Introduction to
quantum algorithms
and introduction to
code-based cryptography
Daniel J. Bernstein University of Illinois at Chicago \& Technische Universiteit Eindhoven

Data ("state") stored in n bits: an element of $\{0,1\}^{n}$, often viewed as representing an element of $\left\{0,1, \ldots, 2^{n}-1\right\}$.

Data ("state") stored in n bits: an element of $\{0,1\}^{n}$, often viewed as representing an element of $\left\{0,1, \ldots, 2^{n}-1\right\}$.

State stored in n qubits: a nonzero element of $\mathbf{C}^{2^{n}}$.
Retrieving this vector is tough!

Data ("state") stored in n bits: an element of $\{0,1\}^{n}$, often viewed as representing an element of $\left\{0,1, \ldots, 2^{n}-1\right\}$.

State stored in n qubits: a nonzero element of $\mathbf{C}^{2^{n}}$. Retrieving this vector is tough!

If n qubits have state
$\left(a_{0}, a_{1}, \ldots, a_{2}{ }^{n}-1\right)$ then measuring the qubits produces an element of $\left\{0,1, \ldots, 2^{n}-1\right\}$ and destroys the state.
Measurement produces element q with probability $\left|a_{q}\right|^{2} / \sum_{r}\left|a_{r}\right|^{2}$.

Some examples of 3-qubit states:
$(1,0,0,0,0,0,0,0)$ is
" $|0\rangle$ " in standard notation.
Measurement produces 0 .

Some examples of 3-qubit states:
$(1,0,0,0,0,0,0,0)$ is
" $|0\rangle$ " in standard notation.
Measurement produces 0 .
$(0,0,0,0,0,0,1,0)$ is
" $|6\rangle$ " in standard notation.
Measurement produces 6 .

Some examples of 3-qubit states:
$(1,0,0,0,0,0,0,0)$ is
" $|0\rangle$ " in standard notation.
Measurement produces 0 .
$(0,0,0,0,0,0,1,0)$ is
" $|6\rangle$ " in standard notation.
Measurement produces 6 .
$(0,0,0,0,0,0,-7 i, 0)=-7 i|6\rangle$:
Measurement produces 6 .

Some examples of 3-qubit states:
$(1,0,0,0,0,0,0,0)$ is
" $|0\rangle$ " in standard notation.
Measurement produces 0 .
$(0,0,0,0,0,0,1,0)$ is
" $|6\rangle$ " in standard notation.
Measurement produces 6 .
$(0,0,0,0,0,0,-7 i, 0)=-7 i|6\rangle:$
Measurement produces 6 .
$(0,0,4,0,0,0,8,0)=4|2\rangle+8|6\rangle:$
Measurement produces
2 with probability 20%,
6 with probability 80%.

Fast quantum operations, part 1

$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{1}, a_{0}, a_{3}, a_{2}, a_{5}, a_{4}, a_{7}, a_{6}\right)$
is complementing index bit 0 , hence "complementing qubit 0 ".

Fast quantum operations, part 1

$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{1}, a_{0}, a_{3}, a_{2}, a_{5}, a_{4}, a_{7}, a_{6}\right)$
is complementing index bit 0 , hence "complementing quit 0 ".
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right)$ is measured as $\left(q_{0}, q_{1}, q_{2}\right)$, representing $q=q_{0}+2 q_{1}+4 q_{2}$, with probability $\left|a_{q}\right|^{2} / \sum_{r}\left|a_{r}\right|^{2}$.
$\left(a_{1}, a_{0}, a_{3}, a_{2}, a_{5}, a_{4}, a_{7}, a_{6}\right)$ is measured as $\left(q_{0} \oplus 1, q_{1}, q_{2}\right)$, representing $q \oplus 1$, with probability $\left|a_{q}\right|^{2} / \sum_{r}\left|a_{r}\right|^{2}$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{4}, a_{5}, a_{6}, a_{7}, a_{0}, a_{1}, a_{2}, a_{3}\right)$
is "complementing qubit 2": $\left(q_{0}, q_{1}, q_{2}\right) \mapsto\left(q_{0}, q_{1}, q_{2} \oplus 1\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{4}, a_{5}, a_{6}, a_{7}, a_{0}, a_{1}, a_{2}, a_{3}\right)$
is "complementing quit 2 ":
$\left(q_{0}, q_{1}, q_{2}\right) \mapsto\left(q_{0}, q_{1}, q_{2} \oplus 1\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{0}, a_{4}, a_{2}, a_{6}, a_{1}, a_{5}, a_{3}, a_{7}\right)$
is "swapping quits 0 and 2 ":
$\left(q_{0}, q_{1}, q_{2}\right) \mapsto\left(q_{2}, q_{1}, q_{0}\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{4}, a_{5}, a_{6}, a_{7}, a_{0}, a_{1}, a_{2}, a_{3}\right)$
is "complementing quit 2 ":
$\left(q_{0}, q_{1}, q_{2}\right) \mapsto\left(q_{0}, q_{1}, q_{2} \oplus 1\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{0}, a_{4}, a_{2}, a_{6}, a_{1}, a_{5}, a_{3}, a_{7}\right)$
is "swapping quits 0 and 2 ":
$\left(q_{0}, q_{1}, q_{2}\right) \mapsto\left(q_{2}, q_{1}, q_{0}\right)$.
Complementing quit 2
$=$ swapping quits 0 and 2 - complementing quit 0 - swapping quits 0 and 2 .

