Hyper-and-elliptic-curve cryptography

Daniel J. Bernstein University of Illinois at Chicago \& Technische Universiteit Eindhoven

Joint work with: Tanja Lange Technische Universiteit Eindhoven
cr.yp.to/papers.html\#hyperand
(2014) + new examples (2015)

Rewind to 2012 Gaudry-Schost: "the computation took more than 1,000,000 CPU hours".

The Gaudry-Schost motivation:

$\begin{array}{llllllll}x_{2} & y_{2} & z_{2} & t_{2} & x_{3} & y_{3} & z_{3} & t_{3}\end{array}$

$\downarrow \downarrow \downarrow$ $\times \times \times \times \times \times \times$ $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$

- $\frac{1}{a^{2}}$
$\frac{1}{b^{2}}$
$\cdot \frac{1}{c^{2}}$
$\cdot \frac{1}{d^{2}}$
$\cdot \frac{1}{x_{1}}$
$\cdot \frac{1}{y_{1}}$
$\cdot \frac{1}{z_{1}}$
$\cdot \frac{1}{t_{1}}$
$\begin{array}{cccccccc}\downarrow & \downarrow \\ x_{4} & y_{4} & z_{4} & t_{4} & x_{5} & y_{5} & z_{5} & t_{5}\end{array}$

Inputs: "squared θ coordinates"
$\left(x_{2}: y_{2}: z_{2}: t_{2}\right)$ for Q_{2},
$\left(x_{3}: y_{3}: z_{3}: t_{3}\right)$ for Q_{3},
$\left(x_{1}: y_{1}: z_{1}: t_{1}\right)$ for $Q_{1}=Q_{3}-Q_{2}$.
This diagram computes
$\left(x_{4}: y_{4}: z_{4}: t_{4}\right)$ for $Q_{4}=2 Q_{2}$,
$\left(x_{5}: y_{5}: z_{5}: t_{5}\right)$ for $Q_{5}=Q_{3}+Q_{2}$.

Inputs: "squared θ coordinates"
$\left(x_{2}: y_{2}: z_{2}: t_{2}\right)$ for Q_{2},
$\left(x_{3}: y_{3}: z_{3}: t_{3}\right)$ for Q_{3},
$\left(x_{1}: y_{1}: z_{1}: t_{1}\right)$ for $Q_{1}=Q_{3}-Q_{2}$.
This diagram computes
$\left(x_{4}: y_{4}: z_{4}: t_{4}\right)$ for $Q_{4}=2 Q_{2}$,
$\left(x_{5}: y_{5}: z_{5}: t_{5}\right)$ for $Q_{5}=Q_{3}+Q_{2}$.
Just 14 mults for Q_{4}
(1986 Chudnovsky-Chudnovsky).
Huge speedup if constants
$\left(\frac{1}{a^{2}}: \frac{1}{b^{2}}: \frac{1}{c^{2}}: \frac{1}{d^{2}}\right)$ etc. are small.

Inputs: "squared θ coordinates"
$\left(x_{2}: y_{2}: z_{2}: t_{2}\right)$ for Q_{2},
$\left(x_{3}: y_{3}: z_{3}: t_{3}\right)$ for Q_{3},
$\left(x_{1}: y_{1}: z_{1}: t_{1}\right)$ for $Q_{1}=Q_{3}-Q_{2}$.
This diagram computes
$\left(x_{4}: y_{4}: z_{4}: t_{4}\right)$ for $Q_{4}=2 Q_{2}$,
$\left(x_{5}: y_{5}: z_{5}: t_{5}\right)$ for $Q_{5}=Q_{3}+Q_{2}$.
Just 14 mults for Q_{4}
(1986 Chudnovsky-Chudnovsky).
Huge speedup if constants
$\left(\frac{1}{a^{2}}: \frac{1}{b^{2}}: \frac{1}{c^{2}}: \frac{1}{d^{2}}\right)$ etc. are small.
Just 25 milts for Q_{4}, Q_{5} (2006 Gaudry) after Q_{1} precomp.
$\left(x_{i}: y_{i}: z_{i}: t_{i}\right)$ are points on original Mummer surface K : $4 E^{2} x y z t=\left(\left(x^{2}+y^{2}+z^{2}+t^{2}\right)\right.$

$$
\begin{aligned}
& -F(x t+y z)-G(x z+y t) \\
& -H(x y+z t))^{2}
\end{aligned}
$$

