
Some challenges in

heavyweight cipher design

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven



Protocol generates

new AES-128 key k.

Protocol encrypts message block

m1 as AESk (1)⊕m1,

m2 as AESk (2)⊕m2,

m3 as AESk (3)⊕m3,

etc. Also authenticates.

First block m1 is predictable:

GET / HTTP/1.1\r\n

Attacker learns AESk (1).

Can attacker deduce AESk (20)?

We constantly tell people: “No!

AES is secure! This is all safe!”



Attacker learns AESk (1)

for, say, 240 user keys k .

Attacker finds some user key

using feasible 288 computation.

Attacker decrypts, maybe forges,

data for that user.

Is this 2128 “security”?

See 2002 Biham “key collisions”.



Attacker learns AESk (1)

for, say, 240 user keys k .

Attacker finds some user key

using feasible 288 computation.

Attacker decrypts, maybe forges,

data for that user.

Is this 2128 “security”?

See 2002 Biham “key collisions”.

Fragile fix: Complicate protocols

by trying to randomize everything.



Attacker learns AESk (1)

for, say, 240 user keys k .

Attacker finds some user key

using feasible 288 computation.

Attacker decrypts, maybe forges,

data for that user.

Is this 2128 “security”?

See 2002 Biham “key collisions”.

Fragile fix: Complicate protocols

by trying to randomize everything.

Much simpler fix: 256-bit keys.

(Side discussion: Is 192 enough?)



Another reason to be concerned

about 128-bit cipher keys:

quantum computing.

Grover finds k from AESk (1)

using 264 iterations

on a small quantum processor.



Another reason to be concerned

about 128-bit cipher keys:

quantum computing.

Grover finds k from AESk (1)

using 264 iterations

on a small quantum processor.

Parallelize: N2 processors,

each running 264=N iterations.

1999 Zalka claims this is optimal.



Another reason to be concerned

about 128-bit cipher keys:

quantum computing.

Grover finds k from AESk (1)

using 264 iterations

on a small quantum processor.

Parallelize: N2 processors,

each running 264=N iterations.

1999 Zalka claims this is optimal.

Multiple targets should allow

much better parallelization.

Related algos: 2009 Bernstein;

2004 Grover–Radhakrishnan.



Should MACs have nonces?

To authenticate (m1; m2; m3; m4):

Compute function with small

differential probabilities.

e.g., r4m1 + r3m2 + r2m3 + rm4,

where r is secret.

Generate a one-time key

sn = AESk (n) from master key k .

Add to obtain MAC:

r4m1 + r3m2 + r2m3 + rm4 + sn.

Widely deployed for speed:

consider, e.g., GCM.



2006 Joux “forbidden attack”:

ntwice in GCM ⇒ repeated sn
⇒ attacker figures out r ,

can easily forge messages.



2006 Joux “forbidden attack”:

ntwice in GCM ⇒ repeated sn
⇒ attacker figures out r ,

can easily forge messages.

Joux’s suggested response:

AESk (r4m1 + r3m2 + r2m3 + rm4)

“seems a safe option”. (Also

suggested and analyzed in, e.g.,

2000 Bernstein; earlier refs?)



2006 Joux “forbidden attack”:

ntwice in GCM ⇒ repeated sn
⇒ attacker figures out r ,

can easily forge messages.

Joux’s suggested response:

AESk (r4m1 + r3m2 + r2m3 + rm4)

“seems a safe option”. (Also

suggested and analyzed in, e.g.,

2000 Bernstein; earlier refs?)

Is this 2128 “security”?



2006 Joux “forbidden attack”:

ntwice in GCM ⇒ repeated sn
⇒ attacker figures out r ,

can easily forge messages.

Joux’s suggested response:

AESk (r4m1 + r3m2 + r2m3 + rm4)

“seems a safe option”. (Also

suggested and analyzed in, e.g.,

2000 Bernstein; earlier refs?)

Is this 2128 “security”?

Forgery chance ≤ ‹ + › where

› is AES PRF insecurity and

‹ ≈ q2L=2128

for message lengths ≤L.



› is at least q(q − 1)=2129.

Solution: better PRP/PRF switch

(2005 Bernstein), ok for q ≈ 264.



› is at least q(q − 1)=2129.

Solution: better PRP/PRF switch

(2005 Bernstein), ok for q ≈ 264.

‹ is still unacceptably large.

(Show that this is tight? See,

e.g., 2005 Ferguson GCM attack.)



› is at least q(q − 1)=2129.

Solution: better PRP/PRF switch

(2005 Bernstein), ok for q ≈ 264.

‹ is still unacceptably large.

(Show that this is tight? See,

e.g., 2005 Ferguson GCM attack.)

Fragile solution: “Switch keys!”



› is at least q(q − 1)=2129.

Solution: better PRP/PRF switch

(2005 Bernstein), ok for q ≈ 264.

‹ is still unacceptably large.

(Show that this is tight? See,

e.g., 2005 Ferguson GCM attack.)

