Computational

algebraic number theory
tackles lattice-based cryptography
Daniel J. Bernstein University of Illinois at Chicago \& Technische Universiteit Eindhoven

Moving to the left Moving to the right Big generator Moving through the night —Yes, "Big Generator", 1987

The short-generator problem

Take degrees number field K. ie. field $K \subseteq \mathbf{C}$ with $\operatorname{len}_{\mathbf{Q}} K=n$.
(Weaker specification: field K with $\mathbf{Q} \subseteq K$ and $\operatorname{len}_{\mathbf{Q}} K=n$.)
e.g. $n=2 ; K=\mathbf{Q}(i)=$
$\mathbf{Q} \oplus \mathbf{Q} i \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$.
e.g. $n=256 ; \zeta=\exp (\pi i / n)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+1\right)$.
e.g. $n=660 ; \zeta=\exp (2 \pi i / 661)$;
$K=\mathbf{Q}(\zeta) \hookrightarrow \mathbf{Q}[x] /\left(x^{n}+\cdots+1\right)$.
e.g. $K=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{29})$.

Define $\mathcal{O}=\overline{\mathbf{Z}} \cap K$; subring of K. $\mathcal{O} \hookrightarrow \mathbf{Z}^{n}$ as \mathbf{Z}-modules.

Nonzero ideals of \mathcal{O}
factor uniquely as products of powers of prime ideals of \mathcal{O}.
e.g. $K=\mathbf{Q}(i) \hookrightarrow \mathbf{Q}[x] /\left(x^{2}+1\right)$
$\Rightarrow \mathcal{O}=\mathbf{Z}[i] \hookrightarrow \mathbf{Z}[x] /\left(x^{2}+1\right)$.
egg. $\zeta=\exp (\pi i / 256), K=\mathbf{Q}(\zeta)$
$\Rightarrow \mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x] /\left(x^{256}+1\right)$.
e.g. $\zeta=\exp (2 \pi i / 661), K=\mathbf{Q}(\zeta)$
$\Rightarrow \mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \cdots$.
e.g. $K=\mathbf{Q}(\sqrt{5}) \Rightarrow \mathcal{O}=$
$\mathbf{Z}[(1+\sqrt{5}) / 2] \hookrightarrow \mathbf{Z}[x] /\left(x^{2}-x-1\right)$.

The short-generator problem:
Find "short" nonzero $g \in \mathcal{O}$ given the principal ideal $g \mathcal{O}$.
e.g. $\zeta=\exp (\pi i / 4) ; K=\mathbf{Q}(\zeta) ;$
$\mathcal{O}=\mathbf{Z}[\zeta] \hookrightarrow \mathbf{Z}[x] /\left(x^{4}+1\right)$.
The \mathbf{Z}-submodule of \mathcal{O} gen by
$201-233 \zeta-430 \zeta^{2}-712 \zeta^{3}$, $935-1063 \zeta-1986 \zeta^{2}-3299 \zeta^{3}$, $979-1119 \zeta-2092 \zeta^{2}-3470 \zeta^{3}$,
$718-829 \zeta-1537 \zeta^{2}-2546 \zeta^{3}$
is an ideal I of \mathcal{O}.
Can you find a short $g \in \mathcal{O}$ such that $I=g \mathcal{O}$?

The lattice perspective

Use LLL to quickly find short elements of lattice $\mathbf{Z} A+\mathbf{Z} B+\mathbf{Z C}+\mathbf{Z} D$ where
$A=(201,-233,-430,-712)$,
$B=(935,-1063,-1986,-3299)$,
$C=(979,-1119,-2092,-3470)$,
$D=(718,-829,-1537,-2546)$.

The lattice perspective

Use LLL to quickly find
short elements of lattice
$\mathbf{Z} A+\mathbf{Z} B+\mathbf{Z C}+\mathbf{Z} D$ where
$A=(201,-233,-430,-712)$,
$B=(935,-1063,-1986,-3299)$,
$C=(979,-1119,-2092,-3470)$,
$D=(718,-829,-1537,-2546)$.
Find $(3,1,4,1)$ as
$-37 A+3 B-7 C+16 D$.
This was my original g.

