Some challenges in heavyweight cipher design

Daniel J. Bernstein

University of Illinois at Chicago & Technische Universiteit Eindhoven
Protocol generates new AES-128 key k.

Protocol encrypts message block m_1 as $AES_k(1) \oplus m_1$, m_2 as $AES_k(2) \oplus m_2$, m_3 as $AES_k(3) \oplus m_3$, etc. Also authenticates.

First block m_1 is predictable:
GET / HTTP/1.1
Attacker learns $AES_k(1)$.

Can attacker deduce $AES_k(20)$? We constantly tell people: “No! AES is secure! This is all safe!”
Attacker learns $\text{AES}_k(1)$ for, say, 2^{40} user keys k.

Attacker finds some user key using feasible 2^{88} computation. Attacker decrypts, maybe forges, data for that user.

Is this 2^{128} “security”? See 2002 Biham “key collisions”.
Attacker learns $\text{AES}_k(1)$ for, say, 2^{40} user keys k.

Attacker finds some user key using feasible 2^{88} computation. Attacker decrypts, maybe forges, data for that user.

Is this 2^{128} “security”? See 2002 Biham “key collisions”.

Fragile fix: Complicate protocols by trying to randomize everything.
Attacker learns $\text{AES}_k(1)$ for, say, 2^{40} user keys k.

Attacker finds some user key using feasible 2^{88} computation. Attacker decrypts, maybe forges, data for that user.

Is this 2^{128} “security”? See 2002 Biham “key collisions”.

Fragile fix: Complicate protocols by trying to randomize everything.

Much simpler fix: 256-bit keys.

(Side discussion: Is 192 enough?)
Another reason to be concerned about 128-bit cipher keys: quantum computing.

Grover finds k from $\text{AES}_k(1)$ using 2^{64} iterations on a small quantum processor.
Another reason to be concerned about 128-bit cipher keys: quantum computing.

Grover finds k from $AES_k(1)$ using 2^{64} iterations on a small quantum processor.

Parallelize: N^2 processors, each running $2^{64}/N$ iterations. 1999 Zalka claims this is optimal.
Another reason to be concerned about 128-bit cipher keys: quantum computing.

Grover finds k from $\text{AES}_k(1)$ using 2^{64} iterations on a small quantum processor.

Parallelize: N^2 processors, each running $2^{64}/N$ iterations. 1999 Zalka claims this is optimal.

Should MACs have nonces?

To authenticate \((m_1, m_2, m_3, m_4)\):

Compute function with small differential probabilities.

e.g., \(r^4 m_1 + r^3 m_2 + r^2 m_3 + r m_4\), where \(r\) is secret.

Generate a **one-time** key

\(s_n = \text{AES}_k(n)\) from master key \(k\).

Add to obtain MAC:

\(r^4 m_1 + r^3 m_2 + r^2 m_3 + r m_4 + s_n\).

Widely deployed for speed:

consider, e.g., GCM.
2006 Joux “forbidden attack”: ntwice in GCM ⇒ repeated s_n ⇒ attacker figures out r, can easily forge messages.
2006 Joux “forbidden attack”: in GCM ⇒ repeated s_n ⇒ attacker figures out r, can easily forge messages.

Joux’s suggested response: $\text{AES}_k(r^4 m_1 + r^3 m_2 + r^2 m_3 + r m_4)$ “seems a safe option”. (Also suggested and analyzed in, e.g., 2000 Bernstein; earlier refs?)
2006 Joux “forbidden attack”:
ntwice in GCM ⇒ repeated s_n
⇒ attacker figures out r,
can easily forge messages.

Joux’s suggested response:
$AES_k(r^4 m_1 + r^3 m_2 + r^2 m_3 + r m_4)$
“seems a safe option”. (Also suggested and analyzed in, e.g., 2000 Bernstein; earlier refs?)

Is this 2^{128} “security”?
2006 Joux “forbidden attack”: ntwice in GCM ⇒ repeated s_n ⇒ attacker figures out r, can easily forge messages.

Joux’s suggested response: AES$_k(r^4m_1 + r^3m_2 + r^2m_3 + rm_4)$ “seems a safe option”. (Also suggested and analyzed in, e.g., 2000 Bernstein; earlier refs?)

Is this 2^{128} “security”? Forgery chance $\leq \delta + \epsilon$ where ϵ is AES PRF insecurity and $\delta \approx q^2L/2^{128}$ for message lengths $\leq L$.
ε is at least $q(q - 1)/2^{129}$.
Solution: better PRP/PRF switch (2005 Bernstein), ok for $q \approx 2^{64}$.
ϵ is at least $q(q - 1)/2^{129}$.
Solution: better PRP/PRF switch (2005 Bernstein), ok for $q \approx 2^{64}$.

