Hyper-and-elliptic-curve cryptography

Daniel J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven

Joint work with: Tanja Lange Technische Universiteit Eindhoven

cr.yp.to/papers.html#hyperand
(2014) + new examples (2015)

Rewind to 2012 Gaudry–Schost: "the computation took more than 1,000,000 CPU hours". The Gaudry–Schost motivation:

Inputs: "squared θ coordinates" ($x_2 : y_2 : z_2 : t_2$) for Q_2 , ($x_3 : y_3 : z_3 : t_3$) for Q_3 , ($x_1 : y_1 : z_1 : t_1$) for $Q_1 = Q_3 - Q_2$.

This diagram computes $(x_4 : y_4 : z_4 : t_4)$ for $Q_4 = 2Q_2$, $(x_5 : y_5 : z_5 : t_5)$ for $Q_5 = Q_3 + Q_2$. Inputs: "squared θ coordinates" ($x_2 : y_2 : z_2 : t_2$) for Q_2 , ($x_3 : y_3 : z_3 : t_3$) for Q_3 , ($x_1 : y_1 : z_1 : t_1$) for $Q_1 = Q_3 - Q_2$.

This diagram computes $(x_4 : y_4 : z_4 : t_4)$ for $Q_4 = 2Q_2$, $(x_5 : y_5 : z_5 : t_5)$ for $Q_5 = Q_3 + Q_2$.

Just 14 mults for Q_4 (1986 Chudnovsky–Chudnovsky). Huge speedup if constants $\left(\frac{1}{a^2}:\frac{1}{b^2}:\frac{1}{c^2}:\frac{1}{d^2}\right)$ etc. are small. Inputs: "squared θ coordinates" ($x_2 : y_2 : z_2 : t_2$) for Q_2 , ($x_3 : y_3 : z_3 : t_3$) for Q_3 , ($x_1 : y_1 : z_1 : t_1$) for $Q_1 = Q_3 - Q_2$.

This diagram computes $(x_4 : y_4 : z_4 : t_4)$ for $Q_4 = 2Q_2$, $(x_5 : y_5 : z_5 : t_5)$ for $Q_5 = Q_3 + Q_2$.

Just 14 mults for Q_4 (1986 Chudnovsky–Chudnovsky). Huge speedup if constants $\left(\frac{1}{a^2}:\frac{1}{b^2}:\frac{1}{c^2}:\frac{1}{d^2}\right)$ etc. are small. Just 25 mults for Q_4, Q_5 (2006 Gaudry) after Q_1 precomp. $(x_i : y_i : z_i : t_i)$ are points on original Kummer surface K : $4E^2xyzt = ((x^2 + y^2 + z^2 + t^2))$ -F(xt + yz) - G(xz + yt)) $-H(xy + zt))^2$

where

 $\begin{array}{l} \mathcal{A}^2 &= a^2 + b^2 + c^2 + d^2, \\ \mathcal{B}^2 &= a^2 + b^2 - c^2 - d^2, \\ \mathcal{C}^2 &= a^2 - b^2 + c^2 - d^2, \\ \mathcal{D}^2 &= a^2 - b^2 - c^2 + d^2, \\ \mathcal{F} &= (a^4 - b^4 - c^4 + d^4) / (a^2 d^2 - b^2 c^2), \\ \mathcal{G} &= (a^4 - b^4 + c^4 - d^4) / (a^2 c^2 - b^2 d^2), \\ \mathcal{H} &= (a^4 + b^4 - c^4 - d^4) / (a^2 b^2 - c^2 d^2), \\ \mathcal{E}^2 &= \mathcal{F}^2 + \mathcal{G}^2 + \mathcal{H}^2 + \mathcal{F}\mathcal{G}\mathcal{H} - \mathcal{4}. \end{array}$

Surface is from 1864 Kummer, Über die Flächen vierten Grades mit sechzehn singulären Punkten:

Endlich möge hier noch eine Formveränderung erwähnt werden, welche man mit der Gleichung dieser Flächen vornehmen kann. Wählt man die vier in der Form (4.) enthaltenen singulären Tangentialebenen

$$p = 0, q = 0, p' = 0, q' = 0$$

als die Fundamentalebenen, also p, q, p', q', als die vier homogenen Coordinaten, und bezeichnet demgemäß die beiden letzteren durch r und s, so erhält man folgende Form der Gleichung:

$$\phi^2 = 16 \, Kpqrs,$$

wo

$$\phi = p^{2} + q^{2} + r^{2} + s^{2} + 2a(qr + ps) + 2b(rp + qs) + 2c(pq + rs)$$

$$K = a^{2} + b^{2} + c^{2} - 2abc - 1.$$

in welcher die sieben Constanten a, b, c, d, e, f, k jener Form auf die richtige Anzahl von drei Constanten a, b, c eingeschränkt ist. Wählt man in dieser Form die Coefficienten der linearen Ausdrücke p, q, r, s real, und die drei Constanten a, b, c eben Q_2, Q_3 are points on Jacobian J of a related genus-2 hyperelliptic curve C. "Standard" $X : J/{\pm 1} \hookrightarrow K$ defines squared θ coords on J. Q_2, Q_3 are points on Jacobian J of a related genus-2 hyperelliptic curve C. "Standard" $X : J/{\pm 1} \hookrightarrow K$ defines squared θ coords on J.

Use diagram k times to compute $X(Q_1) \mapsto X(nQ_1), X((n+1)Q_1)$ for any $n \in \{0, 1, ..., 2^k - 1\}.$ Q_2, Q_3 are points on Jacobian J of a related genus-2 hyperelliptic curve C. "Standard" $X : J/{\pm 1} \hookrightarrow K$ defines squared θ coords on J.

Use diagram k times to compute $X(Q_1) \mapsto X(nQ_1), X((n+1)Q_1)$ for any $n \in \{0, 1, ..., 2^k - 1\}.$

Beware typos in the "standard" Rosenhain/Mumford/Kummer formulas in 2007 Gaudry, 2010 Cosset, 2013 Bos–Costello–Hisil– Lauter. See our paper for simpler formulas **as Sage scripts**.

1966 Mumford, On the equations defining Abelian varieties. I: "There are several thousand formulas in this paper which allow one or more 'sign-like ambiguities': i.e., alternate and symmetric but non-equivalent reformulations. These occur in definitions and theorems. I have made a superhuman effort to achieve consistency and even to make *correct* statements: but I still cannot guarantee the result."

1966 Mumford, On the equations defining Abelian varieties. I: "There are several thousand formulas in this paper which allow one or more 'sign-like ambiguities': i.e., alternate and symmetric but non-equivalent reformulations. These occur in definitions and theorems. I have made a superhuman effort to achieve consistency and even to make *correct* statements: but I still cannot guarantee the result."

Sage is better than superhuman!

1975 Weil: "Kummer discovered that family of surfaces ... entirely without the help of the powerful tool provided by theta-functions; actually, the connection with theta-functions was noticed only in 1877, by Cayley and by Borchardt . . . His example is of particular value at a time when it is again realized by algebraic geometers that the detailed study of well-chosen special varieties remains one major road to progress in their field."

2012 Gaudry–Schost:

"We want to find a curve of genus 2 over a prime field that is suitable for building a public-key cryptosystem." 2012 Gaudry–Schost:

"We want to find a curve of genus 2 over a prime field that is suitable for building a public-key cryptosystem."

Obvious choice of field: \mathbf{F}_p where $p = 2^{127} - 1$. Fast. $\#J(\mathbf{F}_p) \approx 2^{254}$; big enough. 2012 Gaudry–Schost:

"We want to find a curve of genus 2 over a prime field that is suitable for building a public-key cryptosystem."

Obvious choice of field: \mathbf{F}_p where $p = 2^{127} - 1$. Fast. $\#J(\mathbf{F}_p) \approx 2^{254}$; big enough.

1000000 CPU hours found $(a^2, b^2, c^2, d^2) = (-11, 22, 19, 3),$ primes $\#J(\mathbf{F}_p)/16, \#J'(\mathbf{F}_p)/16.$ Here J' is Jacobian of nontrivial quadratic twist of curve C.

Counting ops suggests: Yes, especially with small a^2 etc.

Counting ops suggests: Yes, especially with small a^2 etc.

Implementations (2006 Bernstein, 2013 Bos–Costello–Hisil–Lauter, 2014 Bernstein–Chuengsatiansup– Lange–Schwabe): Yes.

Counting ops suggests: Yes, especially with small a^2 etc.

Implementations (2006 Bernstein, 2013 Bos–Costello–Hisil–Lauter, 2014 Bernstein–Chuengsatiansup– Lange–Schwabe): Yes.