where
$A^{2}=a^{2}+b^{2}+c^{2}+d^{2}$,
$B^{2}=a^{2}+b^{2}-c^{2}-d^{2}$,
$C^{2}=a^{2}-b^{2}+c^{2}-d^{2}$,
$D^{2}=a^{2}-b^{2}-c^{2}+d^{2}$,
$F=\left(a^{4}-b^{4}-c^{4}+d^{4}\right) /\left(a^{2} d^{2}-b^{2} c^{2}\right)$,
$G=\left(a^{4}-b^{4}+c^{4}-d^{4}\right) /\left(a^{2} c^{2}-b^{2} d^{2}\right)$,
$H=\left(a^{4}+b^{4}-c^{4}-d^{4}\right) /\left(a^{2} b^{2}-c^{2} d^{2}\right)$,
$E^{2}=F^{2}+G^{2}+H^{2}+F G H-4$.

Surface is from 1864 Kummer,

 Über die Flächen vierten Grades mit sechzehn singulären Punkten:vom 18. April 1864.
Endlich möge hier noch eine Formveränderung erwähnt werden, welche man mit der Gleichung dieser Flächen vornehmen kann. Wählt man die vier in der Form (4.) enthaltenen singulären Tangentialebenen

$$
p=0, q=0, p^{\prime}=0, q^{\prime}=0
$$

als die Fundamentalebenen, also $p, q, p^{\prime}, q^{\prime}$, als die vier homogenen Coordinaten, und bezeichnet demgemäfs die beiden letzteren durch r und s, so erhält man folgende Form der Gleichung:
10.,

$$
\phi^{2}=16 \text { Kpqrs, }
$$

wo

$$
\begin{aligned}
\phi= & p^{2}+q^{2}+r^{2}+s^{2}+2 a(q r+p s)+2 b(r p+q s)+2 c(p q+r s) \\
& K=a^{2}+b^{2}+c^{2}-2 a b c-1 .
\end{aligned}
$$

in welcher die sieben Constanten a, b, c, d, c, f, k jener Form auf die richtige Anzahl von drei Constanten a, b, c eingeschränkt ist. Wählt man in dieser Form die Coefficienten der linearen Ausdrücke p, q, r, s real, und die drei Constanten a, b, c eben-
Q_{2}, Q_{3} are points on
Jacobian J of a related genus-2 hyperelliptic curve C. "Standard" $X: J /\{ \pm 1\} \hookrightarrow K$ defines squared θ coords on J.
Q_{2}, Q_{3} are points on
Jacobian J of a related genus-2 hyperelliptic curve C. "Standard" $X: J /\{ \pm 1\} \hookrightarrow K$ defines squared θ coords on J.

Use diagram k times to compute $X\left(Q_{1}\right) \mapsto X\left(n Q_{1}\right), X\left((n+1) Q_{1}\right)$ for any $n \in\left\{0,1, \ldots, 2^{k}-1\right\}$.
Q_{2}, Q_{3} are points on
Jacobian J of a related genus-2 hyperelliptic curve C. "Standard" $X: J /\{ \pm 1\} \hookrightarrow K$ defines squared θ coords on J.

Use diagram k times to compute $X\left(Q_{1}\right) \mapsto X\left(n Q_{1}\right), X\left((n+1) Q_{1}\right)$ for any $n \in\left\{0,1, \ldots, 2^{k}-1\right\}$.

Beware typos in the "standard" Rosenhain/Mumford/Kummer formulas in 2007 Gaudry, 2010 Cosset, 2013 Bos-Costello-HisilLauter. See our paper for simpler formulas as Sage scripts.

1966 Mumford, On the equations defining Abelian varieties. I: "There are several thousand formulas in this paper which allow one or more 'sign-like ambiguities': i.e., alternate and symmetric but non-equivalent reformulations. These occur in definitions and theorems. I have made a superhuman effort to achieve consistency and even to make correct statements: but I still cannot guarantee the result."

1966 Mumford, On the equations defining Abelian varieties. I:
"There are several thousand
formulas in this paper which allow one or more 'sign-like ambiguities': i.e., alternate and symmetric but non-equivalent reformulations. These occur in definitions and theorems. I have made a superhuman effort to achieve consistency and even to make correct statements: but I still cannot guarantee the result."

