use the Montgomery ladder
without any extra tests.

Theorem: Output is Xg(nP).

11

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range (2

bit =1 & (n >> i)
x2,x3 = cswap(x2,x3,bit
z2,z3 = cswap(z2,z3,bit
x3,2z3 = ((x2*x3-2z2%*z3) "
x1* (x2%23-22%x3) "
x2,z2 = ((x272-z22"2)"2,
Axx2%Z2% (X27 2+A*xX2%*Z2
x2,x3 = cswap(x2,x3,bit
z2,z3 = cswap(z2,z3,bit

return x2*z2" (p-2)
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The Curve25519 paper x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit =1 & (n >> i)

Avoid “all input-dependent

branches, all input-dependent array

- . . x2,x3 = cswap(x2,x3,bit)
indices, and other instructions P

z2,z3 = cswap(z2,z3,bit)

with input-dependent timings’ .
x3,z3 = ((x2*x3-22%23) "2,

Choose a curve y2 = x3 4+ Ax? + x x1* (x2%2z3-22%x3) ~2)
where A% — 4 is not a square. x2,z2 = ((x2°2-22"2)"2,

~25% of all elliptic curves. Axx2x 7% (Xx2" 2+ A*x2%224+22"2) )
Define Xo(x,y) = x; Xp(c0) =0, x2,%3 = cewap(x2,x3,bit)
Transmit each point P as Xy(P). 22,23 = cswap(z2,23,bit)

return x2*z2" (p-2)
Use the Montgomery ladder

without any extra tests.

Theorem: Output is Xg(nP).
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f all elliptic curves.

Co(x,y) = x; Xp(oc0) = 0.
t each point P as Xg(P).

Montgomery ladder
“any extra tests.

1. Output is Xg(nP).

11

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n >> i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-2z2%23) "2,

x1* (x2*xz3-22%x3) "2)
x2,z2 = ((x272-22"2)"2,
Axx2%Z2% (X2"2+A*xX2%z22+2272) )

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*z2" (p-2)
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11

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n > i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-22%23) "2,

x1* (x2*xz3-22%x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%Z2% (X272+A*xX2*%xZ22+2272) )

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*z2" (p-2)

12

Montgomery has \
depending on top
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x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):
bit =1 & (n >> i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-22%23) "2,

x1* (x2*xz3-22%%x3) "2)
x2,z2 = ((x272-22"2)"2,
Axx2%Z2% (X272+A*xX2*%z22+2272) )

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*z2" (p-2)

12

Montgomery has variable #£
depending on top bit of n.
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x2,z2,x3,z3 = 1,0,x1,1 Montgomery has variable #£loops,

for i in reversed(range(255)): depending on top bit of n.
bit =1 & (n > i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-22%23) "2,
x1* (x2*xz3-22%x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%Z2% (X272+A*xX2*%Z22+2272) )
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
return x2*z2" (p-2)
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x2,z2,x3,z3 = 1,0,x1,1 Montgomery has variable #£loops,

for i in reversed(range(255)): depending on top bit of n.

bit =1 & (n > 1) Curve25519: Change initialization

2, 3 = 2, S,bt I I
X2,X cswap (x2,x3,bit) to allow leading 0 bits.

z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-22%23) "2,
x1* (x2*xz3-22%x3) "2)
x2,z2 = ((x2°2-z2"2)"2,
Axx2%Z2% (X272+A*xX2*%Z22+2272) )

Use constant #loops.

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
return x2*z2" (p-2)




x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit =
X2 ,x%X3
z2 ,Z3
x3,z23

X2 ,22

Axx2%72% (X2 2+A*x2%22+22"2))

1 & (n > 1)

= cswap(x2,x3,bit)
= cswap(z2,z3,bit)
= ((x2*x3-22%z3) "2,
x1* (x2*xz3-22%x3) "2)
= ((x2°2-z2"2) "2,

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2" (p-2)

13
Montgomery has variable #£loops,

depending on top bit of n.