Similarly: swapping quits i, j.
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{0}, a_{1}, a_{3}, a_{2}, a_{4}, a_{5}, a_{7}, a_{6}\right)$
is a "reversible XOR gate" = "controlled NOT gate":
$\left(q_{0}, q_{1}, q_{2}\right) \mapsto\left(q_{0} \oplus q_{1}, q_{1}, q_{2}\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{0}, a_{1}, a_{3}, a_{2}, a_{4}, a_{5}, a_{7}, a_{6}\right)$ is a "reversible XOR gate" = "controlled NOT gate":
$\left(q_{0}, q_{1}, q_{2}\right) \mapsto\left(q_{0} \oplus q_{1}, q_{1}, q_{2}\right)$.
Example with more quits:
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right.$, $a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}$, $a_{16}, a_{17}, a_{18}, a_{19}, a_{20}, a_{21}, a_{22}, a_{23}$, $\left.a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{30}, a_{31}\right)$ $\mapsto\left(a_{0}, a_{1}, a_{3}, a_{2}, a_{4}, a_{5}, a_{7}, a_{6}\right.$, $a_{8}, a_{9}, a_{11}, a_{10}, a_{12}, a_{13}, a_{15}, a_{14}$, $a_{16}, a_{17}, a_{19}, a_{18}, a_{20}, a_{21}, a_{23}, a_{22}$, $\left.a_{24}, a_{25}, a_{27}, a_{26}, a_{28}, a_{29}, a_{31}, a_{30}\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{7}, a_{6}\right)$
is a "Toffoli gate" =
"controlled controlled NOT gate":
$\left(q_{0}, q_{1}, q_{2}\right) \mapsto\left(q_{0} \oplus q_{1} q_{2}, q_{1}, q_{2}\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{7}, a_{6}\right)$
is a "Toffoli gate" =
"controlled controlled NOT gate":
$\left(q_{0}, q_{1}, q_{2}\right) \mapsto\left(q_{0} \oplus q_{1} q_{2}, q_{1}, q_{2}\right)$.
Example with more quits:
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right.$,
$a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}$,
$a_{16}, a_{17}, a_{18}, a_{19}, a_{20}, a_{21}, a_{22}, a_{23}$, $\left.a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{30}, a_{31}\right)$ $\mapsto\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{7}, a_{6}\right.$, $a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{15}, a_{14}$, $a_{16}, a_{17}, a_{18}, a_{19}, a_{20}, a_{21}, a_{23}, a_{22}$, $\left.a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{31}, a_{30}\right)$.

Reversible computation

Say p is a permutation
of $\left\{0,1, \ldots, 2^{n}-1\right\}$.
General strategy to compose these fast quantum operations to obtain index permutation $\left(a_{0}, a_{1}, \ldots, a_{2^{n}-1}\right)$
$\left(a_{p^{-1}(0)}, a_{p^{-1}(1)}, \ldots, a_{p^{-1}\left(2^{n}-1\right)}\right):$

Reversible computation

Say p is a permutation
of $\left\{0,1, \ldots, 2^{n}-1\right\}$.
General strategy to compose these fast quantum operations to obtain index permutation
$\left(a_{0}, a_{1}, \ldots, a_{2}{ }_{-1}\right)$ \mapsto
$\left(a_{p}-1(0), a_{p^{-1}(1)}, \cdots, a_{p^{-1}\left(2^{n}-1\right)}\right)$:

1. Build a traditional circuit to compute $j \mapsto p(j)$ using NOT/XOR/AND gates.
2. Convert into reversible gates: e.g., convert AND into Toffoli.

Example: Let's compute
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{7}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$;
permutation $q \mapsto q+1 \bmod 8$.

1. Build a traditional circuit to compute $q \mapsto q+1 \bmod 8$.

q_{0}

$q_{0} \oplus 1$
$q_{1} \oplus q_{0}$
$q_{2} \oplus c_{1}$
2. Convert into reversible gates.

Toffoli for $q_{2} \leftarrow q_{2} \oplus q_{1} q_{0}$:

$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{0}, a_{1}, a_{2}, a_{7}, a_{4}, a_{5}, a_{6}, a_{3}\right)$.
2. Convert into reversible gates.

Toffoli for $q_{2} \leftarrow q_{2} \oplus q_{1} q_{0}$:
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{0}, a_{1}, a_{2}, a_{7}, a_{4}, a_{5}, a_{6}, a_{3}\right)$.
Controlled NOT for $q_{1} \leftarrow q_{1} \oplus q_{0}$:
$\left(a_{0}, a_{1}, a_{2}, a_{7}, a_{4}, a_{5}, a_{6}, a_{3}\right) \mapsto$
$\left(a_{0}, a_{7}, a_{2}, a_{1}, a_{4}, a_{3}, a_{6}, a_{5}\right)$.
2. Convert into reversible gates.

