Advanced
code-based cryptography
Daniel J. Bernstein University of Illinois at Chicago \& Technische Universiteit Eindhoven

Lattice-basis reduction

Define $L=(0,24) \mathbf{Z}+(1,17) \mathbf{Z}$
$=\{(b, 24 a+17 b): a, b \in \mathbf{Z}\}$.
What is the shortest nonzero vector in L?

Lattice-basis reduction

Define $L=(0,24) \mathbf{Z}+(1,17) \mathbf{Z}$
$=\{(b, 24 a+17 b): a, b \in \mathbf{Z}\}$.
What is the shortest nonzero vector in L?
$L=(0,24) \mathbf{Z}+(1,17) \mathbf{Z}$

Lattice-basis reduction

Define $L=(0,24) \mathbf{Z}+(1,17) \mathbf{Z}$
$=\{(b, 24 a+17 b): a, b \in \mathbf{Z}\}$.
What is the shortest nonzero vector in L?

$$
\begin{aligned}
L & =(0,24) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,7) \mathbf{Z}+(1,17) \mathbf{Z}
\end{aligned}
$$

Lattice-basis reduction

Define $L=(0,24) \mathbf{Z}+(1,17) \mathbf{Z}$
$=\{(b, 24 a+17 b): a, b \in \mathbf{Z}\}$.
What is the shortest nonzero vector in L?

$$
\begin{aligned}
L & =(0,24) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,7) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,7) \mathbf{Z}+(3,3) \mathbf{Z}
\end{aligned}
$$

Lattice-basis reduction

Define $L=(0,24) \mathbf{Z}+(1,17) \mathbf{Z}$
$=\{(b, 24 a+17 b): a, b \in \mathbf{Z}\}$.
What is the shortest nonzero vector in L?

$$
\begin{aligned}
L & =(0,24) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,7) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,7) \mathbf{Z}+(3,3) \mathbf{Z} \\
& =(-4,4) \mathbf{Z}+(3,3) \mathbf{Z} .
\end{aligned}
$$

Lattice-basis reduction

Define $L=(0,24) \mathbf{Z}+(1,17) \mathbf{Z}$
$=\{(b, 24 a+17 b): a, b \in \mathbf{Z}\}$.
What is the shortest nonzero vector in L?

$$
\begin{aligned}
L & =(0,24) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,7) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,7) \mathbf{Z}+(3,3) \mathbf{Z} \\
& =(-4,4) \mathbf{Z}+(3,3) \mathbf{Z} .
\end{aligned}
$$

$(-4,4),(3,3)$ are orthogonal.
Shortest vectors in L are
$(0,0),(3,3),(-3,-3)$.

Another example:

Define $L=(0,25) \mathbf{Z}+(1,17) \mathbf{Z}$.
What is the shortest nonzero vector in L?

Another example:
Define $L=(0,25) \mathbf{Z}+(1,17) \mathbf{Z}$.
What is the shortest nonzero vector in L?
$L=(0,25) \mathbf{Z}+(1,17) \mathbf{Z}$

Another example:

Define $L=(0,25) \mathbf{Z}+(1,17) \mathbf{Z}$.

What is the shortest nonzero vector in L?

$$
\begin{aligned}
L & =(0,25) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,8) \mathbf{Z}+(1,17) \mathbf{Z}
\end{aligned}
$$

Another example:

Define $L=(0,25) \mathbf{Z}+(1,17) \mathbf{Z}$.

What is the shortest nonzero vector in L?

$$
\begin{aligned}
L & =(0,25) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,8) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,8) \mathbf{Z}+(3,1) \mathbf{Z} .
\end{aligned}
$$

Another example:

Define $L=(0,25) \mathbf{Z}+(1,17) \mathbf{Z}$.
What is the shortest nonzero vector in L?

$$
\begin{aligned}
L & =(0,25) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,8) \mathbf{Z}+(1,17) \mathbf{Z} \\
& =(-1,8) \mathbf{Z}+(3,1) \mathbf{Z} .
\end{aligned}
$$

Nearly orthogonal.
Shortest vectors in L are
$(0,0),(3,1),(-3,-1)$.

Polynomial lattices

Define $P=\mathbf{F}_{2}[x]$,
$r_{0}=(101000)_{x}=x^{5}+x^{3} \in P$,
$r_{1}=(10011)_{x}=x^{4}+x+1 \in P$,
$L=\left(0, r_{0}\right) P+\left(1, r_{1}\right) P$.
What is the shortest nonzero vector in L?