The lattice perspective

Use LLL to quickly find short elements of lattice
$\mathbf{Z} A+\mathbf{Z} B+\mathbf{Z} C+\mathbf{Z} D$ where
$A=(201,-233,-430,-712)$,
$B=(935,-1063,-1986,-3299)$,
$C=(979,-1119,-2092,-3470)$,
$D=(718,-829,-1537,-2546)$.
Find $(3,1,4,1)$ as
$-37 A+3 B-7 C+16 D$.
This was my original g.
Also find, e.g., $(-4,-1,3,1)$.
Multiplying by root of unity (here ζ^{2}) preserves shortness.

For much larger n :

LLL almost never finds g.

Big gap between size of g
and size of "short" vectors that LLL typically finds in I.

For much larger n :
LLL almost never finds g.
Big gap between size of g
and size of "short" vectors that LLL typically finds in I.

Increased BKZ block size: reduced gap but slower.

For much larger n :
LLL almost never finds g.
Big gap between size of g
and size of "short" vectors
that LLL typically finds in I.
Increased BKZ block size: reduced gap but slower.

Fancier lattice algorithms: Under reasonable assumptions, 2015 Laarhoven-de Weger finds g in time $\approx 1.23^{n}$.
Big progress compared to, e.g., 2008 Nguyen-Vidick ($\approx 1.33^{n}$) but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to generate rather short $\alpha \in g \mathcal{O}$. What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$?

Pure lattice approach: Discard α. Work much harder, find shorter α.

Exploiting factorization

Use LLL, BKZ, etc. to generate rather short $\alpha \in g \mathcal{O}$. What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$?

Pure lattice approach: Discard α. Work much harder, find shorter α.

Alternative: Gain information from factorization of ideals.

Exploiting factorization

Use LLL, BKZ, etc. to generate rather short $\alpha \in g \mathcal{O}$. What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$?

Pure lattice approach: Discard α. Work much harder, find shorter α.

Alternative: Gain information from factorization of ideals.
e.g. If $\alpha_{1} \mathcal{O}=g \mathcal{O} \cdot P^{2} \cdot Q^{2}$

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short $\alpha \in g \mathcal{O}$.
What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$?
Pure lattice approach: Discard α. Work much harder, find shorter α.

Alternative: Gain information from factorization of ideals.
e.g. If $\alpha_{1} \mathcal{O}=g \mathcal{O} \cdot P^{2} \cdot Q^{2}$ and $\alpha_{2} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{3}$

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short $\alpha \in g \mathcal{O}$.
What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$?
Pure lattice approach: Discard α.
Work much harder, find shorter α.
Alternative: Gain information from factorization of ideals.
e.g. If $\alpha_{1} \mathcal{O}=g \mathcal{O} \cdot P^{2} \cdot Q^{2}$ and $\alpha_{2} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{3}$
and $\alpha_{3} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{2}$

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short $\alpha \in g \mathcal{O}$.
What happens if $\alpha \mathcal{O} \neq g \mathcal{O}$?
Pure lattice approach: Discard α.
Work much harder, find shorter α.
Alternative: Gain information from factorization of ideals.
e.g. If $\alpha_{1} \mathcal{O}=g \mathcal{O} \cdot P^{2} \cdot Q^{2}$
and $\alpha_{2} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{3}$
and $\alpha_{3} \mathcal{O}=g \mathcal{O} \cdot P \cdot Q^{2}$ then $P=\alpha_{1} \alpha_{3}^{-1} \mathcal{O}$ and $Q=\alpha_{2} \alpha_{3}^{-1} \mathcal{O}$ and $g \mathcal{O}=\alpha_{1}^{-1} \alpha_{2}^{-2} \alpha_{3}^{4} \mathcal{O}$.