2015 Costello–Longa E with $\sqrt{-10}$ CM, 2-isogeny to \overline{E} : faster on some CPUs but not others, not compressed, not twist-secure.

Summary: Gaudry–Schost J holds speed records for high-security $n, Q \mapsto nQ$. Summary: Gaudry–Schost J holds speed records for high-security $n, Q \mapsto nQ$.

But what about $P, Q \mapsto P + Q$? $n \mapsto nP$? $m, n, P, Q \mapsto mP + nQ$? Summary: Gaudry–Schost J holds speed records for high-security $n, Q \mapsto nQ$. But what about $P, Q \mapsto P + Q$? $n \mapsto nP? m, n, P, Q \mapsto mP + nQ?$ Fastest known addition formulas are faster for E than for J. So J isn't competitive for

key generation, signing, etc.

Summary: Gaudry–Schost J holds speed records for high-security $n, Q \mapsto nQ$.

But what about $P, Q \mapsto P + Q$? $n \mapsto nP$? $m, n, P, Q \mapsto mP + nQ$?

Fastest known addition formulas are faster for *E* than for *J*. So *J* isn't competitive for key generation, signing, etc.

Hyper-and-elliptic curve cryptography: Build *one* group supporting the fastest formulas from genus 1 *and* genus 2. Group is $E(\mathbf{F}_{p^2}) = W(\mathbf{F}_p)$. *E* is an \mathbf{F}_{p^2} -complete Edwards curve; *W* is Weil restriction. Note: 2 parameters for *W*. Group is $E(\mathbf{F}_{p^2}) = W(\mathbf{F}_p)$. *E* is an \mathbf{F}_{p^2} -complete Edwards curve; *W* is Weil restriction. Note: 2 parameters for *W*.

Map $W(\mathbf{F}_p) \rightarrow K(\mathbf{F}_p)$ using fast isogeny $W \rightarrow J = \text{Jac } H$ for some H, and fast $X : J \rightarrow K$. Note: 3 parameters for K. Group is $E(\mathbf{F}_{p^2}) = W(\mathbf{F}_p)$. *E* is an \mathbf{F}_{p^2} -complete Edwards curve; *W* is Weil restriction. Note: 2 parameters for *W*.

Map $W(\mathbf{F}_p) \rightarrow K(\mathbf{F}_p)$ using fast isogeny $W \rightarrow J = \text{Jac } H$ for some H, and fast $X : J \rightarrow K$. Note: 3 parameters for K.

Surprise: We have examples where a^2 , b^2 , c^2 , d^2 are small! This allows fastest $n, P \mapsto nP$.

Explanation: Can lift from $\mathbf{F}_{p^2}/\mathbf{F}_p$ to $\mathbf{Q}(\sqrt{\Delta})/\mathbf{Q}$.

Another virtue of these groups: genus-1 point-counting is fast. (Use Magma; Sage needs \mathbf{F}_{p} .) History of using $W \to J$ for genus-2 point-counting via genus-1 point-counting: 2002 Gaudry–Hess–Smart in char 2; odd char is "hard". 2001 Galbraith: "rather difficult". 2003 Diem, 2003 Diem-Scholten, 2003 Scholten, 2003 Thériault, 2004 Diem-Scholten, 2009 Satoh, 2011 Freeman–Satoh: various odd-char constructions.

(2003 Scholten + simplifications)

Assume: odd prime *p*; *r*, *s*, $\beta \in \mathbf{F}_{p^2}$; $\beta \notin \mathbf{F}_p$; minor additional hypotheses.

Write $\overline{r} = r^p$, $\overline{s} = s^p$, $\overline{\beta} = \beta^p$.

(2003 Scholten + simplifications) Assume: odd prime *p*; $r, s, \beta \in \mathbf{F}_{p^2}; \beta \notin \mathbf{F}_{p};$ minor additional hypotheses. Write $\overline{r} = r^p$, $\overline{s} = s^p$, $\beta = \beta^p$. Define $g \in \mathbf{F}_{p^2}[z]$ as $rv^6 + sv^4u^2 + \overline{s}v^2u^4 + \overline{r}u^6$ $r\overline{\beta}^{6} + s\overline{\beta}^{4}\beta^{2} + \overline{s}\overline{\beta}^{2}\beta^{4} + \overline{r}\beta^{6}$

where $u = 1 - \beta z$, $v = 1 - \overline{\beta} z$.