Polynomial lattices

Define $P=\mathbf{F}_{2}[x]$,
$r_{0}=(101000)_{x}=x^{5}+x^{3} \in P$,
$r_{1}=(10011)_{x}=x^{4}+x+1 \in P$,
$L=\left(0, r_{0}\right) P+\left(1, r_{1}\right) P$.
What is the shortest nonzero vector in L?
$L=(0,101000) P+(1,10011) P$

Polynomial lattices

Define $P=\mathbf{F}_{2}[x]$,
$r_{0}=(101000)_{x}=x^{5}+x^{3} \in P$,
$r_{1}=(10011)_{x}=x^{4}+x+1 \in P$,
$L=\left(0, r_{0}\right) P+\left(1, r_{1}\right) P$.
What is the shortest nonzero vector in L?

$$
\begin{aligned}
L & =(0,101000) P+(1,10011) P \\
& =(10,1110) P+(1,10011) P
\end{aligned}
$$

Polynomial lattices

Define $P=\mathbf{F}_{2}[x]$,
$r_{0}=(101000)_{x}=x^{5}+x^{3} \in P$,
$r_{1}=(10011)_{x}=x^{4}+x+1 \in P$,
$L=\left(0, r_{0}\right) P+\left(1, r_{1}\right) P$.
What is the shortest nonzero vector in L?

$$
\begin{aligned}
L & =(0,101000) P+(1,10011) P \\
& =(10,1110) P+(1,10011) P \\
& =(10,1110) P+(111,1) P .
\end{aligned}
$$

Polynomial lattices

Define $P=\mathbf{F}_{2}[x]$,
$r_{0}=(101000)_{x}=x^{5}+x^{3} \in P$,
$r_{1}=(10011)_{x}=x^{4}+x+1 \in P$,
$L=\left(0, r_{0}\right) P+\left(1, r_{1}\right) P$.
What is the shortest nonzero vector in L ?

$$
\begin{aligned}
L & =(0,101000) P+(1,10011) P \\
& =(10,1110) P+(1,10011) P \\
& =(10,1110) P+(111,1) P
\end{aligned}
$$

$(111,1)$: shortest nonzero vector. $(10,1110)$: shortest independent vector.

Degree of $(q, r) \in \mathbf{F}_{2}[x] \times \mathbf{F}_{2}[x]$
is defined as $\max \{\operatorname{deg} q, \operatorname{deg} r\}$.

Degree of $(q, r) \in \mathbf{F}_{2}[x] \times \mathbf{F}_{2}[x]$
is defined as $\max \{\operatorname{deg} q, \operatorname{deg} r\}$.
Can use other metrics,
or equivalently rescale L.
e.g. Define $L \subseteq \mathbf{F}_{2}[\sqrt{x}] \times \mathbf{F}_{2}[\sqrt{x}]$
as $\left(0, r_{0} \sqrt{x}\right) P+\left(1, r_{1} \sqrt{x}\right) P$.

Degree of $(q, r) \in \mathbf{F}_{2}[x] \times \mathbf{F}_{2}[x]$ is defined as $\max \{\operatorname{deg} q, \operatorname{deg} r\}$.

Can use other metrics, or equivalently rescale L.
egg. Define $L \subseteq \mathbf{F}_{2}[\sqrt{x}] \times \mathbf{F}_{2}[\sqrt{x}]$ as $\left(0, r_{0} \sqrt{x}\right) P+\left(1, r_{1} \sqrt{x}\right) P$.

Successive generators for L :
$(0,101000 \sqrt{x})$, degree 5.5.
$(1,10011 \sqrt{x})$, degree 4.5.
$(10,1110 \sqrt{x})$, degree 3.5.
$(111,1 \sqrt{x})$, degree 2 .

Warning: Sometimes
shortest independent vector is
after shortest nonzero vector.

Warning: Sometimes
shortest independent vector is after shortest nonzero vector.
e.g. Define
$r_{0}=101000, r_{1}=10111$,
$L=\left(0, r_{0} \sqrt{x}\right) P+\left(1, r_{1} \sqrt{x}\right) P$.
Successive generators for L :
$(0,101000 \sqrt{x})$, degree 5.5.
$(1,10111 \sqrt{x})$, degree 4.5.
$(10,110 \sqrt{x})$, degree 2.5 .
$(1101,11 \sqrt{x})$, degree 3 .

For any field k, any r_{0}, r_{1}
in $P=k[x]$ with $\operatorname{deg} r_{0}>\operatorname{deg} r_{1}$:

Euclid/Stevin computation:

Define $r_{2}=r_{0} \bmod r_{1}$,
$r_{3}=r_{1} \bmod r_{2}$, etc.

For any field k, any r_{0}, r_{1} in $P=k[x]$ with $\operatorname{deg} r_{0}>\operatorname{deg} r_{1}$: Euclid/Stevin computation:
Define $r_{2}=r_{0} \bmod r_{1}$,
$r_{3}=r_{1} \bmod r_{2}$, etc.
Extended: $q_{0}=0 ; q_{1}=1$;
$q_{i+2}=q_{i}-\left\lfloor r_{i} / r_{i+1}\right\rfloor q_{i+1}$.
Then $q_{i} r_{1} \equiv r_{i}\left(\bmod r_{0}\right)$.

For any field k, any r_{0}, r_{1} in $P=k[x]$ with $\operatorname{deg} r_{0}>\operatorname{deg} r_{1}$:

Euclid/Stevin computation:

Define $r_{2}=r_{0} \bmod r_{1}$,
$r_{3}=r_{1} \bmod r_{2}$, etc.
Extended: $q_{0}=0 ; q_{1}=1$;
$q_{i+2}=q_{i}-\left\lfloor r_{i} / r_{i+1}\right\rfloor q_{i+1}$.
Then $q_{i} r_{1} \equiv r_{i}\left(\bmod r_{0}\right)$.
Lattice view: Have
$\left(0, r_{0} \sqrt{x}\right) P+\left(1, r_{1} \sqrt{x}\right) P=$
$\left(q_{i}, r_{i} \sqrt{x}\right) P+\left(q_{i+1}, r_{i+1} \sqrt{x}\right) P$.