General strategy: For many α 's, factor $\alpha \mathcal{O}$ into products of powers of some primes and $g \mathcal{O}$.

Solve system of equations to find generator for $g \mathcal{O}$ as product of powers of the α 's.

General strategy: For many α 's, factor $\alpha \mathcal{O}$ into products of powers of some primes and $g \mathcal{O}$.

Solve system of equations to find generator for $g \mathcal{O}$ as product of powers of the α 's.
"Can the system be solved?"

- Becomes increasingly reasonable to expect as the number of equations approaches and passes the number of primes.

General strategy: For many α 's, factor $\alpha \mathcal{O}$ into products of powers of some primes and $g \mathcal{O}$.

Solve system of equations to find generator for $g \mathcal{O}$ as product of powers of the α 's.
"Can the system be solved?"

- Becomes increasingly reasonable to expect as the number of equations approaches and passes the number of primes.
"But \{primes\} is infinite!"

— Restrict to a "factor base":

 e.g., all primes of norm $\leq y$.— Restrict to a "factor base": e.g., all primes of norm $\leq y$.
"But what if $\alpha \mathcal{O}$ doesn't factor into those primes?"
— Restrict to a "factor base": e.g., all primes of norm $\leq y$.
"But what if $\alpha \mathcal{O}$ doesn't factor into those primes?"

- Then throw it away.

But often it does factor.
— Restrict to a "factor base":
e.g., all primes of norm $\leq y$.
"But what if $\alpha \mathcal{O}$ doesn't
factor into those primes?"

- Then throw it away.

But often it does factor.
Familiar issue from "index calculus" DL methods,
CFRAC, LS, QS, NFS, etc.
Model the norm of $(\alpha / g) \mathcal{O}$
as "random" integer in $[1, x]$; y-smoothness chance $\approx 1 / y$ if $\log y \approx \sqrt{(1 / 2) \log x \log \log x}$.

Variation: Ignore $g \mathcal{O}$.
Generate rather short $\alpha \in \mathcal{O}$, factor $\alpha \mathcal{O}$ into small primes. After enough α 's, solve system of equations; obtain generator for each prime.

Variation: Ignore $g \mathcal{O}$.
Generate rather short $\alpha \in \mathcal{O}$, factor $\alpha \mathcal{O}$ into small primes.
After enough α 's,
solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one $\alpha \mathcal{O} \subseteq g \mathcal{O}$;
obtain generator for $g \mathcal{O}$.

Variation: Ignore $g \mathcal{O}$.
Generate rather short $\alpha \in \mathcal{O}$, factor $\alpha \mathcal{O}$ into small primes.
After enough α 's,
solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one $\alpha \mathcal{O} \subseteq g \mathcal{O}$;
obtain generator for $g \mathcal{O}$.
"Do all primes have generators?"

Variation: Ignore $g \mathcal{O}$.
Generate rather short $\alpha \in \mathcal{O}$, factor $\alpha \mathcal{O}$ into small primes.

After enough α 's,
solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one $\alpha \mathcal{O} \subseteq g \mathcal{O}$;
obtain generator for $g \mathcal{O}$.
"Do all primes have generators?"

- Standard heuristics:

For many (most?) number fields,
yes; but for big cyclotomics, no! Modulo a few small primes, yes.
\{principal nonzero ideals\} is kernel of a semigroup map $\{$ nonzero ideals $\} \rightarrow C$ where C is a finite abelian group, the "class group of K ".

Fundamental object of study in algebraic number theory.
\{principal nonzero ideals\} is kernel of a semigroup map $\{$ nonzero ideals $\} \rightarrow C$ where C is a finite abelian group, the "class group of K ".

Fundamental object of study in algebraic number theory.

Factoring many small $\alpha \mathcal{O}$
is a standard textbook method of computing class group and generators of ideals.
\{principal nonzero ideals\} is kernel of a semigroup map $\{$ nonzero ideals $\} \rightarrow C$ where C is a finite abelian group, the "class group of K ".

