
Introduction to

quantum algorithms

and introduction to

code-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Data (“state”) stored in n bits:

an element of {0; 1}n,

often viewed as representing

an element of {0; 1; : : : ; 2n − 1}.

Data (“state”) stored in n bits:

an element of {0; 1}n,

often viewed as representing

an element of {0; 1; : : : ; 2n − 1}.

State stored in n qubits:

a nonzero element of C2n .

Retrieving this vector is tough!

Data (“state”) stored in n bits:

an element of {0; 1}n,

often viewed as representing

an element of {0; 1; : : : ; 2n − 1}.

State stored in n qubits:

a nonzero element of C2n .

Retrieving this vector is tough!

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measuring the qubits produces

an element of {0; 1; : : : ; 2n − 1}
and destroys the state.

Measurement produces element q

with probability |aq |2=
P
r |ar |2.

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

(0; 0; 0; 0; 0; 0; 1; 0) is

“|6〉” in standard notation.

Measurement produces 6.

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

(0; 0; 0; 0; 0; 0; 1; 0) is

“|6〉” in standard notation.

Measurement produces 6.

(0; 0; 0; 0; 0; 0;−7i ; 0) = −7i |6〉:
Measurement produces 6.

Some examples of 3-qubit states:

(1; 0; 0; 0; 0; 0; 0; 0) is

“|0〉” in standard notation.

Measurement produces 0.

(0; 0; 0; 0; 0; 0; 1; 0) is

“|6〉” in standard notation.

Measurement produces 6.

(0; 0; 0; 0; 0; 0;−7i ; 0) = −7i |6〉:
Measurement produces 6.

(0; 0; 4; 0; 0; 0; 8; 0) = 4|2〉+ 8|6〉:
Measurement produces

2 with probability 20%,

6 with probability 80%.

Fast quantum operations, part 1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a1; a0; a3; a2; a5; a4; a7; a6)

is complementing index bit 0,

hence “complementing qubit 0”.

Fast quantum operations, part 1

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a1; a0; a3; a2; a5; a4; a7; a6)

is complementing index bit 0,

hence “complementing qubit 0”.

(a0; a1; a2; a3; a4; a5; a6; a7)

is measured as (q0; q1; q2),

representing q = q0 + 2q1 + 4q2,

with probability |aq |2=
P
r |ar |2.

(a1; a0; a3; a2; a5; a4; a7; a6)

is measured as (q0 ⊕ 1; q1; q2),

representing q ⊕ 1,

with probability |aq |2=
P
r |ar |2.

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a4; a5; a6; a7; a0; a1; a2; a3)

is “complementing qubit 2”:

(q0; q1; q2) 7→ (q0; q1; q2 ⊕ 1).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a4; a2; a6; a1; a5; a3; a7)

is “swapping qubits 0 and 2”:

(q0; q1; q2) 7→ (q2; q1; q0).

Complementing qubit 2

= swapping qubits 0 and 2

◦ complementing qubit 0

◦ swapping qubits 0 and 2.

Similarly: swapping qubits i ; j .

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a3; a2; a4; a5; a7; a6)

is a “reversible XOR gate” =

“controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a3; a2; a4; a5; a7; a6;

a8; a9; a11; a10; a12; a13; a15; a14;

a16; a17; a19; a18; a20; a21; a23; a22;

a24; a25; a27; a26; a28; a29; a31; a30).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a3; a4; a5; a7; a6)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(q0; q1; q2) 7→ (q0 ⊕ q1q2; q1; q2).

Example with more qubits:

(a0; a1; a2; a3; a4; a5; a6; a7;

a8; a9; a10; a11; a12; a13; a14; a15;

a16; a17; a18; a19; a20; a21; a22; a23;

a24; a25; a26; a27; a28; a29; a30; a31)

7→ (a0; a1; a2; a3; a4; a5; a7; a6;

a8; a9; a10; a11; a12; a13; a15; a14;

a16; a17; a18; a19; a20; a21; a23; a22;

a24; a25; a26; a27; a28; a29; a31; a30).

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):

Reversible computation

Say p is a permutation

of {0; 1; : : : ; 2n − 1}.

General strategy to compose

these fast quantum operations

to obtain index permutation

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)):

1. Build a traditional circuit

to compute j 7→ p(j)

using NOT/XOR/AND gates.