δ is still unacceptably large.
(Show that this is tight? See, e.g., 2005 Ferguson GCM attack.)
ϵ is at least $q(q - 1)/2^{129}$.
Solution: better PRP/PRF switch (2005 Bernstein), ok for $q \approx 2^{64}$.

δ is still unacceptably large.
(Show that this is tight? See, e.g., 2005 Ferguson GCM attack.)

Fragile solution: “Switch keys!”
\(\epsilon \) is at least \(q(q - 1)/2^{129} \).
Solution: better PRP/PRF switch (2005 Bernstein), ok for \(q \approx 2^{64} \).
\(\delta \) is still unacceptably large.
(Show that this is tight? See, e.g., 2005 Ferguson GCM attack.)

Fragile solution: “Switch keys!”

Much simpler: 256-bit blocks.

2014 Bernstein–Chou “Auth256”: 29 bit ops/message bit for differential probability \(<2^{-255}\).
Or try EHC from 2013 Nandi?
Improving Tor

Tor wants “fast, proven, secure, easy-to-implement, non-patent-encumbered, side-channel-free” 509-byte block cipher. (But current cipher is a disaster, so can consider compromises.)

Also: secure chaining from each block to the next.

Tor is considering deployment of AEZ or HHFHFH in 2016.

See, e.g., Mathewson talks from RWC 2013 and RWC 2016.
Previous slide: HHFHFH (Bernstein–Nandi–Sarkar).

H is purely combinatorial; F is a stream cipher.

Ingredients: 4-round Feistel; H at top (1996 Lucks), bottom (1997 Naor–Reingold); H_2, H_3 allow one-block nonces; H_1, H_4 are stretched by 0-pad; XCB/HCTR-style tweak, faster than 2002 Liskov–Rivest–Wagner.

Allow one H_1, H_2, H_3, H_4 key; unify H_1, H_2 hypotheses; unify H_3, H_4 hypotheses.
One possibility for F: permutation in EM in CTR.

Full-width permutation output beats squeezing for long output; and CTR is highly parallel.

Also choose highly parallel H. We’re still optimizing choices.

Use single-block tweak w.

“chopTC”: chain by choosing w as truncation of $P \oplus C$.

HHFHFH reads each bit in array twice, writes each bit once.

Something I’m working on now: more locality inside permutation.
Security loss of mode compared to security of F: basically $q^2/2^{128}$, assuming 128-bit blocks and typical choice of H.

Is this 2^{128} “security”?
Security loss of mode compared to security of F: basically $q^2 / 2^{128}$, assuming 128-bit blocks and typical choice of H.

Is this 2^{128} “security”?

Security loss of mode compared to security of F: basically $q^2/2^{128}$, assuming 128-bit blocks and typical choice of H.

Is this 2^{128} “security”?

Simpler fix: “bigger-birthday-bound security.” Use 256-bit blocks, security $q^2/2^{256}$.
Security loss of mode compared to security of F: basically $q^2/2^{128}$, assuming 128-bit blocks and typical choice of H.

Is this 2^{128} “security”?

Simpler fix: “bigger-birthday-bound security.” Use 256-bit blocks, security $q^2/2^{256}$.

Is 256-bit n safe in ChaCha?
Heavyweight ciphers

Interesting cipher-design space:
≥ 256 bits for all pipes.
≥ 256-bit keys, ≥ 256-bit outputs,
≥ 256-bit subkeys, etc.
Heavyweight ciphers

Interesting cipher-design space:
≥256 bits for all pipes.
≥256-bit keys, ≥256-bit outputs,
≥256-bit subkeys, etc.

Occasional designs: Rijndael, OMD (SHA-2), Keccak, BLAKE2, NORX, Simpира, This needs far more attention, optimization.

Hash designs are usually overkill.
Heavyweight ciphers

Interesting *cipher*-design space:

≥256 bits for all pipes.

≥256-bit keys, ≥256-bit outputs, ≥256-bit subkeys, etc.

Occasional designs: Rijndael, OMD (SHA-2), Keccak, BLAKE2, NORX, Simpira, This needs far more attention, optimization.

Hash designs are usually overkill.

Is 256 fundamentally much slower, or much less energy-efficient, than 128? My guess: No!
Another optimization target: PRF inside EdDSA signatures.

EdDSA generates per-signature random number mod 256-bit ℓ as truncated hash: $H(s, m) \mod \ell$. H is SHA-512; s is subkey.

2015 Bellare–Bernstein–Tessaro: truncated prefixed MD hash is a high-security multi-user MAC.

Even with the constraint of reusing preimage-resistant hash, surely can build better design in both software and hardware.