(2003 Scholten + simplifications) Assume: odd prime *p*; $r, s, \beta \in \mathbf{F}_{p^2}; \beta \notin \mathbf{F}_{p};$ minor additional hypotheses. Write $\overline{r} = r^p$, $\overline{s} = s^p$, $\beta = \beta^p$. Define $g \in \mathbf{F}_{p^2}[z]$ as $rv^6 + sv^4u^2 + \overline{s}v^2u^4 + \overline{r}u^6$ $r\overline{\beta}^{6} + s\overline{\beta}^{4}\beta^{2} + \overline{s}\overline{\beta}^{2}\beta^{4} + \overline{r}\beta^{6}$

where $u = 1 - \beta z$, $v = 1 - \overline{\beta} z$. Note that $g \in \mathbf{F}_p[z]$.

(2003 Scholten + simplifications) Assume: odd prime *p*; $r, s, \beta \in \mathbf{F}_{p^2}; \beta \notin \mathbf{F}_{p};$ minor additional hypotheses. Write $\overline{r} = r^p$, $\overline{s} = s^p$, $\beta = \beta^p$. Define $g \in \mathbf{F}_{p^2}[z]$ as $rv^6 + sv^4u^2 + \overline{s}v^2u^4 + \overline{r}u^6$ $\overline{r\overline{B}^{6} + s\overline{B}^{4}B^{2} + \overline{s}\overline{B}^{2}B^{4} + \overline{r}B^{6}}$

where $u=1{-}eta z$, $v=1{-}\overline{eta} z$. Note that $g\in {f F}_p[z]$.

Scholten curve $H : y^2 = g(z)$.

Define *E* as the elliptic curve $y^2 = rx^3 + sx^2 + \overline{s}x + \overline{r}$.

Define *E* as the elliptic curve $y^2 = rx^3 + sx^2 + \overline{s}x + \overline{r}$.

Define $\phi: H \to E$ as $(z, y) \mapsto (v^2/u^2, \omega y/u^3).$

Define *E* as the elliptic curve $y^2 = rx^3 + sx^2 + \overline{s}x + \overline{r}$.

Define $\phi: H \to E$ as $(z, y) \mapsto (v^2/u^2, \omega y/u^3).$

Choose an \mathbf{F}_p -basis for \mathbf{F}_{p^2} , hence a Weil restriction W of E.

Define *E* as the elliptic curve $y^2 = rx^3 + sx^2 + \overline{s}x + \overline{r}$.

Define $\phi: H \to E$ as $(z, y) \mapsto (v^2/u^2, \omega y/u^3).$

Choose an \mathbf{F}_p -basis for \mathbf{F}_{p^2} , hence a Weil restriction W of E. ϕ induces $H \rightarrow W$, which induces $\iota' : J \rightarrow W$ where $J = \operatorname{Jac} H$.

Define *E* as the elliptic curve $y^2 = rx^3 + sx^2 + \overline{s}x + \overline{r}.$

Define $\phi: H \to E$ as $(z, y) \mapsto (v^2/u^2, \omega y/u^3).$

Choose an \mathbf{F}_p -basis for \mathbf{F}_{p^2} , hence a Weil restriction W of E. ϕ induces $H \rightarrow W$, which induces $\iota' : J \rightarrow W$ where $J = \operatorname{Jac} H$.

Concretely: $\iota'(P_1 + P_2) = W$ coords of $\phi(P_1) + \phi(P_2)$.

Our paper interpolates to obtain low-degree formulas for ι' on Mumford coordinates for J.

Our paper interpolates to obtain low-degree formulas for ι' on Mumford coordinates for J. Also low-degree formulas for ι : $W \to J$ with $\iota'(\iota(P)) = 2P$. Our paper interpolates to obtain low-degree formulas for ι' on Mumford coordinates for J. Also low-degree formulas for ι : $W \rightarrow J$ with $\iota'(\iota(P)) = 2P$. All formulas are defined over \mathbf{F}_p .

Our paper interpolates to obtain low-degree formulas for ι' on Mumford coordinates for J. Also low-degree formulas for ι : $W \to J$ with $\iota'(\iota(P)) = 2P$. All formulas are defined over \mathbf{F}_{p} . (Can show: $\iota(P)$ is trace of sum of ϕ -preimages of P; "normconorm" map used in, e.g., 2002 Gaudry-Hess-Smart, 2003 Diem, 2004 Arita–Matsuo–Nagao– Shimura. But this doesn't give a very fast algorithm.)