Fragile solution: “Switch keys!”

Much simpler: 256-bit blocks.

2014 Bernstein–Chou “Auth256”:

29 bit ops/message bit for

differential probability <2−255.

Or try EHC from 2013 Nandi?



Improving Tor

Tor wants “fast, proven, secure,

easy-to-implement, non-patent-

encumbered, side-channel-free”

509-byte blooock cipher.

(But current cipher is a disaster,

so can consider compromises.)

Also: secure chaining

from each blooock to the next.

Tor is considering deployment

of AEZ or HHFHFH in 2016.

See, e.g., Mathewson talks

from RWC 2013 and RWC 2016.



block cipher
(strong SPRP)

CTR
OFB

yy

NR
CMC
EME
XCB

HCTR
PEP
HCH
TET
HEH
iHCH
HOH

EMME
��

stream cipher
(strong PRF)

Feistel

88

SCTES
HHFHFH &&

blooock cipher
(strong SPRP)



x0

��

w

��

��

��

x1 x5

��

w

��

��

��

x4

+1 H1
oo oo

��

+4 H4
oo oo

��
x2

��

// H2
// F2

// +2 x3

��

// H3
// F3

// +3

−3 F3
oo H3

oo x3
oo

��

−2 F2
oo H2

oo x2
oo

��

��

// H4
// −4

�� ��

// H1
// −1

��
x4 w x5 x1 w x0



Previous slide: HHFHFH

(Bernstein–Nandi–Sarkar).

H is purely combinatorial;

F is a stream cipher.

Ingredients: 4-round Feistel;

H at top (1996 Lucks),

bottom (1997 Naor–Reingold);

H2; H3 allow one-block nonces;

H1; H4 are stretched by 0-pad;

XCB/HCTR-style tweak, faster

than 2002 Liskov–Rivest–Wagner.

Allow one H1; H2; H3; H4 key;

unify H1; H2 hypotheses;

unify H3; H4 hypotheses.



One possibility for F :

permutation in EM in CTR.

Full-width permutation output

beats squeezing for long output;

and CTR is highly parallel.

Also choose highly parallel H.

We’re still optimizing choices.

Use single-block tweak w .

“chopTC”: chain by choosing

w as truncation of P ⊕ C.

HHFHFH reads each bit in array

twice, writes each bit once.

Something I’m working on now:

more locality inside permutation.



Security loss of mode

compared to security of F :

basically q2=2128,

assuming 128-bit blocks

and typical choice of H.

Is this 2128 “security”?



Security loss of mode

compared to security of F :

basically q2=2128,

assuming 128-bit blocks

and typical choice of H.

Is this 2128 “security”?

Fragile fix: “beyond-birthday-

bound security.” Complicates

implementation, security analysis.



Security loss of mode

compared to security of F :

basically q2=2128,

assuming 128-bit blocks

and typical choice of H.

Is this 2128 “security”?

Fragile fix: “beyond-birthday-

bound security.” Complicates

implementation, security analysis.

Simpler fix: “bigger-birthday-

bound security.” Use 256-bit

blocks, security q2=2256.



Security loss of mode

compared to security of F :

basically q2=2128,

assuming 128-bit blocks

and typical choice of H.

Is this 2128 “security”?

Fragile fix: “beyond-birthday-

bound security.” Complicates

implementation, security analysis.

Simpler fix: “bigger-birthday-

bound security.” Use 256-bit

blocks, security q2=2256.

Is 256-bit n safe in ChaCha?



Heavyweight ciphers

Interesting cipher-design space:

≥256 bits for all pipes.

≥256-bit keys, ≥256-bit outputs,

≥256-bit subkeys, etc.



Heavyweight ciphers

Interesting cipher-design space:

≥256 bits for all pipes.

≥256-bit keys, ≥256-bit outputs,

≥256-bit subkeys, etc.

Occasional designs: Rijndael,

OMD (SHA-2), Keccak, BLAKE2,

NORX, Simpira, : : : . This needs

far more attention, optimization.

Hash designs are usually overkill.



Heavyweight ciphers

Interesting cipher-design space:

≥256 bits for all pipes.

≥256-bit keys, ≥256-bit outputs,

≥256-bit subkeys, etc.

Occasional designs: Rijndael,

OMD (SHA-2), Keccak, BLAKE2,

NORX, Simpira, : : : . This needs

far more attention, optimization.

Hash designs are usually overkill.

Is 256 fundamentally much slower,

or much less energy-efficient,

than 128? My guess: No!



Another optimization target:

PRF inside EdDSA signatures.

EdDSA generates per-signature

random number mod 256-bit ‘ as

truncated hash: H(s;m) mod ‘.

H is SHA-512; s is subkey.

2015 Bellare–Bernstein–Tessaro:

truncated prefixed MD hash is a

high-security multi-user MAC.

Even with the constraint of

reusing preimage-resistant hash,

surely can build better design

in both software and hardware.