Curve25519: Change initialization
to allow leading O bits.
Use constant #loops.

Also define scalars n

to never have leading 0 bits,
so original Montgomery ladder
still takes constant time.



x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit =
X2 ,x%X3
z2 ,Z3
x3,z23

X2 ,22

Axx2%72% (X2 2+A*x2%22+22"2))

X2 ,X3
z2,23

1 & (n > 1)

= cswap(x2,x3,bit)
= cswap(z2,z3,bit)
= ((x2*x3-22%z3) "2,
x1* (x2*xz3-22%x3) "2)
= ((x2°2-z2"2) "2,

= cswap(x2,x3,bit)
= cswap(z2,z3,bit)

return x2*z2" (p-2)

13
Montgomery has variable #£loops,

depending on top bit of n.

Curve25519: Change initialization
to allow leading O bits.
Use constant #loops.

Also define scalars n

to never have leading 0 bits,
so original Montgomery ladder
still takes constant time.

Use arithmetic to compute
cswap In constant time.
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3,z3 = 1,0,x1,1 Montgomery has variable #£loops, "Hey, yc
n reversed(range (255)) : depending on top bit of n. the inpu
1 & (n > i)

Curve25519: Change initialization

= cswap(x2,x3,bit . .

pi ; to allow leading 0 bits.
= cswap(z2,z3,bit

P Use constant #loops.
= ((x2*x3-2z2%z23) "2,
x1* (x2%23-22%%x3) ~2) Also define scalars n
= ((x2°2-22"2)"2, to never have leading 0 bits,
Dxz2% (x2° 2+ Axx2%z2+2z2°2)) | So original Montgomery ladder
= cswap(x2,x3,bit) still takes constant time.
= csvap(z2,23,bit) Use arithmetic to compute
x2%z2" (p-2)

cswap In constant time.




O0,x1,1
d(range (255)) :
> i)
x2,x3,bit)
z2,z3,bit)
3-z2%z3) "2,
3-22*x3) "2)
-z272) "2,
2+Axx2%Zz2+2272) )
x2,x3,bit)
z2,z3,bit)

2)

12

13
Montgomery has variable #£loops,

depending on top bit of n.

Curve25519: Change initialization
to allow leading 0O bits.
Use constant #loops.

Also define scalars n

to never have leading 0 bits,
so original Montgomery ladder
still takes constant time.

Use arithmetic to compute
cswap In constant time.
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so original Montgomery ladder
still takes constant time.

Use arithmetic to compute
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Montgomery has variable #£loops,
depending on top bit of n.

Curve25519: Change initialization
to allow leading O bits.
Use constant #loops.

Also define scalars n

to never have leading O bits,
so original Montgomery ladder
still takes constant time.

Use arithmetic to compute
cswap In constant time.
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Curve25519: Change initialization
to allow leading O bits.
Use constant #loops.

Also define scalars n

to never have leading O bits,
so original Montgomery ladder
still takes constant time.

Use arithmetic to compute
cswap In constant time.
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Conventional wisdom: Important
to check; otherwise broken by
Crypto 2000 Biehl-Meyer—Muller.



Montgomery has variable #£loops,
depending on top bit of n.

Curve25519: Change initialization
to allow leading O bits.
Use constant #loops.

Also define scalars n

to never have leading O bits,
so original Montgomery ladder
still takes constant time.

Use arithmetic to compute
cswap In constant time.

13

14
"Hey, you forgot to check that

the input is on the curvel”

Conventional wisdom: Important

to check; otherwise broken by
Crypto 2000 Biehl-Meyer—Muller.

ESORICS 2015 Jager—Schwenk-—
Somorovsky: Successful attacks!
Checking is easy to forget.
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cryptosystems implicitly assume that only walid group elements will be processed by the differ- ent cryptographic algorithms. It is well-known
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that a check for group membership of given points in the plane should be performed before processing.
courses However, in several widely used cryptographic libraries we analyzed, this check was missing, in particular in the popular ECC implementations
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two high-speed asm main loops.