Fundamental object of study in algebraic number theory.

Factoring many small $\alpha \mathcal{O}$
is a standard textbook method of computing class group and generators of ideals.

Also compute unit group \mathcal{O}^{*} via ratios of generators.

Big generator

Smart-Vercauteren: "However this method is likely to produce a generator of large height, i.e., with large coefficients. Indeed so large, that writing the obtained generator down as a polynomial in θ may take exponential time."

Indeed, generator found for $g \mathcal{O}$ is product of powers of various α 's. Must be $g u$ for some $u \in \mathcal{O}^{*}$, but extremely unlikely to be g.

Big generator

Smart-Vercauteren: "However this method is likely to produce a generator of large height, i.e., with large coefficients. Indeed so large, that writing the obtained generator down as a polynomial in θ may take exponential time."

Indeed, generator found for $g \mathcal{O}$ is product of powers of various α 's. Must be $g u$ for some $u \in \mathcal{O}^{*}$, but extremely unlikely to be g. How do we find g from $g u$?

There are exactly n distinct

 ring maps $\varphi_{1}, \ldots, \varphi_{n}: K \rightarrow \mathbf{C}$.There are exactly n distinct ring maps $\varphi_{1}, \ldots, \varphi_{n}: K \rightarrow \mathbf{C}$.

Define Log : $K^{*} \rightarrow \mathbf{R}^{n}$ by
$\log =\left(\log \left|\varphi_{1}\right|, \ldots, \log \left|\varphi_{n}\right|\right)$.

There are exactly n distinct ring maps $\varphi_{1}, \ldots, \varphi_{n}: K \rightarrow \mathbf{C}$.

Define Log: $K^{*} \rightarrow \mathbf{R}^{n}$ by
$\log =\left(\log \left|\varphi_{1}\right|, \ldots, \log \left|\varphi_{n}\right|\right)$.
$\log \mathcal{O}^{*}$ is a lattice of rank $r_{1}+r_{2}-1$ where $r_{1}=\#\left\{i: \varphi_{i}(K) \subseteq \mathbf{R}\right\}$,
$2 r_{2}=\#\left\{i: \varphi_{i}(K) \nsubseteq \mathbf{R}\right\}$.

There are exactly n distinct ring maps $\varphi_{1}, \ldots, \varphi_{n}: K \rightarrow \mathbf{C}$.

Define Log: $K^{*} \rightarrow \mathbf{R}^{n}$ by
$\log =\left(\log \left|\varphi_{1}\right|, \ldots, \log \left|\varphi_{n}\right|\right)$.
$\log \mathcal{O}^{*}$ is a lattice of rank $r_{1}+r_{2}-1$ where
$r_{1}=\#\left\{i: \varphi_{i}(K) \subseteq \mathbf{R}\right\}$,
$2 r_{2}=\#\left\{i: \varphi_{i}(K) \nsubseteq \mathbf{R}\right\}$.
e.g. $\zeta=\exp (\pi i / 256), K=\mathbf{Q}(\zeta)$: images of ζ under ring maps are $\zeta, \zeta^{3}, \zeta^{5}, \ldots, \zeta^{511}$.
$r_{1}=0 ; r_{2}=128 ;$ rank 127 .

Compute Log $g u$
as sum of multiples of $\log \alpha$ for the original α 's.

Compute Log $g u$
as sum of multiples of $\log \alpha$ for the original α 's.

Find elements of $\log \mathcal{O}^{*}$
close to $\log g u$.

Compute Log $g u$
as sum of multiples of $\log \alpha$ for the original α 's.

Find elements of $\log \mathcal{O}^{*}$ close to $\log g u$.

This is a close-vector problem ("bounded-distance decoding"). "Embedding" heuristic:
CVP as fast as SVP.