Toffoli for $q_{2} \leftarrow q_{2} \oplus q_{1} q_{0}$:
$\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mapsto$
$\left(a_{0}, a_{1}, a_{2}, a_{7}, a_{4}, a_{5}, a_{6}, a_{3}\right)$.
Controlled NOT for $q_{1} \leftarrow q_{1} \oplus q_{0}$:
$\left(a_{0}, a_{1}, a_{2}, a_{7}, a_{4}, a_{5}, a_{6}, a_{3}\right) \mapsto$
$\left(a_{0}, a_{7}, a_{2}, a_{1}, a_{4}, a_{3}, a_{6}, a_{5}\right)$.
NOT for $q_{0} \leftarrow q_{0} \oplus 1$:
$\left(a_{0}, a_{7}, a_{2}, a_{1}, a_{4}, a_{3}, a_{6}, a_{5}\right) \mapsto$
$\left(a_{7}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$.

This permutation example was deceptively easy.

It didn't need many operations.
For large n, most permutations p need many operations \Rightarrow slow. Really want fast circuits.

This permutation example

 was deceptively easy.It didn't need many operations.
For large n, most permutations p need many operations \Rightarrow slow. Really want fast circuits.

Also, it didn't need extra storage: circuit operated "in place" after computation $c_{1} \leftarrow q_{1} q_{0}$ was merged into $q_{2} \leftarrow q_{2} \oplus c_{1}$.

Typical circuits aren't in-place.

Start from any circuit:
inputs $b_{1}, b_{2}, \ldots, b_{i}$;
$b_{i+1}=1 \oplus b_{f(i+1)} b_{g(i+1)}$;
$b_{i+2}=1 \oplus b_{f(i+2)} b_{g(i+2)}$;
$b_{T}=1 \oplus b_{f(T)} b_{g(T)}$; specified outputs.

Start from any circuit:
inputs $b_{1}, b_{2}, \ldots, b_{i}$;
$b_{i+1}=1 \oplus b_{f(i+1)} b_{g(i+1)}$;
$b_{i+2}=1 \oplus b_{f(i+2)} b_{g(i+2)}$;
$b_{T}=1 \oplus b_{f(T)} b_{g(T)}$;
specified outputs.
Reversible but dirty:
inputs $b_{1}, b_{2}, \ldots, b_{T}$;
$b_{i+1} \leftarrow 1 \oplus b_{i+1} \oplus b_{f(i+1)} b_{g(i+1)}$;
$b_{i+2} \leftarrow 1 \oplus b_{i+2} \oplus b_{f(i+2)} b_{g(i+2)} ;$
$b_{T} \leftarrow 1 \oplus b_{T} \oplus b_{f(T)} b_{g(T)}$.
Same outputs if all of
b_{i+1}, \ldots, b_{T} started as 0 .

Reversible and clean:
after finishing dirty computation, set non-outputs back to 0 , by repeating same operations on non-outputs in reverse order.

Original computation:
(inputs) \mapsto
(inputs, dirt, outputs).
Dirty reversible computation:
(inputs, zeros, zeros) \mapsto
(inputs, dirt, outputs).
Clean reversible computation:
(inputs, zeros, zeros) \mapsto
(inputs, zeros, outputs).

Given fast circuit for p and fast circuit for p^{-1}, build fast reversible circuit for (x, zeros $) \mapsto(p(x)$, zeros $)$.

Given fast circuit for p and fast circuit for p^{-1}, build fast reversible circuit for (x, zeros $) \mapsto(p(x)$, zeros $)$.

Replace reversible bit operations with Toffoli gates etc. permuting $\mathbf{C}^{2^{n+z}} \rightarrow \mathbf{C}^{2^{n+z}}$.

Permutation on first 2^{n} entries is
$\left(a_{0}, a_{1}, \ldots, a_{2}{ }^{n}-1\right)$
$\left(a_{p^{-1}(0)}, a_{p^{-1}(1)}, \ldots, a_{p^{-1}\left(2^{n}-1\right)}\right)$.
Typically prepare vectors supported on first 2^{n} entries so don't care how permutation acts on last $2^{n+z}-2^{n}$ entries.

Warning: Number of qubits \approx number of bit operations in original p, p^{-1} circuits.

This can be much larger than number of bits stored in the original circuits.

Warning: Number of qubits \approx number of bit operations in original p, p^{-1} circuits.

This can be much larger than number of bits stored in the original circuits.

Many useful techniques
to compress into fewer qubits,
but often these lose time. Many subtle tradeoffs.

Warning: Number of qubits \approx number of bit operations in original p, p^{-1} circuits.

This can be much larger than number of bits stored in the original circuits.

Many useful techniques
to compress into fewer qubits,
but often these lose time. Many subtle tradeoffs.

Crude "poly-time" analyses don't care about this, but serious cryptanalysis is much more precise.

