
Computational

algebraic number theory

tackles lattice-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Moving to the left

Moving to the right

Big generator

Moving through the night

—Yes, “Big Generator”, 1987

The short-generator problem

Take degree-n number field K.

i.e. field K ⊆ C with lenQK = n.

(Weaker specification: field K

with Q ⊆ K and lenQK = n.)

e.g. n = 2; K = Q(i) =

Q⊕Qi ,� Q[x]=(x2 + 1).

e.g. n = 256; “ = exp(ıi=n);

K = Q(“) ,� Q[x]=(xn + 1).

e.g. n = 660; “ = exp(2ıi=661);

K = Q(“) ,� Q[x]=(xn + · · ·+ 1).

e.g. K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

Define O = Z ∩K; subring of K.

O ,� Zn as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K = Q(i) ,� Q[x]=(x2 + 1)

⇒ O = Z[i] ,� Z[x]=(x2 + 1).

e.g. “ = exp(ıi=256), K = Q(“)

⇒ O = Z[“] ,� Z[x]=(x256 + 1).

e.g. “ = exp(2ıi=661), K = Q(“)

⇒ O = Z[“] ,� · · ·.
e.g. K = Q(

√
5) ⇒ O =

Z[(1+
√

5)=2] ,� Z[x]=(x2−x−1).

The short-generator problem:

Find “short” nonzero g ∈ O
given the principal ideal gO.

e.g. “ = exp(ıi=4); K = Q(“);

O = Z[“] ,� Z[x]=(x4 + 1).

The Z-submodule of O gen by

201− 233“ − 430“2 − 712“3,

935− 1063“ − 1986“2 − 3299“3,

979− 1119“ − 2092“2 − 3470“3,

718− 829“ − 1537“2 − 2546“3

is an ideal I of O.

Can you find a short g ∈ O
such that I = gO?

The lattice perspective

Use LLL to quickly find

short elements of lattice

ZA+ ZB + ZC + ZD where

A = (201;−233;−430;−712);

B = (935;−1063;−1986;−3299);

C = (979;−1119;−2092;−3470);

D = (718;−829;−1537;−2546):

The lattice perspective

Use LLL to quickly find

short elements of lattice

ZA+ ZB + ZC + ZD where

A = (201;−233;−430;−712);

B = (935;−1063;−1986;−3299);

C = (979;−1119;−2092;−3470);

D = (718;−829;−1537;−2546):

Find (3; 1; 4; 1) as

−37A+ 3B − 7C + 16D.

This was my original g .

The lattice perspective

Use LLL to quickly find

short elements of lattice

ZA+ ZB + ZC + ZD where

A = (201;−233;−430;−712);

B = (935;−1063;−1986;−3299);

C = (979;−1119;−2092;−3470);

D = (718;−829;−1537;−2546):

Find (3; 1; 4; 1) as

−37A+ 3B − 7C + 16D.

This was my original g .

Also find, e.g., (−4;−1; 3; 1).

Multiplying by root of unity

(here “2) preserves shortness.

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,

2015 Laarhoven–de Weger

finds g in time ≈1:23n.

Big progress compared to, e.g.,

2008 Nguyen–Vidick (≈1:33n)

but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

e.g. If ¸1O = gO · P 2 · Q2

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

e.g. If ¸1O = gO · P 2 · Q2

and ¸2O = gO · P · Q3

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

e.g. If ¸1O = gO · P 2 · Q2

and ¸2O = gO · P · Q3

and ¸3O = gO · P · Q2

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

e.g. If ¸1O = gO · P 2 · Q2

and ¸2O = gO · P · Q3

and ¸3O = gO · P · Q2 then

P = ¸1¸
−1
3 O and Q = ¸2¸

−1
3 O

and gO = ¸−1
1 ¸−2

2 ¸4
3O.

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

“Can the system be solved?”

— Becomes increasingly

reasonable to expect as the

number of equations approaches

and passes the number of primes.

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

“Can the system be solved?”

— Becomes increasingly

reasonable to expect as the

number of equations approaches

and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

“But what if ¸O doesn’t

factor into those primes?”

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

“But what if ¸O doesn’t

factor into those primes?”

— Then throw it away.

But often it does factor.

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

“But what if ¸O doesn’t

factor into those primes?”

— Then throw it away.

But often it does factor.

Familiar issue from

“index calculus” DL methods,

CFRAC, LS, QS, NFS, etc.

Model the norm of (¸=g)O
as “random” integer in [1; x];

y -smoothness chance ≈1=y

if log y ≈
p

(1=2) log x log log x .

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

After this precomputation,

factor one ¸O ⊆ gO;

obtain generator for gO.

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

After this precomputation,

factor one ¸O ⊆ gO;

obtain generator for gO.

“Do all primes have generators?”

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

After this precomputation,

factor one ¸O ⊆ gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:

For many (most?) number fields,

yes; but for big cyclotomics, no!

Modulo a few small primes, yes.

{principal nonzero ideals} is

kernel of a semigroup map

{nonzero ideals}� C where

C is a finite abelian group,

the “class group of K”.

Fundamental object of study

in algebraic number theory.

{principal nonzero ideals} is

kernel of a semigroup map

{nonzero ideals}� C where

C is a finite abelian group,

the “class group of K”.

Fundamental object of study

in algebraic number theory.

Factoring many small ¸O
is a standard textbook method

of computing class group

and generators of ideals.

{principal nonzero ideals} is

kernel of a semigroup map

{nonzero ideals}� C where

C is a finite abelian group,

the “class group of K”.

Fundamental object of study

in algebraic number theory.