Scholten with fast Kummer?

Given Scholten curve, compute corresponding original Kummer surface K:

Factor g into linear factors.

Scholten with fast Kummer?

Given Scholten curve, compute corresponding original Kummer surface K:

Factor g into linear factors.

By linear-fractional transformation move to twisted Rosenhain form $\delta y^2 = x(x-1)(x-\lambda)(x-\mu)(x-\nu).$

Scholten with fast Kummer?

Given Scholten curve, compute corresponding original Kummer surface K:

Factor g into linear factors.

By linear-fractional transformation move to twisted Rosenhain form $\delta y^2 = x(x-1)(x-\lambda)(x-\mu)(x-\nu).$

Compute

$$b^2 = \sqrt{rac{\mu(\mu-1)(\lambda-
u)}{
u(
u-1)(\lambda-\mu)}}, \ c^2 = \sqrt{rac{\lambda\mu}{
u}}, \ a^2 = rac{b^2c^2
u}{\mu}, \ d^2 = 1.$$

Take s_1 , s_2 , $s_3 \in \mathbf{F}_{p^2}$, norm 1, with s_1^2 , s_2^2 , s_3^2 distinct.

 $-s_1^2 s_2^2 s_3^2$ has norm 1. Write it as \overline{r}/r with $r \in \mathbf{F}_{p^2}^*$.

Take s_1 , s_2 , $s_3 \in \mathbf{F}_{p^2}$, norm 1, with s_1^2 , s_2^2 , s_3^2 distinct. $-s_1^2 s_2^2 s_3^2$ has norm 1. Write it as \overline{r}/r with $r \in \mathbf{F}_{p^2}^*$. Define $s = -r(s_1 + s_2 + s_3)$. Take any $\beta \in \mathbf{F}_{p^2} - \mathbf{F}_p$ with $(\overline{\beta}/\beta)^2 \notin \{s_1^2, s_2^2, s_3^2\}$. Then g has 6 distinct roots $(1\pm s_i)/(eta\pmeta s_i)\in \mathbf{F}_p.$

Take s_1 , s_2 , $s_3 \in \mathbf{F}_{p^2}$, norm 1, with s_1^2 , s_2^2 , s_3^2 distinct. $-s_1^2 s_2^2 s_3^2$ has norm 1. Write it as \overline{r}/r with $r \in \mathbf{F}_{p^2}^*$. Define $s = -r(s_1 + s_2 + s_3)$. Take any $\beta \in \mathbf{F}_{p^2} - \mathbf{F}_p$ with $(\overline{\beta}/\beta)^2 \notin \{s_1^2, s_2^2, s_3^2\}$. Then g has 6 distinct roots $(1\pm s_i)/(eta\pmeta s_i)\in \mathbf{F}_p.$ Hope that a^2 , b^2 , c^2 , $d^2 \in \mathbf{F}_p$; i.e., $\sqrt{\frac{\lambda\mu}{\nu}}$, $\sqrt{\cdots} \in \mathbf{F}_p$.

Take s_1 , s_2 , $s_3 \in \mathbf{F}_{p^2}$, norm 1, with s_1^2 , s_2^2 , s_3^2 distinct. $-s_1^2 s_2^2 s_3^2$ has norm 1. Write it as \overline{r}/r with $r \in \mathbf{F}_{p^2}^*$. Define $s = -r(s_1 + s_2 + s_3)$. Take any $\beta \in \mathbf{F}_{p^2} - \mathbf{F}_p$ with $(\overline{\beta}/\beta)^2 \notin \{s_1^2, s_2^2, s_3^2\}$. Then g has 6 distinct roots $(1\pm s_i)/(\overline{eta}\pmeta s_i)\in \mathbf{F}_p.$ Hope that a^2 , b^2 , c^2 , $d^2 \in \mathbf{F}_n$; i.e., $\sqrt{\frac{\lambda\mu}{\nu}}$, $\sqrt{\cdots} \in \mathbf{F}_p$. Pray for small height.

Lifting to $\mathbf{Q}(\sqrt{\Delta})/\mathbf{Q}$

$\mathbf{F}_{p^2} = \mathbf{F}_p(\sqrt{\Delta})$ for many small squarefree integers Δ .

Lifting to $\mathbf{Q}(\sqrt{\Delta})/\mathbf{Q}$

 $\mathbf{F}_{p^2} = \mathbf{F}_p(\sqrt{\Delta})$ for many small squarefree integers Δ .