2. Convert into reversible gates:

e.g., convert AND into Toffoli.

Example: Let’s compute

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a7; a0; a1; a2; a3; a4; a5; a6);

permutation q 7→ q + 1 mod 8.

1. Build a traditional circuit

to compute q 7→ q + 1 mod 8.

q0

�� ��2
22

22
22

22
22

22
22

22

!!D
DD

DD
DD

DD
D q1

��

��

q2

��

c1 = q1q0

!!D
DD

DD
DD

DD
D

q0 ⊕ 1 q1 ⊕ q0 q2 ⊕ c1

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

Controlled NOT for q1 ← q1 ⊕ q0:

(a0; a1; a2; a7; a4; a5; a6; a3) 7→
(a0; a7; a2; a1; a4; a3; a6; a5).

2. Convert into reversible gates.

Toffoli for q2 ← q2 ⊕ q1q0:

(a0; a1; a2; a3; a4; a5; a6; a7) 7→
(a0; a1; a2; a7; a4; a5; a6; a3).

Controlled NOT for q1 ← q1 ⊕ q0:

(a0; a1; a2; a7; a4; a5; a6; a3) 7→
(a0; a7; a2; a1; a4; a3; a6; a5).

NOT for q0 ← q0 ⊕ 1:

(a0; a7; a2; a1; a4; a3; a6; a5) 7→
(a7; a0; a1; a2; a3; a4; a5; a6).

This permutation example

was deceptively easy.

It didn’t need many operations.

For large n, most permutations p

need many operations ⇒ slow.

Really want fast circuits.

This permutation example

was deceptively easy.

It didn’t need many operations.

For large n, most permutations p

need many operations ⇒ slow.

Really want fast circuits.

Also, it didn’t need extra storage:

circuit operated “in place” after

computation c1 ← q1q0 was

merged into q2 ← q2 ⊕ c1.

Typical circuits aren’t in-place.

Start from any circuit:

inputs b1; b2; : : : ; bi ;

bi+1 = 1⊕ bf (i+1)bg(i+1);

bi+2 = 1⊕ bf (i+2)bg(i+2);

: : :

bT = 1⊕ bf (T)bg(T);

specified outputs.

Start from any circuit:

inputs b1; b2; : : : ; bi ;

bi+1 = 1⊕ bf (i+1)bg(i+1);

bi+2 = 1⊕ bf (i+2)bg(i+2);

: : :

bT = 1⊕ bf (T)bg(T);

specified outputs.

Reversible but dirty:

inputs b1; b2; : : : ; bT ;

bi+1 ← 1⊕ bi+1 ⊕ bf (i+1)bg(i+1);

bi+2 ← 1⊕ bi+2 ⊕ bf (i+2)bg(i+2);

: : :

bT ← 1⊕ bT ⊕ bf (T)bg(T).

Same outputs if all of

bi+1; : : : ; bT started as 0.

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:

(inputs) 7→
(inputs; dirt; outputs).

Dirty reversible computation:

(inputs; zeros; zeros) 7→
(inputs; dirt; outputs).

Clean reversible computation:

(inputs; zeros; zeros) 7→
(inputs; zeros; outputs).

Given fast circuit for p

and fast circuit for p−1,

build fast reversible circuit for

(x; zeros) 7→ (p(x); zeros).

Given fast circuit for p

and fast circuit for p−1,

build fast reversible circuit for

(x; zeros) 7→ (p(x); zeros).

Replace reversible bit operations

with Toffoli gates etc.

permuting C2n+z → C2n+z
.

Permutation on first 2n entries is

(a0; a1; : : : ; a2n−1) 7→
(ap−1(0); ap−1(1); : : : ; ap−1(2n−1)).

Typically prepare vectors

supported on first 2n entries

so don’t care how permutation

acts on last 2n+z − 2n entries.

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.

Many subtle tradeoffs.

Warning: Number of qubits

≈ number of bit operations

in original p; p−1 circuits.

This can be much larger

than number of bits stored

in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.

Many subtle tradeoffs.

Crude “poly-time” analyses

don’t care about this,

but serious cryptanalysis

is much more precise.

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

(a0; a1; a2; a3) 7→
(a0 + a1; a0 − a1; a2 + a3; a2 − a3).

