Hyper-and-elliptic-curve cryptography

Daniel J. Bernstein
University of Illinois at Chicago \& Technische Universiteit Eindhoven

Joint work with: Tanja Lange Technische Universiteit Eindhoven cr.yp.to/papers.html\#hyperand (2014) + new examples (2015)

Rewind to 2012 Gaudry-Schost: "the computation took more than 1,000,000 CPU hours".

The Gaudry-Schost motivation:

nd-elliptic-curve aphy

## Bernstein

ty of Illinois at Chicago \& he Universiteit Eindhoven
rk with: Tanja Lange he Universiteit Eindhoven
\%o/papers.html\#hyperand

+ new examples (2015)
to 2012 Gaudry-Schost:
nputation took an 1,000,000 CPU hours".

The Gaudry-Schost motivation:


Inputs:
$\left(x_{2}: y_{2}:\right.$
$\left(x_{3}: y_{3}:\right.$
$\left(x_{1}: y_{1}\right.$ :
This dia $\left(x_{4}: y_{4}\right.$ : $\left(x_{5}: y_{5}:\right.$
is at Chicago \& siteit Eindhoven

「anja Lange
siteit Eindhoven
s.html\#hyperand
mples (2015)
audry-Schost:
took
00 CPU hours".

The Gaudry-Schost motivation:


Inputs: "squared $\left(x_{2}: y_{2}: z_{2}: t_{2}\right)$ for $\left(x_{3}: y_{3}: z_{3}: t_{3}\right)$ for $\left(x_{1}: y_{1}: z_{1}: t_{1}\right)$ for

This diagram com $\left(x_{4}: y_{4}: z_{4}: t_{4}\right)$ for $\left(x_{5}: y_{5}: z_{5}: t_{5}\right)$ for

The Gaudry-Schost motivation:
ago \&
hoven
je
hoven yperand
15)
ost:
ours" .


Inputs: "squared $\theta$ coordina $\left(x_{2}: y_{2}: z_{2}: t_{2}\right)$ for $Q_{2}$, $\left(x_{3}: y_{3}: z_{3}: t_{3}\right)$ for $Q_{3}$, $\left(x_{1}: y_{1}: z_{1}: t_{1}\right)$ for $Q_{1}=Q_{3}$

This diagram computes
$\left(x_{4}: y_{4}: z_{4}: t_{4}\right)$ for $Q_{4}=2 Q$ $\left(x_{5}: y_{5}: z_{5}: t_{5}\right)$ for $Q_{5}=Q_{3}$

The Gaudry-Schost motivation:


Inputs: "squared $\theta$ coordinates"
$\left(x_{2}: y_{2}: z_{2}: t_{2}\right)$ for $Q_{2}$,
$\left(x_{3}: y_{3}: z_{3}: t_{3}\right)$ for $Q_{3}$,
$\left(x_{1}: y_{1}: z_{1}: t_{1}\right)$ for $Q_{1}=Q_{3}-Q_{2}$.
This diagram computes $\left(x_{4}: y_{4}: z_{4}: t_{4}\right)$ for $Q_{4}=2 Q_{2}$, $\left(x_{5}: y_{5}: z_{5}: t_{5}\right)$ for $Q_{5}=Q_{3}+Q_{2}$.

The Gaudry-Schost motivation:


Inputs: "squared $\theta$ coordinates" $\left(x_{2}: y_{2}: z_{2}: t_{2}\right)$ for $Q_{2}$, $\left(x_{3}: y_{3}: z_{3}: t_{3}\right)$ for $Q_{3}$, $\left(x_{1}: y_{1}: z_{1}: t_{1}\right)$ for $Q_{1}=Q_{3}-Q_{2}$.

This diagram computes $\left(x_{4}: y_{4}: z_{4}: t_{4}\right)$ for $Q_{4}=2 Q_{2}$, $\left(x_{5}: y_{5}: z_{5}: t_{5}\right)$ for $Q_{5}=Q_{3}+Q_{2}$.

Just 14 mults for $Q_{4}$ (1986 Chudnovsky-Chudnovsky). Huge speedup if constants $\left(\frac{1}{a^{2}}: \frac{1}{b^{2}}: \frac{1}{c^{2}}: \frac{1}{d^{2}}\right)$ etc. are small.

The Gaudry-Schost motivation:


Inputs: "squared $\theta$ coordinates" $\left(x_{2}: y_{2}: z_{2}: t_{2}\right)$ for $Q_{2}$, $\left(x_{3}: y_{3}: z_{3}: t_{3}\right)$ for $Q_{3}$, $\left(x_{1}: y_{1}: z_{1}: t_{1}\right)$ for $Q_{1}=Q_{3}-Q_{2}$.

This diagram computes $\left(x_{4}: y_{4}: z_{4}: t_{4}\right)$ for $Q_{4}=2 Q_{2}$, $\left(x_{5}: y_{5}: z_{5}: t_{5}\right)$ for $Q_{5}=Q_{3}+Q_{2}$.

Just 14 mults for $Q_{4}$ (1986 Chudnovsky-Chudnovsky). Huge speedup if constants $\left(\frac{1}{a^{2}}: \frac{1}{b^{2}}: \frac{1}{c^{2}}: \frac{1}{d^{2}}\right)$ etc. are small. Just 25 mults for $Q_{4}, Q_{5}$ (2006 Gaudry) after $Q_{1}$ precomp.
dry-Schost motivation:


Inputs: "squared $\theta$ coordinates"
$\left(x_{2}: y_{2}: z_{2}: t_{2}\right)$ for $Q_{2}$,
$\left(x_{3}: y_{3}: z_{3}: t_{3}\right)$ for $Q_{3}$,
$\left(x_{1}: y_{1}: z_{1}: t_{1}\right)$ for $Q_{1}=Q_{3}-Q_{2}$.
This diagram computes
$\left(x_{4}: y_{4}: z_{4}: t_{4}\right)$ for $Q_{4}=2 Q_{2}$,
$\left(x_{5}: y_{5}: z_{5}: t_{5}\right)$ for $Q_{5}=Q_{3}+Q_{2}$.
Just 14 mults for $Q_{4}$
(1986 Chudnovsky-Chudnovsky).
Huge speedup if constants $\left(\frac{1}{a^{2}}: \frac{1}{b^{2}}: \frac{1}{c^{2}}: \frac{1}{d^{2}}\right)$ etc. are small. Just 25 mults for $Q_{4}, Q_{5}$
(2006 Gaudry) after $Q_{1}$ precomp.
$\left(x_{i}: y_{i}:\right.$ original $4 E^{2} x y z$ $-F$ $-H$
where
$A^{2}=a^{2}$
$B^{2}=a^{2}$
$C^{2}=a^{2}$
$D^{2}=a^{2}$
$F=\left(a^{4}\right.$
$G=\left(a^{4}\right.$
$H=\left(a^{4}\right.$
$E^{2}=F^{2}$
st motivation:


Hadamard


$\cdot \frac{1}{z_{1}}$
$\begin{array}{cc}\downarrow & \downarrow \\ z_{5} & t_{5}\end{array}$

Inputs: "squared $\theta$ coordinates"
$\left(x_{2}: y_{2}: z_{2}: t_{2}\right)$ for $Q_{2}$,
$\left(x_{3}: y_{3}: z_{3}: t_{3}\right)$ for $Q_{3}$,
$\left(x_{1}: y_{1}: z_{1}: t_{1}\right)$ for $Q_{1}=Q_{3}-Q_{2}$.
This diagram computes
$\left(x_{4}: y_{4}: z_{4}: t_{4}\right)$ for $Q_{4}=2 Q_{2}$,
$\left(x_{5}: y_{5}: z_{5}: t_{5}\right)$ for $Q_{5}=Q_{3}+Q_{2}$.
Just 14 mults for $Q_{4}$
(1986 Chudnovsky-Chudnovsky).
Huge speedup if constants
$\left(\frac{1}{a^{2}}: \frac{1}{b^{2}}: \frac{1}{c^{2}}: \frac{1}{d^{2}}\right)$ etc. are small.
Just 25 mults for $Q_{4}, Q_{5}$
(2006 Gaudry) after $Q_{1}$ precomp.
$\left(x_{i}: y_{i}: z_{i}: t_{i}\right)$ are original Kummer s $4 E^{2} x y z t=\left(\left(x^{2}+\right.\right.$

$$
-F(x t+y z)
$$

$$
-H(x y+z t)
$$

where
$A^{2}=a^{2}+b^{2}+c$
$B^{2}=a^{2}+b^{2}-c$
$C^{2}=a^{2}-b^{2}+c$
$D^{2}=a^{2}-b^{2}-c$
$F=\left(a^{4}-b^{4}-c^{4}+\right.$
$G=\left(a^{4}-b^{4}+c^{4}-\right.$
$H=\left(a^{4}+b^{4}-c^{4}-\right.$
$E^{2}=F^{2}+G^{2}+$

```
#
```