N ewer WOrk O ng0| n g e. g .y 20 ]. 5 protected with the user’s passcode and the device UID. The per-file key is wrapped
with the hash of this shared secret and stored in the file’s metadata along with the
R USS| nOfF “A com p utatlon a | |y file’s public key; the corresponding private key is then wiped from memory. As soon

as the file is closed, the per-file key is also wiped from memory. To open the file again,

the shared secret is re-created using the Protected Unless Open class’s private key and |
Su rveya b | € prOOf Of th € the file's ephemeral public key; its hash is used to unwrap the per-file key, which is
Protected Until First User Authentication

then used to decrypt the file.
" 1
Curve25519 group axioms'; 2015
(NSFileProtectionCompleteUntilFirstUserAuthentication): This class behaves in

Be ' Stel n_SC hwa be gf ver i f " the same way as Complete Protection, except that the decrypted class key is not

removed from memory when the device is locked. The protection in this class has
similar properties to desktop full-disk encryption, and protects data from attacks

Single-curve code helps speed that involve a reboot

No Protection

and IS t h € m OSt pro m ISI ng dVENUE (NSFileProtectionNone): This class key is protected only with the UID, and is kept

in Effaceable Storage. This is the default class for all files not otherwise assigned to a

tcwa rd S b ug—free E C C SOftwa re . Data Protection class. Since all the keys needed to decrypt files in this class are stored

on the device, the encryption only affords the benefit of fast remote wipe. If a file is
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Protected Unless Open

(NSFileProtectionCompleteUnlessOpen): Some files may need to be written while
the device is locked. A good example of this is a mail attachment downloading in the
background. This behavior is achieved by using asymmetric elliptic curve cryptography
(ECDH over Curve25519). Along with the usual per-file key, Data Protection generates
a file public/private key pair. A shared secret is computed using the file’s private key
and the Protected Unless Open class public key, whose corresponding private key is
protected with the user’s passcode and the device UID. The per-file key is wrapped
with the hash of this shared secret and stored in the file’s metadata along with the
file’s public key; the corresponding private key is then wiped from memory. As soon
as the file is closed, the per-file key is also wiped from memory. To open the file again,
the shared secret is re-created using the Protected Unless Open class’s private key and
the file's ephemeral public key; its hash is used to unwrap the per-file key, which is
then used to decrypt the file.

Protected Until First User Authentication
(NSFileProtectionCompleteUntilFirstUserAuthentication): This class behaves in
the same way as Complete Protection, except that the decrypted class key is not
removed from memory when the device is locked. The protection in this class has
similar properties to desktop full-disk encryption, and protects data from attacks
that involve a reboot.

No Protection

(NSFileProtectionNone): This class key is protected only with the UID, and is kept

in Effaceable Storage. This is the default class for all files not otherwise assigned to a
Data Protection class. Since all the keys needed to decrypt files in this class are stored
on the device, the encryption only affords the benefit of fast remote wipe. If a file is
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Protected Unless Open

(NSFileProtectionCompleteUnlessOpen): Some files may need to be written while
the device is locked. A good example of this is a mail attachment downloading in the
background. This behavior is achieved by using asymmetric elliptic curve cryptography
(ECDH over Curve25519). Along with the usual per-file key, Data Protection generates
a file public/private key pair. A shared secret is computed using the file's private key
and the Protected Unless Open class public key, whose corresponding private key is
protected with the user’s passcode and the device UID. The per-file key is wrapped
with the hash of this shared secret and stored in the file’s metadata along with the
file’s public key; the corresponding private key is then wiped from memory. As soon
as the file is closed, the per-file key is also wiped from memory. To open the file again,
the shared secret is re-created using the Protected Unless Open class’s private key and
the file's ephemeral public key; its hash is used to unwrap the per-file key, which is
then used to decrypt the file.