Fast quantum operations, part 2

"Hadamard":

$$
\left(a_{0}, a_{1}\right) \mapsto\left(a_{0}+a_{1}, a_{0}-a_{1}\right) .
$$

Fast quantum operations, part 2

"Hadamard":
$\left(a_{0}, a_{1}\right) \mapsto\left(a_{0}+a_{1}, a_{0}-a_{1}\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \mapsto$
$\left(a_{0}+a_{1}, a_{0}-a_{1}, a_{2}+a_{3}, a_{2}-a_{3}\right)$.

Fast quantum operations, part 2

"Hadamard":
$\left(a_{0}, a_{1}\right) \mapsto\left(a_{0}+a_{1}, a_{0}-a_{1}\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \mapsto$
$\left(a_{0}+a_{1}, a_{0}-a_{1}, a_{2}+a_{3}, a_{2}-a_{3}\right)$.
Same for quit 1:
$\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \mapsto$
$\left(a_{0}+a_{2}, a_{1}+a_{3}, a_{0}-a_{2}, a_{1}-a_{3}\right)$.

Fast quantum operations, part 2

"Hadamard":
$\left(a_{0}, a_{1}\right) \mapsto\left(a_{0}+a_{1}, a_{0}-a_{1}\right)$.
$\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \mapsto$
$\left(a_{0}+a_{1}, a_{0}-a_{1}, a_{2}+a_{3}, a_{2}-a_{3}\right)$.
Same for quit 1:
$\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \mapsto$
$\left(a_{0}+a_{2}, a_{1}+a_{3}, a_{0}-a_{2}, a_{1}-a_{3}\right)$.
Quit 0 and then quit 1 :
$\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \mapsto$
$\left(a_{0}+a_{1}, a_{0}-a_{1}, a_{2}+a_{3}, a_{2}-a_{3}\right) \mapsto$
$\left(a_{0}+a_{1}+a_{2}+a_{3}, a_{0}-a_{1}+a_{2}-a_{3}\right.$,
$\left.a_{0}+a_{1}-a_{2}-a_{3}, a_{0}-a_{1}-a_{2}+a_{3}\right)$.

Repeat n times: e.g.,
$(1,0,0, \ldots, 0) \mapsto(1,1,1, \ldots, 1)$.
Measuring ($1,0,0, \ldots, 0$) always produces 0 .

Measuring $(1,1,1, \ldots, 1)$ can produce any output: $\operatorname{Pr}[$ output $=q]=1 / 2^{n}$.

Repeat n times: e.g.,
$(1,0,0, \ldots, 0) \mapsto(1,1,1, \ldots, 1)$.
Measuring $(1,0,0, \ldots, 0)$ always produces 0 .

Measuring $(1,1,1, \ldots, 1)$
can produce any output:
$\operatorname{Pr}[$ output $=q]=1 / 2^{n}$.
Aside from "normalization"
(irrelevant to measurement),
have Hadamard $=$ Hadamard $^{-1}$, so easily work backwards from "uniform superposition" $(1,1,1, \ldots, 1)$ to "pure state" $(1,0,0, \ldots, 0)$.

Simon's algorithm
Assume: nonzero $s \in\{0,1\}^{n}$ satisfies $f(x)=f(x \oplus s)$
for every $x \in\{0,1\}^{n}$.
Can we find this period s, given a fast circuit for f ?

Simon's algorithm

Assume: nonzero $s \in\{0,1\}^{n}$ satisfies $f(x)=f(x \oplus s)$
for every $x \in\{0,1\}^{n}$.
Can we find this period s, given a fast circuit for f ?

We don't have enough data if f has many periods.
Assume: $\{$ periods $\}=\{0, s\}$.

Simon's algorithm

Assume: nonzero $s \in\{0,1\}^{n}$ satisfies $f(x)=f(x \oplus s)$ for every $x \in\{0,1\}^{n}$.
Can we find this period s, given a fast circuit for f ?

We don't have enough data if f has many periods.
Assume: $\{$ periods $\}=\{0, s\}$.
Traditional solution:
Compute f for many inputs, sort, analyze collisions.
Success probability is very low until \#inputs approaches $2^{n / 2}$.

Simon's algorithm uses
far fewer qubit operations
if n is large and reversibility overhead is low.

Simon's algorithm uses
far fewer quit operations
if n is large and reversibility overhead is low.

Say f maps n bits to m bits using z "ancilla" bits for reversibility.

Prepare $n+m+z$ quits
in pure zero state:
vector ($1,0,0, \ldots$).

Simon's algorithm uses
far fewer qubit operations
if n is large and reversibility overhead is low.

Say f maps n bits to m bits using
z "ancilla" bits for reversibility.
Prepare $n+m+z$ qubits
in pure zero state:
vector $(1,0,0, \ldots)$.
Use n-fold Hadamard to move first n qubits into uniform superposition:
$(1,1,1, \ldots, 1,0,0, \ldots)$
with 2^{n} entries 1 , others 0 .

Apply fast vector permutation for reversible f computation: 1 in position ($q, 0,0$) moves to position ($q, f(q), 0)$.