$\left(x_{2}: y_{2}: z_{2}: t_{2}\right)$ for $Q_{2}$,
$\left(x_{3}: y_{3}: z_{3}: t_{3}\right)$ for $Q_{3}$,
$\left(x_{1}: y_{1}: z_{1}: t_{1}\right)$ for $Q_{1}=Q_{3}-Q_{2}$.

```

Inputs: "squared \(\theta\) coordinates"

This diagram computes
\(\left(x_{4}: y_{4}: z_{4}: t_{4}\right)\) for \(Q_{4}=2 Q_{2}\),
\(\left(x_{5}: y_{5}: z_{5}: t_{5}\right)\) for \(Q_{5}=Q_{3}+Q_{2}\).
Just 14 mults for \(Q_{4}\)
(1986 Chudnovsky-Chudnovsky).
Huge speedup if constants
\(\left(\frac{1}{a^{2}}: \frac{1}{b^{2}}: \frac{1}{c^{2}}: \frac{1}{d^{2}}\right)\) etc. are small.
Just 25 mults for \(Q_{4}, Q_{5}\)
(2006 Gaudry) after \(Q_{1}\) precomp.
\(\left(x_{i}: y_{i}: z_{i}: t_{i}\right)\) are points on original Kummer surface \(K\)
\[
\begin{gathered}
4 E^{2} x y z t=\left(\left(x^{2}+y^{2}+z^{2}\right.\right. \\
-F(x t+y z)-G(x z+ \\
-H(x y+z t))^{2}
\end{gathered}
\]
where
\[
\begin{aligned}
& A^{2}=a^{2}+b^{2}+c^{2}+d^{2}, \\
& B^{2}=a^{2}+b^{2}-c^{2}-d^{2}, \\
& C^{2}=a^{2}-b^{2}+c^{2}-d^{2}, \\
& D^{2}=a^{2}-b^{2}-c^{2}+d^{2}, \\
& F=\left(a^{4}-b^{4}-c^{4}+d^{4}\right) /\left(a^{2} d^{2}\right. \\
& G=\left(a^{4}-b^{4}+c^{4}-d^{4}\right) /\left(a^{2} c^{2}\right. \\
& H=\left(a^{4}+b^{4}-c^{4}-d^{4}\right) /\left(a^{2} b^{2}\right. \\
& E^{2}=F^{2}+G^{2}+H^{2}+F G H
\end{aligned}
\]

Inputs: "squared \(\theta\) coordinates" \(\left(x_{2}: y_{2}: z_{2}: t_{2}\right)\) for \(Q_{2}\), \(\left(x_{3}: y_{3}: z_{3}: t_{3}\right)\) for \(Q_{3}\), \(\left(x_{1}: y_{1}: z_{1}: t_{1}\right)\) for \(Q_{1}=Q_{3}-Q_{2}\).

This diagram computes \(\left(x_{4}: y_{4}: z_{4}: t_{4}\right)\) for \(Q_{4}=2 Q_{2}\), \(\left(x_{5}: y_{5}: z_{5}: t_{5}\right)\) for \(Q_{5}=Q_{3}+Q_{2}\).

Just 14 mults for \(Q_{4}\) (1986 Chudnovsky-Chudnovsky). Huge speedup if constants \(\left(\frac{1}{a^{2}}: \frac{1}{b^{2}}: \frac{1}{c^{2}}: \frac{1}{d^{2}}\right)\) etc. are small. Just 25 mults for \(Q_{4}, Q_{5}\) (2006 Gaudry) after \(Q_{1}\) precomp.
\(\left(x_{i}: y_{i}: z_{i}: t_{i}\right)\) are points on original Kummer surface \(K\) :
\[
\begin{gathered}
4 E^{2} x y z t=\left(\left(x^{2}+y^{2}+z^{2}+t^{2}\right)\right. \\
\quad-F(x t+y z)-G(x z+y t) \\
\quad-H(x y+z t))^{2}
\end{gathered}
\]
where
\(A^{2}=a^{2}+b^{2}+c^{2}+d^{2}\),
\(B^{2}=a^{2}+b^{2}-c^{2}-d^{2}\),
\(C^{2}=a^{2}-b^{2}+c^{2}-d^{2}\),
\(D^{2}=a^{2}-b^{2}-c^{2}+d^{2}\),
\(F=\left(a^{4}-b^{4}-c^{4}+d^{4}\right) /\left(a^{2} d^{2}-b^{2} c^{2}\right)\),
\(G=\left(a^{4}-b^{4}+c^{4}-d^{4}\right) /\left(a^{2} c^{2}-b^{2} d^{2}\right)\),
\(H=\left(a^{4}+b^{4}-c^{4}-d^{4}\right) /\left(a^{2} b^{2}-c^{2} d^{2}\right)\),
\(E^{2}=F^{2}+G^{2}+H^{2}+F G H-4\).
"squared \(\theta\) coordinates"
\(\left.z_{2}: t_{2}\right)\) for \(Q_{2}\),
\(\left.z_{3}: t_{3}\right)\) for \(Q_{3}\),
\(\left.z_{1}: t_{1}\right)\) for \(Q_{1}=Q_{3}-Q_{2}\).
gram computes
\(\left.z_{4}: t_{4}\right)\) for \(Q_{4}=2 Q_{2}\),
\(\left.z_{5}: t_{5}\right)\) for \(Q_{5}=Q_{3}+Q_{2}\).
mults for \(Q_{4}\)
hudnovsky-Chudnovsky).
eedup if constants
\(\left.\frac{1}{c^{2}}: \frac{1}{d^{2}}\right)\) etc. are small.
mults for \(Q_{4}, Q_{5}\)
audry) after \(Q_{1}\) precomp.
\(\left(x_{i}: y_{i}: z_{i}: t_{i}\right)\) are points on
original Kummer surface \(K\) :
\[
\begin{gathered}
4 E^{2} x y z t=\left(\left(x^{2}+y^{2}+z^{2}+t^{2}\right)\right. \\
\quad-F(x t+y z)-G(x z+y t) \\
\quad-H(x y+z t))^{2}
\end{gathered}
\]
where
\(A^{2}=a^{2}+b^{2}+c^{2}+d^{2}\),
\(B^{2}=a^{2}+b^{2}-c^{2}-d^{2}\),
\(C^{2}=a^{2}-b^{2}+c^{2}-d^{2}\),
\(D^{2}=a^{2}-b^{2}-c^{2}+d^{2}\),
\(F=\left(a^{4}-b^{4}-c^{4}+d^{4}\right) /\left(a^{2} d^{2}-b^{2} c^{2}\right)\),
\(G=\left(a^{4}-b^{4}+c^{4}-d^{4}\right) /\left(a^{2} c^{2}-b^{2} d^{2}\right)\),
\(H=\left(a^{4}+b^{4}-c^{4}-d^{4}\right) /\left(a^{2} b^{2}-c^{2} d^{2}\right)\),
\(E^{2}=F^{2}+G^{2}+H^{2}+F G H-4\).

Surface
Über dic mit sech

Endlich
werden, welc men kann. singulären Tar
als die Fundan genen Coordir teren durch \(r\) chung:
10.,
wo
\(\phi=p^{2}+\)
\(K=\)
in welcher die auf die richtig ist. Wählt m Ausdrücke \(p\),

\section*{coordinates"}
\(Q_{2}\),
\(Q_{3}\),
\(Q_{1}=Q_{3}-Q_{2}\).
putes
\(Q_{4}=2 Q_{2}\),
\(Q_{5}=Q_{3}+Q_{2}\).
\(Q_{4}\)
-Chudnovsky).
onstants
etc. are small.
\(Q_{4}, Q_{5}\)
er \(Q_{1}\) precomp.
\(\left(x_{i}: y_{i}: z_{i}: t_{i}\right)\) are points on original Kummer surface \(K\) : \(4 E^{2} x y z t=\left(\left(x^{2}+y^{2}+z^{2}+t^{2}\right)\right.\) \(-F(x t+y z)-G(x z+y t)\) \(-H(x y+z t))^{2}\)
where
\(A^{2}=a^{2}+b^{2}+c^{2}+d^{2}\),
\(B^{2}=a^{2}+b^{2}-c^{2}-d^{2}\),
\(C^{2}=a^{2}-b^{2}+c^{2}-d^{2}\),
\(D^{2}=a^{2}-b^{2}-c^{2}+d^{2}\),
\(F=\left(a^{4}-b^{4}-c^{4}+d^{4}\right) /\left(a^{2} d^{2}-b^{2} c^{2}\right)\),
\(G=\left(a^{4}-b^{4}+c^{4}-d^{4}\right) /\left(a^{2} c^{2}-b^{2} d^{2}\right)\),
\(H=\left(a^{4}+b^{4}-c^{4}-d^{4}\right) /\left(a^{2} b^{2}-c^{2} d^{2}\right)\),
\(E^{2}=F^{2}+G^{2}+H^{2}+F G H-4\).

Surface is from 18 Über die Flächen mit sechzehn sing
vom 18. \(A\)
Endlich möge hier noch werden, welche man mit der \(G\) men kann. Wählt man die vi singulären Tangentialebenen
\[
p=0, q=0
\]
als die Fundamentalebenen, also genen Coordinaten, und bezeic teren durch \(r\) und \(s\), so erbält chung:
\[
\begin{aligned}
& \text { 10., } \quad \phi^{2}=1 \\
& \text { wo } \\
& \\
& \phi=p^{2}+q^{2}+r^{2}+s^{2}+2 a(q \\
& K=a^{2}+b^{2}+c^{2}-2 a
\end{aligned}
\]
in welcher die sieben Constante auf die richtige Anzahl von drei \(C\) ist. Wählt man in dieser Fort Ausdrücke \(p, q, r\), s real, und d
\(\left(x_{i}: y_{i}: z_{i}: t_{i}\right)\) are points on
original Kummer surface \(K\) :
\[
\begin{gathered}
4 E^{2} x y z t=\left(\left(x^{2}+y^{2}+z^{2}+t^{2}\right)\right. \\
\quad-F(x t+y z)-G(x z+y t) \\
\quad-H(x y+z t))^{2}
\end{gathered}
\]
where
\(A^{2}=a^{2}+b^{2}+c^{2}+d^{2}\),
\(B^{2}=a^{2}+b^{2}-c^{2}-d^{2}\),
\(C^{2}=a^{2}-b^{2}+c^{2}-d^{2}\),
\(D^{2}=a^{2}-b^{2}-c^{2}+d^{2}\),
\(F=\left(a^{4}-b^{4}-c^{4}+d^{4}\right) /\left(a^{2} d^{2}-b^{2} c^{2}\right)\),
\(G=\left(a^{4}-b^{4}+c^{4}-d^{4}\right) /\left(a^{2} c^{2}-b^{2} d^{2}\right)\),
\(H=\left(a^{4}+b^{4}-c^{4}-d^{4}\right) /\left(a^{2} b^{2}-c^{2} d^{2}\right)\),
\(E^{2}=F^{2}+G^{2}+H^{2}+F G H-4\).

\section*{Surface is from 1864 Kumm Über die Flächen vierten Gr, mit sechzehn singulären Pur}

\author{
vom 18. April 1864.
}

Endlich möge hier noch eine Formverände werden, welche man mit der Gleichung dieser Fl men kann. Wählt man die vier in der Form (4) singulären Tangentialebenen
\[
p=0, q=0, p^{\prime}=0, q^{\prime}=0
\]
als die Fundamentalebenen, also \(p, q, p^{\prime}, q^{\prime}\), als d genen Coordinaten, und bezeichnet demgemärs di teren durch \(r\) und \(s\), so erbält man folgende Fo chung:
\[
\begin{aligned}
& \text { 10., } \quad \phi^{2}=16 K p q r s, \\
& \text { wo } \\
& \phi=p^{2}+q^{2}+r^{2}+s^{2}+2 a(q r+p s)+2 b(r p+q s) \\
& K=a^{2}+b^{2}+c^{2}-2 a b c-1 .
\end{aligned}
\]
in welcher die sieben Constanten \(a, b, c, d, e, f\), auf die richtige Anzahl von drei Constanten \(a, b, c\) ist. Wählt man in dieser Form die Coefficienter Ausdrücke \(p, q, r\), s real, und die drei Constanten
\(\left(x_{i}: y_{i}: z_{i}: t_{i}\right)\) are points on original Kummer surface \(K\) :
\[
\begin{gathered}
4 E^{2} x y z t=\left(\left(x^{2}+y^{2}+z^{2}+t^{2}\right)\right. \\
\quad-F(x t+y z)-G(x z+y t) \\
-H(x y+z t))^{2}
\end{gathered}
\]
where
\(A^{2}=a^{2}+b^{2}+c^{2}+d^{2}\),
\(B^{2}=a^{2}+b^{2}-c^{2}-d^{2}\),
\(C^{2}=a^{2}-b^{2}+c^{2}-d^{2}\),
\(D^{2}=a^{2}-b^{2}-c^{2}+d^{2}\),
\(F=\left(a^{4}-b^{4}-c^{4}+d^{4}\right) /\left(a^{2} d^{2}-b^{2} c^{2}\right)\),
\(G=\left(a^{4}-b^{4}+c^{4}-d^{4}\right) /\left(a^{2} c^{2}-b^{2} d^{2}\right)\),
\(H=\left(a^{4}+b^{4}-c^{4}-d^{4}\right) /\left(a^{2} b^{2}-c^{2} d^{2}\right)\),
\(E^{2}=F^{2}+G^{2}+H^{2}+F G H-4\).

Surface is from 1864 Kummer,
Über die Flächen vierten Grades mit sechzehn singulären Punkten:
vom 18. April 1864.
253
Endlich möge hier noch eine Formveränderung erwähnt werden, welche man mit der Gleichung dieser Flächen vornehmen kann. Wählt man die vier in der Form (4.) enthaltenen singulären Tangentialebenen
\[
p=0, q=0, p^{\prime}=0, q^{\prime}=0
\]
als die Fundamentalebenen, also \(p, q, p^{\prime}, q^{\prime}\), als die vier homogenen Coordinaten, und bezeichnet demgemäfs die beiden letzteren durch \(r\) und \(s\), so erbält man folgende Form der Gleichung:
\[
\begin{aligned}
& \text { 10., } \phi^{2}=16 \text { Kpqrs, } \\
& \text { wo } \\
& \phi=p^{2}+q^{2}+r^{2}+s^{2}+2 a(q r+p s)+2 b(r p+q s)+2 c(p q+r s) \\
& K=a^{2}+b^{2}+c^{2}-2 a b c-1 .
\end{aligned}
\]
in welcher die sieben Constanten \(a, b, c, d, c, f, k\) jener Form auf die richtige Anzahl von drei Constanten \(a, b, c\) eingeschränkt ist. Wählt man in dieser Form die Coefficienten der linearen Ausdrücke \(p, q, r\), s real, und die drei Constanten \(a, b, c\) eben-

\section*{\(\left.z_{i}: t_{i}\right)\) are points on}

Kummer surface \(K\) :
\(t=\left(\left(x^{2}+y^{2}+z^{2}+t^{2}\right)\right.\)
\((x t+y z)-G(x z+y t)\)
\((x y+z t))^{2}\)
\[
\begin{aligned}
& +b^{2}+c^{2}+d^{2}, \\
& +b^{2}-c^{2}-d^{2}, \\
& -b^{2}+c^{2}-d^{2}, \\
& -b^{2}-c^{2}+d^{2}, \\
& \left.-b^{4}-c^{4}+d^{4}\right) /\left(a^{2} d^{2}-b^{2} c^{2}\right), \\
& \left.-b^{4}+c^{4}-d^{4}\right) /\left(a^{2} c^{2}-b^{2} d^{2}\right), \\
& \left.+b^{4}-c^{4}-d^{4}\right) /\left(a^{2} b^{2}-c^{2} d^{2}\right), \\
& +G^{2}+H^{2}+F G H-4 .
\end{aligned}
\]

\section*{Surface is from 1864 Kummer,}

Über die Flächen vierten Grades mit sechzehn singulären Punkten:
vom 18. April 1864.
253
Endlich möge hier noch eine Formveränderung erwähnt werden, welche man mit der Gleichung dieser Flächen vornehmen kann. Wählt man die vier in der Form (4.) enthaltenen singulären Tangentialebenen
\[
p=0, q=0, p^{\prime}=0, q^{\prime}=0
\]
als die Fundamentalebenen, also \(p, q, p^{\prime}, q^{\prime}\), als die vier homogenen Coordinaten, und bezeichnet demgemäfs die beiden letzteren durch \(r\) und \(s\), so erhält man folgende Form der Gleichung:
\[
\begin{aligned}
& \text { 10., } \phi^{2}=16 \text { Kpqrs, } \\
& \text { wo } \\
& \phi=p^{2}+q^{2}+r^{2}+s^{2}+2 a(q r+p s)+2 b(r p+q s)+2 c(p q+r s) \\
& K=a^{2}+b^{2}+c^{2}-2 a b c-1 .
\end{aligned}
\]
in welcher die sieben Constanten \(a, b, c, d, c, f, k\) jener Form auf die richtige Anzahl von drei Constanten \(a, b, c\) eingeschränkt ist. Wählt man in dieser Form die Coefficienten der linearen Ausdrücke \(p, q, r\), s real, und die drei Constanten \(a, b, c\) eben-
points on
urface \(K\) :
\(\left.-y^{2}+z^{2}+t^{2}\right)\)
\(-G(x z+y t)\)
\()^{2}\)
\(2+d^{2}\)
\(2-d^{2}\),
\(2-d^{2}\),
\(2+d^{2}\),
\(\left.d^{4}\right) /\left(a^{2} d^{2}-b^{2} c^{2}\right)\),
\(\left.d^{4}\right) /\left(a^{2} c^{2}-b^{2} d^{2}\right)\),
\(\left.d^{4}\right) /\left(a^{2} b^{2}-c^{2} d^{2}\right)\),
\(H^{2}+F G H-4\).

Surface is from 1864 Kummer, Über die Flächen vierten Grades mit sechzehn singulären Punkten:
vom 18. April 1864.
253
Endlich möge hier noch eine Formveränderung erwähnt werden, welche man mit der Gleichung dieser Flächen vornehmen kann. Wählt man die vier in der Form (4.) enthaltenen singulären Tangentialebenen
\[
p=0, q=0, p^{\prime}=0, q^{\prime}=0
\]
als die Fundamentalebenen, also \(p, q, p^{\prime}, q^{\prime}\), als die vier homogenen Coordinaten, und bezeichnet demgemäfs die beiden letzteren durch \(r\) und \(s\), so erhält man folgende Form der Gleichung:
\[
\begin{aligned}
& \text { 10., } \phi^{2}=16 \text { Kpqrs } \\
& \text { wo } \\
& \phi=p^{2}+q^{2}+r^{2}+s^{2}+2 a(q r+p s)+2 b(r p+q s)+2 c(p q+r s) \\
& K=a^{2}+b^{2}+c^{2}-2 a b c-1 .
\end{aligned}
\]
in welcher die sieben Constanten \(a, b, c, d, e, f, k\) jener Form auf die richtige Anzahl von drei Constanten \(a, b, c\) eingeschränkt ist. Wählt man in dieser Form die Coefficienten der linearen Ausdrücke \(p, q, r, s\) real, und die drei Constanten \(a, b, c\) eben-
\(Q_{2}, Q_{3}\) are points Jacobian \(J\) of a re genus-2 hyperellip "Standard" X : J/ defines squared \(\theta\)
\(\left.-b^{2} c^{2}\right)\)
\(-b^{2} d^{2}\) ), \(-c^{2} d^{2}\) ), - 4 .

\section*{Surface is from 1864 Kummer,} Über die Flächen vierten Grades mit sechzehn singulären Punkten:
vom 18. April 1864.
253
Endlich möge hier noch eine Formveränderung erwähnt werden, welche man mit der Gleichung dieser Flächen vornehmen kann. Wählt man die vier in der Form (4.) enthaltenen singulären Tangentialebenen
\[
p=0, q=0, p^{\prime}=0, q^{\prime}=0
\]
als die Fundamentalebenen, also \(p, q, p^{\prime}, q^{\prime}\), als die vier homogenen Coordinaten, und bezeichnet demgemäfs die beiden letzteren durch \(r\) und \(s\), so erhält man folgende Form der Gleichung:
\[
\begin{aligned}
& \text { 10., } \phi^{2}=16 K p q r s, \\
& \text { wo } \\
& \phi=p^{2}+q^{2}+r^{2}+s^{2}+2 a(q r+p s)+2 b(r p+q s)+2 c(p q+r s) \\
& K=a^{2}+b^{2}+c^{2}-2 a b c-1 .
\end{aligned}
\]
in welcher die sieben Constanten \(a, b, c, d, e, f, k\) jener Form auf die richtige Anzahl von drei Constanten \(a, b, c\) eingeschränkt ist. Wählt man in dieser Form die Coefficienten der linearen Ausdrücke \(p, q, r, s\) real, und die drei Constanten \(a, b, c\) eben-

\section*{\(Q_{2}, Q_{3}\) are points on} Jacobian \(J\) of a related genus-2 hyperelliptic curve "Standard" \(X: J /\{ \pm 1\} \hookrightarrow\) defines squared \(\theta\) coords on

\section*{Surface is from 1864 Kummer,} Über die Flächen vierten Grades mit sechzehn singulären Punkten:

\section*{vom 18. April 1864.}

Endlich möge hier noch eine Formveränderung erwähnt werden, welche man mit der Gleichung dieser Flächen vornehmen kann. Wählt man die vier in der Form (4.) enthaltenen singulären Tangentialebenen
\[
p=0, q=0, p^{\prime}=0, q^{\prime}=0
\]
als die Fundamentalebenen, also \(p, q, p^{\prime}, q^{\prime}\), als die vier homogenen Coordinaten, und bezeichnet demgemäfs die beiden letzteren durch \(r\) und \(s\), so erhält man folgende Form der Gleichung:
\[
\begin{aligned}
& \text { 10., } \phi^{2}=16 \text { Kpqrs, } \\
& \text { wo } \\
& \phi=p^{2}+q^{2}+r^{2}+s^{2}+2 a(q r+p s)+2 b(r p+q s)+2 c(p q+r s) \\
& K=a^{2}+b^{2}+c^{2}-2 a b c-1 .
\end{aligned}
\]
in welcher die sieben Constanten \(a, b, c, d, c, f, k\) jener Form auf die richtige Anzahl von drei Constanten \(a, b, c\) eingeschränkt ist. Wählt man in dieser Form die Coefficienten der linearen Ausdrücke \(p, q, r\), s real, und die drei Constanten \(a, b, c\) eben-

\section*{\(Q_{2}, Q_{3}\) are points on} Jacobian \(J\) of a related genus-2 hyperelliptic curve \(C\). "Standard" \(X: J /\{ \pm 1\} \hookrightarrow K\) defines squared \(\theta\) coords on \(J\).

\section*{Surface is from 1864 Kummer,} Über die Flächen vierten Grades mit sechzehn singulären Punkten:

\section*{vom 18. April 1864.}

Endlich möge hier noch einc Formveränderung erwähnt werden, welche man mit der Gleichung dieser Flächen vornehmen kann. Wählt man die vier in der Form (4.) enthaltenen singulären Tangentialebenen