For any field k, any r_{0}, r_{1} in $P=k[x]$ with $\operatorname{deg} r_{0}>\operatorname{deg} r_{1}$:

Euclid/Stevin computation:
Define $r_{2}=r_{0} \bmod r_{1}$,
$r_{3}=r_{1} \bmod r_{2}$, etc.
Extended: $q_{0}=0 ; q_{1}=1$;
$q_{i+2}=q_{i}-\left\lfloor r_{i} / r_{i+1}\right\rfloor q_{i+1}$.
Then $q_{i} r_{1} \equiv r_{i}\left(\bmod r_{0}\right)$.
Lattice view: Have
$\left(0, r_{0} \sqrt{x}\right) P+\left(1, r_{1} \sqrt{x}\right) P=$
$\left(q_{i}, r_{i} \sqrt{x}\right) P+\left(q_{i+1}, r_{i+1} \sqrt{x}\right) P$.
Can continue until $r_{i+1}=0$. $\operatorname{gcd}\left\{r_{0}, r_{1}\right\}=r_{i} /$ leadcoeff r_{i}.

Reducing lattice basis for L is a "half gcd" computation, stopping halfway to the gcd.

Reducing lattice basis for L is a "half gcd" computation, stopping halfway to the gcd.
$\operatorname{deg} r_{i}$ decreases; $\operatorname{deg} q_{i}$ increases; $\operatorname{deg} q_{i+1}+\operatorname{deg} r_{i}=\operatorname{deg} r_{0}$.

Reducing lattice basis for L is a "half gcd" computation, stopping halfway to the gcd.
$\operatorname{deg} r_{i}$ decreases; $\operatorname{deg} q_{i}$ increases; $\operatorname{deg} q_{i+1}+\operatorname{deg} r_{i}=\operatorname{deg} r_{0}$.

Say j is minimal with
$\operatorname{deg} r_{j} \sqrt{x} \leq\left(\operatorname{deg} r_{0}\right) / 2$.
Then $\operatorname{deg} q_{j} \leq\left(\operatorname{deg} r_{0}\right) / 2$ so
$\operatorname{deg}\left(q_{j}, r_{j} \sqrt{x}\right) \leq\left(\operatorname{deg} r_{0}\right) / 2$.
Shortest nonzero vector.

Reducing lattice basis for L is a "half ged" computation, stopping halfway to the ged.
$\operatorname{deg} r_{i}$ decreases; $\operatorname{deg} q_{i}$ increases; $\operatorname{deg} q_{i+1}+\operatorname{deg} r_{i}=\operatorname{deg} r_{0}$.

Say j is minimal with $\operatorname{deg} r_{j} \sqrt{x} \leq\left(\operatorname{deg} r_{0}\right) / 2$. Then $\operatorname{deg} q_{j} \leq\left(\operatorname{deg} r_{0}\right) / 2$ so $\operatorname{deg}\left(q_{j}, r_{j} \sqrt{x}\right) \leq\left(\operatorname{deg} r_{0}\right) / 2$. Shortest nonzero vector.
$\left(q_{j+\epsilon}, r_{j+\epsilon} \sqrt{x}\right)$ has degree $\operatorname{deg} r_{0} \sqrt{x}-\operatorname{deg}\left(q_{j}, r_{j} \sqrt{x}\right)$ for some $\epsilon \in\{-1,1\}$.
Shortest independent vector.

Proof of "shortest":

Take any $(q, r \sqrt{x})$ in lattice.

Proof of "shortest":
Take any $(q, r \sqrt{x})$ in lattice.
$(q, r \sqrt{x})=u\left(q_{j}, r_{j} \sqrt{x}\right)$

$$
+v\left(q_{j+\epsilon}, r_{j+\epsilon} \sqrt{x}\right)
$$

for some $u, v \in P$.

Proof of "shortest":
Take any $(q, r \sqrt{x})$ in lattice.
$(q, r \sqrt{x})=u\left(q_{j}, r_{j} \sqrt{x}\right)$

$$
+v\left(q_{j+\epsilon}, r_{j+\epsilon} \sqrt{x}\right)
$$

for some $u, v \in P$.
$q_{j} r_{j+\epsilon}-q_{j+\epsilon} r_{j}= \pm r_{0}$
so $v= \pm\left(r q_{j}-q r_{j}\right) / r_{0}$
and $u= \pm\left(q r_{j+\epsilon}-r q_{j+\epsilon}\right) / r_{0}$.

Proof of "shortest":
Take any $(q, r \sqrt{x})$ in lattice.
$(q, r \sqrt{x})=u\left(q_{j}, r_{j} \sqrt{x}\right)$

$$
+v\left(q_{j+\epsilon}, r_{j+\epsilon} \sqrt{x}\right)
$$

for some $u, v \in P$.
$q_{j} r_{j+\epsilon}-q_{j+\epsilon} r_{j}= \pm r_{0}$
so $v= \pm\left(r q_{j}-q r_{j}\right) / r_{0}$
and $u= \pm\left(q r_{j+\epsilon}-r q_{j+\epsilon}\right) / r_{0}$.
If $\operatorname{deg}(q, r \sqrt{x})$

$$
<\operatorname{deg}\left(q_{j+\epsilon}, r_{j+\epsilon} \sqrt{x}\right)
$$

then $\operatorname{deg} v<0$ so $v=0$;
ie., any vector in lattice shorter than $\left(q_{j+\epsilon}, r_{j+\epsilon} \sqrt{x}\right)$ is a multiple of $\left(q_{j}, r_{j} \sqrt{x}\right)$.