Protected Until First User Authentication
(NSFileProtectionCompleteUntilFirstUserAuthentication): This class behaves in
the same way as Complete Protection, except that the decrypted class key is not
removed from memory when the device is locked. The protection in this class has
similar properties to desktop full-disk encryption, and protects data from attacks
that involve a reboot.

No Protection

(NSFileProtectionNone): This class key is protected only with the UID, and is kept

in Effaceable Storage. This is the default class for all files not otherwise assigned to a
Data Protection class. Since all the keys needed to decrypt files in this class are stored
on the device, the encryption only affords the benefit of fast remote wipe. If a file is
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5) TOFU Curve25519 identities.

“% moxie0 committed on Nov 10, 201

Showing 57 changed files with 2,194 a
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al

Protected Unless Open
)f (NSFileProtectionCompleteUnlessOpen): Some files may need to be written while
the device is locked. A good example of this is a mail attachment downloading in the
background. This behavior is achieved by using asymmetric elliptic curve cryptography
(ECDH over Curve25519). Along with the usual per-file key, Data Protection generates

WhisperSystems / Signal-Android
Ops.

a file public/private key pair. A shared secret is computed using the file’s private key <> Code Issues 613 Pull requests 28
and the Protected Unless Open class public key, whose corresponding private key is

’O ]_ 5 protected with the user’s passcode and the device UID. The per-file key is wrapped
with the hash of this shared secret and stored in the file’s metadata along with the ]

y file’s public key; the corresponding private key is then wiped from memory. As soon Mlgl‘ate to Curve25519.
as the file is closed, the per-file key is also wiped from memory. To open the file again, 1) Generate a Curve25519 identity key.
the shared secret is re-created using the Protected Unless Open class’s private key and |
the file’s ephemeral public key; its hash is used to unwrap the per-file key, which is 2) Use Curve25519 ephemerals and identities for
then used to decrypt the file.

20 1 5 Protected Until First User Authentication 2l tnitiate e leey Bxcnangeinessades.

(NSFileProtectionCompleteUntilFirstUserAuthentication): This class behaves in

f 4) Accept vl key exchange messages.

the same way as Complete Protection, except that the decrypted class key is not
removed from memory when the device is locked. The protection in this class has

. . : . 5) TOFU Curve25519 identities.
similar properties to desktop full-disk encryption, and protects data from attacks

Ed that involve a reboot.
D R Tan £ moxie0 committed on Nov 10, 2013
venue (NSFileProtectionNone): This class key is protected only with the UID, and is kept = ’
in Effaceable Storage. This is the default class for all files not otherwise assigned to a
a re ] Data Protection class. Since all the keys needed to decrypt files in this class are stored Showing 57 changed files with 2,194 additions and 495 dele

on the device, the encryption only affords the benefit of fast remote wipe. If a file is
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Protected Unless Open

(NSFileProtectionCompleteUnlessOpen): Some files may need to be written while
the device is locked. A good example of this is a mail attachment downloading in the
background. This behavior is achieved by using asymmetric elliptic curve cryptography
(ECDH over Curve25519). Along with the usual per-file key, Data Protection generates
a file public/private key pair. A shared secret is computed using the file's private key <> Code |lssues 613 Pull requests 28 Wiki Pulse
and the Protected Unless Open class public key, whose corresponding private key is
protected with the user’s passcode and the device UID. The per-file key is wrapped
with the hash of this shared secret and stored in the file’s metadata along with the

WhisperSystems / Signal-Android

file’s public key; the corresponding private key is then wiped from memory. As soon Migl‘ate to Curve25519.

as the file is closed, the per-file key is also wiped from memory. To open the file again, 1) Generate a Curve25519 identity key.

the shared secret is re-created using the Protected Unless Open class’s private key and |

the file's ephemeral public key; its hash is used to unwrap the per-file key, which is 2) Use Curve25519 ephemerals and identities for v2 3DHE agreeme

then used to decrypt the file.