Note symmetry between 1 at $(q, f(q), 0)$ and
1 at $(q \oplus s, f(q), 0)$.

Apply fast vector permutation for reversible f computation: 1 in position ($q, 0,0$) moves to position ($q, f(q), 0)$.

Note symmetry between 1 at $(q, f(q), 0)$ and 1 at $(q \oplus s, f(q), 0)$.

Apply n-fold Hadamard.

Apply fast vector permutation for reversible f computation: 1 in position ($q, 0,0$) moves to position ($q, f(q), 0)$.

Note symmetry between 1 at $(q, f(q), 0)$ and 1 at $(q \oplus s, f(q), 0)$.

Apply n-fold Hadamard.
Measure. By symmetry, output is orthogonal to s.

Apply fast vector permutation for reversible f computation: 1 in position $(q, 0,0)$ moves to position $(q, f(q), 0)$.

Note symmetry between 1 at $(q, f(q), 0)$ and 1 at $(q \oplus s, f(q), 0)$.

Apply n-fold Hadamard.
Measure. By symmetry, output is orthogonal to s.

Repeat $n+10$ times.
Use Gaussian elimination to (probably) find s.

Example, 3 bits to 3 bits:

$f(0)=4$.
$f(1)=7$.
$f(2)=2$.
$f(3)=3$.
$f(4)=7$.
$f(5)=4$.
$f(6)=3$.
$f(7)=2$.

Example, 3 bits to 3 bits:

$f(0)=4$.
$f(1)=7$.
$f(2)=2$.
$f(3)=3$.
$f(4)=7$.
$f(5)=4$.

$f(6)=3$.
$f(7)=2$.

Example, 3 bits to 3 bits:

$f(0)=4$.
$f(1)=7$.
$f(2)=2$.
$f(3)=3$.
$f(4)=7$.
$f(5)=4$.

$f(6)=3$.
$f(7)=2$.
Complete table shows that
$f(x)=f(x \oplus 5)$ for all x.
Let's watch Simon's algorithm for f, using 6 quits.

Step 1. Set up pure zero state:
$1,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$.

Step 2. Hadamard on qubit 0:
$1,1,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$.

Step 3. Hadamard on qubit 1:
$1,1,1,1,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$.

Step 4. Hadamard on qubit 2:
$1,1,1,1,1,1,1,1$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$.

Step 5. $(q, 0) \mapsto(q, f(q)):$
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,1,0,0,0,0,1$,
$0,0,0,1,0,0,1,0$,
$1,0,0,0,0,1,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,1,0,0,1,0,0,0$.

Step 6. Hadamard on qubit 0:
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,1,1,0,0,1, \overline{1}$,
$0,0,1, \overline{1}, 0,0,1,1$,
$1,1,0,0,1, \overline{1}, 0,0$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$1, \overline{1}, 0,0,1,1,0,0$.
Notation: $\overline{1}=-1$.

Step 7. Hadamard on qubit 1:
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$1,1, \overline{1}, \overline{1}, 1, \overline{1}, \overline{1}, 1$,
$1, \overline{1}, \overline{1}, 1,1,1, \overline{1}, \overline{1}$,
$1,1,1,1,1, \overline{1}, 1, \overline{1}$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$1, \overline{1}, 1, \overline{1}, 1,1,1,1$.

Step 8. Hadamard on qubit 2:
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0, \overline{2}, 0, \overline{2}$,
$2,0, \overline{2}, 0,0, \overline{2}, 0,2$,
$2,0,2,0,0,2,0,2$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$2,0,2,0,0, \overline{2}, 0, \overline{2}$.

Step 8. Hadamard on qubit 2:
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$2,0, \overline{2}, 0,0, \overline{2}, 0, \overline{2}$,
$2,0, \overline{2}, 0,0, \overline{2}, 0,2$,
$2,0,2,0,0,2,0,2$,
$0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0$,
$2,0,2,0,0, \overline{2}, 0, \overline{2}$.
Step 9. Measure.
First 3 qubits are uniform random vector orthogonal to 101: i.e.,
$000,010,101$, or 111.

Grover's algorithm

Assume: unique $s \in\{0,1\}^{n}$ has $f(s)=0$.

Traditional algorithm to find s : compute f for many inputs, hope to find output 0 .
Success probability is very low until \#inputs approaches 2^{n}.

Grover's algorithm

Assume: unique $s \in\{0,1\}^{n}$ has $f(s)=0$.

Traditional algorithm to find s : compute f for many inputs, hope to find output 0 .
Success probability is very low until \#inputs approaches 2^{n}.

Grover's algorithm takes only $2^{n / 2}$ reversible computations of f. Typically: reversibility overhead is small enough that this easily beats traditional algorithm.

Start from uniform superposition over all n-bit strings q.

Step 1: Set $a \leftarrow b$ where $b_{q}=-a_{q}$ if $f(q)=0$,
$b_{q}=a_{q}$ otherwise.
This is fast.
Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.
Repeat Step $1+$ Step 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n quits.
With high probability this finds s.