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

(a0; a1; a2; a3) 7→
(a0 + a1; a0 − a1; a2 + a3; a2 − a3).

Same for qubit 1:

(a0; a1; a2; a3) 7→
(a0 + a2; a1 + a3; a0 − a2; a1 − a3).

Fast quantum operations, part 2

“Hadamard”:

(a0; a1) 7→ (a0 + a1; a0 − a1).

(a0; a1; a2; a3) 7→
(a0 + a1; a0 − a1; a2 + a3; a2 − a3).

Same for qubit 1:

(a0; a1; a2; a3) 7→
(a0 + a2; a1 + a3; a0 − a2; a1 − a3).

Qubit 0 and then qubit 1:

(a0; a1; a2; a3) 7→
(a0 +a1; a0−a1; a2 +a3; a2−a3) 7→
(a0 +a1 +a2 +a3; a0−a1 +a2−a3,

a0 +a1−a2−a3; a0−a1−a2 +a3).

Repeat n times: e.g.,

(1; 0; 0; : : : ; 0) 7→ (1; 1; 1; : : : ; 1).

Measuring (1; 0; 0; : : : ; 0)

always produces 0.

Measuring (1; 1; 1; : : : ; 1)

can produce any output:

Pr[output = q] = 1=2n.

Repeat n times: e.g.,

(1; 0; 0; : : : ; 0) 7→ (1; 1; 1; : : : ; 1).

Measuring (1; 0; 0; : : : ; 0)

always produces 0.

Measuring (1; 1; 1; : : : ; 1)

can produce any output:

Pr[output = q] = 1=2n.

Aside from “normalization”

(irrelevant to measurement),

have Hadamard = Hadamard−1,

so easily work backwards

from “uniform superposition”

(1; 1; 1; : : : ; 1) to “pure state”

(1; 0; 0; : : : ; 0).

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

We don’t have enough data

if f has many periods.

Assume: {periods} = {0; s}.

Simon’s algorithm

Assume: nonzero s ∈ {0; 1}n

satisfies f (x) = f (x ⊕ s)
for every x ∈ {0; 1}n.

Can we find this period s,

given a fast circuit for f ?

We don’t have enough data

if f has many periods.

Assume: {periods} = {0; s}.

Traditional solution:

Compute f for many inputs,

sort, analyze collisions.

Success probability is very low

until #inputs approaches 2n=2.

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Say f maps n bits to m bits using

z “ancilla” bits for reversibility.

Prepare n +m + z qubits

in pure zero state:

vector (1; 0; 0; : : :).

Simon’s algorithm uses

far fewer qubit operations

if n is large and

reversibility overhead is low.

Say f maps n bits to m bits using

z “ancilla” bits for reversibility.

Prepare n +m + z qubits

in pure zero state:

vector (1; 0; 0; : : :).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:

(1; 1; 1; : : : ; 1; 0; 0; : : :)

with 2n entries 1, others 0.

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply n-fold Hadamard.

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply n-fold Hadamard.

Measure. By symmetry,

output is orthogonal to s.

Apply fast vector permutation

for reversible f computation:

1 in position (q; 0; 0)

moves to position (q; f (q); 0).

Note symmetry between

1 at (q; f (q); 0) and

1 at (q ⊕ s; f (q); 0).

Apply n-fold Hadamard.

Measure. By symmetry,

output is orthogonal to s.

Repeat n + 10 times.

Use Gaussian elimination

to (probably) find s.

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7.

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Example, 3 bits to 3 bits:

f (0) = 4.

f (1) = 7. 4
<<

7
<<

2 3

7
<<

4
<<

3 2

f (2) = 2.

f (3) = 3.

f (4) = 7.

f (5) = 4.

f (6) = 3.

f (7) = 2.

Complete table shows that

f (x) = f (x ⊕ 5) for all x .

Let’s watch Simon’s algorithm

for f , using 6 qubits.

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Step 2. Hadamard on qubit 0:

1; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Step 3. Hadamard on qubit 1:

1; 1; 1; 1; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Step 4. Hadamard on qubit 2:

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Step 5. (q; 0) 7→ (q; f (q)):

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 0; 0; 1; 0; 0; 1; 0;

1; 0; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0:

Step 6. Hadamard on qubit 0:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 1; 0; 0; 1; 1;

0; 0; 1; 1; 0; 0; 1; 1;

1; 1; 0; 0; 1; 1; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 0; 0; 1; 1; 0; 0:

Notation: 1 = −1.