3) Initiate v2 key exchange messages.
Protected Until First User Authentication ) Y J J

(NSFileProtectionCompleteUntilFirstUserAuthentication): This class behaves in
the same way as Complete Protection, except that the decrypted class key is not
removed from memory when the device is locked. The protection in this class has
similar properties to desktop full-disk encryption, and protects data from attacks
that involve a reboot,

4) Accept vl key exchange messages.

5) TOFU Curve25519 identities.

No Protection

(NSFileProtectionNone): This class key is protected only with the UID, and is kept
in Effaceable Storage. This is the default class for all files not otherwise assigned to a
Data Protection class. Since all the keys needed to decrypt files in this class are stored Showing 57 changed files with 2,194 additions and 495 deletions.
on the device, the encryption only affords the benefit of fast remote wipe. If a file is
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'This 1s a feature-1

WhisperSystems / Signal-Android

*

<> Code Issues 613 Pull requests 28 Wiki Pulse

Migrate to Curve25519.

1) Generate a Curve25519 identity key.
2) Use Curve25519 ephemerals and identities for v2 3DHE agreeme
3) Initiate v2 key exchange messages.

4) Accept vl key exchange messages. *

5) TOFU Curve25519 identities.

ﬁ moxie0 committed on Nov 10, 2013

Showing 57 changed files with 2,194 additions and 495 deletions.
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WhisperSystems / Signal-Android
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Migrate to Curve25519.

1) Generate a Curve25519 identity key.

2) Use Curve25519 ephemerals and identities for v2 3DHE agreeme
3) Initiate v2 key exchange messages.

4) Accept vl key exchange messages.

5) TOFU Curve25519 identities.

ﬁ moxie0 committed on Nov 10, 2013

Showing 57 changed files with 2,194 additions and 495 deletions.
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Migrate to Curve25519.

1) Generate a Curve25519 identity key.

2) Use Curve25519 ephemerals and identities
3) Initiate v2 key exchange messages.
4) Accept vl key exchange messages.

5) TOFU Curve25519 identities.

% moxie0 committed on Nov 10, 2013

Showing 57 changed files with 2,194 additions and 495 deletions.
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IChanges since OpenSSH 6.4

This 1s a feature-focused release.

New features:

*

for v2 3DHE agreeme

ssh(1l), sshd(8): Add support for key exchange using ¢
Diffie Hellman in Daniel Bernstein's Curve25519. Thi
method 1is the default when both the client and serve

ssh(1l), sshd(8): Add support for Ed25519 as a public
Ed25519 is a elliptic curve signature scheme that of:
better security than ECDSA and DSA and good performai
used for both user and host keys.

Add a new private key format that uses a bcrypt KDF -
protect keys at rest. This format is used unconditiol
Ed25519 keys, but may be requested when generating ol
existing keys of other types via the -o ssh-keygen(1l
We intend to make the new format the default in the |
Details of the new format are in the PROTOCOL.key fi

ssh(1l), sshd(8): Add a new transport cipher

"chacha20-polyl305@openssh.com" that combines Daniel
ChaCha20 stream cipher and Poly1305 MAC to build an
encryption mode. Details are in the PROTOCOL.chacha2l

ssh(l), sshd(8): Refuse RSA keys from old proprietanr
servers that use the obsolete RSA+MD5 signature schel
still be possible to connect with these clients/serve
DSA keys will be accepted, and OpenSSH will refuse c
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ssh(1l), sshd(8): Refuse old proprietary clients and :
use a weaker key exchange hash calculation.
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This 1s a feature-focused release.

WhisperSystems / Signal-Android New features:

* ssh(1l), sshd(8): Add support for key exchange using elliptic-curve
Diffie Hellman in Daniel Bernstein's Curve25519. This key exchange
method is the default when both the client and server support it.