Sage is better than superhuman!

1975 Weil: "Kummer discovered that family of surfaces ... entirely without the help of the powerful tool provided by theta-functions; actually, the connection with theta-functions was noticed only in 1877, by Cayley and by Borchardt ... His example is of particular value at a time when it is again realized by algebraic geometers that the detailed study of well-chosen special varieties remains one major road to progress in their field."

2012 Gaudry-Schost:
"We want to find a curve of genus 2 over a prime field that is suitable for building a public-key cryptosystem."

2012 Gaudry-Schost:
"We want to find a curve of genus 2 over a prime field that is suitable for building a public-key cryptosystem.'

Obvious choice of field:
\mathbf{F}_{p} where $p=2^{127}-1$. Fast.
$\# J\left(\mathbf{F}_{p}\right) \approx 2^{254}$; big enough.

2012 Gaudry-Schost:
"We want to find a curve
of genus 2 over a prime field that is suitable for building a public-key cryptosystem."

Obvious choice of field:
\mathbf{F}_{p} where $p=2^{127}-1$. Fast.
$\# J\left(\mathbf{F}_{p}\right) \approx 2^{254}$; big enough.
1000000 CPU hours found $\left(a^{2}, b^{2}, c^{2}, d^{2}\right)=(-11,22,19,3)$, primes $\# J\left(\mathbf{F}_{p}\right) / 16, \# J^{\prime}\left(\mathbf{F}_{p}\right) / 16$. Here J^{\prime} is Jacobian of nontrivial quadratic twist of curve C.

Is this faster than a similarsecurity elliptic curve over $\mathbf{F}_{p^{2}}$ or a similar-size prime field?

Is this faster than a similarsecurity elliptic curve over $\mathbf{F}_{p^{2}}$ or a similar-size prime field?

Counting ops suggests: Yes,

 especially with small a^{2} etc.Is this faster than a similarsecurity elliptic curve over $\mathbf{F}_{p^{2}}$ or a similar-size prime field?

Counting ops suggests: Yes, especially with small a^{2} etc. Implementations (2006 Bernstein, 2013 Bos-Costello-Hisil-Lauter, 2014 Bernstein-Chuengsatiansup-Lange-Schwabe): Yes.

Is this faster than a similarsecurity elliptic curve over $\mathbf{F}_{p^{2}}$ or a similar-size prime field?

Counting ops suggests: Yes, especially with small a^{2} etc.

Implementations (2006 Bernstein,
2013 Bos-Costello-Hisil-Lauter,
2014 Bernstein-Chuengsatiansup-Lange-Schwabe): Yes.

2015 Costello-Longa E with $\sqrt{-10} \mathrm{CM}, 2$-isogeny to \bar{E} : faster on some CPUs but not others, not compressed, not twist-secure.

Summary: Gaudry-Schost J holds speed records for high-security $n, Q \mapsto n Q$.

Summary: Gaudry-Schost J holds speed records for high-security $n, Q \mapsto n Q$.

But what about $P, Q \mapsto P+Q$?
$n \mapsto n P ? m, n, P, Q \mapsto m P+n Q$?

Summary: Gaudry-Schost J holds speed records for high-security $n, Q \mapsto n Q$.

But what about $P, Q \mapsto P+Q$?
$n \mapsto n P ? m, n, P, Q \mapsto m P+n Q$?
Fastest known addition formulas are faster for E than for J.

So J isn't competitive for
key generation, signing, etc.

Summary: Gaudry-Schost J holds speed records for high-security $n, Q \mapsto n Q$.

But what about $P, Q \mapsto P+Q$? $n \mapsto n P ? \quad m, n, P, Q \mapsto m P+n Q$?

Fastest known addition formulas are faster for E than for J. So J isn't competitive for key generation, signing, etc.

Hyper-and-elliptic curve cryptography: Build one group supporting the fastest formulas from genus 1 and genus 2 .

Group is $E\left(\mathbf{F}_{p^{2}}\right)=W\left(\mathbf{F}_{p}\right)$. E is an $\mathbf{F}_{p^{2}}$-complete Edwards curve; W is Weil restriction. Note: 2 parameters for W.

Group is $E\left(\mathbf{F}_{p^{2}}\right)=W\left(\mathbf{F}_{p}\right)$.
E is an $\mathbf{F}_{p^{2}}$-complete Edwards curve; W is Weil restriction. Note: 2 parameters for W.