\[
p=0, q=0, p^{\prime}=0, q^{\prime}=0
\]
als die Fundamentalebenen, also \(p, q, p^{\prime}, q^{\prime}\), als die vier homogenen Coordinaten, und bezeichnet demgemäfs die beiden letzteren durch \(r\) und \(s\), so erhält man folgende Form der Gleichung:
\[
\begin{aligned}
& \text { 10., } \phi^{2}=16 \text { Kpqrs, } \\
& \text { wo } \\
& \phi=p^{2}+q^{2}+r^{2}+s^{2}+2 a(q r+p s)+2 b(r p+q s)+2 c(p q+r s) \\
& K=a^{2}+b^{2}+c^{2}-2 a b c-1 .
\end{aligned}
\]
in welcher die sieben Constanten \(a, b, c, d, e, f, k\) jener Form auf die richtige Anzahl von drei Constanten \(a, b, c\) eingeschränkt ist. Wählt man in dieser Form die Coefficienten der linearen Ausdrücke \(p, q, r\), s real, und die drei Constanten \(a, b, c\) eben-

\section*{\(Q_{2}, Q_{3}\) are points on}

Jacobian \(J\) of a related genus-2 hyperelliptic curve \(C\). "Standard" \(X: J /\{ \pm 1\} \hookrightarrow K\) defines squared \(\theta\) coords on \(J\).

Use diagram \(k\) times to compute \(X\left(Q_{1}\right) \mapsto X\left(n Q_{1}\right), X\left((n+1) Q_{1}\right)\) for any \(n \in\left\{0,1, \ldots, 2^{k}-1\right\}\).

Surface is from 1864 Kummer, Über die Flächen vierten Grades mit sechzehn singulären Punkten:

\section*{vom 18. April 1864.}

Endlich möge hier noch einc Formveränderung erwähnt werden, welche man mit der Gleichung dieser Flächen vornehmen kann. Wählt man die vier in der Form (4.) enthaltenen singulären Tangentialebenen
\[
p=0, q=0, p^{\prime}=0, q^{\prime}=0
\]
als die Fundamentalebenen, also \(p, q, p^{\prime}, q^{\prime}\), als die vier homogenen Coordinaten, und bezeichnet demgemäfs die beiden letzteren durch \(r\) und \(s\), so erhält man folgende Form der Gleichung:
\[
\begin{aligned}
& \text { 10., } \phi^{2}=16 \text { Kpqrs, } \\
& \text { wo } \\
& \phi=p^{2}+q^{2}+r^{2}+s^{2}+2 a(q r+p s)+2 b(r p+q s)+2 c(p q+r s) \\
& K=a^{2}+b^{2}+c^{2}-2 a b c-1 .
\end{aligned}
\]
in welcher die sieben Constanten \(a, b, c, d, c, f, k\) jener Form auf die richtige Anzahl von drei Constanten \(a, b, c\) eingeschränkt ist. Wählt man in dieser Form die Coefficienten der linearen Ausdrücke \(p, q, r\), s real, und die drei Constanten \(a, b, c\) eben-
\(Q_{2}, Q_{3}\) are points on Jacobian \(J\) of a related genus-2 hyperelliptic curve \(C\). "Standard" \(X: J /\{ \pm 1\} \hookrightarrow K\) defines squared \(\theta\) coords on \(J\).

Use diagram \(k\) times to compute \(X\left(Q_{1}\right) \mapsto X\left(n Q_{1}\right), X\left((n+1) Q_{1}\right)\) for any \(n \in\left\{0,1, \ldots, 2^{k}-1\right\}\).

Beware typos in the "standard" Rosenhain/Mumford/Kummer formulas in 2007 Gaudry, 2010 Cosset, 2013 Bos-Costello-HisilLauter. See our paper for simpler formulas as Sage scripts.
is from 1864 Kummer,
Flächen vierten Grades zehn singulären Punkten:
vom 18. April 1864.
253
nöge hier noch eine Formveränderung erwähnt e man mit der Gleichung dieser Flächen vornehVählt man die vier in der Form (4.) enthaltenen gentialebenen
\[
p=0, q=0, p^{\prime}=0, q^{\prime}=0
\]
nentalebenen, also \(p, q, p^{\prime}, q^{\prime}\), als die vier homonaten, und bezeichnet demgemäls die beiden letzund \(s\), so erbält man folgende Form der Glei-
\[
\phi^{2}=16 \mathrm{~K}_{\mathrm{p}} q \mathrm{rs},
\]
\(q^{2}+r^{2}+s^{2}+2 a(q r+p s)+2 b(r p+q s)+2 c(p q+r s)\)
\(a^{2}+b^{2}+c^{2}-2 a b c-1\).
sieben Constanten \(a, b, c, d, e, f, k\) jener Form Anzahl von drei Constanten \(a, b, c\) eingeschränkt an in dieser Form die Coefficienten der linearen \(\eta, r, s\) real, und die drei Constanten \(a, b, c\) eben-
\(Q_{2}, Q_{3}\) are points on
Jacobian \(J\) of a related
genus-2 hyperelliptic curve \(C\).
"Standard" \(X: J /\{ \pm 1\} \hookrightarrow K\) defines squared \(\theta\) coords on \(J\).

Use diagram \(k\) times to compute \(X\left(Q_{1}\right) \mapsto X\left(n Q_{1}\right), X\left((n+1) Q_{1}\right)\) for any \(n \in\left\{0,1, \ldots, 2^{k}-1\right\}\).

Beware typos in the "standard" Rosenhain/Mumford/Kummer formulas in 2007 Gaudry, 2010 Cosset, 2013 Bos-Costello-HisilLauter. See our paper for simpler formulas as Sage scripts.

1966 Mı defining "There formulas allow on ambigui symmetı reformul definitio made a achieve make co still can

64 Kummer, vierten Grades
ulären Punkten:
oril 1864.
253
eine Formveränderung erwähnt leichung dieser Flächen vornehr in der Form (4.) enthaltenen
\(p^{\prime}=0, q^{\prime}=0\)
\(p, q, p^{\prime}, q^{\prime}\), als die vier homonet demgemäls die beiden letzman folgende Form der Glei-

6 Kpqrs,
\(r+p s)+2 b(r p+q s)+2 c(p q+r s)\)
s- 1 .
a \(a, b, c, d, c, f, k\) jener Form ionstanten \(a, b, c\) eingeschränkt n die Coefficienten der linearen ie drei Constanten \(a, b, c\) eben-
\(Q_{2}, Q_{3}\) are points on
Jacobian \(J\) of a related
genus-2 hyperelliptic curve \(C\).
"Standard" \(X: J /\{ \pm 1\} \hookrightarrow K\) defines squared \(\theta\) coords on \(J\).

Use diagram \(k\) times to compute \(X\left(Q_{1}\right) \mapsto X\left(n Q_{1}\right), X\left((n+1) Q_{1}\right)\) for any \(n \in\left\{0,1, \ldots, 2^{k}-1\right\}\).

Beware typos in the "standard" Rosenhain/Mumford/Kummer formulas in 2007 Gaudry, 2010 Cosset, 2013 Bos-Costello-HisilLauter. See our paper for simpler formulas as Sage scripts.

1966 Mumford, O defining Abelian v "There are several formulas in this pa allow one or more ambiguities': i.e., symmetric but nor reformulations. Tl definitions and the made a superhum achieve consistenc make correct stat still cannot guarar

\section*{ie vier homo-} e beiden letzrm der Glei-
\(+2 c(p q+r s)\)
k jener Form eingeschränkt der linearen \(a, b, c\) eben-
\(Q_{2}, Q_{3}\) are points on Jacobian \(J\) of a related genus-2 hyperelliptic curve \(C\). "Standard" \(X: J /\{ \pm 1\} \hookrightarrow K\) defines squared \(\theta\) coords on \(J\).

Use diagram \(k\) times to compute \(X\left(Q_{1}\right) \mapsto X\left(n Q_{1}\right), X\left((n+1) Q_{1}\right)\) for any \(n \in\left\{0,1, \ldots, 2^{k}-1\right\}\).

Beware typos in the "standard" Rosenhain/Mumford/Kummer formulas in 2007 Gaudry, 2010 Cosset, 2013 Bos-Costello-HisilLauter. See our paper for simpler formulas as Sage scripts.

1966 Mumford, On the equa defining Abelian varieties. "There are several thousand formulas in this paper which allow one or more 'sign-like ambiguities': i.e., alternate symmetric but non-equivaleı reformulations. These occur definitions and theorems. I made a superhuman effort t achieve consistency and eve make correct statements: b still cannot guarantee the re
\(Q_{2}, Q_{3}\) are points on Jacobian \(J\) of a related genus-2 hyperelliptic curve \(C\). "Standard" \(X: J /\{ \pm 1\} \hookrightarrow K\) defines squared \(\theta\) coords on \(J\). Use diagram \(k\) times to compute \(X\left(Q_{1}\right) \mapsto X\left(n Q_{1}\right), X\left((n+1) Q_{1}\right)\) for any \(n \in\left\{0,1, \ldots, 2^{k}-1\right\}\).

Beware typos in the "standard" Rosenhain/Mumford/Kummer formulas in 2007 Gaudry, 2010 Cosset, 2013 Bos-Costello-HisilLauter. See our paper for simpler formulas as Sage scripts.

1966 Mumford, On the equations defining Abelian varieties. I: "There are several thousand formulas in this paper which allow one or more 'sign-like ambiguities': i.e., alternate and symmetric but non-equivalent reformulations. These occur in definitions and theorems. I have made a superhuman effort to achieve consistency and even to make correct statements: but I still cannot guarantee the result."
\(Q_{2}, Q_{3}\) are points on Jacobian \(J\) of a related genus-2 hyperelliptic curve \(C\). "Standard" \(X: J /\{ \pm 1\} \hookrightarrow K\) defines squared \(\theta\) coords on \(J\). Use diagram \(k\) times to compute \(X\left(Q_{1}\right) \mapsto X\left(n Q_{1}\right), X\left((n+1) Q_{1}\right)\) for any \(n \in\left\{0,1, \ldots, 2^{k}-1\right\}\).

Beware typos in the "standard" Rosenhain/Mumford/Kummer formulas in 2007 Gaudry, 2010 Cosset, 2013 Bos-Costello-HisilLauter. See our paper for simpler formulas as Sage scripts.

1966 Mumford, On the equations defining Abelian varieties. I: "There are several thousand formulas in this paper which allow one or more 'sign-like ambiguities': i.e., alternate and symmetric but non-equivalent reformulations. These occur in definitions and theorems. I have made a superhuman effort to achieve consistency and even to make correct statements: but I still cannot guarantee the result."

Sage is better than superhuman!
re points on
\(J\) of a related hyperelliptic curve \(C\). rd" \(X: J /\{ \pm 1\} \hookrightarrow K\) quared \(\theta\) coords on \(J\).
ram \(k\) times to compute \(\rightarrow X\left(n Q_{1}\right), X\left((n+1) Q_{1}\right)\) \(n \in\left\{0,1, \ldots, 2^{k}-1\right\}\).
typos in the "standard" in/Mumford/Kummer in 2007 Gaudry, 2010 2013 Bos-Costello-HisilSee our paper for simpler as Sage scripts.

1966 Mumford, On the equations defining Abelian varieties. I:
"There are several thousand formulas in this paper which allow one or more 'sign-like ambiguities': i.e., alternate and symmetric but non-equivalent reformulations. These occur in definitions and theorems. I have made a superhuman effort to achieve consistency and even to make correct statements: but I still cannot guarantee the result."

Sage is better than superhuman!

1975 W that fam without tool pro actually, theta-fu only in 1 Borchar particula it is aga geomete study of varieties
to progr

1966 Mumford, On the equations defining Abelian varieties. I:
"There are several thousand formulas in this paper which allow one or more 'sign-like ambiguities': i.e., alternate and symmetric but non-equivalent reformulations. These occur in definitions and theorems. I have made a superhuman effort to achieve consistency and even to make correct statements: but I still cannot guarantee the result."

Sage is better than superhuman!

1975 Weil: "Kum that family of surf without the help c tool provided by t actually, the conn theta-functions wa only in 1877, by Borchardt . . . His particular value at it is again realized geometers that th study of well-chos varieties remains c to progress in thei

1966 Mumford, On the equations defining Abelian varieties. I: "There are several thousand formulas in this paper which allow one or more 'sign-like ambiguities': i.e., alternate and symmetric but non-equivalent reformulations. These occur in definitions and theorems. I have made a superhuman effort to achieve consistency and even to make correct statements: but I still cannot guarantee the result."

Sage is better than superhuman!

1975 Weil: "Kummer disco that family of surfaces without the help of the pow tool provided by theta-funct actually, the connection with theta-functions was noticed only in 1877, by Cayley and Borchardt ... His example i particular value at a time wl it is again realized by algebr geometers that the detailed study of well-chosen special varieties remains one major to progress in their field."

1966 Mumford, On the equations defining Abelian varieties. I: "There are several thousand formulas in this paper which allow one or more 'sign-like ambiguities': i.e., alternate and symmetric but non-equivalent reformulations. These occur in definitions and theorems. I have made a superhuman effort to achieve consistency and even to make correct statements: but I still cannot guarantee the result."

Sage is better than superhuman!

1975 Weil: "Kummer discovered that family of surfaces ... entirely without the help of the powerful tool provided by theta-functions; actually, the connection with theta-functions was noticed only in 1877, by Cayley and by Borchardt ... His example is of particular value at a time when it is again realized by algebraic geometers that the detailed study of well-chosen special varieties remains one major road to progress in their field."
umford, On the equations Abelian varieties. I: are several thousand in this paper which e or more 'sign-like ties': i.e., alternate and ic but non-equivalent ations. These occur in ns and theorems. I have superhuman effort to consistency and even to rrect statements: but I ot guarantee the result." oetter than superhuman!

1975 Weil: "Kummer discovered that family of surfaces ... entirely without the help of the powerful tool provided by theta-functions; actually, the connection with theta-functions was noticed only in 1877, by Cayley and by Borchardt ... His example is of particular value at a time when it is again realized by algebraic geometers that the detailed study of well-chosen special varieties remains one major road to progress in their field."

2012 Ga "We wa of genus that is s
a public
\(n\) the equations arieties. I: thousand per which 'sign-like alternate and --equivalent nese occur in orems. I have an effort to
\(y\) and even to ements: but I tee the result."
n superhuman!

1975 Weil: "Kummer discovered that family of surfaces ... entirely without the help of the powerful tool provided by theta-functions; actually, the connection with theta-functions was noticed only in 1877, by Cayley and by Borchardt ... His example is of particular value at a time when it is again realized by algebraic geometers that the detailed study of well-chosen special varieties remains one major road to progress in their field."

2012 Gaudry-Sch "We want to find of genus 2 over a that is suitable for a public-key crypt
tions and nt

1975 Weil: "Kummer discovered that family of surfaces ... entirely without the help of the powerful tool provided by theta-functions; actually, the connection with theta-functions was noticed only in 1877, by Cayley and by Borchardt ... His example is of particular value at a time when it is again realized by algebraic geometers that the detailed study of well-chosen special varieties remains one major road to progress in their field."

2012 Gaudry-Schost:
"We want to find a curve of genus 2 over a prime fielc that is suitable for building a public-key cryptosystem."

1975 Weil: "Kummer discovered that family of surfaces ... entirely without the help of the powerful tool provided by theta-functions; actually, the connection with theta-functions was noticed only in 1877, by Cayley and by Borchardt ... His example is of particular value at a time when it is again realized by algebraic geometers that the detailed study of well-chosen special varieties remains one major road to progress in their field."

2012 Gaudry-Schost:
"We want to find a curve of genus 2 over a prime field that is suitable for building a public-key cryptosystem."

1975 Weil: "Kummer discovered that family of surfaces ... entirely without the help of the powerful tool provided by theta-functions; actually, the connection with theta-functions was noticed only in 1877, by Cayley and by Borchardt ... His example is of particular value at a time when it is again realized by algebraic geometers that the detailed study of well-chosen special varieties remains one major road to progress in their field."