<> Code |lssues 613 Pull requests 28 Wiki Pulse

* ssh(1l), sshd(8): Add support for Ed25519 as a public key type.
Ed25519 is a elliptic curve signature scheme that offers

Migrate to Curve?25519. better security than ECDSA and DSA and good performance. It may be

used for both user and host keys.

1) Generate a Curve25519 identity key.

* Add a new private key format that uses a bcrypt KDF to better
protect keys at rest. This format is used unconditionally for
Ed25519 keys, but may be requested when generating or saving
existing keys of other types via the -o ssh-keygen(l) option.

3) Initiate v2 key exchange messages. We intend to make the new format the default in the near future.

Details of the new format are in the PROTOCOL.key file.

2) Use Curve25519 ephemerals and identities for v2 3DHE agreeme

4) Accept vl key exchange messages. * ssh(1l), sshd(8): Add a new transport cipher
"chacha20-polyl305@openssh.com" that combines Daniel Bernstein's
5) TOFU Curve25519 identities. ChaCha20 stream cipher and Polyl1305 MAC to build an authenticated

encryption mode. Details are in the PROTOCOL.chacha20polyl1305 file.

* ssh(1l), sshd(8): Refuse RSA keys from old proprietary clients and
= servers that use the obsolete RSA+MD5 signature scheme. It will
%moxieo committed on Nov 10, 2013 ] still be possible to connect with these clients/servers but only

DSA keys will be accepted, and OpenSSH will refuse connection
entirely in a future release.

Showing 57 changed files with 2,194 additions and 495 deletions. & sshil], sshiligj: Retuse old propristary elfents snd ssrvers Tt
use a weaker key exchange hash calculation.
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key exchange messages.

ey exchange messages. *

5519 identities.

nitted on Nov 10, 2013

ged files with 2,194 additions and 495 deletions.

New features:

ssh(l), sshd(8): Add support for key exchange using elliptic-curve
Diffie Hellman in Daniel Bernstein's Curve25519. This key exchange
method 1is the default when both the client and server support it.

ssh(1l), sshd(8): Add support for Ed25519 as a public key type.
Ed25519 is a elliptic curve signature scheme that offers

better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.

Add a new private key format that uses a bcrypt KDF to better
protect keys at rest. This format is used unconditionally for
Ed25519 keys, but may be requested when generating or saving
existing keys of other types via the -o ssh-keygen(l) option.
We intend to make the new format the default in the near future.
Details of the new format are in the PROTOCOL.key file.

ssh(1l), sshd(8): Add a new transport cipher
"chacha20-polyl305@openssh.com" that combines Daniel Bernstein's
ChaCha20 stream cipher and Poly1305 MAC to build an authenticated

encryption mode. Details are in the PROTOCOL.chacha20polyl305 file.

ssh(l), sshd(8): Refuse RSA keys from old proprietary clients and
servers that use the obsolete RSA+MD5 signature scheme. It will
still be possible to connect with these clients/servers but only
DSA keys will be accepted, and OpenSSH will refuse connection
entirely in a future release.

ssh(1l), sshd(8): Refuse old proprietary clients and servers that
use a weaker key exchange hash calculation.
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This 1s a feature-focused release.

New features:

ssh(1l), sshd(8): Add support for key exchange using elliptic-curve
Diffie Hellman in Daniel Bernstein's Curve25519. This key exchange
method is the default when both the client and server support it.

ssh(1l), sshd(8): Add support for Ed25519 as a public key type.
Ed25519 is a elliptic curve signature scheme that offers

better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.

Add a new private key format that uses a bcrypt KDF to better
protect keys at rest. This format is used unconditionally for
Ed25519 keys, but may be requested when generating or saving
existing keys of other types via the -o ssh-keygen(l) option.