Classical binary Goppa codes

Fix integer $n \geq 0$;
integer $m \geq 1$ with $2^{m} \geq n$;
integer $t \geq 0$;
distinct $a_{1}, \ldots, a_{n} \in \mathbf{F}_{2 m}$; monic $g \in \mathbf{F}_{2^{m}}[x]$ of degree t
with $g\left(a_{1}\right) \cdots g\left(a_{n}\right) \neq 0$.

Classical binary Goppa codes

Fix integer $n \geq 0$;
integer $m \geq 1$ with $2^{m} \geq n$;
integer $t \geq 0$;
distinct $a_{1}, \ldots, a_{n} \in \mathbf{F}_{2 m}$; monic $g \in \mathbf{F}_{2^{m}}[x]$ of degree t with $g\left(a_{1}\right) \cdots g\left(a_{n}\right) \neq 0$.

Note that $x-a_{i}$
has a reciprocal in $\mathbf{F}_{2^{m}[x] / g}$.

Classical binary Goppa codes

Fix integer $n \geq 0$;
integer $m \geq 1$ with $2^{m} \geq n$;
integer $t \geq 0$;
distinct $a_{1}, \ldots, a_{n} \in \mathbf{F}_{2 m}$; monic $g \in \mathbf{F}_{2^{m}}[x]$ of degree t with $g\left(a_{1}\right) \cdots g\left(a_{n}\right) \neq 0$.

Note that $x-a_{i}$
has a reciprocal in $\mathbf{F}_{2^{m}}[x] / g$.
Define linear subspace $\Gamma \subseteq \mathbf{F}_{2}^{n}$
as set of $\left(c_{1}, \ldots, c_{n}\right)$ with
$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathbf{F}_{2^{m}}[x] / g$.
Then $\# \Gamma \geq 2^{n-m t}$.

Goal: Find $c \in \Gamma$ given $v=c+e$, assuming $|e| \leq t / 2$.

Goal: Find $c \in \Gamma$ given $v=c+e$, assuming $|e| \leq t / 2$.

Lift $\sum_{i} v_{i} /\left(x-a_{i}\right)$ from $\mathbf{F}_{2^{m}}[x] / g$
to $s \in \mathbf{F}_{2^{m}}[x]$ with $\operatorname{deg} s<t$.
Find shortest nonzero
$\left(q_{j}, r_{j} \sqrt{x}\right)$ in the lattice $L=$
$(0, g \sqrt{x}) \mathbf{F}_{2^{m}}[x]+(1, s \sqrt{x}) \mathbf{F}_{2^{m}}[x]$.

Goal: Find $c \in \Gamma$ given $v=c+e$, assuming $|e| \leq t / 2$.

Lift $\sum_{i} v_{i} /\left(x-a_{i}\right)$ from $\mathbf{F}_{2^{m}}[x] / g$ to $s \in \mathbf{F}_{2^{m}}[x]$ with $\operatorname{deg} s<t$.
Find shortest nonzero
$\left(q_{j}, r_{j} \sqrt{x}\right)$ in the lattice $L=$
$(0, g \sqrt{x}) \mathbf{F}_{2^{m}}[x]+(1, s \sqrt{x}) \mathbf{F}_{2^{m}}[x]$.
Define $E, F \in \mathbf{F}_{2^{m}}[x]$ by
$F=\prod_{i: e_{i} \neq 0}\left(x-a_{i}\right)$ and
$E=\sum_{i} F e_{i} /\left(x-a_{i}\right)$.
Fact: $E / F=r_{j} / q_{j}$ so
F is monic denominator of r_{j} / q_{j}.

Goal: Find $c \in \Gamma$ given $v=c+e$, assuming $|e| \leq t / 2$.

Lift $\sum_{i} v_{i} /\left(x-a_{i}\right)$ from $\mathbf{F}_{2^{m}}[x] / g$ to $s \in \mathbf{F}_{2^{m}}[x]$ with $\operatorname{deg} s<t$.
Find shortest nonzero
$\left(q_{j}, r_{j} \sqrt{x}\right)$ in the lattice $L=$
$(0, g \sqrt{x}) \mathbf{F}_{2^{m}}[x]+(1, s \sqrt{x}) \mathbf{F}_{2^{m}}[x]$.
Define $E, F \in \mathbf{F}_{2^{m}}[x]$ by
$F=\prod_{i: e_{i} \neq 0}\left(x-a_{i}\right)$ and
$E=\sum_{i} F e_{i} /\left(x-a_{i}\right)$.
Fact: $E / F=r_{j} / q_{j}$ so
F is monic denominator of r_{j} / q_{j}.
$e_{i}=0$ if $F\left(a_{i}\right) \neq 0$.
$e_{i}=E\left(a_{i}\right) / F^{\prime}\left(a_{i}\right)$ if $F\left(a_{i}\right)=0$.