2012 Gaudry-Schost:
"We want to find a curve of genus 2 over a prime field that is suitable for building a public-key cryptosystem."

Obvious choice of field:
\(\boldsymbol{F}_{p}\) where \(p=2^{127}-1\). Fast.
\(\# J\left(\mathbf{F}_{p}\right) \approx 2^{254}\); big enough.

1975 Weil: "Kummer discovered that family of surfaces ... entirely without the help of the powerful tool provided by theta-functions; actually, the connection with theta-functions was noticed only in 1877, by Cayley and by Borchardt ... His example is of particular value at a time when it is again realized by algebraic geometers that the detailed study of well-chosen special varieties remains one major road to progress in their field."

2012 Gaudry-Schost:
"We want to find a curve of genus 2 over a prime field that is suitable for building a public-key cryptosystem."

Obvious choice of field:
\(\boldsymbol{F}_{p}\) where \(p=2^{127}-1\). Fast.
\(\# J\left(\mathbf{F}_{p}\right) \approx 2^{254}\); big enough.
1000000 CPU hours found \(\left(a^{2}, b^{2}, c^{2}, d^{2}\right)=(-11,22,19,3)\), primes \(\# J\left(\mathbf{F}_{p}\right) / 16, \# J^{\prime}\left(\mathbf{F}_{p}\right) / 16\). Here \(J^{\prime}\) is Jacobian of nontrivial quadratic twist of curve \(C\).
eil: "Kummer discovered iily of surfaces ... entirely the help of the powerful vided by theta-functions; the connection with nctions was noticed 877, by Cayley and by tt ... His example is of r value at a time when in realized by algebraic rs that the detailed well-chosen special remains one major road ess in their field."

2012 Gaudry-Schost:
"We want to find a curve
of genus 2 over a prime field that is suitable for building
a public-key cryptosystem."
Obvious choice of field:
\(\mathbf{F}_{p}\) where \(p=2^{127}-1\). Fast.
\(\# J\left(\mathbf{F}_{p}\right) \approx 2^{254}\); big enough.
1000000 CPU hours found \(\left(a^{2}, b^{2}, c^{2}, d^{2}\right)=(-11,22,19,3)\), primes \(\# J\left(\mathbf{F}_{p}\right) / 16, \# J^{\prime}\left(\mathbf{F}_{p}\right) / 16\). Here \(J^{\prime}\) is Jacobian of nontrivial quadratic twist of curve \(C\).

Is this \(f\) security or a sim
mer discovered aces ... entirely
f the powerful neta-functions; ection with s noticed ayley and by example is of a time when by algebraic e detailed
en special ne major road r field."

2012 Gaudry-Schost:
"We want to find a curve of genus 2 over a prime field that is suitable for building a public-key cryptosystem."

Obvious choice of field:
\(F_{p}\) where \(p=2^{127}-1\). Fast.
\(\# J\left(\mathbf{F}_{p}\right) \approx 2^{254}\); big enough.
1000000 CPU hours found \(\left(a^{2}, b^{2}, c^{2}, d^{2}\right)=(-11,22,19,3)\), primes \(\# J\left(\mathbf{F}_{p}\right) / 16, \# J^{\prime}\left(\mathbf{F}_{p}\right) / 16\). Here \(J^{\prime}\) is Jacobian of nontrivial quadratic twist of curve \(C\).

Is this faster than security elliptic cu or a similar-size pr
ered ntirely erful ions;

2012 Gaudry-Schost:
"We want to find a curve of genus 2 over a prime field that is suitable for building a public-key cryptosystem."

Obvious choice of field:
\(\mathbf{F}_{p}\) where \(p=2^{127}-1\). Fast.
\(\# J\left(\mathbf{F}_{p}\right) \approx 2^{254}\); big enough.
1000000 CPU hours found \(\left(a^{2}, b^{2}, c^{2}, d^{2}\right)=(-11,22,19,3)\), primes \(\# J\left(\mathbf{F}_{p}\right) / 16, \# J^{\prime}\left(\mathbf{F}_{p}\right) / 16\). Here \(J^{\prime}\) is Jacobian of nontrivial quadratic twist of curve \(C\).

Is this faster than a similarsecurity elliptic curve over \(\mathbf{F}\) or a similar-size prime field?

2012 Gaudry-Schost:
"We want to find a curve
of genus 2 over a prime field that is suitable for building a public-key cryptosystem."

Obvious choice of field:
\(\mathbf{F}_{p}\) where \(p=2^{127}-1\). Fast.
\(\# J\left(\mathbf{F}_{p}\right) \approx 2^{254}\); big enough.
1000000 CPU hours found \(\left(a^{2}, b^{2}, c^{2}, d^{2}\right)=(-11,22,19,3)\), primes \(\# J\left(\mathbf{F}_{p}\right) / 16\), \(\# J^{\prime}\left(\mathbf{F}_{p}\right) / 16\). Here \(J^{\prime}\) is Jacobian of nontrivial quadratic twist of curve \(C\).

Is this faster than a similarsecurity elliptic curve over \(\mathbf{F}_{p^{2}}\) or a similar-size prime field?

2012 Gaudry-Schost:
"We want to find a curve
of genus 2 over a prime field that is suitable for building a public-key cryptosystem."

Obvious choice of field:
\(\boldsymbol{F}_{p}\) where \(p=2^{127}-1\). Fast.
\(\# J\left(\mathbf{F}_{p}\right) \approx 2^{254}\); big enough.
1000000 CPU hours found \(\left(a^{2}, b^{2}, c^{2}, d^{2}\right)=(-11,22,19,3)\), primes \(\# J\left(\mathbf{F}_{p}\right) / 16, \# J^{\prime}\left(\mathbf{F}_{p}\right) / 16\). Here \(J^{\prime}\) is Jacobian of nontrivial quadratic twist of curve \(C\).

Is this faster than a similarsecurity elliptic curve over \(\mathbf{F}_{p^{2}}\) or a similar-size prime field?

Counting ops suggests: Yes, especially with small \(a^{2}\) etc.

2012 Gaudry-Schost:
"We want to find a curve
of genus 2 over a prime field that is suitable for building a public-key cryptosystem."

Obvious choice of field:
\(\boldsymbol{F}_{p}\) where \(p=2^{127}-1\). Fast.
\(\# J\left(\mathbf{F}_{p}\right) \approx 2^{254}\); big enough.
1000000 CPU hours found \(\left(a^{2}, b^{2}, c^{2}, d^{2}\right)=(-11,22,19,3)\), primes \(\# J\left(\mathbf{F}_{p}\right) / 16, \# J^{\prime}\left(\mathbf{F}_{p}\right) / 16\). Here \(J^{\prime}\) is Jacobian of nontrivial quadratic twist of curve \(C\).

Is this faster than a similarsecurity elliptic curve over \(\mathbf{F}_{p^{2}}\) or a similar-size prime field?

Counting ops suggests: Yes, especially with small \(a^{2}\) etc.

Implementations (2006 Bernstein, 2013 Bos-Costello-Hisil-Lauter, 2014 Bernstein-Chuengsatiansup-Lange-Schwabe): Yes.

2012 Gaudry-Schost:
"We want to find a curve
of genus 2 over a prime field that is suitable for building a public-key cryptosystem."

Obvious choice of field:
\(\boldsymbol{F}_{p}\) where \(p=2^{127}-1\). Fast.
\(\# J\left(\mathbf{F}_{p}\right) \approx 2^{254}\); big enough.
1000000 CPU hours found \(\left(a^{2}, b^{2}, c^{2}, d^{2}\right)=(-11,22,19,3)\), primes \(\# J\left(\mathbf{F}_{p}\right) / 16, \# J^{\prime}\left(\mathbf{F}_{p}\right) / 16\). Here \(J^{\prime}\) is Jacobian of nontrivial quadratic twist of curve \(C\).

Is this faster than a similarsecurity elliptic curve over \(\mathbf{F}_{p^{2}}\) or a similar-size prime field?

Counting ops suggests: Yes, especially with small \(a^{2}\) etc.

Implementations (2006 Bernstein, 2013 Bos-Costello-Hisil-Lauter, 2014 Bernstein-Chuengsatiansup-Lange-Schwabe): Yes.

2015 Costello-Longa \(E\) with \(\sqrt{-10} \mathrm{CM}\), 2-isogeny to \(\bar{E}\) : faster on some CPUs but not others, not compressed, not twist-secure.
udry-Schost:
nt to find a curve
2 over a prime field uitable for building -key cryptosystem."
choice of field:
e \(p=2^{127}-1\). Fast.
\(\approx 2^{254}\); big enough.
CPU hours found \(\left.c^{2}, d^{2}\right)=(-11,22,19,3)\),
\(\neq J\left(\mathbf{F}_{p}\right) / 16, \# J^{\prime}\left(\mathbf{F}_{p}\right) / 16\).
is Jacobian of nontrivial
c twist of curve \(C\).

Is this faster than a similarsecurity elliptic curve over \(\mathbf{F}_{p^{2}}\) or a similar-size prime field?

Counting ops suggests: Yes, especially with small \(a^{2}\) etc.

Implementations (2006 Bernstein, 2013 Bos-Costello-Hisil-Lauter, 2014 Bernstein-Chuengsatiansup-Lange-Schwabe): Yes.

2015 Costello-Longa \(E\) with \(\sqrt{-10} \mathrm{CM}, 2\)-isogeny to \(\bar{E}\) : faster on some CPUs but not others, not compressed, not twist-secure.

Summar holds sp high-sec
st:
a curve
prime field building osystem."
field:
- 1. Fast.
ig enough.
rs found
\((-11,22,19,3)\),
, \(\# J^{\prime}\left(\mathbf{F}_{p}\right) / 16\)
n of nontrivial
curve \(C\).

Is this faster than a similarsecurity elliptic curve over \(\mathbf{F}_{p^{2}}\) or a similar-size prime field?

Counting ops suggests: Yes, especially with small \(a^{2}\) etc.

Implementations (2006 Bernstein, 2013 Bos-Costello-Hisil-Lauter, 2014 Bernstein-Chuengsatiansup-Lange-Schwabe): Yes.

2015 Costello-Longa \(E\) with \(\sqrt{-10} \mathrm{CM}, 2\)-isogeny to \(\bar{E}\) : faster on some CPUs but not others, not compressed, not twist-secure.

Summary: Gaudry holds speed recoro high-security n, \(Q\)

Is this faster than a similarsecurity elliptic curve over \(\mathbf{F}_{p^{2}}\) or a similar-size prime field?

Counting ops suggests: Yes, especially with small \(a^{2}\) etc. Implementations (2006 Bernstein, 2013 Bos-Costello-Hisil-Lauter, 2014 Bernstein-Chuengsatiansup-Lange-Schwabe): Yes.

2015 Costello-Longa \(E\) with \(\sqrt{-10} \mathrm{CM}, 2\)-isogeny to \(\bar{E}\) : faster on some CPUs but not others, not compressed, not twist-secure.

Summary: Gaudry-Schost J holds speed records for high-security \(n, Q \mapsto n Q\).

Is this faster than a similarsecurity elliptic curve over \(\mathbf{F}_{p^{2}}\) or a similar-size prime field?

Counting ops suggests: Yes, especially with small \(a^{2}\) etc.

Implementations (2006 Bernstein, 2013 Bos-Costello-Hisil-Lauter, 2014 Bernstein-Chuengsatiansup-Lange-Schwabe): Yes.

2015 Costello-Longa \(E\) with \(\sqrt{-10} \mathrm{CM}, 2\)-isogeny to \(\bar{E}\) : faster on some CPUs but not others, not compressed, not twist-secure.

Summary: Gaudry-Schost J holds speed records for high-security \(n, Q \mapsto n Q\).

Is this faster than a similarsecurity elliptic curve over \(\mathbf{F}_{p^{2}}\) or a similar-size prime field?

Counting ops suggests: Yes, especially with small \(a^{2}\) etc.

Implementations (2006 Bernstein, 2013 Bos-Costello-Hisil-Lauter, 2014 Bernstein-Chuengsatiansup-Lange-Schwabe): Yes.

2015 Costello-Longa \(E\) with \(\sqrt{-10} \mathrm{CM}, 2\)-isogeny to \(\bar{E}\) : faster on some CPUs but not others, not compressed, not twist-secure.

Summary: Gaudry-Schost J holds speed records for high-security \(n, Q \mapsto n Q\).

But what about \(P, Q \mapsto P+Q\) ? \(n \mapsto n P\) ? \(m, n, P, Q \mapsto m P+n Q\) ?

Is this faster than a similarsecurity elliptic curve over \(\mathbf{F}_{p^{2}}\) or a similar-size prime field?

Counting ops suggests: Yes, especially with small \(a^{2}\) etc.

Implementations (2006 Bernstein, 2013 Bos-Costello-Hisil-Lauter, 2014 Bernstein-Chuengsatiansup-Lange-Schwabe): Yes.

2015 Costello-Longa \(E\) with \(\sqrt{-10} \mathrm{CM}, 2\)-isogeny to \(\bar{E}\) : faster on some CPUs but not others, not compressed, not twist-secure.

Summary: Gaudry-Schost J holds speed records for high-security \(n, Q \mapsto n Q\).

But what about \(P, Q \mapsto P+Q\) ? \(n \mapsto n P\) ? \(m, n, P, Q \mapsto m P+n Q\) ?

Fastest known addition formulas are faster for \(E\) than for \(J\). So \(J\) isn't competitive for key generation, signing, etc.

Is this faster than a similarsecurity elliptic curve over \(\mathbf{F}_{p^{2}}\) or a similar-size prime field?

Counting ops suggests: Yes, especially with small \(a^{2}\) etc.

Implementations (2006 Bernstein, 2013 Bos-Costello-Hisil-Lauter, 2014 Bernstein-Chuengsatiansup-Lange-Schwabe): Yes.

2015 Costello-Longa \(E\) with
\(\sqrt{-10} \mathrm{CM}, 2\)-isogeny to \(\bar{E}\) : faster on some CPUs but not others, not compressed, not twist-secure.

Summary: Gaudry-Schost J holds speed records for high-security \(n, Q \mapsto n Q\).

But what about \(P, Q \mapsto P+Q\) ? \(n \mapsto n P\) ? \(m, n, P, Q \mapsto m P+n Q\) ?

Fastest known addition formulas are faster for \(E\) than for \(J\). So \(J\) isn't competitive for key generation, signing, etc.

\section*{Hyper-and-elliptic curve} cryptography: Build one group supporting the fastest formulas from genus 1 and genus 2 .
ster than a similarelliptic curve over \(\boldsymbol{F}_{p^{2}}\) ilar-size prime field? g ops suggests: Yes, \(y\) with small \(a^{2}\) etc. ntations (2006 Bernstein, s-Costello-Hisil-Lauter, rnstein-Chuengsatiansupchwabe): Yes.
stello-Longa \(E\) with
M, 2-isogeny to \(\bar{E}\) : faster CPUs but not others, pressed, not twist-secure.

Summary: Gaudry-Schost J
holds speed records for high-security \(n, Q \mapsto n Q\).

But what about \(P, Q \mapsto P+Q\) ?
\(n \mapsto n P\) ? \(m, n, P, Q \mapsto m P+n Q\) ?
Fastest known addition formulas are faster for \(E\) than for \(J\).
So \(J\) isn't competitive for
key generation, signing, etc.

\section*{Hyper-and-elliptic curve}
cryptography: Build one group supporting the fastest formulas from genus 1 and genus 2 .

Group is \(E\) is an curve; \(И\)
Note: 2
a similarrve over \(\mathbf{F}_{p^{2}}\) ime field?
sests: Yes,
all \(a^{2}\) etc.
2006 Bernstein,
-Hisil-Lauter, nuengsatiansupYes.
ga \(E\) with
eny to \(\bar{E}\) : faster t not others, ot twist-secure.

Summary: Gaudry-Schost J holds speed records for high-security \(n, Q \mapsto n Q\).

But what about \(P, Q \mapsto P+Q\) ? \(n \mapsto n P\) ? \(m, n, P, Q \mapsto m P+n Q\) ?

Fastest known addition formulas are faster for \(E\) than for \(J\). So \(J\) isn't competitive for key generation, signing, etc.

\section*{Hyper-and-elliptic curve}
cryptography: Build one group supporting the fastest formulas from genus 1 and genus 2 .

Group is \(E\left(\mathbf{F}_{p^{2}}\right)=\) \(E\) is an \(\mathbf{F}_{p^{2}}\)-compl curve; \(W\) is Weil Note: 2 paramete

Summary: Gaudry-Schost J holds speed records for high-security \(n, Q \mapsto n Q\).

But what about \(P, Q \mapsto P+Q\) ? \(n \mapsto n P\) ? \(m, n, P, Q \mapsto m P+n Q\) ?

Fastest known addition formulas are faster for \(E\) than for \(J\). So \(J\) isn't competitive for key generation, signing, etc.

\section*{Hyper-and-elliptic curve}
faster
rS,
ecure.
cryptography: Build one group supporting the fastest formulas from genus 1 and genus 2 .

Group is \(E\left(\mathbf{F}_{p^{2}}\right)=W\left(\mathbf{F}_{p}\right)\). \(E\) is an \(\mathbf{F}_{p^{2}}\)-complete Edwar curve; \(W\) is Weil restriction.
Note: 2 parameters for \(W\).

Summary: Gaudry-Schost J holds speed records for
high-security \(n, Q \mapsto n Q\).
But what about \(P, Q \mapsto P+Q\) ? \(n \mapsto n P ? m, n, P, Q \mapsto m P+n Q\) ?

Fastest known addition formulas are faster for \(E\) than for \(J\). So \(J\) isn't competitive for key generation, signing, etc.

\section*{Hyper-and-elliptic curve} cryptography: Build one group supporting the fastest formulas from genus 1 and genus 2 .

Group is \(E\left(\mathbf{F}_{p^{2}}\right)=W\left(\mathbf{F}_{p}\right)\).
\(E\) is an \(\mathbf{F}_{p^{2}}\)-complete Edwards curve; \(W\) is Weil restriction.
Note: 2 parameters for \(W\).

Summary: Gaudry-Schost J holds speed records for high-security \(n, Q \mapsto n Q\).