Factoring many small ¸O
is a standard textbook method

of computing class group

and generators of ideals.

Also compute unit group O∗

via ratios of generators.

Big generator

Smart–Vercauteren: “However

this method is likely to produce

a generator of large height, i.e.,

with large coefficients. Indeed so

large, that writing the obtained

generator down as a polynomial in

„ may take exponential time.”

Indeed, generator found for gO is

product of powers of various ¸’s.

Must be gu for some u ∈ O∗,
but extremely unlikely to be g .

Big generator

Smart–Vercauteren: “However

this method is likely to produce

a generator of large height, i.e.,

with large coefficients. Indeed so

large, that writing the obtained

generator down as a polynomial in

„ may take exponential time.”

Indeed, generator found for gO is

product of powers of various ¸’s.

Must be gu for some u ∈ O∗,
but extremely unlikely to be g .

How do we find g from gu?

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

Define Log : K∗ → Rn by

Log = (log |’1|; : : : ; log |’n|).

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

Define Log : K∗ → Rn by

Log = (log |’1|; : : : ; log |’n|).

LogO∗ is a lattice

of rank r1 + r2 − 1 where

r1 = #{i : ’i (K) ⊆ R},
2r2 = #{i : ’i (K) 6⊆ R}.

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

Define Log : K∗ → Rn by

Log = (log |’1|; : : : ; log |’n|).

LogO∗ is a lattice

of rank r1 + r2 − 1 where

r1 = #{i : ’i (K) ⊆ R},
2r2 = #{i : ’i (K) 6⊆ R}.

e.g. “ = exp(ıi=256), K = Q(“):

images of “ under ring maps

are “; “3; “5; : : : ; “511.

r1 = 0; r2 = 128; rank 127.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Find elements of LogO∗

close to Log gu.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Find elements of LogO∗

close to Log gu.

This is a close-vector problem

(“bounded-distance decoding”).

“Embedding” heuristic:

CVP as fast as SVP.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Find elements of LogO∗

close to Log gu.

This is a close-vector problem

(“bounded-distance decoding”).

“Embedding” heuristic:

CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.

#{roots of unity} is small.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

We also know Log normK:F gu,

so we know Log normK:F u.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

We also know Log normK:F gu,

so we know Log normK:F u.

This linearly constrains Log u

to a shifted sublattice of LogO∗.
Number of independent

constraints: unit rank for F .

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

We also know Log normK:F gu,

so we know Log normK:F u.

This linearly constrains Log u

to a shifted sublattice of LogO∗.
Number of independent

constraints: unit rank for F .

Find elements close to Log gu.

Lower-dimension lattice problem,

if unit rank of F is positive.

Start by recursively computing

Log normK:F g via norm of gO
for each F ⊂ K.

Various constraints on Log u,

depending on subfield structure.

Start by recursively computing

Log normK:F g via norm of gO
for each F ⊂ K.

Various constraints on Log u,

depending on subfield structure.

e.g. “ = exp(2ıi=661), K = Q(“).

Degrees of subfields of K:

660

330
qqq

220
��

132

22

60

MMM

165
qqq

110
�� qqq

66

22 qqq
44

22 ��
30

TTTTTTT ��
20

TTTTTTT
22

12

TTTTTTT
MMMM

55
zz

33

DD zz
22

DD zz
15

VVVVVVVVV zz
10

VVVVVVVVV zz
6

VVVVVVVVVV
DDD zzz

4

VVVVVVVVVV
DDD

11

MMMM 22 ��
5

TTTTTTTT �� qqqq
3

TTTTTTTT
22 zzz

2

TTTTTTTT
22 �� qqqqq

1

MMMM
22 �� qqqqq

Most extreme case:

Composite of quadratics, such as

K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

CVP becomes trivial!

Most extreme case:

Composite of quadratics, such as

K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

CVP becomes trivial!

Opposite extreme: prime degree;

the only proper subfield is Q.

My recommendation: big Galois

group; e.g., Q[x]=(xp − x − 1).

Many intermediate cases.

Most extreme case:

Composite of quadratics, such as

K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

CVP becomes trivial!

Opposite extreme: prime degree;

the only proper subfield is Q.

My recommendation: big Galois

group; e.g., Q[x]=(xp − x − 1).

Many intermediate cases.

Confused summary by Cramer–

Ducas–Peikert–Regev: method

“may yield slightly subexponential

runtimes in cyclotomic rings of

highly smooth index”.

Further improvements: 1 , 2

1 2014.10 Campbell–Groves–

Shepherd: Quickly solve CVP

for cyclotomics using known

(good) basis for cyclotomic units.

Further improvements: 1 , 2

1 2014.10 Campbell–Groves–

Shepherd: Quickly solve CVP

for cyclotomics using known

(good) basis for cyclotomic units.

Analysis in paper is bogus,

but algorithm is very fast.

Further improvements: 1 , 2

1 2014.10 Campbell–Groves–

Shepherd: Quickly solve CVP

for cyclotomics using known

(good) basis for cyclotomic units.

Analysis in paper is bogus,

but algorithm is very fast.

Plagiarized and properly analyzed

by Cramer–Ducas–Peikert–Regev.

Further improvements: 1 , 2

1 2014.10 Campbell–Groves–

Shepherd: Quickly solve CVP

for cyclotomics using known

(good) basis for cyclotomic units.

Analysis in paper is bogus,

but algorithm is very fast.

Plagiarized and properly analyzed

by Cramer–Ducas–Peikert–Regev.

2 2015.01 Song announcement:

Fast quantum algorithm for gu.

“PIP : : : solved [BiasseSong’14]”.

But paper not available yet.