This decoder

"corrects $\lfloor t / 2\rfloor$ errors for Γ ".
Why does this work?
$\sum_{i} e_{i} /\left(x-a_{i}\right)=E / F$ and
$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathbf{F}_{2^{m}}[x] / g$
so $s=E / F$ in $\mathbf{F}_{2^{m}}[x] / g$
so $(F, E \sqrt{x}) \in L$.

This decoder

"corrects $\lfloor t / 2\rfloor$ errors for Γ ".
Why does this work?
$\sum_{i} e_{i} /\left(x-a_{i}\right)=E / F$ and
$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathbf{F}_{2^{m}}[x] / g$
so $s=E / F$ in $\mathbf{F}_{2^{m}}[x] / g$
so $(F, E \sqrt{x}) \in L$.
$(F, E \sqrt{x})$ is a short vector:
$\operatorname{deg}(F, E \sqrt{x}) \leq|e| \leq t / 2$
$<t+1 / 2-\operatorname{deg}\left(q_{j}, r_{j} \sqrt{x}\right)$.

This decoder

"corrects $\lfloor t / 2\rfloor$ errors for Γ ".
Why does this work?
$\sum_{i} e_{i} /\left(x-a_{i}\right)=E / F$ and
$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathbf{F}_{2^{m}}[x] / g$
so $s=E / F$ in $\mathbf{F}_{2^{m}}[x] / g$
so $(F, E \sqrt{x}) \in L$.
$(F, E \sqrt{x})$ is a short vector: $\operatorname{deg}(F, E \sqrt{x}) \leq|e| \leq t / 2$
$<t+1 / 2-\operatorname{deg}\left(q_{j}, r_{j} \sqrt{x}\right)$.
Recall proof of "shortest":
$(F, E \sqrt{x}) \in\left(q_{j}, r_{j} \sqrt{x}\right) \mathbf{F}_{2^{m}}[x]$,
so $E / F=r_{j} / q_{j}$. Done!

The squarefree case

$\Gamma(g)$ contains $\Gamma\left(g^{2}\right)$:
$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathbf{F}_{2^{m}}[x] / g$ if
$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathbf{F}_{2^{m}}[x] / g^{2}$.

The squarefree case

$\Gamma(g)$ contains $\Gamma\left(g^{2}\right)$:
$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathbf{F}_{2^{m}[x] / g \text { if }}$
$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathbf{F}_{2^{m}}[x] / g^{2}$.
Amazing fact:
$\Gamma(g)=\Gamma\left(g^{2}\right)$ if g is squarefree.

The squarefree case

$\Gamma(g)$ contains $\Gamma\left(g^{2}\right)$:
$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathbf{F}_{2^{m}}[x] / g$ if
$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathbf{F}_{2^{m}}[x] / g^{2}$.
Amazing fact:
$\Gamma(g)=\Gamma\left(g^{2}\right)$ if g is squarefree.
Previous decoder for g^{2}
corrects t errors for $\Gamma\left(g^{2}\right)$, hence corrects t errors for $\Gamma(g)$.

The squarefree case

$\Gamma(g)$ contains $\Gamma\left(g^{2}\right)$:

$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathbf{F}_{2 m}[x] / g$ if
$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathbf{F}_{2^{m}}[x] / g^{2}$.
Amazing fact:
$\Gamma(g)=\Gamma\left(g^{2}\right)$ if g is squarefree.
Previous decoder for g^{2} corrects t errors for $\Gamma\left(g^{2}\right)$, hence corrects t errors for $\Gamma(g)$.
(Not covered in this talk: correcting $\approx t+t^{2} / n$ errors.
See, e.g., "jet list decoding".)

Proof: Assume

$$
\sum_{i} c_{i} /\left(x-a_{i}\right)=0 \text { in } \mathbf{F}_{2^{m}}[x] / g .
$$

Proof: Assume
$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathbf{F}_{2^{m}}[x] / g$.
Write $F=\prod_{i: c_{i} \neq 0}\left(x-a_{i}\right)$.
Then $F^{\prime} / F=\sum_{i: c_{i} \neq 0} 1 /\left(x-a_{i}\right)$
so $F^{\prime} / F=\sum c_{i} /\left(x-a_{i}\right)$
so $F^{\prime} / F=0$ in $\mathbf{F}_{2^{m}}[x] / g$
so g divides F^{\prime} in $\mathbf{F}_{2^{m}}[x]$.

Proof: Assume
$\sum_{i} c_{i} /\left(x-a_{i}\right)=0$ in $\mathbf{F}_{2^{m}}[x] / g$.
Write $F=\prod_{i: c_{i} \neq 0}\left(x-a_{i}\right)$.
Then $F^{\prime} / F=\sum_{i: c_{i} \neq 0} 1 /\left(x-a_{i}\right)$
so $F^{\prime} / F=\sum c_{i} /\left(x-a_{i}\right)$
so $F^{\prime} / F=0$ in $\mathbf{F}_{2^{m}}[x] / g$
so g divides F^{\prime} in $\mathbf{F}_{2^{m}}[x]$.
F^{\prime} is a square:
if $F=\sum_{j} F_{j} x^{j}$ then
$F^{\prime}=\sum_{j} j F_{j} x^{j-1}$

$$
\begin{aligned}
& =\sum_{j \in 1+2 Z} j F_{j} x^{j-1} \\
& =\left(\sum_{j \in 1+2 Z} \sqrt{j F_{j}} x^{(j-1) / 2}\right)^{2}
\end{aligned}
$$

The McEliece cryptosystem

Standardize integers $n \geq 0$; $t \geq 2 ; m \geq 1$ with $2^{m} \geq n$.