Step 7. Hadamard on qubit 1:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 1; 1; 1; 1; 1; 1;

1; 1; 1; 1; 1; 1; 1; 1;

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 1; 1; 1; 1; 1; 1:

Step 8. Hadamard on qubit 2:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 8. Hadamard on qubit 2:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9. Measure.

First 3 qubits are uniform random

vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this

easily beats traditional algorithm.

Start from uniform superposition

over all n-bit strings q.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

Normalized graph of q 7→ aq
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after Step 1:

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after Step 1 + Step 2:

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after Step 1 + Step 2 + Step 1:

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 2× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 3× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 4× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 5× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 6× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 7× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 8× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 9× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 10× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 11× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 12× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 13× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 14× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 15× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 16× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 17× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 18× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 19× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 20× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 25× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 30× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 35× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Good moment to stop, measure.

Normalized graph of q 7→ aq
for an example with n = 12

after 40× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 45× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 50× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Traditional stopping point.

Normalized graph of q 7→ aq
for an example with n = 12

after 60× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 70× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 80× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 90× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

New algorithm

OO

��
Proof of run time

Mislead students into thinking

that best algorithm =

best proven algorithm.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Reality: state-of-the-art

cryptanalytic algorithms

are almost never proven.

Ignorant response:

“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis

relies critically on heuristics and

computer experiments.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

⇒ Huge extrapolation errors.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

⇒ Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

What about quantum algorithms?

Want to analyze, optimize

quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny q. computer?

⇒ Huge extrapolation errors.

2. Faster algorithm-specific

simulation? Yes, sometimes.

3. Fast trapdoor simulation.

Simulator (like prover) knows

more than the algorithm does.

Tung Chou has implemented this,

found errors in two publications.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

“AES-128 is dead.”

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

“AES-128 is dead.”

Fix: Switch to AES-256.

Post-quantum cryptography

Grover’s algorithm finds

128-bit AES key using

264 quantum AES evaluations.

Sensible risk management:

Assume that this is feasible—

or will be feasible in, e.g., 2025.

“AES-128 is dead.”

Fix: Switch to AES-256.

AES-256 has 14 rounds.

Maybe 12 rounds are enough

for 2128 post-quantum security?

Maybe 10 rounds are enough?

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

≈264 qubit operations

when N is around 1 gigabyte.

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

≈264 qubit operations

when N is around 1 gigabyte.

Shor also finds logg h by

finding period of (x; y) 7→ gxhy .

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

≈264 qubit operations

when N is around 1 gigabyte.

Shor also finds logg h by

finding period of (x; y) 7→ gxhy .

“RSA is dead. ECC is dead.”

Shor’s algorithm

(similar to Simon’s algorithm)

factors RSA modulus N by

finding period of x 7→ 2x mod N.

Number of qubit operations

≈ number of bit operations

to compute 2x mod N.

≈264 qubit operations

when N is around 1 gigabyte.

Shor also finds logg h by

finding period of (x; y) 7→ gxhy .

“RSA is dead. ECC is dead.”

But some systems seem safe.

Hash-based signatures.

Example: 1979 Merkle hash-tree

public-key signature system.

Code-based cryptography.

Example: 1978 McEliece

hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.

Example: 1998 “NTRU”.

Multivariate-quadratic-

equations cryptography.

Example:

1996 Patarin “HFEv−”

public-key signature system.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

Messages suitable for encryption:

1024-bit strings of weight 50.

{e ∈ F1024
2 : #{i : ei = 1} = 50}.

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

Messages suitable for encryption:

1024-bit strings of weight 50.

{e ∈ F1024
2 : #{i : ei = 1} = 50}.

Encryption of e is Ke ∈ F500
2 .

The 1978 McEliece cryptosystem

(with 1986 Niederreiter speedup)

Receiver’s public key: “random”

500× 1024 matrix K over F2.

Specifies linear F1024
2 → F500

2 .

Messages suitable for encryption:

1024-bit strings of weight 50.

{e ∈ F1024
2 : #{i : ei = 1} = 50}.

Encryption of e is Ke ∈ F500
2 .