Map $W\left(\mathbf{F}_{p}\right) \rightarrow K\left(\mathbf{F}_{p}\right)$ using
fast isogeny $W \rightarrow J=\mathrm{Jac} H$ for some H, and fast $X: J \rightarrow K$.
Note: 3 parameters for K.

Group is $E\left(\mathbf{F}_{p^{2}}\right)=W\left(\mathbf{F}_{p}\right)$.
E is an $\mathbf{F}_{p^{2} \text {-complete Edwards }}$ curve; W is Neil restriction.
Note: 2 parameters for W.
Map $W\left(\mathbf{F}_{p}\right) \rightarrow K\left(\mathbf{F}_{p}\right)$ using
fast isogeny $W \rightarrow J=J$ ac H for some H, and fast $X: J \rightarrow K$.

Note: 3 parameters for K.
Surprise: We have examples
where $a^{2}, b^{2}, c^{2}, d^{2}$ are small!
This allows fastest $n, P \mapsto n P$.
Explanation: Can lift from $\mathbf{F}_{p^{2}} / \mathbf{F}_{p}$ to $\mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}$.

Another virtue of these groups: genus-1 point-counting is fast. (Use Magma; Sage needs \mathbf{F}_{p}.)

History of using $W \rightarrow J$
for genus-2 point-counting via genus-1 point-counting:

2002 Gaudry-Hess-Smart in char 2; odd char is "hard". 2001 Galbraith: "rather difficult". 2003 Diem, 2003 Diem-Scholten, 2003 Scholten, 2003 Thériault, 2004 Diem-Scholten, 2009 Satoh, 2011 Freeman-Satoh: various odd-char constructions.

Scholten curves
(2003 Scholten + simplifications)
Assume: odd prime p;
$r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}$; minor additional hypotheses.

Write $\bar{r}=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta^{p}$.

Scholten curves
(2003 Scholten + simplifications)
Assume: odd prime p;
$r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}$; minor additional hypotheses.

Write $\bar{r}=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta^{p}$. Define $g \in \mathbf{F}_{p^{2}}[z]$ as

$$
\frac{r v^{6}+s v^{4} u^{2}+\bar{s} v^{2} u^{4}+\bar{r} u^{6}}{r \bar{\beta}^{6}+s \bar{\beta}^{4} \beta^{2}+\bar{s} \bar{\beta}^{2} \beta^{4}+\bar{r} \beta^{6}}
$$

where $u=1-\beta z, v=1-\bar{\beta} z$.

Scholten curves
(2003 Scholten + simplifications)
Assume: odd prime p;
$r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}$; minor additional hypotheses.

Write $\bar{r}=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta^{p}$. Define $g \in \mathbf{F}_{p^{2}}[z]$ as

$$
\frac{r v^{6}+s v^{4} u^{2}+\bar{s} v^{2} u^{4}+\bar{r} u^{6}}{r \bar{\beta}^{6}+s \bar{\beta}^{4} \beta^{2}+\bar{s} \bar{\beta}^{2} \beta^{4}+\bar{r} \beta^{6}}
$$

where $u=1-\beta z, v=1-\bar{\beta} z$.
Note that $g \in \mathbf{F}_{p}[z]$.

Scholten curves
(2003 Scholten + simplifications)
Assume: odd prime p;
$r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}$;
minor additional hypotheses.
Write $\bar{r}=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta^{p}$. Define $g \in \mathbf{F}_{p^{2}}[z]$ as

$$
\frac{r v^{6}+s v^{4} u^{2}+\bar{s} v^{2} u^{4}+\bar{r} u^{6}}{r \bar{\beta}^{6}+s \bar{\beta}^{4} \beta^{2}+\bar{s} \bar{\beta}^{2} \beta^{4}+\bar{r} \beta^{6}}
$$

where $u=1-\beta z, v=1-\bar{\beta} z$.
Note that $g \in \mathbf{F}_{p}[z]$.
Scholten curve $H: y^{2}=g(z)$.

Denominator of g is in \mathbf{F}_{p}.
Choose square root $\omega \in \mathbf{F}_{p^{2}}$.

Denominator of g is in \mathbf{F}_{p}.
Choose square root $\omega \in \mathbf{F}_{p^{2}}$. Define E as the elliptic curve $y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}$.