1978 McEliece example:
$n=1024, m=10, t=50$.
This is too small:
$\approx 2^{60}$ pre-quantum security.

The McEliece cryptosystem

Standardize integers $n \geq 0$; $t \geq 2 ; m \geq 1$ with $2^{m} \geq n$.

1978 McEliece example:
$n=1024, m=10, t=50$.
This is too small:
$\approx 2^{60}$ pre-quantum security.
$n=2048, m=11, t=32$:
$\approx 2^{87}$ pre-quantum security.

The McEliece cryptosystem

Standardize integers $n \geq 0$; $t \geq 2 ; m \geq 1$ with $2^{m} \geq n$.

1978 McEliece example:
$n=1024, m=10, t=50$.
This is too small:
$\approx 2^{60}$ pre-quantum security.
$n=2048, m=11, t=32$: $\approx 2^{87}$ pre-quantum security.
$n=3408, m=12, t=67$:
$\approx 2^{146}$ pre-quantum security.

The McEliece cryptosystem

Standardize integers $n \geq 0$; $t \geq 2 ; m \geq 1$ with $2^{m} \geq n$.

1978 McEliece example:
$n=1024, m=10, t=50$.
This is too small:
$\approx 2^{60}$ pre-quantum security.
$n=2048, m=11, t=32$: $\approx 2^{87}$ pre-quantum security.
$n=3408, m=12, t=67$:
$\approx 2^{146}$ pre-quantum security.
$n=6960, m=13, t=119$:
$\approx 2^{263}$ pre-quantum security.

Alice's secrets: monic irreducible $g \in \mathbf{F}_{2^{m}}[x]$ with $\operatorname{deg} g=t$;
distinct $a_{1}, \ldots, a_{n} \in \mathbf{F}_{2 m}$.

Alice's secrets: monic irreducible $g \in \mathbf{F}_{2^{m}}[x]$ with $\operatorname{deg} g=t$; distinct $a_{1}, \ldots, a_{n} \in \mathbf{F}_{2 m}$.

Note that $g\left(a_{1}\right) \cdots g\left(a_{n}\right) \neq 0$. Define Γ as before.

Alice's secrets: monic irreducible $g \in \mathbf{F}_{2^{m}}[x]$ with $\operatorname{deg} g=t$; distinct $a_{1}, \ldots, a_{n} \in \mathbf{F}_{2^{m}}$.

Note that $g\left(a_{1}\right) \cdots g\left(a_{n}\right) \neq 0$. Define 「 as before.

Alice's public key:
$m t \times n$ matrix K over F_{2} such that $\Gamma=$ Ker K.

Alice's secrets: monic irreducible $g \in \mathbf{F}_{2^{m}}[x]$ with $\operatorname{deg} g=t$; distinct $a_{1}, \ldots, a_{n} \in \mathbf{F}_{2^{m}}$.

Note that $g\left(a_{1}\right) \cdots g\left(a_{n}\right) \neq 0$. Define 「 as before.

Alice's public key:
$m t \times n$ matrix K over F_{2} such that $\Gamma=$ Ker K.

Bob chooses random $e \in \mathbf{F}_{2}^{n}$ with $|e|=t$; sends Ke.

Alice's secrets: monic irreducible $g \in \mathbf{F}_{2^{m}}[x]$ with $\operatorname{deg} g=t$; distinct $a_{1}, \ldots, a_{n} \in \mathbf{F}_{2^{m}}$.

Note that $g\left(a_{1}\right) \cdots g\left(a_{n}\right) \neq 0$. Define 「 as before.

Alice's public key:
$m t \times n$ matrix K over F_{2} such that $\Gamma=\operatorname{Ker} K$.

Bob chooses random $e \in \mathbf{F}_{2}^{n}$ with $|e|=t$; sends Ce.

Alice receives $K e$,
finds $v \in \mathbf{F}_{2}^{n}$ with $K v=K e$, decodes v to find $v-e$.

1978 McEliece + randomization:
Bob chooses random $c \in \Gamma$ and random $e \in \mathbf{F}_{2}^{n}$ with $|e|=t$; sends $c+e$.

1978 McEliece + randomization:
Bob chooses random $c \in \Gamma$ and random $e \in \mathbf{F}_{2}^{n}$ with $|e|=t$; sends $c+e$.

Publicly specify 「 by an
$(n-m t) \times n$ generator matrix G.

1978 McEliece + randomization:
Bob chooses random $c \in \Gamma$ and random $e \in \mathbf{F}_{2}^{n}$ with $|e|=t$; sends $c+e$.

Publicly specify 「 by an
$(n-m t) \times n$ generator matrix G.
1986 Niederreiter improvements:
Send Ke instead of $c+e$.