Take, say, $oldsymbol{eta}=\sqrt{\Delta}.$

Take small norm-1 elements s_1 , s_2 , $s_3 \in \mathbf{Q}(\sqrt{\Delta})$.

As before define $r, s \in \mathbf{Q}(\sqrt{\Delta})$; $g \in \mathbf{Q}(\sqrt{\Delta})[z]$; and $\lambda, \mu, \nu \in \mathbf{Q}$.

Lifting to $\mathbf{Q}(\sqrt{\Delta})/\mathbf{Q}$

 $\mathbf{F}_{p^2} = \mathbf{F}_p(\sqrt{\Delta})$ for many small squarefree integers Δ .

Take, say, $oldsymbol{eta}=\sqrt{\Delta}.$

Take small norm-1 elements s_1 , s_2 , $s_3 \in \mathbf{Q}(\sqrt{\Delta})$.

As before define $r, s \in \mathbf{Q}(\sqrt{\Delta})$; $g \in \mathbf{Q}(\sqrt{\Delta})[z]$; and $\lambda, \mu, \nu \in \mathbf{Q}$.

 λ, μ, ν are small.

Maybe the square roots exist, giving small a^2 , b^2 , c^2 , $d^2 \in \mathbf{Q}$.

Or maybe there's an obstruction.

For each small quadratic field: We tried all small s_1 , s_2 , s_3 .

For each small quadratic field: We tried all small s_1 , s_2 , s_3 .

For, e.g., $\Delta = -67$ found that $s_1 = (-17143 + 96\sqrt{\Delta})/17161$, $s_2 = (189 + 32\sqrt{\Delta})/323$, $s_3 = (333 - 40\sqrt{\Delta})/467$ produced Scholten curve $y^2 = (x - 16/3)(x + 3/1072)$ (x - 1/16)(x + 16/67)(x+1/20)(x-20/67)with Kummer surface $a^2 = 194769, b^2 = 126939,$ $c^2 = 64009, d^2 = 126939.$

Found many more examples for various choices of Δ \Rightarrow thousands of different $\#E(\mathbf{F}_{p^2})$ for $p = 2^{127} - 1$. Found many more examples for various choices of Δ \Rightarrow thousands of different $\#E(\mathbf{F}_{p^2})$ for $p = 2^{127} - 1$.

A good example for crypto: $y^2 = (z + 3)(z + 1/9)$ (z - 1/7)(z - 7/3)(z - 8/7)(z - 7/24).

 $#J(\mathbf{F}_p) = #J'(\mathbf{F}_p) = #E(\mathbf{F}_{p^2})$ $= 32\ell \text{ for a prime } \ell \approx 2^{249}.$

$$\#E'(\mathbf{F}_{p^2}) = 12 \cdot \text{prime.}$$

 $a^2 = -46893, b^2 = 20020,$
 $c^2 = 20020, d^2 = 5800.$

Another good example: $y^2 = (z - 1)(z + 1/11)$ (z - 1/4)(z + 4/11)(z + 5/7)(z - 7/55). Another good example:

$$y^2 = (z - 1)(z + 1/11)$$

 $(z - 1/4)(z + 4/11)$
 $(z + 5/7)(z - 7/55).$

Slightly lower security level: $\#J(\mathbf{F}_p) = \#J'(\mathbf{F}_p) = \#E(\mathbf{F}_{p^2})$ $= 720\ell$ for a prime $\ell \approx 2^{244.5}$. $\#E'(\mathbf{F}_{p^2}) = 260 \cdot \text{prime.}$ Another good example:

$$y^2 = (z - 1)(z + 1/11)$$

 $(z - 1/4)(z + 4/11)$
 $(z + 5/7)(z - 7/55).$

Slightly lower security level: $\#J(\mathbf{F}_p) = \#J'(\mathbf{F}_p) = \#E(\mathbf{F}_{p^2})$ $= 720\ell$ for a prime $\ell \approx 2^{244.5}$. $\#E'(\mathbf{F}_{p^2}) = 260 \cdot \text{prime.}$

Particularly nice arithmetic: $(a^2:b^2:c^2:d^2) = (20:12:12:5);$ $(A^2:...) = (49:15:15:1);$ $(\frac{1}{a^2}:...) = (3:5:5:12);$ $(\frac{1}{A^2}:...) = (15:49:49:735).$