Denominator of g is in \mathbf{F}_{p}.

Choose square root $\omega \in \mathbf{F}_{p^{2}}$. Define E as the elliptic curve $y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}$.

Define $\phi: H \rightarrow E$ as
$(z, y) \mapsto\left(v^{2} / u^{2}, \omega y / u^{3}\right)$.

Denominator of g is in \mathbf{F}_{p}.

Choose square root $\omega \in \mathbf{F}_{p^{2}}$.
Define E as the elliptic curve $y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}$.

Define $\phi: H \rightarrow E$ as
$(z, y) \mapsto\left(v^{2} / u^{2}, \omega y / u^{3}\right)$.
Choose an \mathbf{F}_{p}-basis for $\mathbf{F}_{p^{2}}$, hence a Neil restriction W of E.

Denominator of g is in \mathbf{F}_{p}.

Choose square root $\omega \in \mathbf{F}_{p^{2}}$.
Define E as the elliptic curve $y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}$.

Define $\phi: H \rightarrow E$ as
$(z, y) \mapsto\left(v^{2} / u^{2}, \omega y / u^{3}\right)$.
Choose an $\mathbf{F}_{p^{\prime}}$-basis for $\mathbf{F}_{p^{2}}$, hence a Veil restriction W of E. ϕ induces $H \rightarrow W$, which induces $\iota^{\prime}: J \rightarrow W$ where $J=$ Jas H.

Denominator of g is in \mathbf{F}_{p}.

Choose square root $\omega \in \mathbf{F}_{p^{2}}$.
Define E as the elliptic curve $y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}$.

Define $\phi: H \rightarrow E$ as
$(z, y) \mapsto\left(v^{2} / u^{2}, \omega y / u^{3}\right)$.
Choose an $\mathbf{F}_{p^{\prime}}$-basis for $\mathbf{F}_{p^{2}}$, hence a Veil restriction W of E.
ϕ induces $H \rightarrow W$, which induces $\iota^{\prime}: J \rightarrow W$ where $J=$ Jas H.

Concretely: $\iota^{\prime}\left(P_{1}+P_{2}\right)=$
W coords of $\phi\left(P_{1}\right)+\phi\left(P_{2}\right)$.

Our paper interpolates to obtain low-degree formulas for ι^{\prime} on Mumford coordinates for J.

Our paper interpolates to
obtain low-degree formulas for ι^{\prime} on Mumford coordinates for J.
Also low-degree formulas for ι : $W \rightarrow J$ with $\iota^{\prime}(\iota(P))=2 P$.

Our paper interpolates to
obtain low-degree formulas for ι^{\prime} on Mumford coordinates for J.
Also low-degree formulas for ι : $W \rightarrow J$ with $\iota^{\prime}(\iota(P))=2 P$.
All formulas are defined over \mathbf{F}_{p}.

Our paper interpolates to
obtain low-degree formulas for ι^{\prime} on Mumford coordinates for J.

Also low-degree formulas for ι : $W \rightarrow J$ with $\iota^{\prime}(\iota(P))=2 P$.
All formulas are defined over \mathbf{F}_{p}.
(Can show: $\iota(P)$ is trace of sum of ϕ-preimages of P; "normconorm" map used in, e.g., 2002 Gaudry-Hess-Smart, 2003 Diem, 2004 Arita-Matsuo-NagaoShimura. But this doesn't give a very fast algorithm.)

Scholten with fast Kummer?

Given Scholten curve,
compute corresponding
original Kummer surface K :
Factor g into linear factors.

Scholten with fast Kummer?
Given Scholten curve,
compute corresponding
original Kummer surface K :
Factor g into linear factors.
By linear-fractional transformation move to twisted Rosenhain form $\delta y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)$.

Scholten with fast Summer?
Given Scholten curve,
compute corresponding
original Summer surface K :
Factor g into linear factors.
By linear-fractional transformation move to twisted Rosenhain form $\delta y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)$.

Compute
$b^{2}=\sqrt{\frac{\mu(\mu-1)(\lambda-\nu)}{\nu(\nu-1)(\lambda-\mu)}}$,
$c^{2}=\sqrt{\frac{\lambda \mu}{\nu}}, a^{2}=\frac{b^{2} c^{2} \nu}{\mu}, d^{2}=1$.