We intend to make the new format the default in the near future.
Details of the new format are in the PROTOCOL.key file.

ssh(1l), sshd(8): Add a new transport cipher
"chacha20-polyl305@openssh.com" that combines Daniel Bernstein's
ChaCha20 stream cipher and Polyl1305 MAC to build an authenticated

encryption mode. Details are in the PROTOCOL.chacha20polyl1305 file.

ssh(1l), sshd(8): Refuse RSA keys from old proprietary clients and
servers that use the obsolete RSA+MD5 signature scheme. It will
still be possible to connect with these clients/servers but only
DSA keys will be accepted, and OpenSSH will refuse connection
entirely in a future release.

ssh(1l), sshd(8): Refuse old proprietary clients and servers that
use a weaker key exchange hash calculation.
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2014: OpenSSH deploys Curve25519
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IChanges since OpenSSH 6.4

Explo

Wiki Pulse

v2 3DHE agreeme

ions.

This 1s a feature-focused release.
New features:

* ssh(1l), sshd(8): Add support for key exchange using elliptic-curve

Diffie Hellman in Daniel Bernstein's Curve25519. This key exchange
method 1is the default when both the client and server support it.

ssh(1l), sshd(8): Add support for Ed25519 as a public key type.
Ed25519 is a elliptic curve signature scheme that offers

better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.

Add a new private key format that uses a bcrypt KDF to better
protect keys at rest. This format is used unconditionally for
Ed25519 keys, but may be requested when generating or saving
existing keys of other types via the -o ssh-keygen(l) option.
We intend to make the new format the default in the near future.
Details of the new format are in the PROTOCOL.key file.

ssh(1l), sshd(8): Add a new transport cipher
"chacha20-polyl305@openssh.com" that combines Daniel Bernstein's
ChaCha20 stream cipher and Poly1305 MAC to build an authenticated

encryption mode. Details are in the PROTOCOL.chacha20polyl305 file.

ssh(l), sshd(8): Refuse RSA keys from old proprietary clients and
servers that use the obsolete RSA+MD5 signature scheme. It will
still be possible to connect with these clients/servers but only
DSA keys will be accepted, and OpenSSH will refuse connection
entirely in a future release.

ssh(1l), sshd(8): Refuse old proprietary clients and servers that
use a weaker key exchange hash calculation.
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Changes since OpenSSH 6.4

This 1s a feature-focused release.
New features:

* ssh(1l), sshd(8): Add support for key exchange using elliptic-curve
Diffie Hellman in Daniel Bernstein's Curve25519. This key exchange
method is the default when both the client and server support it.

* ssh(1l), sshd(8): Add support for Ed25519 as a public key type.
Ed25519 is a elliptic curve signature scheme that offers
better security than ECDSA and DSA and good performance. It may be
used for both user and host keys.

* Add a new private key format that uses a bcrypt KDF to better
protect keys at rest. This format is used unconditionally for
Ed25519 keys, but may be requested when generating or saving
existing keys of other types via the -o ssh-keygen(l) option.

We intend to make the new format the default in the near future.
Details of the new format are in the PROTOCOL.key file.

* ssh(1l), sshd(8): Add a new transport cipher
"chacha20-polyl305@openssh.com" that combines Daniel Bernstein's
ChaCha20 stream cipher and Polyl1305 MAC to build an authenticated
encryption mode. Details are in the PROTOCOL.chacha20polyl1305 file.

* ssh(1l), sshd(8): Refuse RSA keys from old proprietary clients and
servers that use the obsolete RSA+MD5 signature scheme. It will
still be possible to connect with these clients/servers but only
DSA keys will be accepted, and OpenSSH will refuse connection
entirely in a future release.

* ssh(1l), sshd(8): Refuse old proprietary clients and servers that
use a weaker key exchange hash calculation.

2015.10: IRTF CFRG settles on
EdDSA—Ed25519 and Ed448—

for signatures. Already selected
X25519 and X448 tor DH.

2015.10: NIST reopens its
ECC standards for comment,
paving way for new curves.

2015.11: BoringSSL adds
X25519 and Ed255109.

These are just some highlights.
Many more: ianix.com/pub
/curve25519-deployment . html
and /ed25519-deployment .html.
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