Simplicity
D. J. Bernstein

University of Illinois at Chicago \&
Technische Universiteit Eindhoven
Joint work with:
Tanja Lance
Technische Universiteit Eindhoven

NIST's ECC standards
= NSA's prime choices

+ NSA's curve choices
+ NSA's coordinate choices
+ NSA's computation choices
+ NSA's protocol choices.

NIST's ECC standards create unnecessary complexity
in ECC implementations.
This unnecessary complexity

- scares away implementors,
- reduces ECC adoption,
- interferes with optimization,
- keeps ECC out of small devices,
- scares away auditors,
- interferes with verification, and
- creates ECC security failures.

NIST's ECC standards create unnecessary complexity in ECC implementations.

This unnecessary complexity

- scares away implementors,
- reduces ECC adoption,
- interferes with optimization,
- keeps ECC out of small devices,
- scares away auditors,
- interferes with verification, and
- creates ECC security failures.

1992 Rivest: "The poor user is
given enough rope with which to hang himself-something a standard should not do."

Should cryptographers apply every imaginable simplification? Replace GCM with ECB?

Should cryptographers apply every imaginable simplification?

Replace GCM with ECB?
No: ECB doesn't authenticate and doesn't securely encrypt.

Should cryptographers apply every imaginable simplification? Replace GCM with ECB?

No: ECB doesn't authenticate and doesn't securely encrypt.

Replace ECDH with FFDH?

Should cryptographers apply every imaginable simplification?

Replace GCM with ECB?
No: ECB doesn't authenticate and doesn't securely encrypt.

Replace ECDH with FFDH?
No: FFDH is vulnerable to index calculus. Bigger keys; slower; much harder security analysis.

Should cryptographers apply every imaginable simplification?

Replace GCM with ECB?
No: ECB doesn't authenticate and doesn't securely encrypt.

Replace ECDH with FFDH?
No: FFDH is vulnerable to index
calculus. Bigger keys; slower; much harder security analysis.

Priority \#1 is security.
Priority \#2 is to meet the user's performance requirements.
Priority \#3 is simplicity.

Wild overgeneralization from examples of oversimplification:
"Simplicity damages security."
"Simplicity damages speed."

Wild overgeneralization from examples of oversimplification:
"Simplicity damages security."
"Simplicity damages speed."
These overgeneralization are often used to cover up deficient analyses of speed and security.

Wild overgeneralization from examples of oversimplification:
"Simplicity damages security."
"Simplicity damages speed."
These overgeneralization are often used to cover up deficient analyses of speed and security.

In fact, many simplifications
don't hurt security at all and don't hurt speed at all.

Wild overgeneralization from examples of oversimplification:
"Simplicity damages security."
"Simplicity damages speed."
These overgeneralization are often used to cover up deficient analyses of speed and security.

In fact, many simplifications don't hurt security at all and don't hurt speed at all.

Next-generation ECC simplicity contributes to security and contributes to speed.

Constant-time Curve25519

Imitate hardware in software.
Allocate constant number of bits for each integer.
Always perform arithmetic on all bits. Don't skip bits.

Constant-time Curve25519

Imitate hardware in software.
Allocate constant number of bits for each integer.
Always perform arithmetic on all bits. Don't skip bits.

If you're adding a to b,
with 255 bits allocated for a
and 255 bits allocated for b :
allocate 256 bits for $a+b$.

Constant-time Curve25519

Imitate hardware in software.
Allocate constant number of bits for each integer.
Always perform arithmetic on all bits. Don't skip bits.

If you're adding a to b, with 255 bits allocated for a and 255 bits allocated for b : allocate 256 bits for $a+b$.

If you're multiplying a by b, with 256 bits allocated for a and 256 bits allocated for b : allocate 512 bits for $a b$.

If 600 bits are allocated for c :
Replace c with $19 q+r$ where $r=c \bmod 2^{255}, q=\left\lfloor c / 2^{255}\right\rfloor$; same as c modulo $p=2^{255}-19$. Allocate 350 bits for $19 q+r$.

If 600 bits are allocated for c :
Replace c with $19 q+r$ where $r=c \bmod 2^{255}, q=\left\lfloor c / 2^{255}\right\rfloor$; same as c modulo $p=2^{255}-19$. Allocate 350 bits for $19 q+r$.

Repeat same compression: 350 bits $\rightarrow 256$ bits.

Small enough for next mult.

If 600 bits are allocated for c :
Replace c with $19 q+r$ where $r=c \bmod 2^{255}, q=\left\lfloor c / 2^{255}\right\rfloor$; same as c modulo $p=2^{255}-19$. Allocate 350 bits for $19 q+r$.

Repeat same compression: 350 bits $\rightarrow 256$ bits.

Small enough for next mult.
To completely reduce 256 bits
$\bmod p$, do two iterations of constant-time conditional sub.

One conditional sub:
replace c with $c-(1-s) p$
where s is sign bit in $c-p$.

Constant-time NIST P-256

NIST P-256 prime p is
$2^{256}-2^{224}+2^{192}+2^{96}-1$.

ECDSA standard specifies

 reduction procedure given an integer " A less than $p^{2 "}$:Write A as
$\left(A_{15}, A_{14}, A_{13}, A_{12}, A_{11}, A_{10}, A_{9}\right.$,
$\left.A_{8}, A_{7}, A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right)$, meaning $\sum_{i} A_{i} 2^{32 i}$.