But what about \(P, Q \mapsto P+Q\) ? \(n \mapsto n P ? m, n, P, Q \mapsto m P+n Q\) ?

Fastest known addition formulas are faster for \(E\) than for \(J\). So \(J\) isn't competitive for key generation, signing, etc.

\section*{Hyper-and-elliptic curve} cryptography: Build one group supporting the fastest formulas from genus 1 and genus 2 .

Group is \(E\left(\mathbf{F}_{p^{2}}\right)=W\left(\mathbf{F}_{p}\right)\).
\(E\) is an \(\mathbf{F}_{p^{2}}\)-complete Edwards curve; \(W\) is Weil restriction.
Note: 2 parameters for \(W\).
Map \(W\left(\mathbf{F}_{p}\right) \rightarrow K\left(\mathbf{F}_{p}\right)\) using fast isogeny \(W \rightarrow J=\) Jac \(H\) for some \(H\), and fast \(X: J \rightarrow K\).
Note: 3 parameters for \(K\).

Summary: Gaudry-Schost J holds speed records for high-security \(n, Q \mapsto n Q\).

But what about \(P, Q \mapsto P+Q\) ? \(n \mapsto n P ? \quad m, n, P, Q \mapsto m P+n Q\) ?

Fastest known addition formulas are faster for \(E\) than for \(J\). So \(J\) isn't competitive for key generation, signing, etc.

\section*{Hyper-and-elliptic curve} cryptography: Build one group supporting the fastest formulas from genus 1 and genus 2 .

Group is \(E\left(\mathbf{F}_{p^{2}}\right)=W\left(\mathbf{F}_{p}\right)\).
\(E\) is an \(\mathbf{F}_{p^{2}}\)-complete Edwards curve; \(W\) is Weil restriction.
Note: 2 parameters for \(W\).
Map \(W\left(\mathbf{F}_{p}\right) \rightarrow K\left(\mathbf{F}_{p}\right)\) using fast isogeny \(W \rightarrow J=\mathrm{Jac} H\) for some \(H\), and fast \(X: J \rightarrow K\).
Note: 3 parameters for \(K\).
Surprise: We have examples where \(a^{2}, b^{2}, c^{2}, d^{2}\) are small!
This allows fastest \(n, P \mapsto n P\).
Explanation: Can lift from
\(\mathbf{F}_{p^{2}} / \mathbf{F}_{p}\) to \(\mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}\).
y: Gaudry-Schost J eed records for urity \(n, Q \mapsto n Q\).
t about \(P, Q \mapsto P+Q\) ?
? \(m, n, P, Q \mapsto m P+n Q\) ?
known addition formulas
r for \(E\) than for \(J\).
't competitive for eration, signing, etc.

\section*{and-elliptic curve}
raphy: Build one group ng the fastest formulas ius 1 and genus 2 .

Group is \(E\left(\mathbf{F}_{p^{2}}\right)=W\left(\mathbf{F}_{p}\right)\).
\(E\) is an \(\mathbf{F}_{p^{2}}\)-complete Edwards curve; \(W\) is Weil restriction.
Note: 2 parameters for \(W\).
Map \(W\left(\mathbf{F}_{p}\right) \rightarrow K\left(\mathbf{F}_{p}\right)\) using fast isogeny \(W \rightarrow J=J\) Jac \(H\) for some \(H\), and fast \(X: J \rightarrow K\).
Note: 3 parameters for \(K\).
Surprise: We have examples where \(a^{2}, b^{2}, c^{2}, d^{2}\) are small! This allows fastest \(n, P \mapsto n P\).

Explanation: Can lift from
\(\mathbf{F}_{p^{2}} / \mathbf{F}_{p}\) to \(\mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}\).

Another
genus-1
(Use Ma
History for genu
via genu
2002 Ga
in char
2001 Ga
2003 Di
2003 Sc 2004 Di

2011 Fr odd-cha
-Schost J
ls for
\(\mapsto n Q\).
\(Q \mapsto P+Q ?\)
\(Q \mapsto m P+n Q ?\)
dition formulas
an for \(J\).
itive for ning, etc.

\section*{c curve}
ild one group
test formulas
genus 2.

Group is \(E\left(\mathbf{F}_{p^{2}}\right)=W\left(\mathbf{F}_{p}\right)\).
\(E\) is an \(\mathbf{F}_{p^{2}}\)-complete Edwards curve; \(W\) is Weil restriction.
Note: 2 parameters for \(W\).
Map \(W\left(\mathbf{F}_{p}\right) \rightarrow K\left(\mathbf{F}_{p}\right)\) using fast isogeny \(W \rightarrow J=J\) Jac \(H\) for some \(H\), and fast \(X: J \rightarrow K\).
Note: 3 parameters for \(K\).
Surprise: We have examples where \(a^{2}, b^{2}, c^{2}, d^{2}\) are small!
This allows fastest \(n, P \mapsto n P\).
Explanation: Can lift from
\(\mathbf{F}_{p^{2}} / \mathbf{F}_{p}\) to \(\mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}\).

Another virtue of genus-1 point-cou (Use Magma; Sag History of using \(h\) for genus-2 pointvia genus-1 point2002 Gaudry-Hess in char 2; odd cha 2001 Galbraith: 2003 Diem, 2003 2003 Scholten, 20 2004 Diem-Scholt 2011 Freeman-Sa odd-char construc

Group is \(E\left(\mathbf{F}_{p^{2}}\right)=W\left(\mathbf{F}_{p}\right)\).
\(E\) is an \(\mathbf{F}_{p^{2}}\)-complete Edwards curve; \(W\) is Weil restriction.
Note: 2 parameters for \(W\).
Map \(W\left(\mathbf{F}_{p}\right) \rightarrow K\left(\mathbf{F}_{p}\right)\) using fast isogeny \(W \rightarrow J=J\) Jac \(H\) for some \(H\), and fast \(X: J \rightarrow K\).
Note: 3 parameters for \(K\).
Surprise: We have examples where \(a^{2}, b^{2}, c^{2}, d^{2}\) are small!
This allows fastest \(n, P \mapsto n P\).
Explanation: Can lift from
\(\mathbf{F}_{p^{2}} / \mathbf{F}_{p}\) to \(\mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}\).

Another virtue of these grou genus-1 point-counting is fa (Use Magma; Sage needs \(\mathbf{F}\)

History of using \(W \rightarrow J\) for genus-2 point-counting via genus-1 point-counting: 2002 Gaudry-Hess-Smart in char 2; odd char is "hard' 2001 Galbraith: "rather diff 2003 Diem, 2003 Diem-Sch 2003 Scholten, 2003 Théria 2004 Diem-Scholten, 2009 2011 Freeman-Satoh: vario odd-char constructions.

Group is \(E\left(\mathbf{F}_{p^{2}}\right)=W\left(\mathbf{F}_{p}\right)\).
\(E\) is an \(\mathbf{F}_{p^{2}}\)-complete Edwards curve; \(W\) is Weil restriction.
Note: 2 parameters for \(W\).
Map \(W\left(\mathbf{F}_{p}\right) \rightarrow K\left(\mathbf{F}_{p}\right)\) using fast isogeny \(W \rightarrow J=\mathrm{Jac} H\) for some \(H\), and fast \(X: J \rightarrow K\).
Note: 3 parameters for \(K\).
Surprise: We have examples where \(a^{2}, b^{2}, c^{2}, d^{2}\) are small! This allows fastest \(n, P \mapsto n P\).

Explanation: Can lift from
\(\mathbf{F}_{p^{2}} / \mathbf{F}_{p}\) to \(\mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}\).

Another virtue of these groups: genus-1 point-counting is fast. (Use Magma; Sage needs \(\mathbf{F}_{p}\).)

History of using \(W \rightarrow J\) for genus-2 point-counting via genus-1 point-counting:

2002 Gaudry-Hess-Smart in char 2; odd char is "hard". 2001 Galbraith: "rather difficult". 2003 Diem, 2003 Diem-Scholten, 2003 Scholten, 2003 Thériault, 2004 Diem-Scholten, 2009 Satoh, 2011 Freeman-Satoh: various odd-char constructions.
\(E\left(\mathbf{F}_{p^{2}}\right)=W\left(\mathbf{F}_{p}\right)\).
\(\mathbf{F}_{p^{2}}\)-complete Edwards / is Weil restriction. parameters for \(W\).
\(\left.\mathbf{F}_{p}\right) \rightarrow K\left(\mathbf{F}_{p}\right)\) using
eny \(W \rightarrow J=\mathrm{Jac} H\) for and fast \(X: J \rightarrow K\). parameters for \(K\).

We have examples \({ }^{2}, b^{2}, c^{2}, d^{2}\) are small! ws fastest \(n, P \mapsto n P\).
tion: Can lift from to \(\mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}\).

Another virtue of these groups:
genus-1 point-counting is fast.
(Use Magma; Sage needs \(\mathbf{F}_{p \text {. }}\) )
History of using \(W \rightarrow J\)
for genus-2 point-counting
via genus-1 point-counting:
2002 Gaudry-Hess-Smart in char 2; odd char is "hard". 2001 Galbraith: "rather difficult". 2003 Diem, 2003 Diem-Scholten, 2003 Scholten, 2003 Thériault, 2004 Diem-Scholten, 2009 Satoh, 2011 Freeman-Satoh: various odd-char constructions.

Scholter
(2003 S
Assume:
\(r, s, \beta \in\) minor ac

Write \(\bar{r}\)
\(=W\left(\mathbf{F}_{p}\right)\).
ete Edwards
estriction.
rs for \(W\).
\(\left(F_{p}\right)\) using
\(J=\mathrm{Jac} H\) for
\(X: J \rightarrow K\).
s for \(K\).
examples
2 are small!
\(n, P \mapsto n P\).
lift from
/Q.

Another virtue of these groups: genus-1 point-counting is fast. (Use Magma; Sage needs \(\mathbf{F}_{p \text {. }}\) ) History of using \(W \rightarrow J\) for genus-2 point-counting via genus-1 point-counting: 2002 Gaudry-Hess-Smart in char 2; odd char is "hard". 2001 Galbraith: "rather difficult". 2003 Diem, 2003 Diem-Scholten, 2003 Scholten, 2003 Thériault, 2004 Diem-Scholten, 2009 Satoh, 2011 Freeman-Satoh: various odd-char constructions.

\section*{Scholten curves}
(2003 Scholten +
Assume: odd prim \(r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin\) minor additional h

Write \(\bar{r}=r^{p}, \bar{s}=\)

Another virtue of these groups: genus-1 point-counting is fast. (Use Magma; Sage needs \(\mathbf{F}_{p}\).)

History of using \(W \rightarrow J\) for genus-2 point-counting via genus-1 point-counting: 2002 Gaudry-Hess-Smart in char 2; odd char is "hard". 2001 Galbraith: "rather difficult". 2003 Diem, 2003 Diem-Scholten, 2003 Scholten, 2003 Thériault, 2004 Diem-Scholten, 2009 Satoh, 2011 Freeman-Satoh: various odd-char constructions.

\section*{Scholten curves}
(2003 Scholten + simplifica
Assume: odd prime \(p\);
\(r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}\);
minor additional hypotheses
Write \(\bar{r}=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta\)

Another virtue of these groups: genus-1 point-counting is fast. (Use Magma; Sage needs \(\mathbf{F}_{p}\).)

History of using \(W \rightarrow J\) for genus-2 point-counting via genus-1 point-counting: 2002 Gaudry-Hess-Smart in char 2; odd char is "hard". 2001 Galbraith: "rather difficult". 2003 Diem, 2003 Diem-Scholten, 2003 Scholten, 2003 Thériault, 2004 Diem-Scholten, 2009 Satoh, 2011 Freeman-Satoh: various odd-char constructions.

\section*{Scholten curves}
(2003 Scholten + simplifications)
Assume: odd prime \(p\); \(r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}\); minor additional hypotheses.

Write \(\bar{r}=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta^{p}\).

Another virtue of these groups: genus-1 point-counting is fast. (Use Magma; Sage needs \(\mathbf{F}_{p}\).)

History of using \(W \rightarrow J\) for genus-2 point-counting via genus-1 point-counting: 2002 Gaudry-Hess-Smart in char 2; odd char is "hard". 2001 Galbraith: "rather difficult". 2003 Diem, 2003 Diem-Scholten, 2003 Scholten, 2003 Thériault, 2004 Diem-Scholten, 2009 Satoh, 2011 Freeman-Satoh: various odd-char constructions.

\section*{Scholten curves}
(2003 Scholten + simplifications)
Assume: odd prime \(p\);
\(r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}\);
minor additional hypotheses.
Write \(\bar{r}=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta^{p}\).
Define \(g \in \mathbf{F}_{p^{2}}[z]\) as
\[
\frac{r v^{6}+s v^{4} u^{2}+\bar{s} v^{2} u^{4}+\bar{r} u^{6}}{r \bar{\beta}^{6}+s \bar{\beta}^{4} \beta^{2}+\bar{s} \bar{\beta}^{2} \beta^{4}+\bar{r} \beta^{6}}
\]
where \(u=1-\beta z, v=1-\bar{\beta} z\).

Another virtue of these groups: genus-1 point-counting is fast. (Use Magma; Sage needs \(\mathbf{F}_{p}\).)

History of using \(W \rightarrow J\) for genus-2 point-counting via genus-1 point-counting: 2002 Gaudry-Hess-Smart in char 2; odd char is "hard". 2001 Galbraith: "rather difficult". 2003 Diem, 2003 Diem-Scholten, 2003 Scholten, 2003 Thériault, 2004 Diem-Scholten, 2009 Satoh, 2011 Freeman-Satoh: various odd-char constructions.

\section*{Scholten curves}
(2003 Scholten + simplifications)
Assume: odd prime \(p\);
\(r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}\);
minor additional hypotheses.
Write \(\bar{r}=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta^{p}\).
Define \(g \in \mathbf{F}_{p^{2}}[z]\) as
\[
\frac{r v^{6}+s v^{4} u^{2}+\bar{s} v^{2} u^{4}+\bar{r} u^{6}}{r \bar{\beta}^{6}+s \bar{\beta}^{4} \beta^{2}+\bar{s} \bar{\beta}^{2} \beta^{4}+\bar{r} \beta^{6}}
\]
where \(u=1-\beta z, v=1-\bar{\beta} z\).
Note that \(g \in \mathbf{F}_{p}[z]\).

Another virtue of these groups: genus-1 point-counting is fast. (Use Magma; Sage needs \(\mathbf{F}_{p}\).)

History of using \(W \rightarrow J\) for genus-2 point-counting via genus-1 point-counting:

2002 Gaudry-Hess-Smart in char 2; odd char is "hard". 2001 Galbraith: "rather difficult". 2003 Diem, 2003 Diem-Scholten, 2003 Scholten, 2003 Thériault, 2004 Diem-Scholten, 2009 Satoh, 2011 Freeman-Satoh: various odd-char constructions.

\section*{Scholten curves}
(2003 Scholten + simplifications)
Assume: odd prime \(p\);
\(r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}\);
minor additional hypotheses.
Write \(\bar{r}=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta^{p}\).
Define \(g \in \mathbf{F}_{p^{2}}[z]\) as
\[
\frac{r v^{6}+s v^{4} u^{2}+\bar{s} v^{2} u^{4}+\bar{r} u^{6}}{r \bar{\beta}^{6}+s \bar{\beta}^{4} \beta^{2}+\bar{s} \bar{\beta}^{2} \beta^{4}+\bar{r} \beta^{6}}
\]
where \(u=1-\beta z, v=1-\bar{\beta} z\).
Note that \(g \in \mathbf{F}_{p}[z]\).
Scholten curve \(H: y^{2}=g(z)\).
virtue of these groups: point-counting is fast. gma; Sage needs \(\mathbf{F}_{p}\).)
of using \(W \rightarrow J\)
s-2 point-counting
s-1 point-counting:
udry-Hess-Smart
; odd char is "hard". lbraith: "rather difficult". em, 2003 Diem-Scholten, holten, 2003 Thériault, em-Scholten, 2009 Satoh, eeman-Satoh: various constructions.

\section*{Scholten curves}
(2003 Scholten + simplifications)
Assume: odd prime \(p\);
\(r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}\);
minor additional hypotheses.
Write \(\bar{r}=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta^{p}\).
Define \(g \in \mathbf{F}_{p^{2}}[z]\) as
\[
\frac{r v^{6}+s v^{4} u^{2}+\bar{s} v^{2} u^{4}+\bar{r} u^{6}}{r \bar{\beta}^{6}+s \bar{\beta}^{4} \beta^{2}+\bar{s} \bar{\beta}^{2} \beta^{4}+\bar{r} \beta^{6}}
\]
where \(u=1-\beta z, v=1-\bar{\beta} z\).
Note that \(g \in \mathbf{F}_{p}[z]\).
Scholten curve \(H: y^{2}=g(z)\).

Denomir
Choose
these groups:
nting is fast.
e needs \(\mathbf{F}_{p}\).)
\(l \rightarrow J\)
counting
counting:
;-Smart
\(r\) is "hard".
rather difficult" .
Diem-Scholten, 03 Thériault, en, 2009 Satoh, oh: various tions.

\section*{Scholten curves}

\section*{(2003 Scholten + simplifications)}

Denominator of \(g\) Choose square roc

Assume: odd prime \(p\);
\(r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}\);
minor additional hypotheses.
Write \(\bar{r}=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta^{p}\).
Define \(g \in \mathbf{F}_{p^{2}}[z]\) as
\[
\frac{r v^{6}+s v^{4} u^{2}+\bar{s} v^{2} u^{4}+\bar{r} u^{6}}{r \bar{\beta}^{6}+s \bar{\beta}^{4} \beta^{2}+\bar{s} \bar{\beta}^{2} \beta^{4}+\bar{r} \beta^{6}}
\]
where \(u=1-\beta z, v=1-\bar{\beta} z\).
Note that \(g \in \mathbf{F}_{p}[z]\).
Scholten curve \(H: y^{2}=g(z)\).

\section*{ps: \(\quad\) Scholten curves}
(2003 Scholten + simplifications)
Assume: odd prime \(p\);
\(r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}\);
minor additional hypotheses.
Write \(\bar{r}=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta^{p}\).
Define \(g \in \mathbf{F}_{p^{2}}[z]\) as
\[
\frac{r v^{6}+s v^{4} u^{2}+\bar{s} v^{2} u^{4}+\bar{r} u^{6}}{r \bar{\beta}^{6}+s \bar{\beta}^{4} \beta^{2}+\bar{s} \bar{\beta}^{2} \beta^{4}+\bar{r} \beta^{6}}
\]
where \(u=1-\beta z, v=1-\bar{\beta} z\).
Note that \(g \in \mathbf{F}_{p}[z]\).
Scholten curve \(H: y^{2}=g(z)\).

Denominator of \(g\) is in \(\mathbf{F}_{p}\). Choose square root \(\omega \in \mathbf{F}_{p^{2}}\)