Normalized graph of $q \mapsto a_{q}$
for an example with $n=12$ after 0 steps:

Normalized graph of $q \mapsto a_{q}$
for an example with $n=12$ after Step 1:

1.0
0.5
0
0.0
0

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after Step $1+$ Step 2:

1.0
0.5
0.0
0.0

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after Step $1+$ Step $2+$ Step 1:

1.0
0.5

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $2 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $3 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $4 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $5 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $6 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $7 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $8 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $9 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $10 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $11 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $12 \times$ (Step $1+$ Step 2):

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $13 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $14 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $15 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $16 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $17 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $18 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $19 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $20 \times$ (Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $25 \times$ (Step $1+$ Step 2):

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $30 \times$ (Step $1+$ Step 2):

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $35 \times$ (Step $1+$ Step 2):

Good moment to stop, measure.

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $40 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $45 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $50 \times($ Step $1+$ Step 2$)$:

Traditional stopping point.

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $60 \times($ Step $1+$ Step 2$)$:

| 1.0 | |
| :--- | :--- | :--- | :--- |
| 0.5 | |
| | |
| | |
| | |
| -0.5 | |
| | |

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $70 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $80 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $90 \times($ Step $1+$ Step 2$)$:

Normalized graph of $q \mapsto a_{q}$ for an example with $n=12$ after $100 \times($ Step $1+$ Step 2$)$:

Very bad stopping point.
$q \mapsto a_{q}$ is completely described by a vector of two numbers
(with fixed multiplicities):
(1) a_{q} for roots q;
(2) a_{q} for non-roots q.

Step $1+$ Step 2
act linearly on this vector.
Easily compute eigenvalues
and powers of this linear map
to understand evolution
of state of Grover's algorithm.
\Rightarrow Probability is ≈ 1
after $\approx(\pi / 4) 2^{0.5 n}$ iterations.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

New algorithm

Proof of run time

Mislead students into thinking that best algorithm $=$ best proven algorithm.

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

Ignorant response:
"Work harder, find proofs!"

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

Ignorant response:
"Work harder, find proofs!"
Consensus of the experts:
proofs probably do not exist for most of these algorithms.
So demanding proofs is silly.

Reality: state-of-the-art
cryptanalytic algorithms are almost never proven.

Ignorant response:
"Work harder, find proofs!"
Consensus of the experts:
proofs probably do not exist for most of these algorithms.
So demanding proofs is silly.
Without proofs, how do we analyze correctness+speed?
Answer: Real algorithm analysis relies critically on heuristics and computer experiments.

What about quantum algorithms?
Want to analyze, optimize quantum algorithms today to figure out safe crypto against future quantum attack.

What about quantum algorithms?
Want to analyze, optimize quantum algorithms today to figure out safe crypto against future quantum attack.

1. Simulate tiny q. computer?
\Rightarrow Huge extrapolation errors.

What about quantum algorithms?
Want to analyze, optimize quantum algorithms today to figure out safe crypto against future quantum attack.

1. Simulate tiny q. computer?
\Rightarrow Huge extrapolation errors.
2. Faster algorithm-specific simulation? Yes, sometimes.

What about quantum algorithms?
Want to analyze, optimize quantum algorithms today to figure out safe crypto against future quantum attack.

1. Simulate tiny q. computer? \Rightarrow Huge extrapolation errors.
2. Faster algorithm-specific simulation? Yes, sometimes.
3. Fast trapdoor simulation. Simulator (like prover) knows more than the algorithm does. Tung Chou has implemented this, found errors in two publications.

Post-quantum cryptography

Grover's algorithm finds
128-bit AES key using
2^{64} quantum AES evaluations.

Post-quantum cryptography

Grover's algorithm finds
128-bit AES key using
2^{64} quantum AES evaluations.
Sensible risk management: Assume that this is feasibleor will be feasible in, e.g., 2025.

Post-quantum cryptography

Grover's algorithm finds
128-bit AES key using
2^{64} quantum AES evaluations.
Sensible risk management:
Assume that this is feasibleor will be feasible in, e.g., 2025. "AES-128 is dead."

Post-quantum cryptography

Grover's algorithm finds
128-bit AES key using
2^{64} quantum $A E S$ evaluations.
Sensible risk management:
Assume that this is feasibleor will be feasible in, e.g., 2025. "AES-128 is dead."

Fix: Switch to AES-256.

Post-quantum cryptography

Grover's algorithm finds
128-bit AES key using
2^{64} quantum $A E S$ evaluations.
Sensible risk management:
Assume that this is feasible-
or will be feasible in, e.g., 2025. "AES-128 is dead."

Fix: Switch to AES-256.
AES-256 has 14 rounds.
Maybe 12 rounds are enough for 2^{128} post-quantum security? Maybe 10 rounds are enough?

Shor's algorithm
(similar to Simon's algorithm)
factors RSA modulus N by
finding period of $x \mapsto 2^{x} \bmod N$.
Number of qubit operations \approx number of bit operations to compute $2^{x} \bmod N$.