“Padding”: Choose random e;

send Ke; use SHA-256(e;Ke) as

AES-256-GCM key to encrypt

actual message of any length.

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

i.e. Attacker finds some

element v ∈ e + KerK.

Note that # KerK ≥ 2524.

Attacker wants to decode v :

to find element of KerK

at distance only 50 from v .

Presumably unique, revealing e.

Attacker, by linear algebra,

easily works backwards

from Ke to some v ∈ F1024
2

such that Kv = Ke.

i.e. Attacker finds some

element v ∈ e + KerK.

Note that # KerK ≥ 2524.

Attacker wants to decode v :

to find element of KerK

at distance only 50 from v .

Presumably unique, revealing e.

But decoding isn’t easy!

Information-set decoding

Choose random size-500 subset

S ⊆ {1; 2; 3; : : : ; 1024}.

For typical K: Good chance

that FS2 ,→ F1024
2

K−−→ F500
2

is invertible.

Information-set decoding

Choose random size-500 subset

S ⊆ {1; 2; 3; : : : ; 1024}.

For typical K: Good chance

that FS2 ,→ F1024
2

K−−→ F500
2

is invertible.

Hope e ∈ FS2 ; chance ≈2−53.

Apply inverse map to Ke,

revealing e if e ∈ FS2 .

Information-set decoding

Choose random size-500 subset

S ⊆ {1; 2; 3; : : : ; 1024}.

For typical K: Good chance

that FS2 ,→ F1024
2

K−−→ F500
2

is invertible.

Hope e ∈ FS2 ; chance ≈2−53.

Apply inverse map to Ke,

revealing e if e ∈ FS2 .

If e =∈ FS2 , try again.

≈280 bit operations in total.

Information-set decoding

Choose random size-500 subset

S ⊆ {1; 2; 3; : : : ; 1024}.

For typical K: Good chance

that FS2 ,→ F1024
2

K−−→ F500
2

is invertible.

Hope e ∈ FS2 ; chance ≈2−53.

Apply inverse map to Ke,

revealing e if e ∈ FS2 .

If e =∈ FS2 , try again.

≈280 bit operations in total.

Bad estimate by McEliece: ≈264.

Analyzing and optimizing attacks:

1962 Prange. 1981 Omura.

1988 Lee–Brickell. 1988 Leon.

1989 Krouk. 1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg. 1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters:

more speedups; ≈260 cycles;

attack actually carried out.

2009 Bernstein–Lange–

Peters–van Tilborg.

2009 Bernstein: post-quantum.

2009 Finiasz–Sendrier.

2010 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2011 Becker–Coron–Joux.

2012 Becker–Joux–May–Meurer.

2013 Bernstein–Jeffery–Lange–

Meurer: post-quantum.

2015 May–Ozerov.

Modern McEliece

Easily rescue system by using

a larger public key: “random”

(n=2)× n matrix K over F2.

e.g., 1800× 3600.

Modern McEliece

Easily rescue system by using

a larger public key: “random”

(n=2)× n matrix K over F2.

e.g., 1800× 3600.

Larger weight w ≈ n=(2 lg n).

e.g. e ∈ F3600
2 of weight 150.

Modern McEliece

Easily rescue system by using

a larger public key: “random”

(n=2)× n matrix K over F2.

e.g., 1800× 3600.

Larger weight w ≈ n=(2 lg n).

e.g. e ∈ F3600
2 of weight 150.

1962 attack cost: 2(1+o(1))w .

Modern McEliece

Easily rescue system by using

a larger public key: “random”

(n=2)× n matrix K over F2.

e.g., 1800× 3600.

Larger weight w ≈ n=(2 lg n).

e.g. e ∈ F3600
2 of weight 150.

1962 attack cost: 2(1+o(1))w .

After extensive research,

2015 attack cost: 2(1+o(1))w .

Modern McEliece

Easily rescue system by using

a larger public key: “random”

(n=2)× n matrix K over F2.

e.g., 1800× 3600.

Larger weight w ≈ n=(2 lg n).

e.g. e ∈ F3600
2 of weight 150.

1962 attack cost: 2(1+o(1))w .

After extensive research,

2015 attack cost: 2(1+o(1))w .

Post-quantum: 2(0:5+o(1))w .

e.g. ≈226 Grover iterations

to search 253 choices of S.