\section*{Scholten curves}
(2003 Scholten + simplifications)
Assume: odd prime \(p\);
\(r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}\);
minor additional hypotheses.
Write \(\bar{r}=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta^{p}\).
Define \(g \in \mathbf{F}_{p^{2}}[z]\) as
\[
\frac{r v^{6}+s v^{4} u^{2}+\bar{s} v^{2} u^{4}+\bar{r} u^{6}}{r \bar{\beta}^{6}+s \bar{\beta}^{4} \beta^{2}+\bar{s} \bar{\beta}^{2} \beta^{4}+\bar{r} \beta^{6}}
\]
where \(u=1-\beta z, v=1-\bar{\beta} z\).
Note that \(g \in \mathbf{F}_{p}[z]\).
Scholten curve \(H: y^{2}=g(z)\).

Denominator of \(g\) is in \(\mathbf{F}_{p}\).
Choose square root \(\omega \in \mathbf{F}_{p^{2}}\).

\section*{Scholten curves}
(2003 Scholten + simplifications)
Assume: odd prime \(p\);
\(r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}\);
minor additional hypotheses.
Write \(\bar{r}=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta^{p}\).
Define \(g \in \mathbf{F}_{p^{2}}[z]\) as
\[
\frac{r v^{6}+s v^{4} u^{2}+\bar{s} v^{2} u^{4}+\bar{r} u^{6}}{r \bar{\beta}^{6}+s \bar{\beta}^{4} \beta^{2}+\bar{s} \bar{\beta}^{2} \beta^{4}+\bar{r} \beta^{6}}
\]
where \(u=1-\beta z, v=1-\bar{\beta} z\).
Note that \(g \in \mathbf{F}_{p}[z]\).
Scholten curve \(H: y^{2}=g(z)\).

Denominator of \(g\) is in \(\mathbf{F}_{p}\).
Choose square root \(\omega \in \mathbf{F}_{p^{2}}\).
Define \(E\) as the elliptic curve \(y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}\).

\section*{Scholten curves}
(2003 Scholten + simplifications)
Assume: odd prime \(p\);
\(r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}\);
minor additional hypotheses.
Write \(\bar{r}=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta^{p}\).
Define \(g \in \mathbf{F}_{p^{2}}[z]\) as
\[
\frac{r v^{6}+s v^{4} u^{2}+\bar{s} v^{2} u^{4}+\bar{r} u^{6}}{r \bar{\beta}^{6}+s \bar{\beta}^{4} \beta^{2}+\bar{s} \bar{\beta}^{2} \beta^{4}+\bar{r} \beta^{6}}
\]
where \(u=1-\beta z, v=1-\bar{\beta} z\).
Note that \(g \in \mathbf{F}_{p}[z]\).
Scholten curve \(H: y^{2}=g(z)\).

Denominator of \(g\) is in \(\mathbf{F}_{p}\).
Choose square root \(\omega \in \mathbf{F}_{p^{2}}\).
Define \(E\) as the elliptic curve \(y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}\).

Define \(\phi: H \rightarrow E\) as \((z, y) \mapsto\left(v^{2} / u^{2}, \omega y / u^{3}\right)\).

\section*{Scholten curves}
(2003 Scholten + simplifications)
Assume: odd prime \(p\);
\(r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}\);
minor additional hypotheses.
Write \(\bar{r}=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta^{p}\).
Define \(g \in \mathbf{F}_{p^{2}}[z]\) as
\[
\frac{r v^{6}+s v^{4} u^{2}+\bar{s} v^{2} u^{4}+\bar{r} u^{6}}{r \bar{\beta}^{6}+s \bar{\beta}^{4} \beta^{2}+\bar{s} \bar{\beta}^{2} \beta^{4}+\bar{r} \beta^{6}}
\]
where \(u=1-\beta z, v=1-\bar{\beta} z\).
Note that \(g \in \mathbf{F}_{p}[z]\).
Scholten curve \(H: y^{2}=g(z)\).

Denominator of \(g\) is in \(\mathbf{F}_{p}\).
Choose square root \(\omega \in \mathbf{F}_{p^{2}}\).
Define \(E\) as the elliptic curve
\(y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}\).
Define \(\phi: H \rightarrow E\) as \((z, y) \mapsto\left(v^{2} / u^{2}, \omega y / u^{3}\right)\).

Choose an \(\mathbf{F}_{p}\)-basis for \(\mathbf{F}_{p^{2}}\), hence a Weil restriction \(W\) of \(E\).

\section*{Scholten curves}
(2003 Scholten + simplifications)
Assume: odd prime \(p\);
\(r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}\);
minor additional hypotheses.
Write \(\bar{r}=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta^{p}\).
Define \(g \in \mathbf{F}_{p^{2}}[z]\) as
\[
\frac{r v^{6}+s v^{4} u^{2}+\bar{s} v^{2} u^{4}+\bar{r} u^{6}}{r \bar{\beta}^{6}+s \bar{\beta}^{4} \beta^{2}+\bar{s} \bar{\beta}^{2} \beta^{4}+\bar{r} \beta^{6}}
\]
where \(u=1-\beta z, v=1-\bar{\beta} z\).
Note that \(g \in \mathbf{F}_{p}[z]\).
Scholten curve \(H: y^{2}=g(z)\).

Denominator of \(g\) is in \(\mathbf{F}_{p}\).
Choose square root \(\omega \in \mathbf{F}_{p^{2}}\).
Define \(E\) as the elliptic curve
\(y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}\).
Define \(\phi: H \rightarrow E\) as \((z, y) \mapsto\left(v^{2} / u^{2}, \omega y / u^{3}\right)\).

Choose an \(\mathbf{F}_{p}\)-basis for \(\mathbf{F}_{p^{2}}\), hence a Weil restriction \(W\) of \(E\). \(\phi\) induces \(H \rightarrow W\), which induces \(\iota^{\prime}: J \rightarrow W\) where \(J=\mathrm{Jac} H\).

\section*{Scholten curves}
(2003 Scholten + simplifications)
Assume: odd prime \(p\);
\(r, s, \beta \in \mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}\);
minor additional hypotheses.
Write \(\bar{r}=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta^{p}\).
Define \(g \in \mathbf{F}_{p^{2}}[z]\) as
\[
\frac{r v^{6}+s v^{4} u^{2}+\bar{s} v^{2} u^{4}+\bar{r} u^{6}}{r \bar{\beta}^{6}+s \bar{\beta}^{4} \beta^{2}+\bar{s} \bar{\beta}^{2} \beta^{4}+\bar{r} \beta^{6}}
\]
where \(u=1-\beta z, v=1-\bar{\beta} z\).
Note that \(g \in \mathbf{F}_{p}[z]\).
Scholten curve \(H: y^{2}=g(z)\).

Denominator of \(g\) is in \(\mathbf{F}_{p}\).
Choose square root \(\omega \in \mathbf{F}_{p^{2}}\).
Define \(E\) as the elliptic curve
\(y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}\).
Define \(\phi: H \rightarrow E\) as \((z, y) \mapsto\left(v^{2} / u^{2}, \omega y / u^{3}\right)\).

Choose an \(\mathbf{F}_{p}\)-basis for \(\mathbf{F}_{p^{2}}\), hence a Weil restriction \(W\) of \(E\). \(\phi\) induces \(H \rightarrow W\), which induces \(\iota^{\prime}: J \rightarrow W\) where \(J=\mathrm{Jac} H\).

Concretely: \(\iota^{\prime}\left(P_{1}+P_{2}\right)=\) \(W\) coords of \(\phi\left(P_{1}\right)+\phi\left(P_{2}\right)\).

\section*{curves}
cholten + simplifications) odd prime \(p\);
\(\mathbf{F}_{p^{2}} ; \beta \notin \mathbf{F}_{p}\);
Iditional hypotheses.
\(=r^{p}, \bar{s}=s^{p}, \bar{\beta}=\beta^{p}\).
\(\in \mathbf{F}_{p^{2}}[z]\) as
\(-s v^{4} u^{2}+\bar{s} v^{2} u^{4}+\bar{r} u^{6}\)
\(s \bar{\beta}^{4} \beta^{2}+\bar{s} \bar{\beta}^{2} \beta^{4}+\bar{r} \beta^{6}\)
\(=1-\beta z, v=1-\bar{\beta} z\).
at \(g \in \mathbf{F}_{p}[z]\).
curve \(H: y^{2}=g(z)\)

Denominator of \(g\) is in \(\mathbf{F}_{p}\). Choose square root \(\omega \in \mathbf{F}_{p^{2}}\).

Define \(E\) as the elliptic curve \(y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}\).

Define \(\phi: H \rightarrow E\) as \((z, y) \mapsto\left(v^{2} / u^{2}, \omega y / u^{3}\right)\).

Choose an \(\mathbf{F}_{p^{\prime}}\)-basis for \(\mathbf{F}_{p^{2}}\), hence a Weil restriction \(W\) of \(E\).
\(\phi\) induces \(H \rightarrow W\), which induces
\(\iota^{\prime}: J \rightarrow W\) where \(J=\mathrm{Jac} H\).
Concretely: \(\iota^{\prime}\left(P_{1}+P_{2}\right)=\) \(W\) coords of \(\phi\left(P_{1}\right)+\phi\left(P_{2}\right)\).

Our pap obtain Ic on Mum

\section*{simplifications)}

\section*{e \(p\);}
\(\mathrm{F}_{p}\);
ypotheses.
\(s^{p}, \bar{\beta}=\beta^{p}\).
as
\(\frac{\bar{s} v^{2} u^{4}+\bar{r} u^{6}}{\bar{s} \bar{\beta}^{2} \beta^{4}+\bar{r} \beta^{6}}\)
\(v=1-\bar{\beta} z\).
\(z]\).
\(y^{2}=g(z)\)

Denominator of \(g\) is in \(\mathbf{F}_{p}\).
Choose square root \(\omega \in \mathbf{F}_{p^{2}}\).
Define \(E\) as the elliptic curve
\(y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}\).
Define \(\phi: H \rightarrow E\) as
\((z, y) \mapsto\left(v^{2} / u^{2}, \omega y / u^{3}\right)\).
Choose an \(\mathbf{F}_{p^{\prime}}\)-basis for \(\mathbf{F}_{p^{2}}\), hence a Weil restriction \(W\) of \(E\).
\(\phi\) induces \(H \rightarrow W\), which induces
\(\iota^{\prime}: J \rightarrow W\) where \(J=\mathrm{Jac} H\).
Concretely: \(\iota^{\prime}\left(P_{1}+P_{2}\right)=\)
\(W\) coords of \(\phi\left(P_{1}\right)+\phi\left(P_{2}\right)\).

Our paper interpo obtain low-degree on Mumford coorc

Denominator of \(g\) is in \(\mathbf{F}_{p}\).
Choose square root \(\omega \in \mathbf{F}_{p^{2}}\).
Define \(E\) as the elliptic curve
\(y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}\).
Define \(\phi: H \rightarrow E\) as
\((z, y) \mapsto\left(v^{2} / u^{2}, \omega y / u^{3}\right)\).
Choose an \(\mathbf{F}_{p}\)-basis for \(\mathbf{F}_{p^{2}}\), hence a Weil restriction \(W\) of \(E\). \(\phi\) induces \(H \rightarrow W\), which induces \(\iota^{\prime}: J \rightarrow W\) where \(J=\mathrm{Jac} H\).

Concretely: \(\iota^{\prime}\left(P_{1}+P_{2}\right)=\) \(W\) coords of \(\phi\left(P_{1}\right)+\phi\left(P_{2}\right)\).

Our paper interpolates to obtain low-degree formulas on Mumford coordinates for

Denominator of \(g\) is in \(\mathbf{F}_{p}\).
Choose square root \(\omega \in \mathbf{F}_{p^{2}}\).
Define \(E\) as the elliptic curve
\(y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}\).
Define \(\phi: H \rightarrow E\) as
\((z, y) \mapsto\left(v^{2} / u^{2}, \omega y / u^{3}\right)\).
Choose an \(\mathbf{F}_{p}\)-basis for \(\mathbf{F}_{p^{2}}\), hence a Weil restriction \(W\) of \(E\).
\(\phi\) induces \(H \rightarrow W\), which induces
\(\iota^{\prime}: J \rightarrow W\) where \(J=\mathrm{Jac} H\).
Concretely: \(\iota^{\prime}\left(P_{1}+P_{2}\right)=\)
\(W\) coords of \(\phi\left(P_{1}\right)+\phi\left(P_{2}\right)\).

Our paper interpolates to obtain low-degree formulas for \(\iota^{\prime}\) on Mumford coordinates for J.

Denominator of \(g\) is in \(\mathbf{F}_{p}\).
Choose square root \(\omega \in \mathbf{F}_{p^{2}}\).
Define \(E\) as the elliptic curve
\(y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}\).
Define \(\phi: H \rightarrow E\) as \((z, y) \mapsto\left(v^{2} / u^{2}, \omega y / u^{3}\right)\).
 hence a Weil restriction \(W\) of \(E\). \(\phi\) induces \(H \rightarrow W\), which induces \(\iota^{\prime}: J \rightarrow W\) where \(J=\mathrm{Jac} H\).

Concretely: \(\iota^{\prime}\left(P_{1}+P_{2}\right)=\) \(W\) coords of \(\phi\left(P_{1}\right)+\phi\left(P_{2}\right)\).

Our paper interpolates to obtain low-degree formulas for \(\iota^{\prime}\) on Mumford coordinates for \(J\). Also low-degree formulas for \(\iota\) : \(W \rightarrow J\) with \(\iota^{\prime}(\iota(P))=2 P\).

Denominator of \(g\) is in \(\mathbf{F}_{p}\).
Choose square root \(\omega \in \mathbf{F}_{p^{2}}\).
Define \(E\) as the elliptic curve
\(y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}\).
Define \(\phi: H \rightarrow E\) as
\((z, y) \mapsto\left(v^{2} / u^{2}, \omega y / u^{3}\right)\).
 hence a Weil restriction \(W\) of \(E\).
\(\phi\) induces \(H \rightarrow W\), which induces
\(\iota^{\prime}: J \rightarrow W\) where \(J=\mathrm{Jac} H\).
Concretely: \(\iota^{\prime}\left(P_{1}+P_{2}\right)=\)
\(W\) coords of \(\phi\left(P_{1}\right)+\phi\left(P_{2}\right)\).

Our paper interpolates to obtain low-degree formulas for \(\iota^{\prime}\) on Mumford coordinates for \(J\). Also low-degree formulas for \(\iota\) : \(W \rightarrow J\) with \(\iota^{\prime}(\iota(P))=2 P\). All formulas are defined over \(\mathbf{F}_{p}\).

Denominator of \(g\) is in \(\mathbf{F}_{p}\).
Choose square root \(\omega \in \mathbf{F}_{p^{2}}\).
Define \(E\) as the elliptic curve
\(y^{2}=r x^{3}+s x^{2}+\bar{s} x+\bar{r}\).
Define \(\phi: H \rightarrow E\) as \((z, y) \mapsto\left(v^{2} / u^{2}, \omega y / u^{3}\right)\).
 hence a Weil restriction \(W\) of \(E\). \(\phi\) induces \(H \rightarrow W\), which induces \(\iota^{\prime}: J \rightarrow W\) where \(J=\mathrm{Jac} H\).

Concretely: \(\iota^{\prime}\left(P_{1}+P_{2}\right)=\) \(W\) coords of \(\phi\left(P_{1}\right)+\phi\left(P_{2}\right)\).

Our paper interpolates to obtain low-degree formulas for \(\iota^{\prime}\) on Mumford coordinates for \(J\). Also low-degree formulas for \(\iota\) : \(W \rightarrow J\) with \(\iota^{\prime}(\iota(P))=2 P\). All formulas are defined over \(\mathbf{F}_{p}\). (Can show: \(\iota(P)\) is trace of sum of \(\phi\)-preimages of \(P\); "normconorm" map used in, e.g., 2002 Gaudry-Hess-Smart, 2003 Diem, 2004 Arita-Matsuo-NagaoShimura. But this doesn't give a very fast algorithm.)
nator of \(g\) is in \(\mathbf{F}_{p}\).
square root \(\omega \in \mathbf{F}_{p^{2}}\).
as the elliptic curve
\({ }^{3}+s x^{2}+\bar{s} x+\bar{r}\).
\(: H \rightarrow E\) as
\(\left(v^{2} / u^{2}, \omega y / u^{3}\right)\).
an \(\mathbf{F}_{p^{-b a s i s ~ f o r ~}} \mathbf{F}_{p^{2}}\),
Weil restriction \(W\) of \(E\).
s \(H \rightarrow W\), which induces
\(W\) where \(J=\mathrm{Jac} H\).
ely: \(\iota^{\prime}\left(P_{1}+P_{2}\right)=\)
s of \(\phi\left(P_{1}\right)+\phi\left(P_{2}\right)\).

Our paper interpolates to obtain low-degree formulas for \(\iota^{\prime}\) on Mumford coordinates for \(J\). Also low-degree formulas for \(\iota\) : \(W \rightarrow J\) with \(\iota^{\prime}(\iota(P))=2 P\).
All formulas are defined over \(\mathbf{F}_{p}\).
(Can show: \(\iota(P)\) is trace of sum of \(\phi\)-preimages of \(P\); "normconorm" map used in, e.g., 2002 Gaudry-Hess-Smart, 2003 Diem, 2004 Arita-Matsuo-NagaoShimura. But this doesn't give a very fast algorithm.)

Scholter
Given S comput original

Factor \(g\)
is in \(\mathbf{F}_{p}\).
\(\mathrm{t} \omega \in \mathbf{F}_{p^{2}}\).
liptic curve
\[
\bar{s} x+\bar{r} .
\]
vy/ \(\left.u^{3}\right)\).
is for \(\mathbf{F}_{p^{2}}\),
iction \(W\) of \(E\).
, which induces
\(J=\mathrm{Jac} H\).
\(\left.+P_{2}\right)=\)
\(+\phi\left(P_{2}\right)\).

Our paper interpolates to obtain low-degree formulas for \(\iota^{\prime}\) on Mumford coordinates for \(J\). Also low-degree formulas for \(\iota\) : \(W \rightarrow J\) with \(\iota^{\prime}(\iota(P))=2 P\).
All formulas are defined over \(\mathbf{F}_{p}\).
(Can show: \(\iota(P)\) is trace of sum of \(\phi\)-preimages of \(P\); "normconorm" map used in, e.g., 2002 Gaudry-Hess-Smart, 2003 Diem, 2004 Arita-Matsuo-Nagao-
Shimura. But this doesn't
give a very fast algorithm.)

Scholten with fast
Given Scholten cu compute correspo original Kummer s

Factor \(g\) into linea

Our paper interpolates to obtain low-degree formulas for \(\iota^{\prime}\) on Mumford coordinates for \(J\). Also low-degree formulas for \(\iota\) : \(W \rightarrow J\) with \(\iota^{\prime}(\iota(P))=2 P\). All formulas are defined over \(\mathbf{F}_{p}\). (Can show: \(\iota(P)\) is trace of sum of \(\phi\)-preimages of \(P\); "normconorm" map used in, e.g., 2002 Gaudry-Hess-Smart, 2003 Diem, 2004 Arita-Matsuo-NagaoShimura. But this doesn't give a very fast algorithm.)

\section*{Scholten with fast Kummer}

Given Scholten curve, compute corresponding original Kummer surface \(K\) :

Factor \(g\) into linear factors.

Our paper interpolates to obtain low-degree formulas for \(\iota^{\prime}\) on Mumford coordinates for \(J\). Also low-degree formulas for \(\iota\) : \(W \rightarrow J\) with \(\iota^{\prime}(\iota(P))=2 P\). All formulas are defined over \(\mathbf{F}_{p}\). (Can show: \(\iota(P)\) is trace of sum of \(\phi\)-preimages of \(P\); "normconorm" map used in, e.g., 2002 Gaudry-Hess-Smart, 2003 Diem, 2004 Arita-Matsuo-NagaoShimura. But this doesn't give a very fast algorithm.)

