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Rewind to 2012 Gaudry–Schost:

“the computation took

more than 1,000,000 CPU hours”.

The Gaudry–Schost motivation:
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Inputs: “squared „ coordinates”

(x2 : y2 : z2 : t2) for Q2,

(x3 : y3 : z3 : t3) for Q3,

(x1 : y1 : z1 : t1) for Q1 = Q3 − Q2.

This diagram computes

(x4 : y4 : z4 : t4) for Q4 = 2Q2,

(x5 : y5 : z5 : t5) for Q5 = Q3 + Q2.
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This diagram computes
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Just 14 mults for Q4

(1986 Chudnovsky–Chudnovsky).

Huge speedup if constants`
1
a2 : 1

b2 : 1
c2 : 1

d2

´
etc. are small.
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Just 25 mults for Q4; Q5

(2006 Gaudry) after Q1 precomp.
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(xi : yi : zi : ti ) are points on

original Kummer surface K :

4E2xyzt = ((x2 + y2 + z2 + t2)

−F (xt + yz)− G(xz + yt)

−H(xy + zt))2

where

A2 = a2 + b2 + c2 + d2;

B2 = a2 + b2 − c2 − d2;

C2 = a2 − b2 + c2 − d2;

D2 = a2 − b2 − c2 + d2;

F = (a4−b4−c4+d4)=(a2d2−b2c2);

G = (a4−b4+c4−d4)=(a2c2−b2d2);

H= (a4+b4−c4−d4)=(a2b2−c2d2);

E2 = F 2 + G2 +H2 + FGH − 4.
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Surface is from 1864 Kummer,

Über die Flächen vierten Grades

mit sechzehn singulären Punkten:
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´
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(xi : yi : zi : ti ) are points on

original Kummer surface K :

4E2xyzt = ((x2 + y2 + z2 + t2)

−F (xt + yz)− G(xz + yt)

−H(xy + zt))2

where

A2 = a2 + b2 + c2 + d2;

B2 = a2 + b2 − c2 − d2;

C2 = a2 − b2 + c2 − d2;

D2 = a2 − b2 − c2 + d2;

F = (a4−b4−c4+d4)=(a2d2−b2c2);

G = (a4−b4+c4−d4)=(a2c2−b2d2);

H= (a4+b4−c4−d4)=(a2b2−c2d2);

E2 = F 2 + G2 +H2 + FGH − 4.

Surface is from 1864 Kummer,
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Q2; Q3 are points on

Jacobian J of a related

genus-2 hyperelliptic curve C.

“Standard” X : J={±1} ,� K

defines squared „ coords on J.



Surface is from 1864 Kummer,
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A good example for crypto:

y2 = (z + 3)(z + 1=9)

(z − 1=7)(z − 7=3)

(z − 8=7)(z − 7=24).

#J(Fp) = #J ′(Fp) = #E(Fp2)

= 32‘ for a prime ‘ ≈ 2249.

#E′(Fp2) = 12 · prime.

a2 = −46893; b2 = 20020;

c2 = 20020; d2 = 5800:
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a2 = 194769; b2 = 126939;

c2 = 64009; d2 = 126939:

Found many more examples

for various choices of ∆

⇒ thousands of different

#E(Fp2) for p = 2127 − 1.

A good example for crypto:

y2 = (z + 3)(z + 1=9)

(z − 1=7)(z − 7=3)

(z − 8=7)(z − 7=24).

#J(Fp) = #J ′(Fp) = #E(Fp2)

= 32‘ for a prime ‘ ≈ 2249.

#E′(Fp2) = 12 · prime.

a2 = −46893; b2 = 20020;

c2 = 20020; d2 = 5800:

Another good example:

y2 = (z − 1)(z + 1=11)

(z − 1=4)(z + 4=11)

(z + 5=7)(z − 7=55).
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Slightly lower security level:

#J(Fp) = #J ′(Fp) = #E(Fp2)

= 720‘ for a prime ‘ ≈ 2244:5.

#E′(Fp2) = 260 · prime.

Particularly nice arithmetic:

(a2 : b2 : c2 : d2) = (20 : 12 : 12 : 5);

(A2 : : : :) = (49 : 15 : 15 : 1);`
1
a2 : · · ·

´
= (3 : 5 : 5 : 12);`

1
A2 : · · ·

´
= (15 : 49 : 49 : 735).