Shor's algorithm
(similar to Simon's algorithm)
factors RSA modulus N by
finding period of $x \mapsto 2^{x} \bmod N$.
Number of qubit operations \approx number of bit operations to compute $2^{x} \bmod N$.
$\approx 2^{64}$ qubit operations
when N is around 1 gigabyte.

Shor's algorithm
(similar to Simon's algorithm)
factors RSA modulus N by
finding period of $x \mapsto 2^{x} \bmod N$.
Number of qubit operations
\approx number of bit operations
to compute $2^{x} \bmod N$.
$\approx 2^{64}$ qubit operations
when N is around 1 gigabyte.
Shor also finds $\log _{g} h$ by
finding period of $(x, y) \mapsto g^{x} h^{y}$.

Shor's algorithm
(similar to Simon's algorithm)
factors RSA modulus N by
finding period of $x \mapsto 2^{x} \bmod N$.
Number of qubit operations \approx number of bit operations to compute $2^{x} \bmod N$.
$\approx 2^{64}$ qubit operations
when N is around 1 gigabyte.
Shor also finds $\log _{g} h$ by
finding period of $(x, y) \mapsto g^{x} h^{y}$.
"RSA is dead. ECC is dead."

Shor's algorithm
(similar to Simon's algorithm)
factors RSA modulus N by
finding period of $x \mapsto 2^{x} \bmod N$.
Number of qubit operations \approx number of bit operations to compute $2^{x} \bmod N$.
$\approx 2^{64}$ qubit operations
when N is around 1 gigabyte.
Shor also finds $\log _{g} h$ by
finding period of $(x, y) \mapsto g^{x} h^{y}$.
"RSA is dead. ECC is dead."
But some systems seem safe.

Hash-based signatures.
Example: 1979 Merkle hash-tree public-key signature system.

Code-based cryptography. Example: 1978 McEliece hidden-Goppa-code public-key encryption system.

Lattice-based cryptography. Example: 1998 "NTRU".

Multivariate-quadraticequations cryptography. Example:
1996 Patarin "HFEv-"
public-key signature system.

Daniel J. Bernstein Johannes Buchmann Erik Dahmen
 Editors

Post-Quantum Cryptography

Springer

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)
Receiver's public key: "random"
500×1024 matrix K over F_{2}.
Specifies linear $\mathbf{F}_{2}^{1024} \rightarrow \mathbf{F}_{2}^{500}$.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)
Receiver's public key: "random" 500×1024 matrix K over F_{2}. Specifies linear $\mathbf{F}_{2}^{1024} \rightarrow \mathbf{F}_{2}^{500}$.

Messages suitable for encryption: 1024-bit strings of weight 50 . $\left\{e \in \mathbf{F}_{2}^{1024}: \#\left\{i: e_{i}=1\right\}=50\right\}$.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)
Receiver's public key: "random" 500×1024 matrix K over F_{2}. Specifies linear $\mathbf{F}_{2}^{1024} \rightarrow \mathbf{F}_{2}^{500}$.

Messages suitable for encryption: 1024-bit strings of weight 50 . $\left\{e \in \mathbf{F}_{2}^{1024}: \#\left\{i: e_{i}=1\right\}=50\right\}$.

Encryption of e is $K e \in \mathbf{F}_{2}^{500}$.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)
Receiver's public key: "random" 500×1024 matrix K over F_{2}. Specifies linear $\mathbf{F}_{2}^{1024} \rightarrow \mathbf{F}_{2}^{500}$.

Messages suitable for encryption:
1024-bit strings of weight 50. $\left\{e \in \mathbf{F}_{2}^{1024}: \#\left\{i: e_{i}=1\right\}=50\right\}$.

Encryption of e is $K e \in \mathbf{F}_{2}^{500}$.
"Padding": Choose random e; send $K e$; use SHA-256(e, Ke) as AES-256-GCM key to encrypt actual message of any length.

Attacker, by linear algebra, easily works backwards
from $K e$ to some $v \in \mathbf{F}_{2}^{1024}$
such that $K v=K e$.

Attacker, by linear algebra, easily works backwards
from $K e$ to some $v \in \mathbf{F}_{2}^{1024}$ such that $K v=K e$.
i.e. Attacker finds some element $v \in e+K e r K$. Note that $\# \operatorname{Ker} K \geq 2^{524}$.

Attacker wants to decode v : to find element of Ker K at distance only 50 from v. Presumably unique, revealing e.

Attacker, by linear algebra, easily works backwards from $K e$ to some $v \in \mathbf{F}_{2}^{1024}$ such that $K v=K e$.
i.e. Attacker finds some element $v \in e+\operatorname{Ker} K$. Note that \# Ker $K \geq 2^{524}$.

Attacker wants to decode v : to find element of Ker K at distance only 50 from v. Presumably unique, revealing e.

But decoding isn't easy!

Information-set decoding

Choose random size-500 subset $S \subseteq\{1,2,3, \ldots, 1024\}$.