\section*{Scholten with fast Kummer?}

Given Scholten curve, compute corresponding original Kummer surface \(K\) :

Factor \(g\) into linear factors.

Our paper interpolates to obtain low-degree formulas for \(\iota^{\prime}\) on Mumford coordinates for \(J\). Also low-degree formulas for \(\iota\) : \(W \rightarrow J\) with \(\iota^{\prime}(\iota(P))=2 P\). All formulas are defined over \(\mathbf{F}_{p}\).
(Can show: \(\iota(P)\) is trace of sum of \(\phi\)-preimages of \(P\); "normconorm" map used in, e.g., 2002 Gaudry-Hess-Smart, 2003 Diem, 2004 Arita-Matsuo-NagaoShimura. But this doesn't give a very fast algorithm.)

\section*{Scholten with fast Kummer?}

Given Scholten curve, compute corresponding original Kummer surface \(K\) :

Factor \(g\) into linear factors.
By linear-fractional transformation move to twisted Rosenhain form \(\delta y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)\).

Our paper interpolates to obtain low-degree formulas for \(\iota^{\prime}\) on Mumford coordinates for \(J\). Also low-degree formulas for \(\iota\) : \(W \rightarrow J\) with \(\iota^{\prime}(\iota(P))=2 P\). All formulas are defined over \(\mathbf{F}_{p}\).
(Can show: \(\iota(P)\) is trace of sum of \(\phi\)-preimages of \(P\); "normconorm" map used in, e.g., 2002 Gaudry-Hess-Smart, 2003 Diem, 2004 Arita-Matsuo-NagaoShimura. But this doesn't give a very fast algorithm.)

\section*{Scholten with fast Kummer?}

Given Scholten curve, compute corresponding original Kummer surface \(K\) :

Factor \(g\) into linear factors.
By linear-fractional transformation move to twisted Rosenhain form \(\delta y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)\).

Compute
\[
b^{2}=\sqrt{\frac{\mu(\mu-1)(\lambda-\nu)}{\nu(\nu-1)(\lambda-\mu)}},
\]
\(c^{2}=\sqrt{\frac{\lambda \mu}{\nu}}, a^{2}=\frac{b^{2} c^{2} \nu}{\mu}, d^{2}=1\).
er interpolates to w-degree formulas for \(\iota^{\prime}\) ford coordinates for J. -degree formulas for \(\iota\) :
with \(\iota^{\prime}(\iota(P))=2 P\). ulas are defined over \(\mathbf{F}_{p}\). ow: \(\iota(P)\) is trace of sum images of \(P\); "normmap used in, e.g., 2002 Hess-Smart, 2003 Diem, ita-Matsuo-Nagao-
But this doesn't
ery fast algorithm.)

\section*{Scholten with fast Kummer?}

Given Scholten curve, compute corresponding original Kummer surface \(K\) :

Take \(s_{1}\), with \(s_{1}^{2}\), \(-s_{1}^{2} s_{2}^{2} s_{3}^{2}\)
Write it \(-s_{1}^{2} s_{2}^{2} s_{3}^{2}\)
Write it

Factor \(g\) into linear factors.
By linear-fractional transformation move to twisted Rosenhain form \(\delta y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)\).

Compute
\[
\begin{aligned}
& b^{2}=\sqrt{\frac{\mu(\mu-1)(\lambda-\nu)}{\nu(\nu-1)(\lambda-\mu)}}, \\
& c^{2}=\sqrt{\frac{\lambda \mu}{\nu}}, a^{2}=\frac{b^{2} c^{2} \nu}{\mu}, d^{2}=1 .
\end{aligned}
\]
lates to formulas for \(\iota^{\prime}\) dinates for \(J\). rmulas for \(\iota\) :
P) \()=2 P\).
efined over \(\mathbf{F}_{p}\).
s trace of sum
P; "norm-
in, e.g., 2002
rt, 2003 Diem,
o-Nagao-
doesn't
sorithm.)

Scholten with fast Kummer?
Given Scholten curve, compute corresponding original Kummer surface \(K\) :

Factor \(g\) into linear factors.
By linear-fractional transformation move to twisted Rosenhain form
\(\delta y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)\).
Compute
\(b^{2}=\sqrt{\frac{\mu(\mu-1)(\lambda-\nu)}{\nu(\nu-1)(\lambda-\mu)}}\),
\(c^{2}=\sqrt{\frac{\lambda \mu}{\nu}}, a^{2}=\frac{b^{2} c^{2} \nu}{\mu}, d^{2}=1\).

Take \(s_{1}, s_{2}, s_{3} \in \mathbf{F}\) with \(s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\) dist \(-s_{1}^{2} s_{2}^{2} s_{3}^{2}\) has norm Write it as \(\bar{r} / r\) wi

\section*{Scholten with fast Kummer?}

Given Scholten curve, compute corresponding original Kummer surface \(K\) :

Factor \(g\) into linear factors.
By linear-fractional transformation move to twisted Rosenhain form \(\delta y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)\).

Compute
\(b^{2}=\sqrt{\frac{\mu(\mu-1)(\lambda-\nu)}{\nu(\nu-1)(\lambda-\mu)}}\),
\(c^{2}=\sqrt{\frac{\lambda \mu}{\nu}}, a^{2}=\frac{b^{2} c^{2} \nu}{\mu}, d^{2}=1\).

Take \(s_{1}, s_{2}, s_{3} \in \mathbf{F}_{p^{2}}\), norm with \(s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\) distinct.
\(-s_{1}^{2} s_{2}^{2} s_{3}^{2}\) has norm 1.
Write it as \(\bar{r} / r\) with \(r \in \mathbf{F}_{p^{2}}^{*}\)

\section*{Scholten with fast Kummer?}

Given Scholten curve, compute corresponding original Kummer surface \(K\) :

Factor \(g\) into linear factors.
By linear-fractional transformation move to twisted Rosenhain form
\(\delta y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)\).
Compute
\(b^{2}=\sqrt{\frac{\mu(\mu-1)(\lambda-\nu)}{\nu(\nu-1)(\lambda-\mu)}}\),
\(c^{2}=\sqrt{\frac{\lambda \mu}{\nu}}, a^{2}=\frac{b^{2} c^{2} \nu}{\mu}, d^{2}=1\).

Take \(s_{1}, s_{2}, s_{3} \in \mathbf{F}_{p^{2}}\), norm 1, with \(s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\) distinct.
\(-s_{1}^{2} s_{2}^{2} s_{3}^{2}\) has norm 1.
Write it as \(\bar{r} / r\) with \(r \in \mathbf{F}_{p^{2}}^{*}\).

\section*{Scholten with fast Kummer?}

Given Scholten curve, compute corresponding original Kummer surface \(K\) :

Factor \(g\) into linear factors.
By linear-fractional transformation move to twisted Rosenhain form \(\delta y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)\).

Compute \(b^{2}=\sqrt{\frac{\mu(\mu-1)(\lambda-\nu)}{\nu(\nu-1)(\lambda-\mu)}}\),
\(c^{2}=\sqrt{\frac{\lambda \mu}{\nu}}, a^{2}=\frac{b^{2} c^{2} \nu}{\mu}, d^{2}=1\).

Take \(s_{1}, s_{2}, s_{3} \in \mathbf{F}_{p^{2}}\), norm 1, with \(s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\) distinct.
\(-s_{1}^{2} s_{2}^{2} s_{3}^{2}\) has norm 1.
Write it as \(\bar{r} / r\) with \(r \in \mathbf{F}_{p^{2}}^{*}\).
Define \(s=-r\left(s_{1}+s_{2}+s_{3}\right)\).
Take any \(\beta \in \mathbf{F}_{p^{2}}-\mathbf{F}_{p}\) with \((\bar{\beta} / \beta)^{2} \notin\left\{s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\right\}\).
Then \(g\) has 6 distinct roots \(\left(1 \pm s_{j}\right) /\left(\bar{\beta} \pm \beta s_{j}\right) \in \mathbf{F}_{p}\).

\section*{Scholten with fast Kummer?}

Given Scholten curve, compute corresponding original Kummer surface \(K\) :

Factor \(g\) into linear factors.
By linear-fractional transformation move to twisted Rosenhain form \(\delta y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)\).

Compute
\(b^{2}=\sqrt{\frac{\mu(\mu-1)(\lambda-\nu)}{\nu(\nu-1)(\lambda-\mu)}}\),
\(c^{2}=\sqrt{\frac{\lambda \mu}{\nu}}, a^{2}=\frac{b^{2} c^{2} \nu}{\mu}, d^{2}=1\).

Take \(s_{1}, s_{2}, s_{3} \in \mathbf{F}_{p^{2}}\), norm 1, with \(s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\) distinct.
\(-s_{1}^{2} s_{2}^{2} s_{3}^{2}\) has norm 1.
Write it as \(\bar{r} / r\) with \(r \in \mathbf{F}_{p^{2}}^{*}\).
Define \(s=-r\left(s_{1}+s_{2}+s_{3}\right)\).
Take any \(\beta \in \mathbf{F}_{p^{2}}-\mathbf{F}_{p}\) with \((\bar{\beta} / \beta)^{2} \notin\left\{s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\right\}\).
Then \(g\) has 6 distinct roots \(\left(1 \pm s_{j}\right) /\left(\bar{\beta} \pm \beta s_{j}\right) \in \mathbf{F}_{p}\).

Hope that \(a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{F}_{p}\);
i.e., \(\sqrt{\frac{\lambda \mu}{\nu}}, \sqrt{\cdots} \in \mathbf{F}_{p}\).

\section*{Scholten with fast Kummer?}

Given Scholten curve, compute corresponding original Kummer surface \(K\) :

Factor \(g\) into linear factors.
By linear-fractional transformation move to twisted Rosenhain form \(\delta y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)\).

Compute
\(b^{2}=\sqrt{\frac{\mu(\mu-1)(\lambda-\nu)}{\nu(\nu-1)(\lambda-\mu)}}\),
\(c^{2}=\sqrt{\frac{\lambda \mu}{\nu}}, a^{2}=\frac{b^{2} c^{2} \nu}{\mu}, d^{2}=1\).

Take \(s_{1}, s_{2}, s_{3} \in \mathbf{F}_{p^{2}}\), norm 1, with \(s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\) distinct.
\(-s_{1}^{2} s_{2}^{2} s_{3}^{2}\) has norm 1.
Write it as \(\bar{r} / r\) with \(r \in \mathbf{F}_{p^{2}}^{*}\).
Define \(s=-r\left(s_{1}+s_{2}+s_{3}\right)\).
Take any \(\beta \in \mathbf{F}_{p^{2}}-\mathbf{F}_{p}\) with \((\bar{\beta} / \beta)^{2} \notin\left\{s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\right\}\).
Then \(g\) has 6 distinct roots \(\left(1 \pm s_{j}\right) /\left(\bar{\beta} \pm \beta s_{j}\right) \in \mathbf{F}_{p}\).

Hope that \(a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{F}_{p}\);
i.e., \(\sqrt{\frac{\lambda \mu}{\nu}}, \sqrt{\cdots} \in \mathbf{F}_{p}\).

Pray for small height.

\section*{with fast Kummer?}
cholten curve,
corresponding
Kummer surface \(K\) :
into linear factors.
r-fractional transformation twisted Rosenhain form \((x-1)(x-\lambda)(x-\mu)(x-\nu)\).
\(\frac{\mu(\mu-1)(\lambda-\nu)}{\nu(\nu-1)(\lambda-\mu)}\),
\(\frac{\overline{\lambda \mu}}{\nu}, a^{2}=\frac{b^{2} c^{2} \nu}{\mu}, d^{2}=1\).

Take \(s_{1}, s_{2}, s_{3} \in \mathbf{F}_{p^{2}}\), norm 1, with \(s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\) distinct.
\(-s_{1}^{2} s_{2}^{2} s_{3}^{2}\) has norm 1.
Write it as \(\bar{r} / r\) with \(r \in \mathbf{F}_{p^{2}}^{*}\).
Define \(s=-r\left(s_{1}+s_{2}+s_{3}\right)\).
Take any \(\beta \in \mathbf{F}_{p^{2}}-\mathbf{F}_{p}\) with \((\bar{\beta} / \beta)^{2} \notin\left\{s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\right\}\).
Then \(g\) has 6 distinct roots
\(\left(1 \pm s_{j}\right) /\left(\bar{\beta} \pm \beta s_{j}\right) \in \mathbf{F}_{p}\).
Hope that \(a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{F}_{p}\);
i.e., \(\sqrt{\frac{\lambda \mu}{\nu}}, \sqrt{\cdots} \in \mathbf{F}_{p}\).

Pray for small height.

Lifting t
\(\mathbf{F}_{p^{2}}=\mathbf{F}\) small so

\section*{Kummer?}
rve,
ding
urface \(K\) :
r factors.
I transformation osenhain form
\(\lambda)(x-\mu)(x-\nu)\).
\(\overline{\overline{\lambda-\nu)}}\),
\(\frac{b^{2} c^{2} \nu}{\mu}, d^{2}=1\).

Take \(s_{1}, s_{2}, s_{3} \in \mathbf{F}_{p^{2}}\), norm 1, with \(s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\) distinct.
\(-s_{1}^{2} s_{2}^{2} s_{3}^{2}\) has norm 1.
Write it as \(\bar{r} / r\) with \(r \in \mathbf{F}_{p^{2}}^{*}\).
Define \(s=-r\left(s_{1}+s_{2}+s_{3}\right)\).
Take any \(\beta \in \mathbf{F}_{p^{2}}-\mathbf{F}_{p}\) with \((\bar{\beta} / \beta)^{2} \notin\left\{s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\right\}\).
Then \(g\) has 6 distinct roots
\(\left(1 \pm s_{j}\right) /\left(\bar{\beta} \pm \beta s_{j}\right) \in \mathbf{F}_{p}\).
Hope that \(a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{F}_{p}\);
i.e., \(\sqrt{\frac{\lambda \mu}{\nu}}, \sqrt{\cdots} \in \mathbf{F}_{p}\).

Pray for small height.

Lifting to \(\mathbf{Q}(\sqrt{\Delta})\)
\(\mathbf{F}_{p^{2}}=\boldsymbol{F}_{p}(\sqrt{\Delta})\) fo small squarefree i

Take \(s_{1}, s_{2}, s_{3} \in \mathbf{F}_{p^{2}}\), norm 1, with \(s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\) distinct.
\(-s_{1}^{2} s_{2}^{2} s_{3}^{2}\) has norm 1.
Write it as \(\bar{r} / r\) with \(r \in \mathbf{F}_{p^{2}}^{*}\).
Define \(s=-r\left(s_{1}+s_{2}+s_{3}\right)\).
Take any \(\beta \in \mathbf{F}_{p^{2}}-\mathbf{F}_{p}\) with \((\bar{\beta} / \beta)^{2} \notin\left\{s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\right\}\).
Then \(g\) has 6 distinct roots
\(\left(1 \pm s_{j}\right) /\left(\bar{\beta} \pm \beta s_{j}\right) \in \mathbf{F}_{p}\).
Hope that \(a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{F}_{p}\);
i.e., \(\sqrt{\frac{\lambda \mu}{\nu}}, \sqrt{\cdots} \in \mathbf{F}_{p}\).

Pray for small height.
\(\underline{\text { Lifting to } \mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}}\)
\(\mathbf{F}_{p^{2}}=\mathbf{F}_{p}(\sqrt{\Delta})\) for many small squarefree integers \(\Delta\)

Take \(s_{1}, s_{2}, s_{3} \in \mathbf{F}_{p^{2}}\), norm 1, with \(s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\) distinct.
\(-s_{1}^{2} s_{2}^{2} s_{3}^{2}\) has norm 1.
Write it as \(\bar{r} / r\) with \(r \in \mathbf{F}_{p^{2}}^{*}\).
Define \(s=-r\left(s_{1}+s_{2}+s_{3}\right)\).
Take any \(\beta \in \mathbf{F}_{p^{2}}-\mathbf{F}_{p}\) with \((\bar{\beta} / \beta)^{2} \notin\left\{s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\right\}\).
Then \(g\) has 6 distinct roots \(\left(1 \pm s_{j}\right) /\left(\bar{\beta} \pm \beta s_{j}\right) \in \mathbf{F}_{p}\).
Hope that \(a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{F}_{p}\);
i.e., \(\sqrt{\frac{\lambda \mu}{\nu}}, \sqrt{\cdots} \in \mathbf{F}_{p}\).

Pray for small height.

\section*{Lifting to \(\mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}\)}
\(\mathbf{F}_{p^{2}}=\mathbf{F}_{p}(\sqrt{\Delta})\) for many small squarefree integers \(\Delta\).

Take \(s_{1}, s_{2}, s_{3} \in \mathbf{F}_{p^{2}}\), norm 1, with \(s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\) distinct.
\(-s_{1}^{2} s_{2}^{2} s_{3}^{2}\) has norm 1.
Write it as \(\bar{r} / r\) with \(r \in \mathbf{F}_{p^{2}}^{*}\).
Define \(s=-r\left(s_{1}+s_{2}+s_{3}\right)\).
Take any \(\beta \in \mathbf{F}_{p^{2}}-\mathbf{F}_{p}\) with \((\bar{\beta} / \beta)^{2} \notin\left\{s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\right\}\).
Then \(g\) has 6 distinct roots \(\left(1 \pm s_{j}\right) /\left(\bar{\beta} \pm \beta s_{j}\right) \in \mathbf{F}_{p}\).
Hope that \(a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{F}_{p}\);
i.e., \(\sqrt{\frac{\lambda \mu}{\nu}}, \sqrt{\cdots} \in \mathbf{F}_{p}\).

Pray for small height.

\section*{Lifting to \(\mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}\)}
\(\mathbf{F}_{p^{2}}=\mathbf{F}_{p}(\sqrt{\Delta})\) for many small squarefree integers \(\Delta\).

Take, say, \(\beta=\sqrt{\Delta}\).
Take small norm-1 elements \(s_{1}, s_{2}, s_{3} \in \mathbf{Q}(\sqrt{\Delta})\).

As before define \(r, s \in \mathbf{Q}(\sqrt{\Delta})\); \(g \in \mathbf{Q}(\sqrt{\Delta})[z]\); and \(\lambda, \mu, \nu \in \mathbf{Q}\).

Take \(s_{1}, s_{2}, s_{3} \in \mathbf{F}_{p^{2}}\), norm 1, with \(s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\) distinct.
\(-s_{1}^{2} s_{2}^{2} s_{3}^{2}\) has norm 1.
Write it as \(\bar{r} / r\) with \(r \in \mathbf{F}_{p^{2}}^{*}\).
Define \(s=-r\left(s_{1}+s_{2}+s_{3}\right)\).
Take any \(\beta \in \mathbf{F}_{p^{2}}-\mathbf{F}_{p}\) with \((\bar{\beta} / \beta)^{2} \notin\left\{s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\right\}\).
Then \(g\) has 6 distinct roots \(\left(1 \pm s_{j}\right) /\left(\bar{\beta} \pm \beta s_{j}\right) \in \mathbf{F}_{p}\).
Hope that \(a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{F}_{p}\);
i.e., \(\sqrt{\frac{\lambda \mu}{\nu}}, \sqrt{\cdots} \in \mathbf{F}_{p}\).

Pray for small height.