Compute Log $g u$
as sum of multiples of $\log \alpha$ for the original α 's.

Find elements of $\log \mathcal{O}^{*}$ close to $\log g u$.

This is a close-vector problem ("bounded-distance decoding"). "Embedding" heuristic:
CVP as fast as SVP.
This finds $\log u$.
Easily reconstruct g
up to a root of unity.
$\#\{$ roots of unity $\}$ is small.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log norm $K: F g$ for a proper subfield $F \subset K$.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log norm $K: F g$ for a proper subfield $F \subset K$.

We also know Log norm ${ }_{K: F} g u$, so we know \log norm $_{K: F} u$.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log norm ${ }_{K: F} g$ for a proper subfield $F \subset K$.

We also know \log norm $_{K: F} g u$, so we know \log norm $_{K: F} u$.

This linearly constrains $\log u$ to a shifted sublattice of $\log \mathcal{O}^{*}$. Number of independent constraints: unit rank for F.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log norm ${ }_{K: F} g$ for a proper subfield $F \subset K$.

We also know \log norm $_{K: F} g u$, so we know \log norm $_{K: F} u$.

This linearly constrains $\log u$ to a shifted sublattice of $\log \mathcal{O}^{*}$. Number of independent constraints: unit rank for F.

Find elements close to Log $g u$. Lower-dimension lattice problem, if unit rank of F is positive.

Start by recursively computing $\log ^{\text {norm }}{ }_{K: F} g$ via norm of $g \mathcal{O}$ for each $F \subset K$.

Various constraints on $\log u$, depending on subfield structure.

Start by recursively computing Log norm $K: F g$ via norm of $g \mathcal{O}$ for each $F \subset K$.

Various constraints on $\log u$, depending on subfield structure.
e.g. $\zeta=\exp (2 \pi i / 661), K=\mathbf{Q}(\zeta)$.

Degrees of subfields of K :

Most extreme case:
Composite of quadratics, such as
$K=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{29})$.
CVP becomes trivial!

Most extreme case:
Composite of quadratics, such as
$K=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{29})$.
CVP becomes trivial!
Opposite extreme: prime degree; the only proper subfield is \mathbf{Q}. My recommendation: big Galois group; e.g., $\mathbf{Q}[x] /\left(x^{p}-x-1\right)$.

Many intermediate cases.

Most extreme case:
Composite of quadratics, such as $K=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{29})$. CVP becomes trivial!

Opposite extreme: prime degree; the only proper subfield is \mathbf{Q}. My recommendation: big Galois group; e.g., $\mathbf{Q}[x] /\left(x^{p}-x-1\right)$. Many intermediate cases.

Confused summary by Cramer-Ducas-Peikert-Regev: method "may yield slightly subexponential runtimes in cyclotomic rings of highly smooth index".

Further improvements: (1), 2

(1) 2014.10 Campbell-GrovesShepherd: Quickly solve CVP for cyclotomics using known (good) basis for cyclotomic units.

Further improvements: 1,2

(1) 2014.10 Campbell-GrovesShepherd: Quickly solve CVP for cyclotomics using known (good) basis for cyclotomic units.

Analysis in paper is bogus, but algorithm is very fast.

Further improvements:

(1) 2014.10 Campbell-Groves-

Shepherd: Quickly solve CVP
for cyclotomics using known (good) basis for cyclotomic units.

Analysis in paper is bogus, but algorithm is very fast.

Plagiarized and properly analyzed by Cramer-Ducas-Peikert-Regev.

Further improvements:

(1) 2014.10 Campbell-Groves-

Shepherd: Quickly solve CVP
for cyclotomics using known (good) basis for cyclotomic units.

Analysis in paper is bogus, but algorithm is very fast.

Plagiarized and properly analyzed by Cramer-Ducas-Peikert-Regev.
(2) 2015.01 Song announcement:

Fast quantum algorithm for $g u$. "PIP . . . solved [BiasseSong'14]". But paper not available yet.