Take $s_{1}, s_{2}, s_{3} \in \mathbf{F}_{p^{2}}$, norm 1,

 with $s_{1}^{2}, s_{2}^{2}, s_{3}^{2}$ distinct.$-s_{1}^{2} s_{2}^{2} s_{3}^{2}$ has norm 1 .
Write it as \bar{r} / r with $r \in \mathbf{F}_{p^{2}}^{*}$.

Take $s_{1}, s_{2}, s_{3} \in F_{p^{2}}$, norm 1 ,
with $s_{1}^{2}, s_{2}^{2}, s_{3}^{2}$ distinct.
$-s_{1}^{2} s_{2}^{2} s_{3}^{2}$ has norm 1.
Write it as \bar{r} / r with $r \in \mathbf{F}_{p^{2}}^{*}$.
Define $s=-r\left(s_{1}+s_{2}+s_{3}\right)$.
Take any $\beta \in \mathbf{F}_{p^{2}}-\mathbf{F}_{p}$
with $(\bar{\beta} / \beta)^{2} \notin\left\{s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\right\}$.
Then g has 6 distinct roots
$\left(1 \pm s_{j}\right) /\left(\bar{\beta} \pm \beta s_{j}\right) \in \mathbf{F}_{p}$.

Take $s_{1}, s_{2}, s_{3} \in F_{p^{2}}$, norm 1 , with $s_{1}^{2}, s_{2}^{2}, s_{3}^{2}$ distinct.
$-s_{1}^{2} s_{2}^{2} s_{3}^{2}$ has norm 1.
Write it as \bar{r} / r with $r \in \mathbf{F}_{p^{2}}^{*}$.
Define $s=-r\left(s_{1}+s_{2}+s_{3}\right)$.
Take any $\beta \in \mathbf{F}_{p^{2}}-\mathbf{F}_{p}$
with $(\bar{\beta} / \beta)^{2} \notin\left\{s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\right\}$.
Then g has 6 distinct roots
$\left(1 \pm s_{j}\right) /\left(\bar{\beta} \pm \beta s_{j}\right) \in \mathbf{F}_{p}$.
Hope that $a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{F}_{p}$;
i.e., $\sqrt{\frac{\lambda \mu}{\nu}}, \sqrt{\cdots} \in \mathbf{F}_{p}$.

Take $s_{1}, s_{2}, s_{3} \in F_{p^{2}}$, norm 1 , with $s_{1}^{2}, s_{2}^{2}, s_{3}^{2}$ distinct.
$-s_{1}^{2} s_{2}^{2} s_{3}^{2}$ has norm 1.
Write it as \bar{r} / r with $r \in \mathbf{F}_{p^{2}}^{*}$.
Define $s=-r\left(s_{1}+s_{2}+s_{3}\right)$.
Take any $\beta \in \mathbf{F}_{p^{2}}-\mathbf{F}_{p}$
with $(\bar{\beta} / \beta)^{2} \notin\left\{s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\right\}$.
Then g has 6 distinct roots
$\left(1 \pm s_{j}\right) /\left(\bar{\beta} \pm \beta s_{j}\right) \in \mathbf{F}_{p}$.
Hope that $a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{F}_{p}$;
i.e., $\sqrt{\frac{\lambda \mu}{\nu}}, \sqrt{\cdots} \in \mathbf{F}_{p}$.

Pray for small height.

Lifting to $\mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}$

$\mathbf{F}_{p^{2}}=\mathbf{F}_{p}(\sqrt{\Delta})$ for many small squarefree integers Δ.

Lifting to $\mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}$

$\mathbf{F}_{p^{2}}=\mathbf{F}_{p}(\sqrt{\Delta})$ for many small squarefree integers Δ.

Take, say, $\beta=\sqrt{\Delta}$.
Take small norm-1 elements
$s_{1}, s_{2}, s_{3} \in \mathbf{Q}(\sqrt{\Delta})$.
As before define $r, s \in \mathbf{Q}(\sqrt{\Delta})$;
$g \in \mathbf{Q}(\sqrt{\Delta})[z] ;$ and $\lambda, \mu, \nu \in \mathbf{Q}$.

Lifting to $\mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}$

$\mathbf{F}_{p^{2}}=\mathbf{F}_{p}(\sqrt{\Delta})$ for many small squarefree integers Δ.

