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Note to young cryptographers:
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31

Edwards curves

2007 Edwards “A

normal form for elliptic curves”:

x3 =
x1y2 + x2y1

c(1 + x1x2y1y2)
,

y3 =
y1y2 − x1x2

c(1− x1x2y1y2)

generically defines addition law

(x1; y1) + (x2; y2) = (x3; y3)

on any elliptic curve of the form

x2 + y2 = c2(1 + x2y2).

Euler+Gauss defined this law

for one curve: c4 = −1.
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d = 0 is circle, non-elliptic.
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By easy change of coordinates

can write y2 = x3 + Ax2 + x

with non-square A2 − 4

as a complete Edwards curve.

In particular: Curve25519.
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The Ed25519 signature system

CHES 2011 Bernstein–Duif–

Lange–Schwabe–Yang:

Start from Schnorr signatures.

Skip signature compression.

Support batch verification.

Use double-size H output, and

include public key A as input:

SB = R + H(R;A;M)A.

Generate R deterministically

as a secret hash of M.

⇒ Avoid PlayStation disaster.

Use Curve25519 in complete

“−1-twisted” Edwards form.
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Optimizations for more platforms

2007 Gaudry–Thomé: Core 2.

2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: newer Intel.

2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.

2015 Chou: newer Intel.

2015 Düll–Haase–Hinterwälder–

Hutter–Paar–Sánchez–Schwabe:

microcontrollers.

2015 Hutter-Schilling–Schwabe–

Wieser: ASICs.
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Hutter–Paar–Sánchez–Schwabe:

microcontrollers.

2015 Hutter-Schilling–Schwabe–

Wieser: ASICs.



33

By easy change of coordinates

can write y2 = x3 + Ax2 + x

with non-square A2 − 4

as a complete Edwards curve.

In particular: Curve25519.

Curve arithmetic is very fast.

(After various followup papers:

even faster!)

Almost as fast as Montgomery

for n; P 7→ nP in DH.

New speed records for

m; n; P;Q 7→ mP + nQ

and other signature operations.

34

The Ed25519 signature system

CHES 2011 Bernstein–Duif–

Lange–Schwabe–Yang:

Start from Schnorr signatures.

Skip signature compression.

Support batch verification.

Use double-size H output, and

include public key A as input:

SB = R + H(R;A;M)A.

Generate R deterministically

as a secret hash of M.

⇒ Avoid PlayStation disaster.

Use Curve25519 in complete

“−1-twisted” Edwards form.

35

Optimizations for more platforms

2007 Gaudry–Thomé: Core 2.
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36

Next-generation crypto library

NaCl: Networking and

Cryptography library provides

very simple new API for public-

key authenticated encryption.

All-in-one crypto_box function

uses Curve25519 for DH,

Salsa20 for encryption,

Poly1305 for authentication.

More on NaCl design: see
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2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.
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2014 Mahé–Chauvet: GPUs.

2014 Sasdrich–Güneysu: FPGAs.
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2009 Costigan–Schwabe: Cell.

2011 Bernstein–Duif–Lange–

Schwabe–Yang: Nehalem.

2012 Bernstein–Schwabe: NEON.

2014 Langley–Moon: newer Intel.
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