For typical K : Good chance that $\mathbf{F}_{2}^{S} \hookrightarrow \mathbf{F}_{2}^{1024} \xrightarrow{K} \mathbf{F}_{2}^{500}$ is invertible.

Information-set decoding

Choose random size-500 subset
$S \subseteq\{1,2,3, \ldots, 1024\}$.
For typical K : Good chance that $\mathbf{F}_{2}^{S} \hookrightarrow \mathbf{F}_{2}^{1024} \xrightarrow{K} \mathbf{F}_{2}^{500}$ is invertible.

Hope $e \in \mathbf{F}_{2}^{S}$; chance $\approx 2^{-53}$.
Apply inverse map to $K e$, revealing e if $e \in \mathbf{F}_{2}^{S}$.

Information-set decoding

Choose random size-500 subset
$S \subseteq\{1,2,3, \ldots, 1024\}$.
For typical K : Good chance that $\mathbf{F}_{2}^{S} \hookrightarrow \mathbf{F}_{2}^{1024} \xrightarrow{K} \mathbf{F}_{2}^{500}$ is invertible.

Hope $e \in \mathbf{F}_{2}^{S}$; chance $\approx 2^{-53}$.
Apply inverse map to $K e$, revealing e if $e \in \mathbf{F}_{2}^{S}$.
If $e \notin \mathbf{F}_{2}^{S}$, try again.
$\approx 2^{80}$ bit operations in total.

Information-set decoding

Choose random size-500 subset
$S \subseteq\{1,2,3, \ldots, 1024\}$.
For typical K : Good chance that $\mathbf{F}_{2}^{S} \hookrightarrow \mathbf{F}_{2}^{1024} \xrightarrow{K} \mathbf{F}_{2}^{500}$ is invertible.

Hope $e \in \mathbf{F}_{2}^{S}$; chance $\approx 2^{-53}$.
Apply inverse map to $K e$, revealing e if $e \in \mathbf{F}_{2}^{S}$.
If $e \notin \mathbf{F}_{2}^{S}$, try again.
$\approx 2^{80}$ bit operations in total.
Bad estimate by McEliece: $\approx 2^{64}$.

Analyzing and optimizing attacks:
1962 Prange. 1981 Omura.
1988 Lee-Brickell. 1988 Leon.
1989 Krouk. 1989 Stern.
1989 Dumer.
1990 Coffey-Goodman.
1990 van Tilburg. 1991 Dumer.
1991 Coffey-Goodman-Farrell.
1993 Chabanne-Courteau.
1993 Chabaud.
1994 van Tilburg.
1994 Canteaut-Chabanne.
1998 Canteaut-Chabaud.
1998 Canteaut-Sendrier.

2008 Bernstein-Lange-Peters: more speedups; $\approx 2^{60}$ cycles; attack actually carried out.
2009 Bernstein-Lange-
Peters-van Tilborg.
2009 Bernstein: post-quantum.
2009 Finiasz-Sendrier.
2010 Bernstein-Lange-Peters.
2011 May-Meurer-Thomae.
2011 Becker-Coron-Joux.
2012 Becker-Joux-May-Meurer.
2013 Bernstein-Jeffery-Lange-
Meurer: post-quantum.
2015 May-Ozerov.

Modern McEliece

Easily rescue system by using a larger public key: "random" $(n / 2) \times n$ matrix K over \mathbf{F}_{2}. e.g., 1800×3600.

Modern McEliece

Easily rescue system by using a larger public key: "random" $(n / 2) \times n$ matrix K over \mathbf{F}_{2}. egg., 1800×3600.

Larger weight $w \approx n /(2 \lg n)$. e.g. $e \in \mathbf{F}_{2}^{3600}$ of weight 150 .

Modern McEliece

Easily rescue system by using a larger public key: "random" $(n / 2) \times n$ matrix K over \mathbf{F}_{2}. e.g., 1800×3600.

Larger weight $w \approx n /(2 \lg n)$. e.g. $e \in \mathbf{F}_{2}^{3600}$ of weight 150 .

1962 attack cost: $2^{(1+o(1)) w}$.

Modern McEliece

Easily rescue system by using a larger public key: "random" $(n / 2) \times n$ matrix K over \mathbf{F}_{2}. e.g., 1800×3600.

Larger weight $w \approx n /(2 \lg n)$. e.g. $e \in \mathbf{F}_{2}^{3600}$ of weight 150 .

1962 attack cost: $2^{(1+o(1)) w}$.
After extensive research, 2015 attack cost: $2^{(1+o(1)) w}$.

Modern McEliece

Easily rescue system by using a larger public key: "random" $(n / 2) \times n$ matrix K over \mathbf{F}_{2}. egg., 1800×3600.

Larger weight $w \approx n /(2 \lg n)$. e.g. $e \in \mathbf{F}_{2}^{3600}$ of weight 150 .

1962 attack cost: $2^{(1+o(1)) w}$.
After extensive research, 2015 attack cost: $2^{(1+o(1)) w}$.

Post-quantum: $2^{(0.5+o(1)) w}$. e.g. $\approx 2^{26}$ Grover iterations to search 2^{53} choices of S.