Take, say, $\beta=\sqrt{\Delta}$.
Take small norm-1 elements
$s_{1}, s_{2}, s_{3} \in \mathbf{Q}(\sqrt{\Delta})$.
As before define $r, s \in \mathbf{Q}(\sqrt{\Delta})$;
$g \in \mathbf{Q}(\sqrt{\Delta})[z] ;$ and $\lambda, \mu, \nu \in \mathbf{Q}$.
λ, μ, ν are small.
Maybe the square roots exist,
giving small $a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{Q}$.
Or maybe there's an obstruction.

For each small quadratic field:

We tried all small s_{1}, s_{2}, s_{3}.

For each small quadratic field:
We tried all small s_{1}, s_{2}, s_{3}.
For, e.g., $\Delta=-67$ found that $s_{1}=(-17143+96 \sqrt{\Delta}) / 17161$,
$s_{2}=(189+32 \sqrt{\Delta}) / 323$,
$s_{3}=(333-40 \sqrt{\Delta}) / 467$
produced Scholten curve

$$
\begin{aligned}
y^{2}= & (x-16 / 3)(x+3 / 1072) \\
& (x-1 / 16)(x+16 / 67) \\
& (x+1 / 20)(x-20 / 67)
\end{aligned}
$$

with Summer surface
$a^{2}=194769, b^{2}=126939$,
$c^{2}=64009, d^{2}=126939$.

Found many more examples for various choices of Δ \Rightarrow thousands of different $\# E\left(\mathbf{F}_{p^{2}}\right)$ for $p=2^{127}-1$.

Found many more examples

 for various choices of Δ \Rightarrow thousands of different $\# E\left(\mathbf{F}_{p^{2}}\right)$ for $p=2^{127}-1$.A good example for crypto:

$$
\begin{aligned}
y^{2}= & (z+3)(z+1 / 9) \\
& (z-1 / 7)(z-7 / 3) \\
& (z-8 / 7)(z-7 / 24)
\end{aligned}
$$

$\# J\left(\mathbf{F}_{p}\right)=\# J^{\prime}\left(\mathbf{F}_{p}\right)=\# E\left(\mathbf{F}_{p^{2}}\right)$
$=32 \ell$ for a prime $\ell \approx 2^{249}$.
$\# E^{\prime}\left(\mathbf{F}_{p^{2}}\right)=12 \cdot$ prime. $a^{2}=-46893, b^{2}=20020$,
$c^{2}=20020, d^{2}=5800$.

Another good example:

$$
\begin{aligned}
y^{2}= & (z-1)(z+1 / 11) \\
& (z-1 / 4)(z+4 / 11) \\
& (z+5 / 7)(z-7 / 55) .
\end{aligned}
$$

Another good example:

$$
\begin{aligned}
y^{2}= & (z-1)(z+1 / 11) \\
& (z-1 / 4)(z+4 / 11) \\
& (z+5 / 7)(z-7 / 55) .
\end{aligned}
$$

Slightly lower security level: $\# J\left(\mathbf{F}_{p}\right)=\# J^{\prime}\left(\mathbf{F}_{p}\right)=\# E\left(\mathbf{F}_{p^{2}}\right)$ $=720 \ell$ for a prime $\ell \approx 2^{244.5}$. $\# E^{\prime}\left(\mathbf{F}_{p^{2}}\right)=260 \cdot$ prime.

Another good example:

$$
\begin{aligned}
y^{2}= & (z-1)(z+1 / 11) \\
& (z-1 / 4)(z+4 / 11) \\
& (z+5 / 7)(z-7 / 55)
\end{aligned}
$$

Slightly lower security level:
$\# J\left(\mathbf{F}_{p}\right)=\# J^{\prime}\left(\mathbf{F}_{p}\right)=\# E\left(\mathbf{F}_{p^{2}}\right)$
$=720 \ell$ for a prime $\ell \approx 2^{244.5}$.
$\# E^{\prime}\left(\mathbf{F}_{p^{2}}\right)=260 \cdot$ prime.
Particularly nice arithmetic:
$\left(a^{2}: b^{2}: c^{2}: d^{2}\right)=(20: 12: 12: 5)$;
$\left(A^{2}: \ldots\right)=(49: 15: 15: 1)$;
$\left(\frac{1}{a^{2}}: \cdots\right)=(3: 5: 5: 12)$;
$\left(\frac{1}{A^{2}}: \cdots\right)=(15: 49: 49: 735)$.