Define
$T ; S_{1} ; S_{2} ; S_{3} ; S_{4} ; D_{1} ; D_{2} ; D_{3} ; D_{4}$
as
$\left(A_{7}, A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right) ;$ $\left(A_{15}, A_{14}, A_{13}, A_{12}, A_{11}, 0,0,0\right)$; $\left(0, A_{15}, A_{14}, A_{13}, A_{12}, 0,0,0\right)$;
$\left(A_{15}, A_{14}, 0,0,0, A_{10}, A_{9}, A_{8}\right)$;
$\left(A_{8}, A_{13}, A_{15}, A_{14}, A_{13}, A_{11}, A_{10}, A_{9}\right)$; $\left(A_{10}, A_{8}, 0,0,0, A_{13}, A_{12}, A_{11}\right)$;
$\left(A_{11}, A_{9}, 0,0, A_{15}, A_{14}, A_{13}, A_{12}\right)$; $\left(A_{12}, 0, A_{10}, A_{9}, A_{8}, A_{15}, A_{14}, A_{13}\right)$; $\left(A_{13}, 0, A_{11}, A_{10}, A_{9}, 0, A_{15}, A_{14}\right)$.

Compute $T+2 S_{1}+2 S_{2}+S_{3}+$
$S_{4}-D_{1}-D_{2}-D_{3}-D_{4}$.
Reduce modulo p "by adding or subtracting a few copies" of p.

What is "a few copies"?
A loop? Variable time,
presumably a security problem.

What is "a few copies"?
A loop? Variable time, presumably a security problem.

Correct but quite slow:
conditionally add $4 p$,
conditionally add $2 p$,
conditionally add p,
conditionally sub $4 p$,
conditionally sub $2 p$,
conditionally sub p.

What is "a few copies"?
A loop? Variable time, presumably a security problem.

Correct but quite slow:
conditionally add $4 p$,
conditionally add $2 p$,
conditionally add p,
conditionally sub $4 p$,
conditionally sub $2 p$,
conditionally sub p.
Delay until end of computation? Trouble: " A less than $p^{2 "}$.

What is "a few copies"?
A loop? Variable time, presumably a security problem.

Correct but quite slow:
conditionally add $4 p$,
conditionally add $2 p$,
conditionally add p,
conditionally sub $4 p$,
conditionally sub $2 p$,
conditionally sub p.
Delay until end of computation? Trouble: " A less than $p^{2 "}$.

Even worse: what about platforms where 2^{32} isn't best radix?

The Montgomery ladder

$x 2, z 2, x 3, z 3=1,0, x 1,1$
for i in reversed(range(255)):

$$
\begin{aligned}
& \text { bit }= 1 \&(n \gg i) \\
& x 2, x 3=\operatorname{cswap}(x 2, x 3, b i t) \\
& z 2, z 3=\operatorname{cswap}(z 2, z 3, b i t) \\
& x 3, z 3=\left((x 2 * x 3-z 2 * z 3)^{\wedge} 2\right. \\
&\left.x 1 *(x 2 * z 3-z 2 * x 3)^{\wedge} 2\right) \\
& x 2, z 2=\left(\left(x 2^{\wedge} 2-z 2^{\wedge} 2\right)^{\wedge} 2\right. \\
&\left.4 * x 2 * z 2 *\left(x 2^{\sim} 2+A * x 2 * z 2+z 2^{\wedge} 2\right)\right) \\
& x 2, x 3=\operatorname{cswap}(x 2, x 3, b i t) \\
& z 2, z 3=\operatorname{cswap}(z 2, z 3, b i t)
\end{aligned}
$$

return $\mathrm{x} 2 * \mathrm{z} 2^{\wedge}(\mathrm{p}-2)$

Simple; fast; always
computes scalar multiplication
on $y^{2}=x^{3}+A x^{2}+x$
when $A^{2}-4$ is non-square.

Simple; fast; always
computes scalar multiplication
on $y^{2}=x^{3}+A x^{2}+x$
when $A^{2}-4$ is non-square.
With some extra lines
can compute (x, y) output given (x, y) input.
But simpler to use just x, as proposed by 1985 Miller.

Simple; fast; always
computes scalar multiplication
on $y^{2}=x^{3}+A x^{2}+x$
when $A^{2}-4$ is non-square.
With some extra lines
can compute (x, y) output given (x, y) input.
But simpler to use just x, as proposed by 1985 Miller.

Adaptations to NIST curves are much slower; not as simple; not proven to always work.
Other scalar-mult methods:
proven but much more complex.

"Hey, you forgot to check

 that x_{1} is on the curve!""Hey, you forgot to check that x_{1} is on the curve!"

No need to check.
Curve25519 is twist-secure.
"Hey, you forgot to check that x_{1} is on the curve!"

No need to check.
Curve25519 is twist-secure.
"This textbook tells me
to start the Montgomery ladder from the top bit set in $n!"$ (Exploited in, e.g., 2011 Brumley-Tuveri "Remote timing attacks are still practical".)
"Hey, you forgot to check that x_{1} is on the curve!"

No need to check.
Curve 25519 is twist-secure.
"This textbook tells me
to start the Montgomery ladder
from the top bit set in $n!"$
(Exploited in, e.g., 2011
Brumley-Tuveri "Remote timing attacks are still practical".)

The Curve 25519 DH function takes $2^{254} \leq n<2^{255}$, so this is still constant-time.

Many more issues

blog.cr.yp.to
/20140323-ecdsa.html analyzes choices made in designing ECC signatures.

Unnecessary complexity in ECDSA: scalar inversion;
Weierstrass incompleteness; variable-time NAF; et al.

Next-generation ECC is much simpler for implementors, much simpler for designers, much simpler for auditors, etc.