\section*{Lifting to \(\mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}\)}
\(\mathbf{F}_{p^{2}}=\mathbf{F}_{p}(\sqrt{\Delta})\) for many small squarefree integers \(\Delta\).

Take, say, \(\beta=\sqrt{\Delta}\).
Take small norm-1 elements \(s_{1}, s_{2}, s_{3} \in \mathbf{Q}(\sqrt{\Delta})\).

As before define \(r, s \in \mathbf{Q}(\sqrt{\Delta})\); \(g \in \mathbf{Q}(\sqrt{\Delta})[z]\); and \(\lambda, \mu, \nu \in \mathbf{Q}\).
\(\lambda, \mu, \nu\) are small.
Maybe the square roots exist, giving small \(a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{Q}\).

Or maybe there's an obstruction.
\(s_{2}, s_{3} \in \mathbf{F}_{p^{2}}\), norm 1 , \(s_{2}^{2}, s_{3}^{2}\) distinct.

\section*{has norm 1.}
as \(\bar{r} / r\) with \(r \in \mathbf{F}_{p^{2}}^{*}\).
\(=-r\left(s_{1}+s_{2}+s_{3}\right)\).
\(y \beta \in \mathbf{F}_{p^{2}}-\mathbf{F}_{p}\)
\(\beta)^{2} \notin\left\{s_{1}^{2}, s_{2}^{2}, s_{3}^{2}\right\}\).
has 6 distinct roots
\(/\left(\bar{\beta} \pm \beta s_{j}\right) \in \mathbf{F}_{p}\).
at \(a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{F}_{p}\);
\(\frac{\mu}{\nu}, \sqrt{\cdots} \in \mathbf{F}_{p}\).
small height.

\section*{Lifting to \(\mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}\)}
\(\mathbf{F}_{p^{2}}=\mathbf{F}_{p}(\sqrt{\Delta})\) for many small squarefree integers \(\Delta\).

Take, say, \(\beta=\sqrt{\Delta}\).
Take small norm-1 elements \(s_{1}, s_{2}, s_{3} \in \mathbf{Q}(\sqrt{\Delta})\).

As before define \(r, s \in \mathbf{Q}(\sqrt{\Delta})\);
\(g \in \mathbf{Q}(\sqrt{\Delta})[z] ;\) and \(\lambda, \mu, \nu \in \mathbf{Q}\).
\(\lambda, \mu, \nu\) are small.
Maybe the square roots exist, giving small \(a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{Q}\).

Or maybe there's an obstruction.

For each
We triec
\(p^{2}\), norm 1, inct.
1.
h \(r \in \mathbf{F}_{p^{2}}^{*}\).
\(\left.+s_{2}+s_{3}\right)\).
\(-F_{p}\)
\(\left., s_{2}^{2}, s_{3}^{2}\right\}\).
inct roots
\(\in \mathbf{F}_{p}\).
\(c^{2}, d^{2} \in \mathbf{F}_{p} ;\)
\(\mathbf{F}_{p}\).
sht.

\section*{Lifting to \(\mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}\)}
\(\mathbf{F}_{p^{2}}=\mathbf{F}_{p}(\sqrt{\Delta})\) for many small squarefree integers \(\Delta\).

Take, say, \(\beta=\sqrt{\Delta}\).
Take small norm-1 elements \(s_{1}, s_{2}, s_{3} \in \mathbf{Q}(\sqrt{\Delta})\).
As before define \(r, s \in \mathbf{Q}(\sqrt{\Delta})\);
\(g \in \mathbf{Q}(\sqrt{\Delta})[z] ;\) and \(\lambda, \mu, \nu \in \mathbf{Q}\).
\(\lambda, \mu, \nu\) are small.
Maybe the square roots exist, giving small \(a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{Q}\).

Or maybe there's an obstruction.

For each small qu
We tried all small
\(\underline{\text { Lifting to } \mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}}\)
\(\mathbf{F}_{p^{2}}=\mathbf{F}_{p}(\sqrt{\Delta})\) for many small squarefree integers \(\Delta\).

Take, say, \(\beta=\sqrt{\Delta}\).
Take small norm-1 elements \(s_{1}, s_{2}, s_{3} \in \mathbf{Q}(\sqrt{\Delta})\).

As before define \(r, s \in \mathbf{Q}(\sqrt{\Delta})\);
\(g \in \mathbf{Q}(\sqrt{\Delta})[z]\); and \(\lambda, \mu, \nu \in \mathbf{Q}\).
\(\lambda, \mu, \nu\) are small.
Maybe the square roots exist,
giving small \(a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{Q}\).
Or maybe there's an obstruction.

For each small quadratic fie We tried all small \(s_{1}, s_{2}, s_{3}\).

\section*{Lifting to \(\mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}\)}
\(\mathbf{F}_{p^{2}}=\mathbf{F}_{p}(\sqrt{\Delta})\) for many small squarefree integers \(\Delta\).

Take, say, \(\beta=\sqrt{\Delta}\).
Take small norm-1 elements \(s_{1}, s_{2}, s_{3} \in \mathbf{Q}(\sqrt{\Delta})\).

As before define \(r, s \in \mathbf{Q}(\sqrt{\Delta})\); \(g \in \mathbf{Q}(\sqrt{\Delta})[z] ;\) and \(\lambda, \mu, \nu \in \mathbf{Q}\).
\(\lambda, \mu, \nu\) are small.
Maybe the square roots exist, giving small \(a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{Q}\).

Or maybe there's an obstruction.

For each small quadratic field:
We tried all small \(s_{1}, s_{2}, s_{3}\).

\section*{Lifting to \(\mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}\)}
\(\mathbf{F}_{p^{2}}=\mathbf{F}_{p}(\sqrt{\Delta})\) for many
small squarefree integers \(\Delta\).
Take, say, \(\beta=\sqrt{\Delta}\).
Take small norm-1 elements \(s_{1}, s_{2}, s_{3} \in \mathbf{Q}(\sqrt{\Delta})\).

As before define \(r, s \in \mathbf{Q}(\sqrt{\Delta})\); \(g \in \mathbf{Q}(\sqrt{\Delta})[z] ;\) and \(\lambda, \mu, \nu \in \mathbf{Q}\).
\(\lambda, \mu, \nu\) are small.
Maybe the square roots exist, giving small \(a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{Q}\).

Or maybe there's an obstruction.

For each small quadratic field:
We tried all small \(s_{1}, s_{2}, s_{3}\).
For, e.g., \(\Delta=-67\) found that
\[
\begin{aligned}
& s_{1}=(-17143+96 \sqrt{\Delta}) / 17161, \\
& s_{2}=(189+32 \sqrt{\Delta}) / 323, \\
& s_{3}=(333-40 \sqrt{\Delta}) / 467
\end{aligned}
\]
produced Scholten curve
\[
\begin{aligned}
y^{2}= & (x-16 / 3)(x+3 / 1072) \\
& (x-1 / 16)(x+16 / 67) \\
& (x+1 / 20)(x-20 / 67)
\end{aligned}
\]
with Kummer surface
\(a^{2}=194769, b^{2}=126939\),
\(c^{2}=64009, d^{2}=126939\).

\section*{- \(\mathbf{Q}(\sqrt{\Delta}) / \mathbf{Q}\)}
\(p(\sqrt{\Delta})\) for many uarefree integers \(\Delta\).
\(\mathrm{y}, \beta=\sqrt{\Delta}\).
all norm-1 elements
\(\in \mathbf{Q}(\sqrt{\Delta})\).
e define \(r, s \in \mathbf{Q}(\sqrt{\Delta})\);
\(\sqrt{\Delta})[z]\); and \(\lambda, \mu, \nu \in \mathbf{Q}\).
re small.
he square roots exist, nall \(a^{2}, b^{2}, c^{2}, d^{2} \in \mathbf{Q}\).
e there's an obstruction.

For each small quadratic field:
We tried all small \(s_{1}, s_{2}, s_{3}\).
For, e.g., \(\Delta=-67\) found that
\(s_{1}=(-17143+96 \sqrt{\Delta}) / 17161\),
\(s_{2}=(189+32 \sqrt{\Delta}) / 323\),
\(s_{3}=(333-40 \sqrt{\Delta}) / 467\)
produced Scholten curve
\[
\begin{aligned}
y^{2}= & (x-16 / 3)(x+3 / 1072) \\
& (x-1 / 16)(x+16 / 67) \\
& (x+1 / 20)(x-20 / 67)
\end{aligned}
\]
with Kummer surface
\(a^{2}=194769, b^{2}=126939\),
\(c^{2}=64009, d^{2}=126939\).

Found \(n\) for vario
\(\Rightarrow\) thous \(\# E\left(\mathbf{F}_{p^{2}}\right.\)
\[
\begin{aligned}
& \mathbf{Q} \\
& \text { r many } \\
& \text { itegers } \Delta \text {. } \\
& \text { s. } \\
& 1 \text { elements } \\
& s \in \mathbf{Q}(\sqrt{\Delta}) \text {; } \\
& \text { id } \lambda, \mu, \nu \in \mathbf{Q} \text {. }
\end{aligned}
\]
roots exist,
\[
c^{2}, d^{2} \in \mathbf{Q}
\]
an obstruction.

For each small quadratic field:
We tried all small \(s_{1}, s_{2}, s_{3}\).
For, e.g., \(\Delta=-67\) found that
\(s_{1}=(-17143+96 \sqrt{\Delta}) / 17161\),
\(s_{2}=(189+32 \sqrt{\Delta}) / 323\),
\(s_{3}=(333-40 \sqrt{\Delta}) / 467\)
produced Scholten curve
\(y^{2}=(x-16 / 3)(x+3 / 1072)\)
\((x-1 / 16)(x+16 / 67)\)
\((x+1 / 20)(x-20 / 67)\)
with Kummer surface
\(a^{2}=194769, b^{2}=126939\),
\(c^{2}=64009, d^{2}=126939\).

Found many more for various choices
\(\Rightarrow\) thousands of d \(\# E\left(\mathbf{F}_{p^{2}}\right)\) for \(p=\)

For each small quadratic field:
We tried all small \(s_{1}, s_{2}, s_{3}\).
For, e.g., \(\Delta=-67\) found that
\[
s_{1}=(-17143+96 \sqrt{\Delta}) / 17161
\]
\[
s_{2}=(189+32 \sqrt{\Delta}) / 323
\]
\[
s_{3}=(333-40 \sqrt{\Delta}) / 467
\]
produced Scholten curve
\[
y^{2}=(x-16 / 3)(x+3 / 1072)
\]
\[
(x-1 / 16)(x+16 / 67)
\]
\[
(x+1 / 20)(x-20 / 67)
\]
with Kummer surface
\(a^{2}=194769, b^{2}=126939\),
\(c^{2}=64009, d^{2}=126939\).

Found many more examples for various choices of \(\Delta\)
\(\Rightarrow\) thousands of different \(\# E\left(\mathbf{F}_{p^{2}}\right)\) for \(p=2^{127}-1\).

For each small quadratic field:
We tried all small \(s_{1}, s_{2}, s_{3}\).
For, e.g., \(\Delta=-67\) found that \(s_{1}=(-17143+96 \sqrt{\Delta}) / 17161\), \(s_{2}=(189+32 \sqrt{\Delta}) / 323\), \(s_{3}=(333-40 \sqrt{\Delta}) / 467\) produced Scholten curve
\[
\begin{aligned}
y^{2}= & (x-16 / 3)(x+3 / 1072) \\
& (x-1 / 16)(x+16 / 67) \\
& (x+1 / 20)(x-20 / 67)
\end{aligned}
\]
with Kummer surface
\(a^{2}=194769, b^{2}=126939\),
\(c^{2}=64009, d^{2}=126939\).

Found many more examples for various choices of \(\Delta\)
\(\Rightarrow\) thousands of different
\(\# E\left(\mathbf{F}_{p^{2}}\right)\) for \(p=2^{127}-1\).

For each small quadratic field:
We tried all small \(s_{1}, s_{2}, s_{3}\).
For, e.g., \(\Delta=-67\) found that \(s_{1}=(-17143+96 \sqrt{\Delta}) / 17161\), \(s_{2}=(189+32 \sqrt{\Delta}) / 323\),
\(s_{3}=(333-40 \sqrt{\Delta}) / 467\)
produced Scholten curve
\[
\begin{aligned}
y^{2}= & (x-16 / 3)(x+3 / 1072) \\
& (x-1 / 16)(x+16 / 67) \\
& (x+1 / 20)(x-20 / 67)
\end{aligned}
\]
with Kummer surface
\(a^{2}=194769, b^{2}=126939\),
\(c^{2}=64009, d^{2}=126939\).

Found many more examples for various choices of \(\Delta\)
\(\Rightarrow\) thousands of different
\[
\# E\left(\mathbf{F}_{p^{2}}\right) \text { for } p=2^{127}-1
\]

A good example for crypto:
\[
\begin{aligned}
y^{2}= & (z+3)(z+1 / 9) \\
& (z-1 / 7)(z-7 / 3) \\
& (z-8 / 7)(z-7 / 24) .
\end{aligned}
\]
\(\# J\left(\mathbf{F}_{p}\right)=\# J^{\prime}\left(\mathbf{F}_{p}\right)=\# E\left(\mathbf{F}_{p^{2}}\right)\)
\(=32 \ell\) for a prime \(\ell \approx 2^{249}\).
\(\# E^{\prime}\left(\mathbf{F}_{p^{2}}\right)=12 \cdot\) prime.
\(a^{2}=-46893, b^{2}=20020\),
\(c^{2}=20020, d^{2}=5800\).
small quadratic field: all small \(s_{1}, s_{2}, s_{3}\).
\(\Delta=-67\) found that \(17143+96 \sqrt{\Delta}) / 17161\),
\(9+32 \sqrt{\Delta}) / 323\)
\(3-40 \sqrt{\Delta}) / 467\)
d Scholten curve
\(-16 / 3)(x+3 / 1072)\)
\(-1 / 16)(x+16 / 67)\)
\(+1 / 20)(x-20 / 67)\)
mmer surface
4769, \(b^{2}=126939\),
\(4009, d^{2}=126939\).

Found many more examples for various choices of \(\Delta\)
\(\Rightarrow\) thousands of different
\(\# E\left(\mathbf{F}_{p^{2}}\right)\) for \(p=2^{127}-1\).
Another
\(y^{2}=(z\)

A good example for crypto:
\[
\begin{aligned}
y^{2}= & (z+3)(z+1 / 9) \\
& (z-1 / 7)(z-7 / 3) \\
& (z-8 / 7)(z-7 / 24)
\end{aligned}
\]
\(\# J\left(\mathbf{F}_{p}\right)=\# J^{\prime}\left(\mathbf{F}_{p}\right)=\# E\left(\mathbf{F}_{p^{2}}\right)\)
\(=32 \ell\) for a prime \(\ell \approx 2^{249}\).
\(\# E^{\prime}\left(\mathbf{F}_{p^{2}}\right)=12 \cdot\) prime.
\(a^{2}=-46893, b^{2}=20020\),
\(c^{2}=20020, d^{2}=5800\).
adratic field:
\(S_{1}, S_{2}, S_{3}\).
7 found that \(6 \sqrt{\Delta}) / 17161\),
()/323,
5)/467
curve
\(+3 / 1072)\)
( \(+16 / 67\) )
( \(-20 / 67\) )
ace
\(=126939\),
\(=126939\).

Found many more examples for various choices of \(\Delta\)
\(\Rightarrow\) thousands of different
\(\# E\left(\mathbf{F}_{p^{2}}\right)\) for \(p=2^{127}-1\).
A good example for crypto:
\[
\begin{aligned}
y^{2}= & (z+3)(z+1 / 9) \\
& (z-1 / 7)(z-7 / 3) \\
& (z-8 / 7)(z-7 / 24) .
\end{aligned}
\]
\(\# J\left(\mathbf{F}_{p}\right)=\# J^{\prime}\left(\mathbf{F}_{p}\right)=\# E\left(\mathbf{F}_{p^{2}}\right)\)
\(=32 \ell\) for a prime \(\ell \approx 2^{249}\).
\(\# E^{\prime}\left(\mathbf{F}_{p^{2}}\right)=12 \cdot\) prime.
\(a^{2}=-46893, b^{2}=20020\),
\(c^{2}=20020, d^{2}=5800\).

Another good exa \(y^{2}=(z-1)(z+\) \((z-1 / 4)(z\) \((z+5 / 7)(z\)

Found many more examples for various choices of \(\Delta\)
\(\Rightarrow\) thousands of different \(\# E\left(\mathbf{F}_{p^{2}}\right)\) for \(p=2^{127}-1\).

A good example for crypto:
\[
\begin{aligned}
y^{2}= & (z+3)(z+1 / 9) \\
& (z-1 / 7)(z-7 / 3) \\
& (z-8 / 7)(z-7 / 24) .
\end{aligned}
\]
\(\# J\left(\mathbf{F}_{p}\right)=\# J^{\prime}\left(\mathbf{F}_{p}\right)=\# E\left(\mathbf{F}_{p^{2}}\right)\)
\(=32 \ell\) for a prime \(\ell \approx 2^{249}\).
\(\# E^{\prime}\left(\mathbf{F}_{p^{2}}\right)=12 \cdot\) prime.
\(a^{2}=-46893, b^{2}=20020\),
\(c^{2}=20020, d^{2}=5800\).

Another good example:
\(y^{2}=(z-1)(z+1 / 11)\) \((z-1 / 4)(z+4 / 11)\)
\((z+5 / 7)(z-7 / 55)\).

Found many more examples for various choices of \(\Delta\)
\(\Rightarrow\) thousands of different
\(\# E\left(\mathbf{F}_{p^{2}}\right)\) for \(p=2^{127}-1\).
A good example for crypto:
\[
\begin{aligned}
y^{2}= & (z+3)(z+1 / 9) \\
& (z-1 / 7)(z-7 / 3) \\
& (z-8 / 7)(z-7 / 24)
\end{aligned}
\]
\(\# J\left(\mathbf{F}_{p}\right)=\# J^{\prime}\left(\mathbf{F}_{p}\right)=\# E\left(\mathbf{F}_{p^{2}}\right)\)
\(=32 \ell\) for a prime \(\ell \approx 2^{249}\).
\(\# E^{\prime}\left(\mathbf{F}_{p^{2}}\right)=12 \cdot\) prime.
\(a^{2}=-46893, b^{2}=20020\),
\(c^{2}=20020, d^{2}=5800\).

Another good example:
\[
\begin{aligned}
y^{2}= & (z-1)(z+1 / 11) \\
& (z-1 / 4)(z+4 / 11) \\
& (z+5 / 7)(z-7 / 55)
\end{aligned}
\]

Found many more examples for various choices of \(\Delta\)
\(\Rightarrow\) thousands of different
\(\# E\left(\mathbf{F}_{p^{2}}\right)\) for \(p=2^{127}-1\).
A good example for crypto:
\[
\begin{aligned}
y^{2}= & (z+3)(z+1 / 9) \\
& (z-1 / 7)(z-7 / 3) \\
& (z-8 / 7)(z-7 / 24) .
\end{aligned}
\]
\(\# J\left(\mathbf{F}_{p}\right)=\# J^{\prime}\left(\mathbf{F}_{p}\right)=\# E\left(\mathbf{F}_{p^{2}}\right)\)
\(=32 \ell\) for a prime \(\ell \approx 2^{249}\).
\(\# E^{\prime}\left(\mathbf{F}_{p^{2}}\right)=12 \cdot\) prime.
\(a^{2}=-46893, b^{2}=20020\),
\(c^{2}=20020, d^{2}=5800\).

Another good example:
\[
\begin{aligned}
y^{2}= & (z-1)(z+1 / 11) \\
& (z-1 / 4)(z+4 / 11) \\
& (z+5 / 7)(z-7 / 55) .
\end{aligned}
\]

Slightly lower security level:
\(\# J\left(\mathbf{F}_{p}\right)=\# J^{\prime}\left(\mathbf{F}_{p}\right)=\# E\left(\mathbf{F}_{p^{2}}\right)\)
\(=720 \ell\) for a prime \(\ell \approx 2^{244.5}\).
\(\# E^{\prime}\left(\mathbf{F}_{p^{2}}\right)=260 \cdot\) prime.

Found many more examples for various choices of \(\Delta\)
\(\Rightarrow\) thousands of different \(\# E\left(\mathbf{F}_{p^{2}}\right)\) for \(p=2^{127}-1\).

A good example for crypto:
\[
\begin{aligned}
y^{2}= & (z+3)(z+1 / 9) \\
& (z-1 / 7)(z-7 / 3) \\
& (z-8 / 7)(z-7 / 24) .
\end{aligned}
\]
\(\# J\left(\mathbf{F}_{p}\right)=\# J^{\prime}\left(\mathbf{F}_{p}\right)=\# E\left(\mathbf{F}_{p^{2}}\right)\)
\(=32 \ell\) for a prime \(\ell \approx 2^{249}\).
\(\# E^{\prime}\left(\mathbf{F}_{p^{2}}\right)=12 \cdot\) prime.
\(a^{2}=-46893, b^{2}=20020\),
\(c^{2}=20020, d^{2}=5800\).

Another good example:
\[
\begin{aligned}
y^{2}= & (z-1)(z+1 / 11) \\
& (z-1 / 4)(z+4 / 11) \\
& (z+5 / 7)(z-7 / 55)
\end{aligned}
\]

Slightly lower security level:
\[
\# J\left(\mathbf{F}_{p}\right)=\# J^{\prime}\left(\mathbf{F}_{p}\right)=\# E\left(\mathbf{F}_{p^{2}}\right)
\]
\(=720 \ell\) for a prime \(\ell \approx 2^{244.5}\).
\(\# E^{\prime}\left(\mathbf{F}_{p^{2}}\right)=260 \cdot\) prime.
Particularly nice arithmetic:
\[
\begin{aligned}
& \left(a^{2}: b^{2}: c^{2}: d^{2}\right)=(20: 12: 12: 5) \\
& \left(A^{2}: \cdots\right)=(49: 15: 15: 1) \\
& \left(\frac{1}{a^{2}}: \cdots\right)=(3: 5: 5: 12) \\
& \left(\frac{1}{A^{2}}: \cdots\right)=(15: 49: 49: 735)
\end{aligned}
\]```