1978 McEliece + randomization:
Bob chooses random $c \in \Gamma$ and random $e \in \mathbf{F}_{2}^{n}$
with $|e|=t$; sends $c+e$.
Publicly specify 「 by an
$(n-m t) \times n$ generator matrix G.
1986 Niederreiter improvements:
Send Ke instead of $c+e$.
K is smaller than G
whenever $m t<n-m t$.
Compress K to $m t(n-m t)$ bits by requiring systematic form.

Does structure of Γ
help attacker decrypte.g., compute g, a_{1}, \ldots, a_{n} ?

Does structure of 「
help attacker decrypte.g., compute g, a_{1}, \ldots, a_{n} ?

All known "structural attacks" are much slower than information-set decoding. (Less conservative variants of McEliece encourage research.)

Does structure of 「
help attacker decrypte.g., compute g, a_{1}, \ldots, a_{n} ?

All known "structural attacks" are much slower than information-set decoding. (Less conservative variants of McEliece encourage research.)

Does K leak more than 「?

Does structure of Γ
help attacker decrypte.g., compute g, a_{1}, \ldots, a_{n} ?

All known "structural attacks" are much slower than information-set decoding. (Less conservative variants of McEliece encourage research.)

Does K leak more than 「?
No with 1978 McEliece: matrix is explicitly randomized.

Does structure of Γ
help attacker decrypt-
e.g., compute g, a_{1}, \ldots, a_{n} ?

All known "structural attacks" are much slower than information-set decoding. (Less conservative variants of McEliece encourage research.)

Does K leak more than 「?
No with 1978 McEliece: matrix is explicitly randomized.

No with 1986 Niederreiter: matrix has systematic form.

Better throughput than ECC

Rest of this talk (joint work with Chou and Schwabe, 2013): some details of how to make McEliece run really fast.

Better throughput than ECC

Rest of this talk (joint work with Chou and Schwabe, 2013): some details of how to make McEliece run really fast.

Our constant-time software for batches of 256 decodings:

26544 Ivy Bridge cycles for $(n, t)=(2048,32) ; 2^{87}$.

79715 Ivy Bridge cycles for $(n, t)=(3408,67) ; 2^{146}$.

306102 Ivy Bridge cycles for $(n, t)=(6960,119) ; \approx 2^{263}$.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step is to find all roots in $\mathbf{F}_{2^{12}}$ of $F=F_{41} x^{41}+\cdots+F_{0} x^{0}$.

For each $\alpha \in \mathbf{F}_{2^{12}}$, compute $F(\alpha)$ by Horner's rule:
41 adds, 41 mults.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step
is to find all roots in $\mathbf{F}_{2^{12}}$
of $F=F_{41} x^{41}+\cdots+F_{0} x^{0}$.
For each $\alpha \in \mathbf{F}_{2^{12}}$, compute $F(\alpha)$ by Corner's rule:
41 adds, 41 mults.
Or use "Chen search": compute $F_{i} \gamma^{i}, F_{i} \gamma^{2 i}, F_{i} \gamma^{3 i}$, etc. Cost per point: again 41 adds, 41 muts.

The additive FFT

Fix $n=4096=2^{12}, t=41$.
Big final decoding step
is to find all roots in $\mathbf{F}_{2^{12}}$
of $F=F_{41} x^{41}+\cdots+F_{0} x^{0}$.
For each $\alpha \in \mathbf{F}_{2^{12}}$,
compute $F(\alpha)$ by Corner's rule:
41 adds, 41 mults.
Or use "Chen search": compute $F_{i} \gamma^{i}, F_{i} \gamma^{2 i}, F_{i} \gamma^{3 i}$, etc. Cost per point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally $t \in \Theta(n / \lg n)$,
so Horner's rule costs
$\Theta(n t)=\Theta\left(n^{2} / \lg n\right)$.

Asymptotics:

normally $t \in \Theta(n / \lg n)$,
so Horner's rule costs
$\Theta(n t)=\Theta\left(n^{2} / \lg n\right)$.
Wait a minute.
Didn't we learn in school
that FFT evaluates
an n-coeff polynomial
at n points
using $n^{1+o(1)}$ operations?
Isn't this better than $n^{2} / \lg n$?

Standard radix-2 FFT:
Want to evaluate
$F=F_{0}+F_{1} x+\cdots+F_{n-1} x^{n-1}$
at all the nth roots of 1 .
Write F as $F_{0}\left(x^{2}\right)+x F_{1}\left(x^{2}\right)$.
Observe big overlap between
$F(\alpha)=F_{0}\left(\alpha^{2}\right)+\alpha F_{1}\left(\alpha^{2}\right)$,
$F(-\alpha)=F_{0}\left(\alpha^{2}\right)-\alpha F_{1}\left(\alpha^{2}\right)$.
F_{0} has $n / 2$ coeffs;
evaluate at $(n / 2)$ nd roots of 1
by same idea recursively.
Similarly F_{1}.

Useless in char 2: $\alpha=-\alpha$.
Standard workarounds are painful.
FFT considered impractical.
1988 Wang-Zhu,
independently 1989 Cantor:
"additive FFT" in char 2.
Still quite expensive.
1996 von zur Gathen-Gerhard:
some improvements.
2010 Gao-Mateer:
much better additive FFT.
We use Gao-Mateer,
plus some new improvements.

Gao and Mateer evaluate
$F=F_{0}+F_{1} x+\cdots+F_{n-1} x^{n-1}$
on a size- $n \mathrm{~F}_{2}$-linear space.
Main idea: Write F as
$F_{0}\left(x^{2}+x\right)+x F_{1}\left(x^{2}+x\right)$.
Big overlap between $F(\alpha)=$
$F_{0}\left(\alpha^{2}+\alpha\right)+\alpha F_{1}\left(\alpha^{2}+\alpha\right)$
and $F(\alpha+1)=$
$F_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) F_{1}\left(\alpha^{2}+\alpha\right)$.
"Twist" to ensure $1 \in$ space.
Then $\left\{\alpha^{2}+\alpha\right\}$ is a
size- $(n / 2) \mathbf{F}_{2}$-linear space.
Apply same idea recursively.

We generalize to
$F=F_{0}+F_{1} x+\cdots+F_{t} x^{t}$
for any $t<n$.
\Rightarrow several optimizations,
not all of which are automated by simply tracking zeros.

For $t=0:$ copy F_{0}.
For $t \in\{1,2\}$:
F_{1} is a constant.
Instead of multiplying
this constant by each α, multiply only by generators and compute subset sums.

Syndrome computation

Initial decoding step: compute
$s_{0}=r_{1}+r_{2}+\cdots+r_{n}$,
$s_{1}=r_{1} \alpha_{1}+r_{2} \alpha_{2}+\cdots+r_{n} \alpha_{n}$,
$s_{2}=r_{1} \alpha_{1}^{2}+r_{2} \alpha_{2}^{2}+\cdots+r_{n} \alpha_{n}^{2}$,
.
,
$s_{t}=r_{1} \alpha_{1}^{t}+r_{2} \alpha_{2}^{t}+\cdots+r_{n} \alpha_{n}^{t}$.
$r_{1}, r_{2}, \ldots, r_{n}$ are received bits scaled by Goppa constants. Typically precompute matrix mapping bits to syndrome. Not as slow as Chen search but still $n^{2+o(1)}$ and huge secret key.

Compare to multipoint evaluation:
$F\left(\alpha_{1}\right)=F_{0}+F_{1} \alpha_{1}+\cdots+F_{t} \alpha_{1}^{t}$,
$F\left(\alpha_{2}\right)=F_{0}+F_{1} \alpha_{2}+\cdots+F_{t} \alpha_{2}^{t}$,
:
$F\left(\alpha_{n}\right)=F_{0}+F_{1} \alpha_{n}+\cdots+F_{t} \alpha_{n}^{t}$.

Compare to multipoint evaluation: $F\left(\alpha_{1}\right)=F_{0}+F_{1} \alpha_{1}+\cdots+F_{t} \alpha_{1}^{t}$, $F\left(\alpha_{2}\right)=F_{0}+F_{1} \alpha_{2}+\cdots+F_{t} \alpha_{2}^{t}$,
$F\left(\alpha_{n}\right)=F_{0}+F_{1} \alpha_{n}+\cdots+F_{t} \alpha_{n}^{t}$.
Matrix for syndrome computation is transpose of matrix for multipoint evaluation.

Compare to multipoint evaluation:
$F\left(\alpha_{1}\right)=F_{0}+F_{1} \alpha_{1}+\cdots+F_{t} \alpha_{1}^{t}$,
$F\left(\alpha_{2}\right)=F_{0}+F_{1} \alpha_{2}+\cdots+F_{t} \alpha_{2}^{t}$,
:
$F\left(\alpha_{n}\right)=F_{0}+F_{1} \alpha_{n}+\cdots+F_{t} \alpha_{n}^{t}$.
Matrix for syndrome computation is transpose of matrix for multipoint evaluation.

Amazing consequence: syndrome computation is as few ops as multipoint evaluation.
Eliminate precomputed matrix.

Transposition principle:
If a linear algorithm
computes a matrix M
then reversing edges and exchanging inputs/outputs
computes the transpose of M.
1956 Bordewijk;
independently 1957 Lupanov for Boolean matrices.

1973 Fiduccia analysis: preserves number of mults; preserves number of adds plus number of nontrivial outputs.

We built transposing compiler producing C code.
Too many variables for $m=13$; gcc ran out of memory.

We built transposing compiler producing C code.
Too many variables for $m=13$; gcc ran out of memory. Used qhasm register allocator to optimize the variables.
Worked, but not very quickly.

We built transposing compiler producing C code.
Too many variables for $m=13$; gcc ran out of memory. Used qhasm register allocator to optimize the variables. Worked, but not very quickly.

Wrote faster register allocator.
Still excessive code size.

We built transposing compiler producing C code.
Too many variables for $m=13$; gcc ran out of memory.

Used qhasm register allocator to optimize the variables.
Worked, but not very quickly.
Wrote faster register allocator.
Still excessive code size.
Built new interpreter,
allowing some code compression.
Still big; still some overhead.

Better solution:

stared at additive FFT,
wrote down transposition with same loops etc.

Small code, no overhead.
Speedups of additive FFT translate easily to transposed algorithm.

Further savings: merged first stage with scaling by Goppa constants.

Results

60493 Ivy Bridge cycles:
8622 for permutation.
20846 for syndrome.
7714 for BM.
14794 for roots.
8520 for permutation.
Code will be public domain.
We're still speeding it up.
More information:
cr.yp.to/papers.html\#mcbits

